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Manhattan years. 



Preface 

One of my greatest pleasures and privileges was writing a column, over 

a period of some 30 years, for Scientific American. It began with an 

article on hexaflexagons in December 1956 and concluded with a col- 

umn on minimal Steiner trees in May 1986. 

Writing this column was a marvelous learning experience. I took 

no courses in math when I was an undergraduate at the University of 

Chicago-my major was philosophy-but I have always loved mathemat- 

ics, and now and then regret I did not pursue it as a career. It takes 

only a glance through earlier book collections of the columns to see 

how they gradually became more sophisticated as I learned more about 

mathematics. Not the least of my delights was getting to know many 

truly eminent mathematicians who generously contributed material and 

who have since become lifelong friends. 

This is the fifteenth and final collection. As in previous books in 

the series, I have done my best to correct blunders, to expand and 

update each column with an addendum, to add new illustrations, and 

to provide fuller lists of selectcd references. 

Martin Gardner 
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The 
Wonders 

Planiver se 

"Planiversal scientists are not a very 
common breed." 

-Alexander Keewatin Dewdney 

s far as anyone knows the only existing universe is the one 

we live in, with its three dimensions of space and one of time. 

.It is not hard to imagine, as many science-fiction writers have, 

that intelligent organisms could live in a fourdimensional space, 

but two dimensions offer such limited degrees of freedom that it has 

long been assumed intelligent two-space life forms could not exist. 

Two notable attempts have nonetheless been made to describe such 

organisms. 
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In 1884 Edwin Abbott Abbott, a London clergyman, published his 

satirical novel Flatland. Unfortunately the book leaves the reader almost 

entirely in the dark about Flatland's physical laws and the technology 

developed by its inhabitants, but the situation was greatly improved in 

1907 when Charles Howard Hinton published An Episode of Flatland. 
Although written in a flat style and with cardboard characters, Hinton's 

story provided the first glimpses of the possible science and technology 

of the two-dimensional world. His eccentric book is, alas, long out of 

print, but you can read about it in the chapter "Flatlands" in my book 

The Unexpected Hanging and Other Mathematical Diversions (Simon & 

Schuster, 1969). 

In "Flatlands" I wrote: "It is amusing to speculate on d i m e n -  

sional physics and the kinds of simple mechanical devices that would 

be feasible in a flat world." This remark caught the attention of Alexander 

Keewatin Dewdney, a computer scientist at the University of Western 

Ontario. Some of his early speculations on the subject were set down in 

1978 in a university report and in 1979 in "Exploring the Planiverse," 

an article in Journal of Recreational Mathematics (Vol. 12, No. 1, pages 

16-20; September). Later in 1979 Dewdney also privately published 

"Two-dimensional Science and Technology," a 97-page tour de force. It 

is hard to believe, but Dewdney actually lays the groundwork for what 

he calls a planiverse: a possible two-dimensional world. Complete with 

its own laws of chemistry, physics, astronomy, and biology, the planiverse 

is closely analogous to our own universe (which he calls the steriverse) 

and is apparently free of contradictions. I should add that this remark- 

able achievement is an amusing hobby for a mathematician whose seri- 

ous contributions have appeared in some 30 papers in technical jour- 

nals. 

Dewdney's planiverse resembles Hinton's in having an earth that 

he calls (as Hinton did) Astria. Astria is a disklike planet that rotates in 

planar space. The Astrians, walking upright on the rim of the planet, 
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can distinguish east and west and up and down. Naturally there is no 

north or south. The "axis" of Astria is a point at the center of the 

circular planet. You can think of such a flat planet as being truly two- 

dimensional or you can give it a very slight thickness and imagine it as 

moving between two frictionless planes. 

As in our world, gravity in a planiverse is a force between objects 

that varies directly with the product of their masses, but it varies in- 

versely with the linear distance between them, not with the square of 

that distance. O n  the assumption that forces such as light and gravity in 

a planiverse move in straight lines, it is easy to see that the intensity of 

such forces must vary inversely with linear distance. The familiar t e s  

book figure demonstrating that in our world the intensity of light varies 

inversely with the square of distance is shown at the top of Figure 1. 
The obvious planar analogue is shown at the bottom of the illustration. 

Figure 1 
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To keep his whimsical project from "degenerating into idle specula- 

tion" Dewdney adopts two basic principles. The "principle of similar- 

ity" states that the planiverse must be as much like the steriverse as 

possible: a motion not influenced by outside forces follows a straight 

line, the flat analogue of a sphere is a circle, and so on. The "principle 

of modification" states that in those cases where one is forced to choose 

between conflicting hypotheses, each one equally similar to a steriversal 

theory, the more fundamental one must be chosen and the other modi- 

fied. To determine which hypothesis is more fundamental Dewdney 

relies on the hierarchy in which physics is more fundamental than 

chemistry, chemistry more fundamental than biology, and so on. 

To illustrate the interplay between levels of theory Dewdney consid- 

ers the evolution of the planiversal hoist in Figure 2. The engineer who 

designed it first gave it arms thinner than those in the illustration, but 

when a metallurgist pointed out that planar materials fracture more 

easily than their three-space counterparts, the engineer made the arms 

Figure 2 
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thicker. Later a theoretical chemist, invoking the principles of similarity 

and modification at a deeper level, calculated that the planiversal m e  

lecular forces are much stronger than had been suspected, and so the 

engineer went back to thinner arms. 

The principle of similarity leads Dewdney to posit that the planiverse 

is a threedimensional continuum of space-time containing matter com- 

posed of molecules, atoms, and fundamental particles. Energy is propa- 

gated by waves, and it is quantized. Light exists in all its wavelengths 

and is refracted by planar lenses, making possible planiversal eyes, 

planiversal telescopes, and planiversal microscopes. The planiverse shares 

with the steriverse such basic precepts as causality; the first and second 

laws of thermodynamics; and laws concerning inertia, work, friction, 

magnetism, and elasticity. 

Dewdney assumes that his planiverse began with a big bang and is 

currently expanding. An elementary calculation based on the inverse- 

linear gravity law shows that regardless of the amount of mass in the 

planiverse the expansion must eventually halt, so that a contracting 

phase will begin. The Astrian night sky will of course be a semicircle 

along which are scattered twinkling points of light. If the stars have 

proper motions, they will continually be occulting one another. If Astria 

has a sister planet, it will over a period of time occult every star in the 

sky* 
We can assume that Astria revolves around a sun and rotates, thereby 

creating day and night. In a planiverse, Dewdney discovered, the only 

stable orbit that continually retraces the same path is a perfect circle. 

Other stable orbits roughly elliptical in shape are possible, but the axis 

of the ellipse rotates in such a way that the orbit never exactly closes. 

Whether planiversal gravity would allow a moon to have a stable orbit 

around Astria remains to be determined. The difficulty is due to the 

sun's gravity, and resolving the question calls for work on the planar 

analogue of what our astronomers know as the three-body problem. 
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Dewdney analyzes in detail the nature of Astrian weather, using 

analogies to our seasons, winds, clouds, and rain. An Astrian river 

would be indistinguishable from a lake except that it might have 

faster currents. One peculiar feature of Astrian geology is that water 

cannot flow around a rock as it does on the earth. As a result 

rainwater steadily accumulates behind any rock on a slope, tending 

to push the rock downhill: the gentler the slope is, the more water 

accumulates and the stronger the push is. Dewdney concludes that 

given periodic rainfall the Astrian surface would be unusually flat 

and uniform. Another consequence of the inability of water to move 

sideways on Astria is that it would become trapped in pockets within 

the soil, tending to create large areas of treacherous quicksand in the 

hollows of the planet. One hopes, Dewdney writes, that rainfall is 

infrequent on Astria. Wind too would have much severer effects on 

Astria than on the earth because like rain it cannot "go around" 

objects. 

Dewdney devotes many pages to constructing a plausible chemistry 

for his planiverse, modeling it as much as possible on three-dimen- 

sional matter and the laws of quantum mechanics. Figure 3 shows 

Dewdney's periodic table for the first 16 planiversal elements. Because 

the first two are so much like their counterparts in our world, they are 

called hydrogen and helium. The next 10 have composite names to 

suggest the steriversal elements they most resemble; for example, lithrogen 

combines the properties of lithium and nitrogen. The next four are 

named after Hinton, Abbott, and the young lovers in Hinton's novel, 

Harold Wall and Laura Cartwright. 

In the flat world atoms combine naturally to form molecules, but of 

course only bonding that can be diagrammed by a planar graph is 

allowed. (This result follows by analogy from the fact that intersecting 

bonds do not exist in steriversal chemistry.) As in our world, two asym- 

metric molecules can be mirror images of each other, so that neither 
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Figure 3 

one can be "turned over" to become identical with the other. There are 

striking parallels between planiversal chemistry and the behavior of 

steriversal monolayers on crystal surfaces [see ''Two-dimensional Mat- 

ter," by J. G. Dash; Scientific American, May 19731. In our world mol- 

ecules can form 230 distinct crystallographic groups, but in the planiverse 

they can form only 17. I am obliged to pass over Dewdney's specula- 

tions about the diffusion of molecules, electrical and magnetic laws, 

analogues of Maxwell's equations, and other subjects too technical to 

summarize here. 

Dewdney assumes that animals on Astria are composed of cells that 

cluster to form bones, muscles, and connective tissues similar to those 

found in steriversal biology. He has little difficulty showing how these 

bones and muscles can be structured to move appendages in such a way 

that the animals can crawl, walk, fly, and swim. Indeed, some of these 

movements are easier in a planiverse than in our world. For example, a 

steriversal animal with two legs has considerable difficulty balancing 

while walking, whereas in the planiverse if an animal has both legs on 
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the ground, there is no way it can fall over. Moreover, a flying planiversal 

animal cannot have wings and does not need them to fly; if the body of 

the animal is aerodynamically shaped, it can act as a wing (since air can 

go around it only in the plane). The flying animal could be propelled by 

a flapping tail. 

Calculations also show that Astrian animals probably have much 

lower metabolic rates than terrestrial animals because relatively little 

heat is lost through the perimeter of their body. Furthermore, animal 

bones can be thinner on Astria than they are on the earth, because 

they have less weight to support. Of course, no Astrian animal can have 

an open tube extending from its mouth to its anus, because if it did, it 

would be cut in two. 

In the appendix to his book The Structure and Evolution of the 

Universe (Harper, 1959) G. J. Whitrow argues that intelligence could 

not evolve in two-space because of the severe restrictions two dimen- 

sions impose on nerve connections. "In three or more dimensions," he 

writes, "any number of [nerve] cells can be connected with [one an- ) 

other] in pairs without intersection of the joins, but in two dimensions 

the maximum number of cells for which this is possible is only four." 

Dewdney easily demolishes this argument, pointing out that if nerve 

cells are allowed to fire nerve impulses through "crossover points," they 

can form flat networks as complex as any in the steriverse. Planiversal 

minds would operate more slowly than steriversal ones, however, be- 

cause in the two-dimensional networks the pulses would encounter 

more interruptions. (There are comparable results in the theory of two- 

dimensional automatons.) 

Dewdney sketches in detail the anatomy of an Astrian female fish 

with a sac of unfertilized eggs between its two tail muscles. The fish has 

an external skeleton, and nourishment is provided by the internal circu- 

lation of food vesicles. If a cell is isolated, food enters it through a 

membrane that can have only one opening at a time. If the cell is in 
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contact with other cells, as in a tissue, it can have more than one 

opening at a time because the surrounding cells are able to keep it 

intact. We can of course see every internal organ of the fish or of any 

other planiversal life form, just as a four-dimensional animal could see 

all our internal organs. 

Dewdney follows Hinton in depicting his Astrian people schemati- 

cally, as triangles with two arms and two legs. Hinton's Astrians, how- 

ever, always face in the same direction: males to the east and females to 

the west. In both sexes the arms are on the front side, and there is a 

single eye at the top of the triangle, as shown in Figure 4. Dewdney's 

Astrians are bilaterally symmetrical, with an arm, a leg, and an eye on 

each side, as shown in the illustration's center. Hence these Astrians, 

like terrestrial birds or horses, can see in opposite directions. Naturally 

the only way for one Astrian to pass another is to crawl or leap over 

him. My conception of an Astrian bug-eyed monster is shown at the 

right in the illustration. This creature's appendages serve as either arms 

or legs, depending on which way it is facing, and its two eyes provide 

binocular vision. With only one eye an Astrian would have a largely 

onedimensional visual world, giving him a rather narrow perception of 

reality. O n  the other hand, parts of objects in the planiverse might be 

distinguished by their color, and an illusion of depth might be created 

by the focusing of the lens of the eye. 

O n  Astria building a house or mowing a lawn requires less work 

Figure 4 
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than it does on the earth because the amount of material involved is 

considerably smaller. As Dewdney points out, however, there are still 

formidable problems to be dealt with in a d i m e n s i o n a l  world: "As- 

suming that the surface of the planet is absolutely essential to support 

life-giving plants and animals, it is clear that very little of the Astrian 

surface can be disturbed without inviting the biological destruction of 

the planet. For example, here on earth we may build a modest highway 

through the middle of several acres of rich farmland and destroy no 

more than a small percentage of it. A corresponding highway on Astria 

with destroy all the 'acreage' it passes over. . . . Similarly, extensive cities 

would quickly use up the Astrian countryside. It would seem that the 

only alternative for the Astrian technological society is to go under- 

ground." A typical subterranean house with a living room, two bed- 

rooms, and a storage room is shown in Figure 5 .  Collapsible chairs and 

tables are stored in recesses in the floors to make the rooms easier to 

walk through. 

The many simple threedimensional mechanical elements that have 

obvious analogues on Astria include rods, levers, inclined planes, springs, 

hinges, ropes, and cables (see Figure 6, top). Wheels can be rolled 

along the ground, but there is no way to turn them on a fixed axle. 

Screws are impossible. Ropes cannot be knotted; but by the same to- 

ken, they never tangle. Tubes and pipes must have partitions, to keep 

their sides in place, and the partitions have to be opened (but never all 

of them at once) to allow anything to pass through. It is remarkable that 

in spite of these severe constraints many flat mechanical devices can be 

built that will work. A faucet designed by Dewdney is shown in Figure 

6, bottom. To operate it the handle is lifted. This action pulls the valve 

away from the wall of the spout, allowing the water to flow out. When 

the handle is released, the spring pushes the valve back. 

The device shown in Figure 7 serves to open and close a door (or 

a wall). Pulling down the lever at the right forces the wedge at the 
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Figure 5 
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ROD SPRING HINGE 

Figure 6 (top) 

-- -- 
- - - - 

Figure 6 (bottom) 

bottom to the left, thereby allowing the door to swing upward (carrying 

the wedge and the levers with it) on a hinge at the top. The door is 

opened from the left by pushing up on the other lever. The door can be 

lowered from either side and the wedge moved back to stabilize the wall 

by moving a lever in the appropriate direction. This device and the 

faucet are both mechanisms with permanent planiversal hinges: circu- 

lar knobs that rotate inside hollows but cannot be removed from them. 

Figure 8 depicts a planiversal steam engine whose operation paral- 

lels that of a steriversal engine. Steam under pressure is admitted into 

the cylinder of the engine through a sliding valve that forms one of its 

walls (top). The steam pressure causes a piston to move to the right until 

steam can escape into a reservoir chamber above it. The subsequent 

loss of pressure allows the compound leaf spring at the right of the 

cylinder to drive the piston back to the left (bottom). The sliding valve is 
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Figure 7 

closed as the steam escapes into the reservoir, but as the piston moves 

back it reopens, pulled to the right by a spring-loaded arm. 

Figure 9 depicts Dewdney's ingenious mechanism for unlocking a 

door with a key. This planiversal lock consists of three slotted tumblers 

(a) that line up when a key is inserted (b) so that their lower halves 

move as a unit when the key is pushed (c). The pushing of the key is 

transmitted through a lever arm to the master latch, which pushes 
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Figure 8 

down on a slave latch until the door is free to swing to the right (d). The 

bar on the lever arm and the lip on the slave latch make the lock 

difficult to pick. Simple and compound leaf springs serve to return all 

the parts of the lock except the lever arm to their original positions 

when the door is opened and the key is removed. When the door 

closes, it strikes the bar on the lever arm, thereby returning that piece to 

its original position as well. This flat lock could actually be employed in 

the steriverse; one simply inserts a key without twisting it. 

"It is amusing to think," writes Dewdney, "that the rather exotic 

design pressures created by the planiversal environment could cause us 

to think about mechanisms in such a different way that entirely novel 

solutions to old problems arise. The resulting designs, if steriversally 

practical, are invariably ~pace~saving." 
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Figure 8 (continued) 

Thousands of challenging planiversal problems remain unsolved. 

Is there a way, Dewdney wonders, to design a two-dimensional 

windup motor with flat springs or rubber bands that would store 

energy? What is the most efficient design for a planiversal clock, 

telephone, book, typewriter, car, elevator or computer? Will some 

machines need a substitute for the wheel and axle? Will some need 

electric power? 

There is a curious pleasure in trying to invent machines for what 

Dewdney calls "a universe both similar to and yet strangely different 

from ours." As he puts it, "from a small number of assumptions many 

phenomena seem to unfurl, giving one the sense of a kind of separate 

existence of this twodimensional world. One finds oneself speaking, 

willy-nilly, of the planiverse as opposed to a planiverse. . . . [For] those 
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Figure 9 

who engage in it positively, there is a kind of strange enjoyment, like 

[that of] an explorer who enters a land where his own perceptions play 

a major role in the landscape that greets his eyes." 

Some philosophical aspects of this exploration are not trivial. In 

constructing a planiverse one sees immediately that it cannot be built 

without a host of axioms that Leibniz called the "compossible" ele- 

ments of any possible world, elements that allow a logically consistent 

structure. Yet as Dewdney points out, science in our universe is based 

mainly on observations and experiments, and it is not easy to find any 
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underlying axioms. In constructing a planiverse we have nothing to 

observe. We can only perform gedanken experiments (thought experi- 

ments) about what might be observed. "The experimentalist's loss," 

observes Dewdney, "is the theoretician's gain." 

A marvelous exhibit could be put on of working models of planiversal 

machines, cut out of cardboard or sheet metal, and displayed on a 

surface that slopes to simulate planiversal gravity. One can also imagine 

beautiful cardboard exhibits of planiversal landscapes, cities, and houses. 

Dewdney has opened up a new game that demands knowledge of both 

science and mathematics: the exploration of a vast fantasy world about 

which at present almost nothing is known. 

It occurs to me that Astrians would be able to play two-dimen- 

sional board games but that such games would be as awkward for them 

as three-dimensional board games are for us. I imagine them, then, 

playing a variety of linear games on the analogue of our 8-by8 chess- 

board. Several games of this type are shown in Figure 10. Part a shows 

the start of a checkers game. Pieces move forward only, one cell at a 

time, and jumps are compulsory. The linear game is equivalent to a 

game of regular checkers with play confined to the main diagonal of a 

standard board. It is easy to see how the second player wins in ratio- 

nal play and how in misere, or "giveaway," checkers the first player 

wins just as easily. Linear checkers games become progressively 

harder to analyze as longer boards are introduced. For example, 

which player wins standard linear checkers on the 11-cell board 

when each player starts with checkers on the first four cells at his 

end of the board? 

Part b in the illustration shows an amusing Astrian analogue of 

chess. O n  a linear board a bishop is meaningless and a queen is the 

same as a rook, so the pieces are limited to kings, knights, and rooks. 

The only rule modification needed is that a knight moves two cells in 

either direction and can jump an intervening piece of either color. If 
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the game is played rationally, will either White or Black win or will 

the game end in a draw? The question is surprisingly tricky to an- 

swer. 

Linear go, played on the same board, is by no means trivial. The 

version I shall describe was invented 10 years ago by James Marston 

Henle, a mathematician who is now at Smith College. Called pinch by 

Henle, it is published here for the first time. 

In the4game of pinch players take turns placing black and white 

stones on the cells of the linear board, and whenever the stones of one 

player surround the stones of the other, the surrounded stones are 

removed. For example, both sets of white stones shown in part c of 

Figure 10 are surrounded. Pinch is played according to the following 

two rules. 

Rule 1: No stone can be placed on a cell where it is surrounded 

unless that move serves to surround a set of enemy stones. Hence in 

the situation shown in part d of the illustration White cannot play on 
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cells 1, 3, or 8, but he can play on cell 6 because this move serves to 

surround cell 5. 
Rule 2: A stone cannot be placed on a cell from which a stone was 

removed on the last play if the purpose of the move is to surround 

something. A player must wait at least one turn before making such a 

move. For example, in part e of the illustration assume that Black plays 

on cell 3 and removes the white stones on cells 4 and 5. White cannot 

play on cell 4 (to surround cell 3) for his next move, but he may do so 

for any later move. He can play on cell 5, however, because even though 

a stone was just removed from that cell, the move does not serve to 

surround anything. This rule is designed to decrease the number of 

stalemates, as is the similar rule in go. 

Two-cell pinch is a trivial win for the second player. The three- and 

four-cell games are easy wins for the first player if he takes the center in 

the three-cell game and one of the two central cells in the four-cell one. 

The five-cell game is won by the second player and the six- and seven* 

cell games are won by the first player. The eight-cell game jumps to such 

a high level of complexity that it becomes very exciting to play. Fortunes 

often change rapidly, and in most situations the winning player has 

only one winning move. 

Answers 

In 1 l-cell linear checkers (beginning with Black on cells 1,2,3,  and 

4 and White on cells 8, 9, 10, and 11) the first two moves are forced: 

Black to 5 and White to 7. To avoid losing, Black then goes to 4, and 

White must respond by moving to 8. Black is then forced to 3 and 

White to 9. At this point Black loses with a move to 2 but wins with a 

move to 6. In the latter case White jumps to 5, and then Black jumps 

to 6 for an easy end-game victory. 

On the eight-cell linear chessboard White can win in at most six 



moves. Of White’s four opening moves, R×R is an instant stalemate and
the shortest possible game. R-5 is a quick loss for White if Black plays
R×R. Here White must respond with N-4, and then Black mates on his
second move with R×N. This game is one of the two “fool’s mates,” or
shortest possible wins. The R-4 opening allows Black to mate on his sec-
ond or third move if he responds with N-5.

White’s only winning opening is N-4. Here Black has three possible
replies:

1. R×N.

In this case White wins in two moves with R×R.

2. R-5.

White wins with K-2. If Black plays R-6, White mates with N×R. If
Black takes the knight, White takes the rook, Black moves N-5, and
White mates by taking Black’s knight

3. N-5.

This move delays Black’s defeat the longest. In order to win White
must check with N×R, forcing Black’s king to 7. White moves his rook
to 4. If Black plays K×N, White’s king goes to 2, Black’s K-7 is forced,
and White’s R×N wins. If Black plays N-3 (check), White moves the
king to 2. Black can move only the knight. If he plays N-1, White mates
with N-8. If Black plays N-5, White’s N-8 forces Black’s K×N, and then
White mates with R×N.

The first player also has the win in eight-cell pinch (linear go) by
opening on the second cell from an end, a move that also wins the six
and seven-cell games. Assume that the first player plays on cell 2. His
unique winning responses to his opponent’s plays on 3, 4, 5, 6, 7, and 8
are respectively 5, 7, 7, 7, 5, and 6. I leave the rest of the game to the
reader. It is not known whether there are other winning opening moves.
James Henle, the inventor of pinch, assures me that the second player

20 The Last Rec reat ions



T h e  W o n d e r s  o f  a P l a n i v e r s e  

wins the nine-cell game. H e  has not  tried to analyze boards with more 

than nine cells. 

My column on the planiverse generated enormous interest. Dewdney 

received some thousand letters offering suggestions about flatland sci- 

ence and technology. In 1979 he privately printed Two-Dimensional Sci- 

ence and Technology, a monograph discussing these new results. Two years 

later he edited another monograph, A Symposium of Two-Dimensional Sci- 

ence and Technology. It contained papers by noted scientists, mathemati- 

cians, and laymen, grouped under the categories of physics, chemistry, 

astronomy, biology, and technology. Newsweek covered these monographs 

in a two-page article, "Life in Two Dimensions" (January 18, 1980), and 

a similar article, "Scientific Dreamers' Worldwide Cult," ran in Canada's 

Maclean's magazine (January 11, 1982). Omni (March 1983), in an article 

on  "Flatland Redux," included a photograph of Dewdney shaking hands 

with an Astrian. 

In 1984 Dewdney pulled it all together in a marvelous work, half nonfic- 

tion and half fantasy, titled The Planiverse and published by Poseidon Press, 

an imprint of Simon 6;c Schuster. That same year he took over the mathemat- 

ics column in Scientific American, shifiing its emphasis to computer recre- 

ations. Several collections of his columns have been published by W. H. 
Freeman: The Armchair Universe (1987), The Turing Omnibus (1989), and The 

Magic Machine (1990). 

An active branch of physics is now devoted to planar phenomena. It 

involves research on the properties of surfaces covered by a film one molecule 

thick, and a variety of two-dimensional electrostatic and electronic effects. 

Exploring possible flatlands also relates to a philosophical fad called "pos- 

sible worlds." Extreme proponents of this movement actually argue that if a 

universe is logically possible-that is, free of logical contradictions-it is just as 

"real" as the universe in which we flourish. 

In Childhood's End Arthur Clarke describes a giant planet where intense 
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gravity has forced life to evolve almost flat forms with a vertical thickness of 

one centimeter. 

The following letter from J. Richard Gott 111, an astrophysicist at Princeton 

University, was published in Scientific American (October 1980): 

I was interested in Martin Gardner's article on the physics of 
Flatland, because for some years I have given the students in 
my general relativity class the problem of deriving the theory 
of general relativity for Flatland. The results are surprising. 
One does not obtain the Flatland analogue of Newtonian theory 
(masses with gravitational fields falling off like l / r )  as the 
weak-field limit. General relativity in Flatland predicts no gravitational 
waves and no action at a distance. A planet in Flatland would 
produce no gravitational effects beyond its own radius. In  
our four-dimensional space-time the energy momentum ten- 
sor has 10 independent components, whereas the Riemann 
curvature tensor has 20 independent components. Thus it is 
possible to find solutions to the vacuum field equations 
G,,, = 0 (where all components of the energy momentum 
tensor are zero) that have a nonzero curvature. Black-hole 
solutions and the gravitational-field solution external to a 
planet are examples. This allows gravitational waves and 
action at a distance. Flatland has a three-dimensional space- 
time where the energy momentum tensor has six indepen- 
dent components and the Riemann curvature tensor also 
has only six independent components. In  the vacuum where 
all components of the energy momentum tensor are zero 
all the components of the Riemann curvature tensor must 
also be zero. No action at a distance or gravity waves are 
allowed. 

Electromagnetism in  Flatland, o n  the other hand, be- 
haves just as one would expect. The electromagnetic field 
tensor in  four-dimensional space-time has six independent 
components that can be expressed as vector E and B fields 
with three components each. The electromagnetic field ten- 
sor in  a three-dimensional space-time (Flatland) has three 
independent components: a vector E field with two compo- 
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nents and a scalar B field. Electromagnetic radiation ex- 
ists, and charges have electric fields that fall off like l/r. 

Two more letters, published in the same issue, follow. John S. Harris, of 

Brigham Young University's English Department, wrote: 

As I examined Alexander Keewatin Dewdney's planiversal de- 
vices in Martin Gardner's article o n  science and technology 
in a two-dimensional universe, I was struck with the similar- 
ity of the mechanisms to the lockwork of the Mauser military 
pistol of 1895. This remarkable automatic pistol (which had 
many later variants) had no pivot pins or screws in its func- 
tional parts. Its entire operation was through sliding cam surfaces 
and two-dimensional sockets (called hinges by Dewdney). In- 
deed, the lockwork of a great many firearms, particularly those 
of the 19th century, follows essentially planiversal principles. 
For examples see the cutaway drawings in Book of Pistols and 
Revolvers by W. H .  B. Smith. 

Gardner suggests an exhibit of machines cut from card- 
board, and that is exactly how the firearms genius John Browning 
worked. He would sketch the parts of a gun o n  paper or card- 
board, cut out the individual parts with scissors (he often 
carried a small pair in his vest pocket), and then would say to 
his brother Ed, "Make me a part like this." Ed would ask, 
"How thick, John?" John would show a dimension with his 
thumb and forefinger, and Ed would measure the distance 
with calipers and make the part. The result is that virtually 
every part of the 100 or so Browning designs is essentially a 
two-dimensional shape with an added thickness. 

This planiversality of Browning designs is the reason for 
the obsolescence of most of them. Dewdney says in  his en- 
thusiasm for the planiverse that "such devices are invariably 
space-saving." They are also expensive to manufacture. The 
Browning designs had to be manufactured by profiling ma- 
chines: cam-following vertical milling machines. In  cost of 
manufacture such designs cannot compete with designs that 
can be produced by automatic screw-cutting lathes, by broach- 
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ing machines, by stamping, or by investment casting. Thus 
although the Browning designs have a marvelous aesthetic 
appeal, and although they function with delightful smooth- 
ness, they have nearly all gone out of production. They sim- 
ply got too expensive to make. 

Stefan Drobot, a mathematician at Ohio State University, had this 

to say: 

In  Martin Gardner's article he and the authors he quotes 
seem to have overlooked the following aspect of a "planiverse": 
any communication by means of a wave process, acoustic or 
electromagnetic, would in such a universe be impossible. This 
is a consequence of the Huygens principle, which expresses a 
mathematical property of the (fundamental) solutions of the 
wave equation. More specifically, a sharp impulse-type signal 
(represented by a "delta function") originating from some point 
is propagated in a space of three spatial dimensions in a manner 
essentially different from that in which it is propagated in a 
space of two spatial dimensions. In  three-dimensional space 
the signal is propagated as a sharp-edged spherical wave with- 
out any trail. This property makes it possible to communicate 
by a wave process because two signals following each other in 
a short time can be distinguished. 

In  a space with two spatial dimensions, on the other hand, 
the fundamental solution of the wave equation represents a 
wave that, although it too has a sharp edge, has a trail of 
theoretically infinite length. An observer at a fixed distance 
from the source of the signal would perceive the oncoming 
front (sound, light, etc.) and then would keep perceiving it, 
although the intensity would decrease in time. This fact would 
make communication by any wave process impossible because 
it would not allow two signals following each other to be 
distinguished. More practically such communication would 
take much more time. This letter could not be read in the 
planiverse, although it is (almost) two-dimensional. 

My linear checkers and chess prompted many interesting letters. Abe 
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Schwartz assured me that on the 11-cell checker field Black also wins if the 

game is give-away. I. Richard Lapidus suggested modifying linear chess by 

interchanging knight and rook (the game is a draw), by adding more cells, 

by adding pawns that capture by moving forward one space, or by combi- 

nations of the three modifications. If the board is long enough, he sug 

gested duplicating the pieces-two knights, two rooks-and adding several 

pawns, allowing a pawn a two-cell start option as in standard chess. Peter 

Stampolis proposed sustituting for the knight two pieces called "kops" be- 

cause they combine features of knight and bishop moves. One kop moves 

only on white cells, the other only on black. 

Of course many other board games lend themselves to linear forms, for 

example, Reversi (also called Othello), or John Conway's Phutball, described 

in the two-volume Winning Ways written by Elwyn Berlekamp, Richard Guy, 

and John Conway. 
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With useless endeavor, 
Forever, forever, 
Is Sisyphus rolling 
His stone up the mountain! 

-Henry Wadsworth Longfellow, 
T h e  Masque o f  Pandora 
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uppose you have a basket containing 100 eggs and also a s u p  

ply of egg cartons. Your task is to put all the eggs into the 

cartons. A step (or move) consists of putting one egg into a 

carton or taking one egg from a carton and returning it to the bas- 

ket. Your procedure is this: After each two successive packings of an 

egg you move an egg from a carton back to the basket. Although this 

is clearly an inefficient way to pack the eggs, it is obvious that even- 

tually all of them will get packed. 
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Now assume the basket can hold any finite number of eggs. The 

task is unbounded if you are allowed to start with as many eggs as you 

like. Once the initial number of eggs is specified, however, a finite 

upper bound is set on the number of steps needed to complete the job. 

If the rules allow transferring any number of eggs back to the basket 

any time you like, the situation changes radically. There is no longer an 

upper bound on the steps needed to finish the job even if the basket 

initially holds as few as two eggs. Depending on the rules, the task of 

packing a finite number of eggs can be one that must end, one that 

cannot end or one that you can choose to make either finite or infinite 

in duration. 

We now consider several entertaining mathematical tasks with the 

following characteristic. It seems intuitively true that you should be able 

to delay completing the task forever, when actually there is no way to 

avoid finishing it in a finite number of moves. 

Our first example is from a paper by the philosopher-writer-logi- 

cian Raymond M. Smullyan. Imagine you have an infinite supply of 

pool balls, each bearing a positive integer, and for every integer there is 

an infinite number of balls. You also have a box that contains a finite 

quantity of numbered balls. Your goal is to empty the box. Each step 

consists of removing a ball and replacing it with any finite number*of 

balls of lower rank. The 1 balls are the only exceptions. Since no ball 

has a rank lower than 1, there are no replacements for a 1 ball. 

It is easy to empty the box in a finite number of steps. Simply 

replace each ball higher than 1 with a 1 ball until only 1 balls remain, 

then take out the 1 balls one at a time. The rules allow you, however, to 

replace a ball with a rank above 1 with any finite number of balls of 

lower rank. For instance, you may remove a ball of rank 1,000 and 

replace it with a billion balls of rank 999, with 10 billion of rank 998, 

with a billion billion of rank 987, and so on. In this way the number of 

balls in the box may increase beyond imagining at each step. Can you 
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not prolong the emptying of the box forever? Incredible as it may seem 

at first, there is no way to avoid completing the task. 

Note that the number of steps needed to empty the box is un- 

bounded in a much stronger way than it is in the egg game. Not only is 

there no bound on the number of eggs you begin with but also each 

time you remove a ball with a rank above 1 there is no bound to the 

number of balls you may use to replace it. To borrow a phrase from 

John Horton Conway, the procedure is "unboundedly unbounded." At 

every stage of the game, as long as the box contains a single ball other 

than a 1 ball, it is impossible to predict how many steps it will take to 

empty the box of all but 1 balls. (If all the balls are of rank 1, the box 

will of course empty in as many steps as there are 1 balls.) Nevertheless, 

no matter how clever you are in replacing balls, the box eventually must 

empty after a finite number of moves. Of course, we have to assume 

that although you need not be immortal, you will live long enough to 

finish the task. 

Smullyan presents this surprising result in a paper, "Trees and Ball 

Games," in Annals of the New York Academy of Sciences (Vol. 321, pages 

86-90; 1979). Several proofs are given, including a simple argument by 

induction. I cannot improve on Smullyan's phrasing: 

If all balls in the box are of rank 1, then we obviously have a 
losing game. Suppose the highest rank of any ball in the box 
is 2. Then we have at the outset a finite number of 2s and a 
finite number of 1s. We can't keep throwing away 1s forever; 
hence we must sooner or later throw out one of our 2s. Then 
we have one less 2 in the box (but possibly many more 1s 
than we started with). Again, we can't keep throwing out 1s 
forever, and so we must sooner or later throw out another 2. 
We see that after a finite number of steps we must throw 
away our last 2, and then we are back to the situation in 
which we have only 1s. We already know this to be a losing 
situation. This proves that the process must terminate if the 
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highest rank present is 2. Now, what if the highest rank is 3? 
We can't keep throwing away just balls of rank 2 2 forever (we 
just proved that!); hence we must sooner or later throw out a 
3. Then again we must sooner or later throw out another 3, 
and so we must eventually throw out our last 3. This then 
reduces the problem to the preceding case when the highest 
rank present is 2, which we have already solved. 

Smullyan also proves that the game ends by modeling it with a tree 

graph. By "tree" is meant a set of line segments each of which joins two 

points, and in such a way that every point is connected by a unique 

path of segments leading to a point called the tree's root. The first step 

of a ball game, filling the box, is modeled by representing each ball as a 

point, numbered like the ball and joined by a line to the tree's root. 

When a ball is replaced by other balls of lower rank, its number is 

erased and the new balls indicated by a higher level of numbered points 

are joined to the spot where the ball was removed. In this way the tree 

grows steadily upward, its "endpoints" (points that are not the root and 

are attached to just one segment) always representing the balls in the 

box at that stage of the game. 

Smullyan proves that if this tree ever becomes infinite (has an infin- 

ity of points), it must have at least one infinite branch stretching upward 

forever. This, however, is clearly impossible because the numbers along 

any branch steadily decrease and therefore must eventually terminate in 

1. Since the tree is finite, the game it models must end. As in the ball 

version, there is no way to predict how many steps are needed to com- 

plete the tree. At that stage, when the game becomes bounded, all the 

endpoints are labeled 1. The number of these 1 points may, of course, 

exceed the number of electrons in the universe, or any larger number. 

Nevertheless, the game is not Sisyphean. It is certain to end after a 

finite number of moves. 

Smullyan's basic theorem, which he was the first to model as a ball 
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game, derives from theorems involving the ordering of sets that go back 

to Georg Cantor's work on the transfinite ordinal numbers. It is closely 

related to a deep theorem about infinite sets of finite trees that was first 

proved by Joseph B. Kruskal and later in a simpler way by C. St. J. A. 
Nas h-Williams . More recently Nachum Ders howitz and Zohar Manna 

have used similar arguments to show that certain computer programs, 

which involve "unboundedly unbounded" operations, must eventually 

come to a halt. 

A special case of Smullyan's ball game is modeled by numbering a 

finite tree upward from the root as in Figure 11, left. We are allowed to 

chop off any endpoint, along with its attached segment, then add to the 

tree as many new branches as we like, and wherever we like, provided 

all the new points are of lower rank than the one removed. For ex- 

ample, the figure at the right in the illustration shows a possible new 

growth after a 4 point has been chopped off. In spite of the fact that 

after each chop the tree may grow billions on billions of new branches, 

after a finite number of chops the tree will be chopped down. Unlike 

the more general ball game, we cannot remove any point we like, only 

the endpoints, but because each removed point is replaced by points of 

lower rank, Smullyan's ball theorem applies. The tree may grow incon- 

ceivably bushier after each chop, but there is a sense in which it always 

gets closer to the ground until eventually it vanishes. 

A more complicated way of chopping down a tree was proposed by 

Laurie Kirby and Jeff Paris in The Bulletin of the London Mathematical 

Society (Vol. 14, Part 4, No. 49, pages 285-293; July 1982). They call 

their tree graph a hydra. Its endpoints are the hydra's heads, and Her- 

cules wants to destroy the monster by total decapitation. When a head 

is severed, its attached segment goes with it. Unfortunately after the first 

chop the hydra acquires one or more new heads by growing a new 

branch from a point (call it k) that is one step below the lost segment. 
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Figure 11 
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This new branch is an exact replica of the part of the hydra that extends 

up from k. The figure at the top right in Figure 12 shows the hydra after 

Hercules has chopped off the head indicated by the sword in the figure 

at the top left. 

The situation for Hercules becomes increasingly desperate because 

when he makes his second chop, two replicas grow just below the 

severed segment (Figure 12, bottom lefi). And three replicas grow after 

the third chop (Figure 12, bottom right), and so on. In general, n 

replicas sprout at each nth chop. There is no way of labeling the 

hydra's points to make this growth correspond to Smullyan's ball game; 

nevertheless, Kirby and Paris are able to show, utilizing an argument 

based on a remarkable number theorem found by the British logician 

R. L Goodstein, that no matter what sequence Hercules follows in 

cutting off heads, the hydra is eventually reduced to a set of heads (there 

Figure 12 
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may be millions of them even if the starting form of the beast is simple) 

that are all joined directly to the root. They are then eliminated one by 

one until the hydra expires from lack of heads. 

A useful way to approach the hydra game is to think of the tree as 

modeling a set of nested boxes. Each box contains all the boxes reached 

by moving upward on the tree, and it is labeled with the maximum 

number of levels of nesting that it contains. Thus in the first figure of 

the hydra the root is a box of rank 4. Immediately above it on the left is 

a 3 box and on the right is a 2 box, and so on. All endpoints are empty 

boxes of rank 0. Each time a 0 box (hydra head) is removed the box 

immediately below gets duplicated (along with all its contents), but each 

of the duplicates as well as the original box now contains one fewer 

empty box. Eventually you are forced to start reducing ranks of boxes, 

like the ranks of balls in the ball game. An inductive argument similar 

to Smullyan's will show that ultimately all boxes become empty, after 

which they are removed one at a time. 

I owe this approach to Dershowia, who pointed out that it is not 

even necessary for the hydra to limit its growth to a consecutively in- 

creasing number of new branches. After each chop as many finite du- 

plicates as you like may be allowed to sprout. It may take Hercules 

much longer to slay the monster, but there is no way he can perma- 

nently avoid doing so if he keeps hacking away. Note that the hydra 

never gets taller as it widens. Some of the more complicated growth 

programs considered by Dershowitz and Manna graph as trees that 

can grow taller as well as wider, and such trees are even harder to 

prove terminating. 

Our next example of a task that looks as if it could go on forever 

when it really cannot is known as the l&point problem. You begin with 

a line segment. Place a point anywhere you like on it. Now place a 

second point so that each of the two points is within a different half of 

the line segment. (The halves are taken to be "closed intervals," which 
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means that the endpoints are not considered "inside" the interval.) 

Place a third point so that each of the three is in a different third of the 

line. At this stage it becomes clear that the first two points cannot be 

just anywhere. They cannot, for example, be close together in the middle 

of the line or close together at one end. They must be carefully placed 

so that when the third point is added, each will be in a different third 

of the line. You proceed in this way, placing every nth point so that the 

first n points always occupy different l/nth parts of the line. If you 

choose locations carefully, how many spots can you put on the line? 

Intuitively it seems as if the number should be endless. A line 

segment obviously can be divided into as many equal parts as you like 

and each may contain a point. The catch is that the points must be 

serially numbered to meet the task's conditions. It turns out, astonish- 

ingly, that you cannot get beyond 17 points! Regardless of how clever 

you are at placing 17 points, the 18th will violate the rules and the game 

ends. In fact, it is not even easy to place 10 points. Figure 13 shows one 

way to place six. 

This unusual problem first appeared in One Hundred Probkms in 

Elementary Mathematics (problems 6 and 7) by the Polish mathemati- 

cian Hugo Steinhaus. (Basic Books published a translation in 1964, 

and there is now a Dover soft-cover reprint.) Steinhaus gives a 14-point 

Figure 13 

1/61/5114 113 1 12 
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solution, and he states in a footnote that M. Warmus has proved 17 is 

the limit. The first published proof, by Elwyn R. Berlekamp and Ronald 

L Graham, is in their paper "Irregularities in the Distributions of 

Finite Sequences," Journal of Number Theory (Vol. 2, No. 2, pages 152- 

161; May 1970). 

Warmus, a Warsaw mathematician, did not publish his shorter 

proof until six years later in the same journal (Vol. 8, No. 3, pages 260- 

263; August 1976). He gives a 17-point solution, and he adds that there 

are 768 patterns for such a solution, or 1,536 if you count their rever- 

sals as being different. 

Our last example of a task that ends suddenly in a counterintuitive 

way is one you will enjoy modeling with a deck of playing cards. Its 

origin is unknown, but Graham, who told me about it, says that Euro- 

pean mathematicians call it Bulgarian solitaire for reasons he has not 

been able to discover. Partial sums of the series 1 + 2 + 3 + . . . are 

known as triangular numbers because they correspond to triangular 

arrays such as the 10 bowling pins or the 15 pool balls. The task 

involves any triangular number of playing cards. The largest number 

you can get from a standard deck is 45, the sum of the first nine 

counting numbers. 

Form a pile of 45 cards, then divide it into as many piles as you like, 

with an arbitrary number of cards in each pile. You may leave it as a 

single pile of 45, or cut it into two, three, or more piles, cutting any- 

where you want, including 44 cuts to make 45 piles of one card each. 

Now keep repeating the following procedure. Take one card from each 

pile and place all the removed cards on the table to make a new pile. 

The piles need not be in a row. Just put them anywhere. Repeat the 

procedure to form another pile, and keep doing it. 

As the structure of the piles keeps changing in irregular ways it 

seems unlikely you will reach a state where there will be just one pile 

with one card, one pile with two cards, one with three, and so on to 
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one with nine cards. If you should reach this improbable state, without 

getting trapped in loops that keep returning the game to a previous 

state, the game must end, because now the state cannot change. Repeat- 

ing the procedure leaves the cards in exactly the same consecutive state 

as before. It turns out, surprisingly, that regardless of the initial state of 

the game, you are sure to reach the consecutive state in a finite number 

of moves. 

Bulgarian solitaire is a way of modeling some problems in parti- 

tion theory that are far from trivial. The partitions of a counting num- 

ber n are all the ways a positive integer can be expressed as the sum of 

positive integers without regard to their order. For example, the triangu- 

lar number 3 has three partitions: 1 + 2, 1 + 1 + 1, and 3. When you 

divide a packet of cards into an arbitrary number of piles, any number 

to a pile, you are forming a partition of the packet. Bulgarian solitaire is 

a way of changing one partition to another by subtracting 1 from each 

number in the partition, then adding a number equal to the number of 

subtracted 1s. It is not obvious this procedure always gives rise to a 

chain of partitions, without duplicates, that ends with the consecutive 

partition. I am told it was first proved in 1981 by Jsrgen Brandt, a 

Danish mathematician, but I do not know his proof or whether it has 

been published. 

Bulgarian solitaire for any triangular number of cards can be dia- 

grammed as a tree with the consecutive partition labeling its root and 

all other partitions represented by the tree's points. The picture at the 

left in Figure 14 shows the simple tree for the three-card game. In the 

picture at the right of the illustration is the less trivial tree for the 11 

partitions of six cards. The theorem that any game ends with the con- 

secutive partition is equivalent to the theorem that all the partitions of 

a triangular number will graph as a connected tree, with each partition 

one step above its successor in the game and the consecutive partition 

at the tree's root. 
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1 , I  ,2,2 (WORST CASE) 

Figure 14 

Note that the highest point on the six-card tree is six steps from the 

root. This partition, 1,1,2,2, is the "worst" starting case. It is easy to see 

that the game must end in no more than six steps from any starting 

partition. It has been conjectured that any game must end in no more 

than k(k - 1) steps, where k is any positive integer in the formula for 

triangular numbers i/zk(k + 1). Last year the computer scientist Donald 

E. Knuth asked his Stanford University students to test the conjecture 

by computer. They confirmed it for k = 10 or less, so that the conjecture 

is almost certainly true, but so far a proof has been elusive. 

Figure 15 shows the tree for Bulgarian solitaire with 10 cards (k = 

4). There are now three worst cases at the top, each 12 steps from the 

root. Note also that the tree has 14 endpoints. We can call them Eden 

partitions because unless you start with them they never arise in a 

game. They are all those partitions whose number of parts exceeds the 

highest number of parts by 2 or more. 
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Figure 15 

The picture at the left in Figure 16 shows the standard way of using 

dots to diagram partition 1,1,2,3,3, at the tree's top. If this pattern is 

rotated and mirror-reflected, it becomes the pattern at the right in the 
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Figure 16 

illustration. Its rows now give the partition 2,3,5. Each partition is 

called the conjugate of the other. The relation is obviously symmetrical. 

A partition unchanged by conjugation is said to be selfconjugate. O n  

the 10 tree there are just two such partitions, the root and 1,1,1,2,5. 

When the remaining partitions are paired as conjugates, an amazing 

pattern appears along the trunk. The partitions pair as is shown by the 

letters. This symmetry holds along the main trunk of all Bulgarian 

trees so far investigated. 

If the symmetry holds for all such trees, we have a simple way to 

determine the worst case at the top. It is the conjugate of the parti- 

tion (there is always only one) just above the root. An even faster 

way to find the trunk's top is to prefix 1 to the root and diminish its 

last number by 1. 
The Bulgarian operation can be diagrammed by removing the leftrnost 

column of its flush-left dot pattern, turning the column 90 degrees, and 

adding it as a new row. Only diagrams of the 1, 2, 3, 4. . . form are 

unaltered by this. If you could show that no sequence of operations on 

any partition other than the consecutive one would return a diagram to 

its original state, you would have proved that all Bulgarian games graph 

as trees and therefore must end when their root is reached. 

If the game is played with 55 cards (k = lo), there are 451,276 ways 

to partition them, so that drawing a tree would be difficult. Even the 15- 

card tree, with 176 points, calls for computer aid. How are these num- 

bers calculated? Well, it is a long and fascinating story. Let us say parti- 

tions are ordered, so that 3, for example, would have four ordered partitions 
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(usually called "compositions"): 1 + 2, 2 + 1, 1 + 1 + 1, and 3. It turns 

out that the formula for the total number of compositions is simply 

2"-l. But when the partitions are unordered, as they are in the solitaire 

card game, the situation is unbelievably disheveled. Although there are 

many recursive procedures for counting unordered partitions, using at 

each step the number of known partitions for all smaller numbers, an 

exact asymptotic formula was not obtained until recent times. The big 

breakthrough was made by the British mathematician G. H. Hardy, 

working with his Indian friend Srinivasa Ramanujan. Their not quite 

exact formula was perfected by Hans A. Rademacher in 1937. The 
Hardy -Ramanujan-Rademacher formula is a horribly shaggy infinite 

series that involves (among other things) pi, square roots, complex roots, 

and derivatives of hyperbolic functions! George E. Andrews, in his 

standard textbook on partition theory, calls it an "unbelievable identity" 

and "one of the crowning achievements" in the history of his subject. 

The sequence of partitions for n = 1, n = 2, n = 3, n = 4, n = 5, and 

n = 6 is 1,2,3,5,7,11, and so you might expect the next partition to be 

the next prime, 13. Alas, it is 15. Maybe all partitions are odd. No, the 

next partition is 22. One of the deep unsolved problems in partition 

theory is whether, as n increases, the even and odd partitions approach 

equality in number. 

If you think partition theory is little more than a mathematical 

pastime, let me close by saying that a way of diagramming sets of partid 

tions, using number arrays known as the Young tableaux, has become 

enormously useful in particle physics. But that's another ball game. 

Many readers send proofs of the conjecture that Bulgarian solitaire must 

end in k (k - 1) steps, and the proof was later given in several articles listed 

in the bibliography. Ethan Akin and Morton Davis began their 1983 paper 
as follows: 
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Blast Martin Gardner! There you are, minding your own 
business, and Scientific American comes along like a virus. 
All else forgotten, you must struggle with infection by one of 
his fascinating problems. In the August 1983 issue he intro- 
duced us to Bulgarian solitaire. 
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Fun 
with 

Part I 

Not quite 
spherical 
White 

Oddly closed 
And without a lid 

-May Swenson 

hus begins "At Breakfast," eight whimsical stanzas about crack- 

ing and eating a soft-boiled egg in the Continental manner. 

The poem continues: "A smooth miraclehere in my handhas T 
it slid/from my sleeve?/ The shape/of this b o d e e l s  me oval." 

Is there any natural and simple sculpture that pleases the eye and 

the hand more than a chicken egg? One end of the object is more 

pointed than the other, and the delightful oval shape varies widely from 

egg to egg. The shape of a chicken egg can be simulated mathematically 
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by a host of closed curves with different lowdegree formulas. The sim- 

plest curve is the oval of Descartes, a family of egg-shaped ovals discov- 

ered by the 17th-century French mathematician and philosopher. Just 

as an ellipse can be constructed easily with two pins and a piece of 

thread, so can certain Cartesian ovals. 

Figure 17 shows how an ellipse is drawn by keeping taut a triangu- 

lar loop of thread (nylon is best because it minimizes friction) as a 

pencil point traces the curve. Because the sum of AP and BP in the 

illustration cannot vary, the method ensures that the curve is the locus 

Figure 17 
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of all points the sum of whose distances from the two foci A and B is a 

constant. 

Figure 18 shows how a Cartesian oval can be generated by a similar 

method. Here the thread is looped once around the pin at B and 

attached to the pencil point. By keeping the thread taut the upper half 

of the oval can be drawn. The lower half of the oval can be constructed 

by the same procedure with the thread arrangement inverted. 
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This method obviously generates a curve that is the locus of all 

points such that their distance from A added to twice their distance 

from B is a constant. Descartes generalized the curve by letting the 

constant be the sum of rn times the distance from A and n times the 

distance from B, where rn and n are real numbers. The ellipse and the 

circle are special cases of Cartesian ovals. In the ellipse rn equals n, and 

n equals 1. The circle is an ellipse in which the distance between the 

foci is zero. 

In the oval in the illustration, rn equals 1 and n equals 2. By vary 

ing the distance between the foci, by changing the length of the thread 

or by doing both, it is possible to draw an infinite number of Carte- 

sian ovals all with multipliers in the ratio l : 2. Figure 19 shows 

how to construct a family of Cartesian ovals with multipliers in 

the ratio 2 : 3. Here one focus lies outside the oval. Of course, the 

Figure 19 
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thread technique works only if m and n are positive integers and are 

small enough to ensure that the looping of the thread does not gener- 

ate too much friction. 

Many eminent physicists, including Christian Huygens, James Clerk 

Maxwell, and Isaac Newton, were fascinated by Cartesian ovals be- 

cause of their unusual optical properties of reflection and refraction. 

In 1846 the Royal Society of Edinburgh heard Maxwell's paper "On 

the Description of Oval Curves and Those Having a Plurality of Foci." 

The Scottish physicist had independently discovered the ovals of 

Descartes. He went further, however, in generalizing them to curves 

with more than two foci. Maxwell did not present the paper to the 

society himself because, being just 15, he was considered too young 

to appear before such a distinguished audience! (Young Maxwell's pa- 

per is included in the Dover reprint Tne Scientific Papers of lames Clerk 

Maxwell.) 

Among the many other ovals that resemble eggs, more rounded at 

one end than the other, are the well-known ovals of Cassini. A Cassini 

oval is the locus of all points the product of whose distances from two 

fixed points is a constant. Not all Cassini ovals are egg-shaped, but 

when they are, they come in pairs that point in opposite directions. 

The physical properties of chicken eggs make possible a variety of 

entertaining parlor tricks. If you try the following eggsperiments, you 

will find them both amusing and scientifically instructive. 

Surely the oldest of all nicks with eggs is making a raw egg stand on 

end. Christopher Columbus is said to have done it by setting the egg 

down firmly enough to crush its bottom end slightly. A neater solution 

is to put a small quantity of salt on a white table top, balance the egg on 

the salt, and then gently blow away all but the few invisible salt grains 

that keep the egg upright. (For details about Piet Hein's supereggs, solid 

forms that balance on end without any skulduggery, see Chapter 18 of 

my Mathematical Carnival.) 
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In fact, on an unsmooth surfice such as a sidewalk or a tablecloth 

it is not difficult to balance a raw chicken egg on its broad end with the 

aid of only patience and a steady hand. Now and then the practice 

becomes a local mania. For example, the April 9, 1945, issue of Lie 
described an egg-balancing craze that had hit Chungking. According to 

a folk belief in China, eggs balance more easily on Li Chun, the first 

day of spring in the Chinese calendar. 

In Figure 20 there is shown a marvelous old egg-balancing stunt 

with a cork, a bottle, and two forks. Hollow out one end of the cork so 

that it fits snugly on the egg. The forks should be long ones with heavy 

handles, and the rim of the bottle must be flat like that of most soft- 

drink bottles. Even so, it may take many minutes to make a stable 

structure. Because the egg may fall a few times before you balance it try 

a hard-boiled egg rather than a raw one. Once the precarious balance is 

Figure 20 
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achieved it will seem mysterious to anyone who is not familiar with 

physical laws about the center of gravity. 

Egg balancing is the secret of winning an old puzzle game. The 

game calls for a large supply of nearly identical eggs. Two players take 

turns putting an egg on a circular or square table. The loser is the 

player who is unable to put down an egg without moving another one. 

The first player can always win by standing the first egg on its end at the 

center of the table. On his subsequent turns he puts an egg symmetri- 

cally opposite wherever his opponent puts one. 

Because the inside of a raw egg is viscous the inertial drag of the 

liquid makes it difficult to spin the egg on its side and impossible to 

spin it on its end. This provides a quick way of distinguishing a raw egg 

from a hard-boiled one: only a hard-boiled egg can be spun on its end. 

The following stunt with a raw egg is less familiar. Spin the egg on its 

side as fast as you can, then make it come to a dead stop by pressing it 

with a fingertip. Quickly remove your finger. The inertia of the rotating 

interior will start the egg slowly turning again. 

Charlie Miller, a magician friend of mine, likes to do a surprising 

trick with a hard-boiled egg. He explains that the egg can spin on its 

side (he spins it gently on its side) and also can spin on its end (he 

demonstrates that) but that only a magician can make it undergo both 

kinds of rotation in the course of a single maneuver. At that point he 

spins it vigorously on its side. Most eggs (particularly ones that were 

kept upright during boiling) will rotate for a while and then sud- 

denly assume a vertical spinning position. (You will find this ex- 

plained in the Dover reprint Spinning Tops and Gyroscopic Motion: A 
Popular Exposition of Dynamics of Rotation, by John Perry, and in 

"The Amateur Scientist," by Jearl Walker, Scientific American, Octo- 

ber 1979). 
The most remarkable of all eggspinning tricks is hardly ever done, 

probably because it takes much practice and is easier to learn from 
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someone who can do it than from printed instructions. You will need a 

dinner plate with a flat rim. From the shell of an opened egg break off 

a piece roughly the size of a halfdollar. It will be ragged at the edge and 

it should come from the egg's side, not its end. 

Dip the plate in water, put the piece of shell on the edge of the flat 

rim, and tip the plate at the angle shown in Figure 21. The shell should 

start to rotate. If you now turn the plate in your hands while keeping it 

at the same angle, the shell will spin with surprising rapidity as it 

travels precariously around the wet rim. To get it right you may have to 

try different pieces of shell until you find one with the proper balance 

and convexity. Once you acquire the knack you will easily be able to 

demonstrate this amazing juggling feat whenever you want. Although 

the trick is described in old conjuring books, few magicians seem to 

know about it. 

Inertia is the secret behind the following bet. Get a kitchen knife 

with a sharp point, hold it vertically, and hang half an eggshell over the 

Figure 21 
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point as shown in Figure 22. Give the knife to someone and challenge 

him to puncture the shell by rapping the handle on a table or kitchen 

counter. Each time he tries the shell will bounce off unharmed, whereas 

you can crack it at will. The secret is to hold the blade loosely in your 

hand. Make it look as if you rap the handle on the counter when in fact 

Figure 22 
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you allow the knife to fall by its own weight so that it hits the counter 

and bounces. The imperceptible bounce sends the knife point through 

the shell. 

The intact shell surrounding a raw egg is remarkably strong. Many 

people know that if you clasp your hands with an egg between them, 

each end touching the center of a palm, it is almost impossible to break 

the egg by squeezing. What is not so well known is the difficulty of 

smashing a raw egg by tossing it high into the air and letting it fall onto 

grass. The May 18, 1970, issue of Time described a flurry of such 

experiments that took place at hchmond in England after the head- 

master of a school did it for his students. A local fireman dropped raw 

eggs onto grass from the top of a 70-foot ladder. Seven out of 10 sur- 

vived. An officer in the Royal Air Force arranged for a helicopter to 

drop eggs from 150 feet onto the school's lawn. Only three out of 18 
broke. The Daily Express hired a Piper Aztec to dive-bomb an airfield 

with five dozen eggs at 150 miles per hour. Three dozen of them were 

unharmed. When eggs were dropped into the Thames from Richmond 

Bridge, three-fourths of them shattered. That proved, said the school's 

science teacher, "that water is harder than grass but less hard than 

concrete." 

The fragility of an egg when it falls onto a hard surface is the 

subject of the old nursery rhyme about Humpty-Dumpty and its retell- 

ing by Lewis Carroll in Though the Looking-Glass. It is also involved in 

the following practical joke. Bet someone a dime that he cannot put a 

thumb and finger through the crack of a door above the top hinge and 

hold a raw egg for 30 seconds on the other side of the crack. As soon 

as he firmly grasps the egg, put his hat on the floor directly below the 

egg, walk away, and forget about him. 

The best of all scientific tricks with an egg is the well-known one in 

which air pressure forces a peeled hard-boiled egg into a glass milk 

bottle and then forces it out again undamaged. The mouth of the bottle 
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must be only slightly smaller than the egg, and so you must be 

careful not to use too large an egg or too small a bottle. It is impos- 

sible to push the egg into the bottle. To get the egg through the 

mouth you must heat the air in the bottle. That is best done by 

standing the bottle in boiling water for a few minutes. Put the egg 

upright on the mouth and take the bottle off the stove. As the air in 

the bottle cools it contracts, creating a partial vacuum that allows air 

pressure to push the peeled egg inside. To get the egg out again 

invert the bottle so that the egg falls into the neck. Place the open- 

ing of the bottle against your mouth and blow vigorously. This will 

compress the air in the bottle. When you stop blowing, the air 

expands, pushing the egg through the neck of the bottle and into 

your waiting hand. 

Many old books suggest the following elaboration using a hard- 

boiled egg with its shell in place. Soak the egg for a few hours in heated 

vinegar until the shell becomes pliable. Put the egg into a bottle by the 

method described above and let it soak overnight in cold water. The 

shell will harden. Pour out the water and you have a curiosity with 

which to puzzle friends. It happens, however, that I have never been 

able to make this work. The shell does soften, but it also seems to 

become porous, which prevents a vacuum from forming. (I would be 

interested in hearing from any reader who can tell me how to get the 

vinegar-treated egg into the bottle.) Regardless of whether or not the feat 

works, the failure to perform it is central to one of Sherwood Anderson's 

funniest and finest short stories. It is called "The Egg." You will find it 

in his book The Triumph of the Egg. 

The story is told by a boy. His parents, who formerly owned a 

miserable chicken farm, have bought a restaurant across the road from 

the railway station at Pickleville, a place not far from Bidwell, Ohio. 

The father fancies himself a showman. One rainy night the only cus- 

tomer in the restaurant issloe Kane, a young man who is waiting for a 
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late train. The father decides to amuse him by performing his favorite 

egg trick. 

"I will heat this egg in this pan of vinegar," he says to Joe. "Then I 
will put it through the neck of a bottle without breaking the shell. 
When the egg is inside the bottle, it will resume its normal shape and 

the shell will become hard again. Then I will give the bottle with the 

egg in it to you. You can take it about with you wherever you go. People 

will want to know how you got the egg in the bottle. Don't tell them. 

Keep them guessing. That is the way to have fun with this trick." 

When the father grins and winks, Joe decides the man is crazy but 

harmless. The vinegar softens the egg's shell but the father forgets an 

essential part of the trick. He neglects to heat the bottle. 

"For a long time he struggled, trying to get the egg to go through 

the neck of the bottle. . . . He worked and worked and a spirit of 

desperate determination took possession of him. When he thought 

that at last the trick was about to be consummated, the delayed train 

came in at the station and Joe Kane started to go nonchalantly out at 

the door. Father made a last desperate effort to conquer the egg and 

make it do the thing that would establish his reputation as one who 

knew how to entertain guests who came into his restaurant. He worried 

the egg. He attempted to be somewhat rough with it. He swore and the 

sweat stood out on his forehead. The egg broke under his hand. When 

the contents spurted over his clothes, Joe Kane, who had stopped at the 

door, turned and laughed." 

Roaring with anger, the father grabs another egg and hurls it at Joe, 

just missing him. Then he closes the restaurant for the night and tramps 

upstairs, where his wife and son have been awakened by the noise. 

There is an egg in his hand and an insane gleam in his eyes. He gently 

puts the egg on the table by the bed and begins to cry. The boy, caught 

up in his father's grief, weeps with him. 

Good stories have a way of turning into allegories. What does the 



F u n  w i t h  E g g s ,  P a r t  l 5 7 

egg represent' I think it is nature, the Orphic Egg, the vast world that 

is independent of our minds, under no obligation to conform to our 

desires. Understand its mathematical laws and you can control it to an 

incredible degree, as modern science and technology testify. Fail to un- 

derstand its laws or forget them or ignore them and nature can be as 

malevolent as Moby Dick, the white whale, or the white egg in Anderson's 

tragedy. 

An egg is an egg is an egg. It is a small physical thing with a 

beautiful geometrical surface. It is a microcosm that obeys all the 

laws of the universe. And at the same time it is something far more 

complex and mysterious than a white pebble. It is a strange lidless 

box that holds the secret of life itself. As May Swenson continues in 

her poem: 

Neatly 

The knife scalps it 

I scoop out 

the braincap 

Soft 

Sweetly shuddering 

Which is more important, the chicken or the egg? Is the hen, as 

Samuel Butler said, no more than an egg's way of making another egg? 

Or  is it the other way around? 

"I awoke at dawn," Anderson's narrator concludes his account of 

human failure, "and for a long time looked at the egg that lay on the 

table. I wondered why eggs had to be and why from the egg came the 

hen who again laid the egg. The question got into my blood. It has 

stayed there, I imagine, because I am the son of my father. At any rate, 

the problem remains unsolved in my mind. And that, I conclude, is 

but another evidence of the complete and final triumph of the egg-a t  

least as far as my family is concerned." 
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Fun 
with 

Part II 

S o much accumulated in my files about eggs that I decided it 

deserved a new chapter rather than a lengthy addendum to the 

previous one. 

Glass milk bottles are hard to find these days. The best kind of 

bottle to use for the trick of putting an egg inside is a bottle used as a 

wine carafe. 

To heat the air inside the bottle, it is often recommended that a 

burning piece of paper or a short portion of a lit candle be dropped 
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into the bottle. The instructions frequently add that the vacuum in the 

bottle is created by the burning of oxygen. Not so. The burning of 

oxygen plays no role. The vacuum is caused entirely by the cooling and 

contraction of air. 
Dozens of readers offered suggestions for getting the vinegar-treated 

egg into the bottle, though most of them did not actually try to do it. 

Many thought it would help to coat the egg with some sort of sealant 

such as oil, syrup, honey, or vaseline. Several proposed sealing the 

mouth of the bottle by placing the egg on top, then wrapping it with 

kitchen plastic wrap around both the egg and the bottle's neck. Several 

readers said the best way to heat the air is to fill the bottle halfway with 

water, then boil the water. As reader Kevin Miller explained, condens- 

ing water vapor creates a stronger vacuum than cooling air. The water 

also serves to cushion the shock when the egg pops down. 

Before placing the egg on top, Miller squeezed toothpaste around 

the bottle's rim. Running cold water on the bottle's side created the 

vacuum. However, after the egg had soaked in water for two months the 

shell never hardened. One reader thought soaking the egg in a borax 

solution would do the job by neutralizing the acidic egg. Another said 

the shell would harden if the egg were thoroughly rinsed with cold 

running water. I myself have been unable to get the shell to return to 

normal. Perhaps this is a myth created by old books on recreational 

science? 

Lakenan Barnes, an attorney in Mexico, Missouri, sent the follow- 

ing letter: 

Your article on the fun with eggs in the April issue of Scien- 

tific American was eggscellent and eggscited me. I am never 
sure what you are going to cook up next, which, of course, 
pleases me. 

After hard cooking an egg as you directed and spinning 
it, I was eggstremely flattered when it gave me several stand- 



ing ova-tions. Since its shell is calcium carbonate, I consider it a mar-
ble to behold.

I have demonstrated this lesson in physics to many of my coffee
counter buddies on several occasions, but I use a decorative alabaster
egg, obtaining the same results but without the danger of someone,
Pilate-like, proclaiming, “Eggy homo!”

Mr. Gardner, I hope my poor yolks do not eggsasperate you, but I
want you to know how delighted I was with your discussion of your
“eggsperiment.”

One last thought: As for the chicken-or-egg dilemma, I agree with
my Amherst fraternity brother who, over fifty years ago, remarked, “Of
course the egg came first!” I accept this without proof even though I
am still from Missouri.

In April 1990 the cartoon strip “The Wizard of Id” raised a curious
question. “Did you ever consider how brave the first man to eat an egg
was?” asked a parrot “I never thought of it before, but you’re right,” says
the man listening to the parrot. To which the parrot replies, “What’s even
more astonishing is that it caught on!”

Pendleton Tompkins, a physician in San Mateo, California, wrote as
follows:

I am told that if a small foreign body is placed in the peritoneal cavity
of a laying hen, she will encase it in a shell and lay it. A Professor of
Animal Husbandry made use of this phenomenon when he was enter-
taining a dozen colleagues at breakfast. He prepared a number of small
slips of paper upon which was written (‘Hello Bill” or “Good Morning
Joe” and placed each in a capsule. He then put the capsules (which were
radiopaque) in a dozen laying hens who were labeled Bill, Joe, and so
forth. As eggs were laid he put each under a fluoroscope until he dis-
covered the one containing the capsule. Each egg was labeled Bill, Joe,
etc., and was served as an oeuf à le coq at breakfast. Imagine the sur-
prise of the guests to open an egg and find therein a capsule greeting
them by name.

Fun with Eggs, Par t I I 61
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The notion that fresh eggs balance more easily on the day of the 

vernal equinox turned into a minor craze in the United States. For a 

history of this bizarre phenomenon, and an explanation of why so 

many seemingly intelligent people take such egg balancing seriously, see 

my column "Notes of a Fringe Watcher" in The Skeptical Inquirer (May/ 

June 1996). The column also discusses a variety of mechanical eggs that 

stand on their broad ends only if you know the secret of how to make 

them balance. 

I ended the foregoing chapter with the old riddle of which came 

first, the chicken or the egg? The answer is the egg. Like all birds, 

chickens evolved from reptiles. Because reptiles lay eggs, eggs preceded 

chickens; but which came first, the reptile or the egg? 

May Swenson, whose poetry I admire (one of her poems provided 

the previous chapter's epigraph), was born in Logan, Utah, in 1919, 

and died in 1989. She had a great love of puzzles and word play, dis- 

played most notably in her collections Poems to Solve (1966) and More 

Poems to Solve (1971). 

Mary J. Packard, then a research associate in the zoology depart- 

ment of Colorado State University, Fort Collins, sent me several techni- 

cal papers about eggs on which she had collaborated. In her letter she 

praised eggs for being "easy to house, have minimal nutritional require- 

ments, do not bite, run slowly at best, and are eggceedingly easy to 

trap." To reward me for my efforts to educate readers about "the perfec- 

tion of eggs," she bestowed on me a Good Egg reward. 

More seriously, Ms. Packard raised the interesting question of why 

the air cell in all bird eggs is always at the blunt end. This cell is 

important because the embryo uses it for the first inflation of its lungs, 

and can die if the cell is not there. It is convenient, she adds, that the 

air cell always be at a predictable spot, but why it forms only at the blunt 

end, not at the side or the pointed end, seems to be an unsolved 

zoological mystery. 
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The air cells, by the way, are the basis for an amusing bet. Here is 

how I described it in Physics Teacher, as one of my "Physics Trick of the 

Month" features: 

Carefully open a fresh egg so that the two half-shells are as 
similar as possible. Check to make sure that the shell for the 
larger end has an air bubble inside. Most eggs do. 

If the bubble is there, you can mystify a friend with the 
following stunt. Fill a tall glass with water. Give the shell 
without the air bubble to the friend, while you keep the other 
half-shell. Say nothing about the bubble. 

Put your half-shell, open side up, on top of the water, and 
gently push on the shell's rim until the shell fills with water 
and submerges. As it sinks, the bubble will cause it to flip 
over and land convex end up. Fish it out with a spoon and 
challenge your victim to duplicate the feat. When he tries, his 
shell stubbornly refuses to turn over. 

Repeat a few times. After the last somersault, surrepti- 
tiously poke your finger into the shell to break the bubble. If 
your friend thinks your shell differs in some way from his, let 
him now try it with your shell. To his puzzlement, the shell 
still refuses to flip over. 

Two readers, Frank Colon and Fred Kolm, independently sent the 

following method of drawing an egg by using a closed loop of string 

and three pins. Figure 23 shows how this is done. The oval consists of 

six segments of ellipses, all interrelated and tangent to each other. I sent 

the two letters to Professor H. S. M. Coxeter, the University of Toronto's 

famous geometer. He replied that perhaps the reason the three-pin 

method is so little known is because its oval is an artificial composite of 

elliptical segments with no  simple generating equation. His own favor- 

ite, he added, is the cubic J = (x - a) (x - b) (x - c), ignoring the curve's 

infinite branch. 

Some more odds and ends: 

Sherwood Anderson wrote a sort of companion to his "Triumph of 
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Figure 23 

the Egg," titled "Milk Bottles." You'll find the story in his collection 

Horses and Men. 

Paul Outerbridge, Jr., in 1932, painted a striking picture titled "The 

Triumph of the Egg." I would have reproduced it here except that the 

Los Angeles gallery exhibiting his work wanted $125 for reproduction 

rights. 

Old riddle: What did the hen say when she laid a cubical egg? 

"Ouch!" A Paul Bunyan tall tale, repeated in Jorge Luis Borges' book 

Imaginary Beasts, tells of the Gillygaloo bird that lays cubical eggs to 

keep them from rolling down hills. Lumberjacks hardboil the eggs to 

use for dice. 
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In Gulliver's Travels Swift describes a fierce war fought over the 

proper way to crack open an egg. He was, of course, satirizing religious 

wars fought over how to interpret a theological doctrine. The Nomes, 

in L. Frank Baum's Oz books, live in underground caves in Ev, a magic 

land adjacent to Oz. They are deathly afraid of eggs because if they 

touch one they lose their immortality and become subject to old age 

and death. If they touch the inside of an egg they wither up and blow 

away. 

S e m s  Empiricus, the ancient Greek skeptic from whom the word 

"empiricism" derives, had the following to say in his book Against the 

Logicians, Vol. 2: "Others say that philosophy resembles an egg, ethics 

being like the yolk, which some identify with the chick, physics like the 

white, which is nutrient for the yolk, and logic like the outside shell." 

George Santayana, in the last chapter of Dialogues in Limbo, prct 

vides a satirical explanation of Aristotle's four kinds of causes as they 

relate to eggs: the efficient cause is the warmth of the hen, the egg's 

essence is the formal cause, the final cause is the chicken to be hatched, 

and the material cause is "a particular yolk and a particular shell and a 

particular farmyard, on which and in which the other three causes may 

work, and laboriously hatch an individual chicken, probably lame and 

ridiculous despite so many sponsors." 



The 

Knots 

"A knot!" said Alice, always ready 

to make herself useful, and looking 

anxiously about her. "Oh, do let me 

help to undo it!" 

-Alice in Wonderland, Chapter 3 

o a topologist knots are closed curves embedded in threedimen- 

sional space. It is useful to model them with rope or cord and to 

diagram them as projections on a plane. If it is possible to manipu- T 
late a closed curve-of course, it must not be allowed to pass through itself- 

so that it can be projected on a plane as a curve with no crossing points, then 

the knot is called trivial. In ordinary discourse one would say the curve is not 

knotted. "Links" are two or more closed curves that cannot be separated 

without passing one through another. 
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The study of knots and links is now a flourishing branch of topol- 

ogy that interlocks with algebra, geometry, group theory, matrix theory, 

number theory, and other branches of mathematics. Some idea of its 

depth and richness can be had from reading Lee Neuwirth's excellent 

article ((The Theory of Knots" in Scientific American (June 1979). Here 

we shall be concerned only with some recreational aspects of knot 

theory: puzzles and curiosities that to be understood require no more 

than the most elementary knowledge of the topic. 

Let us begin with a question that is trivial but that can catch even 

mathematicians off guard. Tie an overhand knot in a piece of rope as is 

shown in Figure 24. If you think of the ends of the rope as being 

joined, you have tied what knot theorists call a trefoil knot. It is the 

Figure 24 
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simplest of all knots in the sense that it can be diagrammed with a 

minimum of three crossings. (No knot can have fewer crossings except 

the trivial knot that has none.) Imagine that end A of the rope is passed 

through the loop from behind and the ends are pulled. Obviously the 

knot will dissolve. Now suppose the end is passed twice through the 

loop as is indicated by the broken line. Will the knot dissolve when the 

ends of the rope are pulled? 

Most people guess that it will form another knot. Actually the knot 

dissolves as before. The end must go three times through the loop to 

produce another knot. If you try it, you will see that the new trefoil 

created in this way is not the same as the original. It is a mirror image. 

The trefoil is the simplest knot that cannot be changed to its mirror 

image by manipulating the rope. 

The next simplest knot, the only one with a minimum of four 

crossings, is the figure eight at the right in Figure 24. In this form it is 

easily changed to its mirror image. Just turn it over. A knot that can be 

manipulated to make its mirror image is called amphicheiral because 

like a rubber glove it can be made to display either handedness. After 

the figure eight the next highest amphicheiral knot has six crossings, 

and it is the only 6-knot of that type. Amphicheiral knots become pro- 

gressively scarcer as crossing numbers increase. 

A second important way to divide knots into two classes is to distin- 

guish between alternating and nonalternating knots. An alternating 

knot is one that can be diagrammed so that if you follow its curve in 

either direction, you alternately go over and under at the crossings. 

Alternating knots have many remarkable properties not possessed by 

nonalternating knots. 

Still another important division is into prime and composite knots. 

A prime knot is one that cannot be manipulated to make two or more 

separated knots. For example, the square knot and the granny knot are 

not prime because each can be changed to two side-by-side trefoils. The 
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square knot is the "product" of two trefoils of opposite handedness. 

The granny is the product of two trefoils of the same handedness, and 

therefore (unlike the square knot) it is not amphicheiral. Both knots are 

alternating. As an easy exercise, see if you can sketch a square knot with 

six (the minimum) alternating crossings. 

All prime knots of seven or fewer crossings are alternating. Among 

the &knots only the three in Figure 25 are nonalternating. No matter 

how long you manipulate a rope model of one of these knots, you will 

never get it to lie flat in the form of an alternating diagram. The knot at 

top right is a bowline. The bottom knot is a torus knot as explained 

below. 

A fourth basic binary division of knots is into the invertible and 

Figure 25 
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noninvertible. Imagine an arrow painted on a knotted rope to give a 

direction to the curve. If it is possible to manipulate the rope so that the 

structure remains the same but the arrow points the other way, the knot 

is invertible. Until the mid-1960s one of the most vexing unsolved 

problems in knot theory was whether noninvertible knots exist. All 

knots of seven or fewer crossings had earlier been found invertible by 

manipulating rope models, and all but one 8-knot and four 9-knots. It 

was in 1963 that Hale F. Trotter, now at Princeton University, announced 

in the title of a surprising paper "Non-invertible Knots Exist" (Topology, 

Vol. 2, No. 4, pages 275-280; December 1963.) 

Trotter described an infinite family of pretzel knots that will not 

invert. A pretzel knot is one that can be drawn, without any crossings, 

on the surface of a pretzel (a two-hole torus). It can be drawn as shown 

in Figure 26 as a two-strand braid that goes around two "holes," or it 

can be modeled by the edge of a sheet of paper with three twisted strips. 

If the braid surrounds just one hole, it is called a torus knot because it 

can be drawn without crossings on the surface of a doughnut. 

Trotter found an elegant proof that all pretzel knots are noninvertible 

if the crossing numbers for the three twisted strips are distinct odd 

integers with absolute values greater than 1. Positive integers indicate 

braids that twist one way and negative integers indicate an opposite 

twist. Later Trotter's student Richard L Parris showed in his unpub 

lished Ph.D. thesis that the absolute values can be ignored provided the 

signed values are distinct, and that these conditions are necessary as 

well as sufficient for noninvertible pretzels. Thus the simplest 

noninvertible pretzel is the one shown. Its crossing numbers of 3, -3, 

and 5 make it an 11-knot. 

It is now known that the simplest noninvertible knot is the 

amphicheiral 8-knot in Figure 27. It was first proved noninvertible by 

Akio Kawauchi in Proceedings of the Japan Academy (Vol. 55, Series A, 

No. 10, pages 399-402; December 1979). According to Richard Hartley, 
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Figure 27 
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in "Identifying Non-invertible Knots" (Topology, Vol. 22, No. 2, pages 

137-145; 1983), this is the only noninvertible knot of eight crossings, 

and there are only two such knots of nine crossings and 33 of 10. All 

36 of these knots had earlier been declared noninvertible by John Horton 

Conway, but only on the empirical grounds that he had not been able 

to invert them. The noninvertible knots among the more than 550 

knots with 11 crossings had not yet been identified. 

In 1967 Conway published the first classification of all prime knots 

with 11 or fewer crossings. (A few minor errors were corrected in a later 

printing.) You will find clear diagrams for all prime knots through ten 

crossings, and all links through nine crossings, in Dale Rolfsen's valu- 

able 1990 book Knots and Links. There are no knots with 1 or 2 cross- 

ings, one with 3, one with 4, two with 5, three with 6, seven with 7, 21 
with 8 crossings, 49 with 9, 165 with 10, and 552 with 11, for a total of 

801 prime knots with eleven or fewer crossings. At the time I write, the 

classification has been extended through 14 crossings. 

There are many strange ways to label the crossings of a knot, then 

derive an algebraic expression that is an invariant for all possible dia- 

grams of that knot. One of the earliest of such techniques produces 

what is called a knot's Alexander polynomial, named after the Ameri- 

can mathematician James W. Alexander who discovered it in 1928. 

Conway later found a beautiful new way to compute a " Conway polyno- 

mial" that is equivalent to the Alexander one. 

For the unknotted knot with no crossings the Alexander poly- 

nomial is 1. The expression for the trefoil knot of three crossings is 

x2 - x + 1, regardless of its handedness. The figure-eight knot of four 

crossings has the polynomial x2 - 3x + 1. The square knot, a product 

of two trefoils, has an Alexander polynomial of (x2 - x + , the square 

of the trefoil's expression. Unfortunately, a granny knot has the same 

polynomial. If two knot diagrams give different polynomials, they are 

sure to be different knots, but the converse is not true. Two knots may 
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have the same polynomial yet not be the same. Finding a way to give 

any knot an expression that applies to all diagrams of that knot, and 

only that knot, is the major unsolved problem in knot theory. 

Although there are tests for deciding whether any given knot is 

trivial, the methods are complex and tedious. For this reason many 

problems that are easy to state are not easy to resolve except by working 

empirically with rope models. For instance, is it possible to twist an 

elastic band around a cube so that each face of the cube has an under- 

over crossing as shown in Figure 28? To put it another way, can you tie 

a cord around a cube in this manner so that if you slip the cord off the 

cube, the cord will be unknotted? 

Note that on each face the crossing must take one of the four forms 

depicted in the illustration. This makes 46 = 4,096 ways to wrap the 

cord. The wrapping can be diagrammed as a 12-knot, with six pairs of 

crossings, each pair of which can have one of four patterns. The prob 

lem was first posed by Horace W. Hinkle in Journal of Recreational 

Mathematics in 1978. In a later issue (Vol. 12, No. 1, pages 60-62; 

197 9 - 80) Karl Scherer showed how symmetry considerations reduce 

the number of essentially different wrappings to 128. Scherer tested 

Figure 28 
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each wrapping empirically and found that in every case the cord is 

knotted. This has yet to be confirmed by others, and no one has so far 

found a simpler way to attack the problem. The impossibility of getting 

the desired wrapping with an unknotted cord seems odd, because it is 

easy to twist a rubber band around a cube to put the under-over cross- 

ings on just two or four faces (all other faces being straight crossings), 

and seemingly impossible to do it on just one face, three faces, or five 

faces. One would therefore expect six to be possible, but apparently it is 

not. It may also be impossible to get the pattern even if two, three, or 

four rubber bands are used. 

Figure 29 depicts a delightful knot-and-link puzzle that was sent to 

me recently by its inventor, Majunath M. Hegde, a mathematics student 

Figure 29 



T h e  L a s t  R e c r e a t i o n s  

in India. The rope's ends are tied to a piece of furniture, say a chair. 

Note that the two trefoil knots form a granny. The task is to manipulate 

the rope and ring so that the ring is moved to the upper knot as is 

indicated by the broken line. All else must remain identical. 

It is easy to do if you have the right insight. Of course, the rope 

must not be untied from the chair, nor are you allowed to open a knot 

and pass the chair through it. It will help if you think of the ends of the 

rope as being permanently fastened to a wall. 

The trick of dissolving or creating knots by passing a person through 

a loop was actually used by fake mediums in the days when it was 

fashionable to relate psychic phenomena to the fourth dimension. Knots 

in closed curves are possible only in Ispace. In 4-space all knots dis- 

solve. If you could toss an unknotted loop of rope to a creature in 4- 
space, it could tie any knot in the loop and toss it back to you with the 

knot permanently formed. There was a popular theory among physi- 

cists who believed in spiritualism that mediums had the power to move 

objects in and out of higher spaces. Some mediums, such as the Ameri- 

can mountebank Henry Slade, exploited this theory by pretending to 

put knots into closed loops of cord. Johann C. F. Zollner, an Austrian 

physicist, devoted an entire book to Slade and hyperspace. Its English 

translation, Transcendental Physics (Arno Press, 1976), is worth reading 

as striking testimony to the ease with which an intelligent physicist can 

be gulled by a clever conjurer. 

Scientists are still being taken in by tricks involving knots and links. 

Psychic investigators William Cox and John IGchards have recently been 

exhibiting a stopaction film that purports to show two leather rings 

becoming linked and unlinked inside a fish tank. "Later examination 

showed no evidence that the rings were severed in any way," wrote 

National Enquirer when it reported this miracle on October 27, 1981. I 

was reminded of an old conjuring stage joke. The performer announces 

that he has magically transported a rabbit from one opaque box to 
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another. Then before opening either box he says that he will magically 

transport the rabbit back again. 

It is easy, by the way, to fabricate two linked "rubber bands." Just 

draw them linked on the surface of a baby's hollow rubber teething 

ring and carefully cut them out. Two linked wood rings, each of a 

different wood, can be carved if you insert one ring into a notch cut 

into a tree, then wait many years until the tree grows around and through 

it. Because the trefoil is a torus knot, it too is easily cut from a teething 

ring. 

The trick I am about to describe was too crude for Slade, but less 

clever mediums occasionally resorted to it. You will find it explained, 

along with other knot-tying swindles, in Chapter 2 of Hereward 

Carrington's The Physical Phenomena of Spiritualism, Fraudulent and 

Genuine (H. B. Turner & Co., Boston, 1907). One end of a very long 

piece of rope is tied to the wrist of one guest and the other end is tied 

to the wrist of another guest. After the seance, when the lights are 

turned on, several knots are in the rope. How do they get there? 

The two guests stand side by side when the lights go out. In the 

dark the medium (or an accomplice) makes a few large coils of rope, 

then passes them carefully over the head and body of one of the guests. 

The coils lie flat on the floor until later, when the medium casually asks 

that guest to step a few feet to one side. This frees the coils from the 

person, allowing the medium to pull them into a sequence of tight 

knots at the center of the rope. Stepping to one side seems so irrelevant 

to the phenomenon that no one remembers it. Ask the guest himself a 

few weeks later whether he changed his position, and he will vigorously 

and honestly deny it. 

Roger Penrose, the British mathematician and physicist, once showed 

me an unusual trick involving the mysterious appearance of a knot. 

Penrose invented it when he was in grade school. It is based on what in 

crocheting, sewing, and embroidery is called a chain stitch. Begin the 
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chain by trying a trefoil knot at one end of a long piece of heavy cord or 

thin rope and hold it with your left hand as in step 1 in Figure 30. 
With your right thumb and finger take the cord at A and pull down a 

loop as in step 2. Reach through the loop, take the cord at B, and pull 

down another loop (step 3). Again reach forward through the lowest 

loop, take the cord at D, and pull down another loop (step 4). Continue 

in this way until you have formed as long a chain as possible. 

With your right hand holding the lower end of the chain, pull the 

chain taut. Ask someone to select any link he likes and then pinch the 

link between his thumb and forefinger. Pull on both ends of the cord. 

All links dissolve, as expected, but when he separates his finger and 

thumb, there is a tight knot at precisely the spot he pinched! 

A few years ago Joel Langer, a mathematician at Case Western Re- 

serve University, made a remarkable discovery. He found a way of con- 

structing what he calls "jump knots" out of stainless-steel wire. The 

wire is knotted and then its ends are bonded. When it is manipulated 

properly, it can be pressed flat to form a braided ring. Release pressure 

Figure 30 
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on the ring; tension in the wire causes it to spring suddenly into a 

symmetrical threedimensional shape. It is now a frustrating puzzle to 

collapse the wire back to its ring form. 

In 1981 Langer and his associate Sharon O'Neil formed a company 

they called Why Knots. From it you can obtain three handsome jump 

knots: the Figure Eight, the Chinese Button Knot, and the 

Mathematician's Loop. When you slide one of these wire knots out of 

its square envelope, it pops into an elegant hanging ornament. The 

figure eight is the easiest to put back into its envelope. The Chinese 

button knot (so called because it is a form widely used in China for 

buttons on nightclothes) is more difficult. The mathematician's loop is 

the most difficult. 

Langer tells me that anyone in the U.S. can get his three jump 

knots by sending $10.50 to Why Knots, P.O. Box 635, Aptos, CA 

95003. These shapes make it easier to understand how the 18th-cen- 

tury physicists could have developed a theory, respectable in its day, that 

molecules are different kinds of knots into which vortex rings of ether 

(today read "space-time") get themselves tied. Indeed, it was just such 

speculation that led the Scottish physicist Peter Guthrie Tait to study 

topology and conduct the world's first systematic investigation of knot 

theory. 

Answers 

Figure 31 shows how a square knot can be changed to an alternat- 

ing knot of six crossings. Simply flip dotted arc a over to make arc b. 

Figure 32 shows one way to solve the ring-and-granny-knot puzzle. 

First make the lower knot small, then slide it (carrying the ring with it) 

up and through the higher knot (a). Open it. Two trefoil knots are now 

side by side (b). Make the ringless knot small, then slide it through and 

down the other knot. Open it up and you have finished (c). 
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Figure 31 

Figure 32 

Enormous advances in knot theory have been made since this chapter 

was written in 1983, and knot theory is now one of the most exciting and 

active branches of mathematics. Dozens of new polynomials for classifying 

knots have been discovered. One is called the Homfly after the last initials of 

its six independent discoverers. The most significant new expression is the 

Jones polynomial found in 1984 by the New Zealand mathematician Vaughan 

F. R. Jones, now at the University of California, Berkeley. It has since been 

improved and generalized by Louis Kauffman and others. Although these 
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new polynomials are surprisingly simple and powerful, no one has yet come 

up with an algebraic technique for distinguishing all knots. Knots with differ- 

ent polynomials are different, but it is still possible that two distinct knots 

will have the same expression. 

The Alexander polynomial does not decide between mirror-image 

knots, and as we have seen, it does not distinguish the square knot from 

the granny. The Jones polynomial provides both distinctions. So far, it is 

not clear just why the Jones and the other new polynomials work. "They're 

magic" is how Joan Birman, a knot expert at Barnard College, put it. 

The most amazing development in recent knot theory was the discovery 

that the best way to understand the Jones polynomial was in terms of statis- 

tical mechanics and quantum theory! Sir Michael Atiyah of Cambridge Uni- 

versity, was the first to see these connections, then Edward Witten, at the 

Institute for Advanced Study in Princeton, did the pioneer work in develop- 

ing the connections. Knot theory now has surprising applications to 

superstrings, a theory that explains basic particles by treating them as tiny 

loops, and to quantum field theory. There is intense interaction between 

today's physicists and topologists. Discoveries in physics are leading to new 

discoveries in topology, and vice versa. No one can predict where it will all 

lead. 

Another unexpected application of knot theory is in broadening our 

understanding of the structure and properties of large molecules such as 

polymers, and especially the behavior of DNA molecules. DNA strands can 

become horribly knotted and linked, unable to replicate until they are untied 

or unlinked by enzymes. To straighten out a DNA strand, enzymes have to 

slice them so they can pass through themselves or another strand, then splice 

the ends together again. The number of times this must occur to undo a knot 

or linkage of DNA determines the speed with which the DNA unknots or 

unlinks. 

There is a delightful three-color test for deciding if a knot diagram 

represents a knot. Draw the diagram, then see if you can color its "arcs" 

(portions of the line between two crossings) with three colors so that 

either all three colors meet at each crossing, or there is only one color at 
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each crossing, and provided at least one crossing shows all three colors. If 

you can do this, the line is knotted. If you can't, the line may or may not 

be knotted. The three-coloring can also be used to prove that two knots 

are different. 

In 1908 the German mathematician Heinrich Tietze conjectured that 

two knots are identical if and only if their complements-the topological 

structure of the space in which they are embedded-are identical. His conjec- 

ture was proved in 1988 by two American mathematicians, Cameron M. 
Gordon and John E. Luecke. A knot's complement is a structure in Zspace, 

in contrast to the knot which is one-dimensional. Its topological structure is 

more complicated than the knot's, but of course it contains complete infor- 

mation about the knot. The theorem fails for links. Two links that are not 

the same can have identical complements. 

Associated with each knot's complement is a group. Like the poly- 

nomials, which can be extracted from the group, two knots can have 

the same group yet not be the same knots. An anonymous poet 

summed up the situation this way in the British periodical Manifold 

(Summer 197 2): 

A knot and 

another 

knot may 

not be the 

same knot, though 

the knot group of 

the knot and the 

other knot's 

knot group 

differ not; BUT 
if the knot group 

of a knot 

is the knot group 
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of the not 

knotted 

knot, 

the knot is 

not 

knotted. 

The American philosopher Charles Pierce, in a section on knots in his 

New Elements of Mathematics (Volume 2 ,  Chapter 4), shows how the 

Borromean rings (three rings linked in such a way that although they can't be 

separated, no two rings are linked) can be cut from a three-hole torus. Peirce 

also shows how to cut the figure-eight knot and the bowline knot from a two- 

hole torus. 

Richard Parris called attention to the fact that not all of the 4,096 ways to 

wrap string around the cube, in the problem I posed, are knots. Most of 

them are links of two, three, or four separate loops. 
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Maps 

"I know by the color. We're 
right over Illinois yet. [Huckleberry 
Finn is speaking to Tom; they are 
on a balloon trip.] And you can see 
for yourself that Indiana ain't in 
sight. . . . 

What's the color got to do with 

it! 
It's got everything to do with it. 

Illinois is green, Indiana is pink. . . . 
I've seen it on the map, and it's pink." 

-Mark Twain, Tom Sawyer Abroad 

n 1976 Wolfgang Haken and Kenneth Appel of the University of 

Illinois at Urbana-Champaign announced they had finally laid to 

rest the famous four-color-map problem. As the reader surely knows, 

this renowned conjecture in topology asserts that four colors are both 

sufficient and necessary for coloring all maps drawn on a plane or 

sphere so that no two regions that "touch" (share a segment of a bound- 

ary) are the same color. Haken and Appel, with the assistance of John 

Koch, proved that the conjecture is true by a method that made unpre- 
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cedented use of computers. Their proof is an extraordinary achieve- 

ment, and when their account of it was published in 1977, the Urbana 

post office proudly added to its postmark "Four colors suffice." To most 

mathematicians, however, the proof of the fourcolor conjecture is deeply 

unsatisfying. 

For more than a century topologists either suspected that a 

counterexample to the four-color conjecture (that is, a complex map 

requiring five colors) could be devised or trusted that a simple, elegant 

proof of the conjecture could be found. Although the conjecture is now 

known to be true, its proof is buried in printouts that resulted from 

1,200 hours of computer time. The task of verifying the accuracy of 

these results is so horrendous that only a small number of experts have 

had the time, fortitude, and skill to even attempt it. So far, however, all 

who have done so have attested to the proofs validity. 

In an article titled "The Four-Color Problem and Its Philosophical 

Significance," published in The Journal of Philosophy (Vol. 76, No. 2, 

pages 57-83; February 1979), Thomas Tymoczko argues that this kind 

of lengthy computer proof injects an empirical element into mathemat- 

ics. No mathematician, he writes, has seen a proof of the four-color 

theorem, nor has anyone seen a proof that the work of Haken and 

Appel is, in fact, a proof. What mathematicians have seen instead is a 

program for attacking the problem by computer along with the results 

of an "experiment" performed on a computer. Tyrnoczko believes such 

a "proof" blurs the distinction between mathematics and natural sci- 

ence and lends credibility to the opinions of those contemporary phi- 

losophers of science, such as Hilary Putnam who see mathematics as a 

"quasi-empirical" activity. 

There is, of course, something to this viewpoint. All mathematical 

proofs are the work of human beings, and when proofs are extremely 

complex, human error is always a possibility. The validity of a difficult 

proof rests on a consensus among experts, who may, after all, be mis- 
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taken. There is a striking instance of this in the early history of the four- 

color theorem. Alfred Bray Kempe, an English mathematician, pub- 

lished what he said was a proof of the theorem in 1879, and for about 

a decade mathematicians assumed that the problem had been solved. 

Then in 1890 Percy John Heawood, another English mathematician, 

pointed out a fatal flaw in Kempe's reasoning. 

My purpose here is not to argue the question of whether there is a 

sharp line separating "analytic" truth from "synthetic" truth. I shall say 

only that I think Tymoczko greatly overestimates the relevance of mod- 

ern computers to this old controversy. All calculations are empirical in 

the trivial sense that they involve the carrying out of an experiment 

with symbols, either in the head, with pencil and paper, or with the aid 

of a machine. The fact that with electronic computers, which are now 

essential for difficult calculations, mistakes can be made by both hard- 

ware and software differs in no essential way from the fact that mistakes 

can be made by a person multiplying two large numbers on an abacus. 

It seems to me a misuse of language to say that the possibility of such 

errors makes the truth of the multiplication table empirical and there- 

fore a mistake to take this kind of inescapable error as an example of 

the fallibility of natural science. 

Still, the Haken-Appel proof of the four-color theorem is certainly 

unsatisfying in that no one can call it simple, beautiful, or elegant. 

Haken and Appel both think it unlikely that a proof can be found that 

does not require an equally intensive application of computers, but of 

course there is no way to be sure. If there is no simpler proof, the 

Haken-Appel proof is indeed something new in the degree to which it 

relies on computer technology. 

This situation is ably discussed by Benjamin L Schwartz in a book 

he edited titled Mathematical Games and Solitaires. Published in 1979 
by the Baywood Publishing Company of Farmingdale, N.Y., the book 

(which I enthusiastically recommend) is a choice selection of articles 
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from Journal of Recreational Mathematics. In Schwartz's introduction to 

a section on the four-color problem he writes: "So one may ask, have 

Haken and Appel really proved what they claim?. . . Personally I believe 

they have. . . . But the trial period is still not over. Others will have to 

check every step. And since [most] of the steps were carried out in 

hundreds of hours of high-speed computer operation, that checking 

will be a big job. At this writing no one had done it. New computer 

code will have to be written, perhaps for another computer. . . . Will a 

whole set of other stubborn mathematical problems. . . begin to yield to 

the new method of massive computational s u p p o ~ ?  Or is this a fluke 

case that will have no lasting impact? This proof of the four-color thee 

rem introduces a new era in mathematics, and no one knows where it 

will lead." 

In December of 1976 G. Spencer-Brown, the maverick British math- 

ematician, startled his colleagues by announcing he had a proof of the 

four-color theorem that did not require computer checking. Spencer- 

Brown's supreme confidence and his reputation as a mathematician 

brought him an invitation to give a seminar on his proof at Stanford 

University. At the end of three months all the experts who attended the 

seminar agreed that the proofs logic was laced with holes, but Spencer- 



M-Pire N a p s  8 9  

Brown returned to England still sure of its validity. The "proof' has not 

yet been published. 

Spencer-Brown is the author of a curious little book called Laws of 

Fonn, which is essentially a reconstruction of the propositional calculus 

by means of an eccentric notation. The book, which the British math- 

ematician John Horton Conway once described as beautifully written 

but "content-free," has a large circle of counterculture devotees. Inciden- 

tally, after Brown's announcement that he had proved the four-color 

theorem was reported in newspapers around the world the Vancouver 

Sun for January 17, 1977, printed a letter from a woman in British 

Columbia. Brown could not have proved the theorem, she wrote, be- 

cause in April 1975, Scientific American had printed a map that re- 

quired five colors. She was referring to a map that appeared in my 

column as an April Fools' joke! 

While topologists go on with their search for a simple proof of 

the four-color theorem, some are also working on two fascinating but 

little-known generalizations of the problem that are still unsolved. In 

what follows I shall draw heavily on a private communication from 

Herbert Taylor. Formerly a mathematician at California State Univer- 

sity at Northridge and at the Jet Propulsion Laboratory of the Califor- 

nia Institute of Technology, he is currently studying electrical engineer- 

ing with Solomon W. Golomb at the University of Southern California. 

He was also once rated one of the world's top three non-Oriental go 

players. 

As Taylor points out, one way to generalize the four-color problem 

is to consider a map on which each country, or area to be colored, 

consists of rn disconnected regions. If all regions of a single country 

must be the same color, what is the smallest number of colors neces- 

sary for coloring any such map so that no two regions of like color 

share a common border? Taylor calls this question the m-pire problem 

and the number of colors required the m-pire chromatic number. 
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If m equals 1 (that is, if each country consists of only one region), 

the problem is equivalent to the four-color problem, and Haken and 

Appel established that the chromatic number is 4. If rn equals 2 (think 

of each country as having one colony with the same color as the coun- 

try), the chromatic number is 12. Surprisingly, this result was presented 

by Heawood in 1890 in the same paper in which he demolished Kempe's 

proof of the four-color theorem. In other words, the solution to the m 

pire problem for the case m = 2 was obtained long before the solution 

for the case rn = 1. In Heawood's proof he first showed that for any 

positive integer m the required number of colors for an m-pire map is 

no more than 6m. Then he exhibited a "2-pire" map that required 6 x 

2, or 12, colors, a map he said he "obtained with much difficulty in a 

more or less empirical [m-pirical?] manner." That map is shown in 

(Figure 33 (see color plate). 

Note that Heawood's map has no symmetry. Taylor found a fairly 

symmetrical version (which can be obtained from the map shown at 

the top of Figure 34 by shrinking the lettered regions to points), but the 

most symmetrical map was devised recently by Scott Kim, a graduate 

student at Stanford University. Kim's beautiful map is shown in Figure 

(35 (see color plate). As Heawood remarked of his own map: "What 

essential variety there might be in such an arrangement of 12 two- 

division countries. . . is a curious problem, to which the one figure 

obtained does not afford much clue." 

Heawood was convinced that 6m provides the chromatic number 

for all mpire maps. Examine Heawood's map or Kim's for the case m = 

2, and you will see that each 2-pire touches all the others, thereby 

proving that 12 colors are necessary. Heawood believed that for every m 

there exists a similar pattern of 6m regions, with each rn-pire touching 

all the others. Taylor recently proved that this conjecture is true when m 

equals 3, using the map requiring 6 x 3, or 18, c o l o r o ~ i ~ u r e  36, see 

color plate). Note that only two regions on the map are numbered 18 
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Figure 33 

and colored yellow. The third region of this Zpire is disconnected from 

the rest of the map and can be anywhere on the plane. 

Taylor later confirmed Heawood's conjecture for the case rn = 4 
by constructing the two-part map requiring 6 x 4, or 24, colors 

(Figure 34). Think of the two parts of the map as being two hemi- 

spheres of the same sphere. (Any map on a spherical surface can be 

converted into a topologically equivalent planar map by puncturing 

the surface inside any region and then stretching the hole until the 

map can be laid flat.) Note that each 4-pire on the map touches all 

the others, proving that 24 colors are necessary in the 4-pire prob- 

lem. Both of these results are published here for the first time. 

Heawood's conjecture remains unverified for the case m = 5 and all 

higher values of m. For maps drawn on the surface of a torus, how- 

ever, Taylor solved the m-pire problem. He has submitted a note to 
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Figure 34 
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Figure 35 

Figure 36 
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Journal of Graph Theory titled "The m-pire Chromatic Number of the 

Torus Is 6m + 1." The problem remains open for all toruses with more 

than one hole. 

In 1959, in a German book dealing with graph-coloring problems, 

Gerhard Ringel posed another problem closely related to the m-pire 

problem. Assume that Mars has been colonized by the nations of the 

earth and that each nation has one home territory on this planet and 

one colony on Mars. Each region is simply connected (without holes), 

and each colony is the same color as its parent nation. Once again the 

problem is to find the minimum number of colors that will color all 

possible maps on the two spheres so that no two regions of the same 

color touch at more than single points. Since maps on spheres are 

equivalent to planar maps, the same problem can be formulated in 

terms of two separate maps on the plane. 

Ringel showed that the chromatic number for all two-sphere maps 

is either 8, 9, 10, 11, or 12. The upper bound of 12 is derived from 

Heawood's upper bound for the m-pire problem of 6m as follows. S u p  

pose a pair of maps requires more than 12 colors. It would then be 

possible to convert them into planar maps and join them to create a 2e 

pire map requiring more than 12 colors, thereby violating the proved 

upper bound of 6m. 

Ringel guessed the chromatic number for the Earth-Mars maps to 

be 8, a hypothesis that was strengthened in 1962 when Joseph Battle, 

Frank Harary, and Yukihiro Kodama showed that a two-sphere map 

could not be constructed with nine 2-pires so that each 2-pire touched 

all the others. In 1974, however, Thom Sulanke, then a student at 

Indiana University, sent Ringel the pair of maps shown in Figure 37. 
These maps too are published here for the first time. If you try to color 

the eleven 2-pires so that both of the regions having the same number 

are given the same color, you will find that nine colors are needed! 

Thus to color the Earth-Mars maps nine colors are necessary and 12 
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Figure 36 



M-Pire N a p s  

Figure 37 



96  The L a s t  R e c r e a t i o n s  

are sufficient. No one yet knows if such a pair of maps can be con- 

structed that require 10, 11, or 12 colors. 

It is also possible to combine the 2-sphere problem with the m-pire 

problem. For example, suppose rn equals 4 and each sphere is a map 

on which each country has just two regions. If you think of the patterns 

in Figure 37 as being two separate maps, one on the earth and the 

other on Mars, they prove that for the case m = 4 the number of colors 

required is 24. We know that 24 are enough as well because Heawood's 

upper bound of 6m also applies here. Hence the problem is solved. 

Taylor conjectures that for every positive even-integer m there is a map 

of 6m m-pires on a surface consisting of rn/2 spheres such that each m- 

pire has two of its m parts on each sphere and each m-pire touches all 

the others. 

I conclude with a delightful coloring puzzle involving the U.S. Ig- 

noring Hawaii and the disconnected parts of states such as the islands 

that belong to New York and California, note that nowhere on the map 

of the 49 states of the continental U.S. is there a place where four states 

all mutually share borders. (The same is not true of other countries. For 

example, Switzerland has four cantons that are mutual neighbors: 

Solothurn lies at the center of the configuration, and it is surrounded 

by Aargau, Basel, and Bern.) This situation suggests an intriguing ques- 

tion: Is it possible to color the 49 states with three colors instead of 

four? 

Another way to view this possibility is to consider the Four Color 

Puzzle Game, marketed in 1979 by Knots, Inc. (2425 Third Street, San 

Francisco, CA 94107). People who buy the game (for $6.95 postpaid) 

are given two jigsaw puzzle maps of the continental U.S. In each puzzle 

each state is represented by a single piece, and the two pieces in the 

game representing each state are different colors. The task is to choose 

pieces to make a four-color map of the U.S. in which no neighboring 

states are the same color. (As in the four-color theorem, states of the 
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same color may touch at a single point.) To restate our question: Is it 

possible that Knots, Inc., could have used only three colors for their 

puzzle pieces and asked for a three-color map of the U.S.? 

The answer is no, but most people find it annoyingly difficult to 

prove. Can the reader give a simple proof that the U.S. map requires 

four colors? 

Answers 

The mapcoloring problem is from Howard P. Dinesman's collec- 

tion of brainteasers Superior Mathematical Puzzles, with Detailed Solu- 

tions (Simon and Schuster, 1968). It can be answered as follows, Ne- 

vada is surrounded by a ring of five states: Oregon, Idaho, Utah, Arizona, 

and California. Color Nevada with color 1. If only three colors are 

used, each state in the ring must be colored with either color 2 or color 

3 to avoid conflict with Nevada, and these two colors must alternate 

around the ring. Since the ring consists of an odd number of states 

(five), however, there is no way to avoid giving two adjacent states the 

same color. Therefore a fourth color is necessary. The same applies to 

the ring of five states that surround West Virginia, and the ring of seven 

around Kentucky. 

This property of rings that consist of an odd number of regions 

plays a basic role in mapcoloring theory. Consider how it applies to L. 
Frank Baum's land of Oz. Oz is made up of five regions, each region 

with a dominant landscape color: the green Emerald City is surrounded 

by a ring consisting of the yellow Winkie country, the red Quadling 

country, the blue Munchkin country and the purple Gillikin country. 

Surrounding all of Oz is the great Deadly Desert. Because four is an 

even number, a map of Oz can be colored with three colors, but of 

course no Oz cartographer would use fewer than five for Oz and a sixth 

for the surrounding desert. 
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English Professor James Kirkup, at Kyoto University, in Japan, sent a 

letter about my m-pire map coloring column to the Houseman S o c i e ~  Journal. 

Published in Volume 7 (1981), pages 83-84, the letter begins: 

Dear Sir, 
I always enjoy the Mathematical Games published in The 

Scientific American and I was particularly interested in  the 
issue of February, 1980, which discussed the colouring of 
unusual maps. The epigraph from Mark Twain's Tom Sawyer 

Abroad brought to mind the celebrated line by A. E. House- 
man from "Bredon Hill": 

Here of a Sunday morning 
My love and 1 would lie, 

And  see the coloured counties, 

And hear the larks so high 

About us in the sky. 

Kirkup italicized the third line. He goes on to wonder if Houseman was 

familiar with the four-color map theorem. 

Ian Stewart, in his Scientific American article listed as a reference, reports 

that for 3-pire maps-say one on the Earth, another on the moon, and a third 

on Mars-the optimal number of colors is 16, 17, or 19. For m = 4 or higher, 

the number is 6m, 6m - 1, or 6m - 2. 

Scott T(lm sent me another remarkable version of his 2-pire map, here 

reproduced as Figure 38. It will fold into a cube with partially truncated 

comers. "The hexagons are the truncations," Kim writes, "and the squares 

are concentric with the cube's faces. The symmetry is pretty (it makes a great 

model), but a little misleading. It is true that each empire consists of a rect- 

angle and a hexagon, but there are two distinct ways they are paired. Empires 

1, 2,4,  7, 8 , 9  are one type. The only symmetry that preserves empire type is 

a rotation around the axis that connects the intersection point of hexagons 1, 

4, and 8, and the intersection point of hexagons 6, 10, and 11." 
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Figure 38 
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Directed 
Graphs 

and 
Cannibals 

Stranger in car: "How do I get 
to the corner of Graham Street and 

Harary Avenue?" 

Native on sidewalk: "You can't 

get there from here." 

n graph theory a graph is defined as any set of points joined by lines, 

and a simple graph is defined as one that has no loops (lines that join 

a point to itself) and no parallel lines (two or more lines joining the 

same pair of points). If an arrowhead is added to each line of a graph, 

giving each line a direction that orders its end points, the graph be- 

comes a directed graph, or digraph for short. Directed lines are called 

arcs. Digraphs are the subject here, and the old joke quoted above is 
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appropriate because on some digraphs it is actually impossible to get 

from one specified point to another. 

A digraph is called complete if every pair of points is joined by an 

arc. For example, a complete digraph for four points is shown in Figure 

39 (left). The figure at the right is the adjacency matrix of the digraph, 

which is constructed as follows. Think of the digraph as a map of one- 

way streets. Starting at point A, it is possible to go directly only to point 

B, a fact that is indicated in the top row of the matrix (the row corre- 

sponding to A) by putting a 1 in the column corresponding to B and a 

0 in all the other columns. The remaining rows of the adjacency matrix 

are determined in the same way, so that the matrix is combinatorially 

equivalent to the digraph. It follows that given the adjacency matrix it is 

easy to construct the digraph. 

Other important properties of digraphs can be exhibited in other 

kinds of matrixes. For example, in a distance matrix each cell gives the 

smallest number of lines that form what is called a directed path from 

one point to another, that is, a path that conforms to the arrowheads 

on the graph and does not visit any point more than once. Similarly, 

the cells of a detour matrix give the number of lines in the longest 

directed path between each pair of points. And a reachability matrix 

Figure 39 
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indicates (with 0s and 1s) whether a given point can be reached from 

another point by a directed path of any length. If every point is reach- 

able from every other point, the digraph is said to be strongly con- 

nected. Otherwise there will be one or more pairs of points for which 

"you can't get there from here." 

The following theorem is one of the most fundamental and surpris- 

ing results about complete digraphs: No matter how the arrowheads are 

placed on  a complete digraph, there will always be a directed path that 

visits each point just once. Such a path is called a Hamiltonian path 

after the Irish mathematician William Rowan Hamilton. Hamilton 

marketed a puzzle game based on a graph equivalent to the skeleton of 

a dodecahedron in which one task was to find all the paths that visit 

each point just once and return to the starting point. A cyclic path of 

this type is called a Hamiltonian circuit. (Hamilton's game is discussed 

in Chapter 6 of my Scientific American Book of Mathematical Puzzles 8 
Divers ions .) 

The complete-digraph theorem does not guarantee that there will 

be a Hamiltonian circuit on every complete digraph, but it does ensure 

that there will be at least one Hamiltonian path. More surprisingly, it 

turns out that there is always an odd number of such paths. For ex- 

ample, on the complete digraph in Figure 40 there are five Hamiltonian 

paths: ABDC, BDCA, CABD, CBDA, and DCAB. All but one of them 

(CBDA) can be extended to a Hamiltonian circuit. 

The theorem can be expressed in other ways, depending on the 

interpretation given the graphs. For example, complete digraphs are 

often called tournament graphs because they model the results of the 

kind of round-robin tournaments in which each player plays every other 

player once. If A beats B, a line goes from A to B. The theorem guaran- 

tees that whatever the outcome of a tournament is all players can be 

ranked in a column so that each player has defeated the player immedi- 

ately below him. (It is assumed here that, as in tennis, no game can end 
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Figure 40 

in a draw. If a game did allow draws, they would be represented by 

undirected lines and the graph would be called a mixed graph. Mixed 

graphs can always be converted into digraphs by replacing each undi- 

rected line with a pair of directed parallel lines going in opposite direc- 

tions .) 

Tournament graphs can be applied to represent many situations 

other than tournaments. Biologists have used the graphs to diagram 
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the pecking order of a flock of chickens or, more generally, to dia- 

gram the structure that any other kind of pairwise dominance rela- 

tion imposes on a population of animals. Social scientists have used 

the graphs for modeling dominance relations among people or groups 

of people. Tournament graphs provide a convenient means of mod- 

eling a person's pairwise preferences for any set of choices, such as 

brands of coffee or candidates in an election. In  all these cases the 

theorem guarantees that the animals, people, or objects in question 

can always be ordered in a linear chain by means of the one-way 

relation. 

The theorem is tricky to prove, but to convince yourself of its valid- 

ity try labeling a complete graph of n points so that no Hamiltonian 

path is created. The impossibility of the task suggested the following 

pencil-and-paper game to the mathematician John Horton Conway. Two 

players take turns adding an arrowhead to any undirected line of a 

complete graph, and the first player to complete a Hamiltonian path 

loses. The theorem ensures that the game cannot be a draw. Conway 

finds the play is not interesting unless there are seven or more points in 

the graph. 

The digraph in Figure 40 appeared as a puzzle in the October 1961 
issue of the Cambridge mathematical annual Eureka. Although it is not 

a complete digraph, it has been cleverly labeled with arrowheads so that 

it has only one Hamiltonian circuit. Think of the graph as a map of 

oneeway streets. You want to start at A and drive along the network, 

visiting each intersection just once before returning to A. How can it be 

done? (Hint: The circuit can be traced by a pencil held in either hand.) 

Digraphs can provide puzzles or be applied as tools for solving 

puzzles in innumerable ways. For example, the graphs serve to model 

the ways a flexagon flexes, and they are valuable in solving moving- 

counter and sliding-block puzzles and chess-tour problems. Probability 

questions involving Markov chains often yield readily to a digraph analysis, 
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and winning strategies for two-person games in which each move alters 

the state of the game are frequently found by exploring a digraph of all 

possible plays. In principle even the game of chess could be "solved" by 

examining its digraph, but the graph would be so enormous and so 

complex that it will probably never be drawn. 

Digraphs are extremely valuable in the field of operations research, 

where they can be applied to solve complicated scheduling problems. 

Consider a manufacturing process in which a certain set of operations 

must be performed. If each operation requires a fixed amount of time 

to perform and certain operations must be completed before others can 

be started, an optimum schedule for the operations can be devised by 

constructing a graph in which each operation is represented by a point 

and each point is labeled with a number that represents the time needed 

for completing the operation. The sequences in which certain opera- 

tions must be done are indicated by arrowheads on the lines. To deter- 

mine an optimum schedule the digraph is searched, with a computer if 

necessary, for a "critical path" that completes the process in a mini- 

mum amount of time. Complicated transportation problems can be 

handled the same way. For example, each line in a digraph can repre- 

sent a road and can be labeled with the cost of transporting a particular 

product on it. Clever algorithms can then be applied to find a directed 

path that minimizes the total cost of shipping the product from one 

place to another. 

Digraphs also serve as plaflng boards for some unusual board games. 

Aviezri S. Fraenkel, a mathematician at the Weizmann Institute of Sci- 

ence in Israel, has been the most creative along these lines. (For a good 

introduction to a class of digraph games Fraenkel calls annihilation 

games, see '(Three Annihilation Games," a paper Fraenkel wrote with 

Uzi Tassi and Yaacov Yesha for Mathematics Magazine, Vol. 51, No. 1, 
pages 13- 17; January 1978.) In 1976 the excellent game Arrows, which 

Fraenkel developed with Roger B. Eggleton of Northern Illinois Uni- 
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versity, was marketed in Israel by Or Da Industries and distributed in 

the U.S. by Leisure Learning Products of Greenwich, CT. 

Traffic Jam, another Fraenkel game, is played on the directed graph 

in Figure 41. A coin is placed on each of four spots: A, D, F, and M. 
Players take turns moving any one of the coins along one of the lines of 

the graph to an adjacent spot as is indicated by the arrowheads on the 

graph. A coin can be moved to any adjacent spot whether or not the 

spot is occupied, and each spot can hold any number of coins. Note 

that all the arrowheads at C point inward. Graph theorists call such a 

point a sink. Conversely, a point from which all the arrowheads point 

outward is called a source. (If the graph models a pecking order, the 

sink is the chicken all the other chickens peck and the source is the 

chicken that pecks all the others.) In this case there is just one sink and 

Figure 41 
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one source. (A complete digraph can never have more than one sink or 

more than one source. Do you see why?) 

When all four coins are on sink C, the person whose turn it is to 

move has nowhere to go and loses the game. In Conway's book On 

Numbers and Games (Academic Press, 1976) he proves that the first 

player can always win if and only if his first move is from M to L. 
Otherwise the opponent can force a win or draw. (It is assumed that 

both players make their best moves.) With the powerful game theory 

that Conway has developed it is possible to completely analyze any game 

of this type, with any starting pattern of counters. 

An ancient and fascinating class of puzzles that are best analyzed by 

digraphs are those known as river-crossing problems. Consider a clas- 

sic puzzle that turned up in the title of Mary McCarthy's novel Canni- 

bals and Missionaries. In the simplest version of this problem three 

missionaries and three cannibals on the right bank of a river want to 

get to the left bank by means of a rowboat that can hold no more than 

two passengers at a time. If the cannibals outnumber the missionaries 

on either bank, the missionaries will be killed and eaten. Can all six get 

safely across? If they can, how is it done with the fewest crossings? (I 

shall not enter here into the current lively debate about whether canni- 

balism ever actually prevailed in a culture.) 

Benjamin L. Schwartz, in an article titled "An Analytic Method for 

the 'Difficult Crossing' Puzzles" (Mathematics Magazine, Vol. 34, No. 

4, pages 187-193; March-April 1961), explained how to solve such 

problems by means of digraphs, but his method deals not directly with 

the digraphs but rather with their adjacency matrixes. I shall describe 

here a compzrable procedure using the digraphs themselves that was 

first explained by Robert Fraley, Kenneth L. Cooke and Peter Detrick in 

their article "Graphical Solution of Difficult Crossing Puzzles" (Math- 

ematics Magazine, Vol. 39, No. 3, pages 151-157; May 1966). The 

paper has been reprinted with additions as Chapter 7 of Algorithms, 
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Graphs and Computers by Cooke, Richard E. Bellman and Jo Ann 

Lockett (Academic Press, 1970). The following discussion is based on 

that chapter. 

Let rn stand for the number of missionaries and c for the number 

of cannibals, and consider all possible states on the right bank. (It is 

not necessary to consider states on the left bank as well because any 

state on the right bank fully determines the state on the left one.) 

Since m can be equal to 0, 1, 2, or 3, and the same is true for c, 

there are 4 x 4, or 16, possible states, which are conveniently repre- 

sented by the matrix in Figure 42. Six of these states are not acceptable, 

however, because the cannibals outnumber the missionaries on one of 

the banks. The ten acceptable states that remain are marked by placing 

a point inside each of the ten corresponding cells of the matrix. 

The next step is to connect these points by lines that show all 

possible transitions between acceptable states by the transfer of one or 

two persons to the other side of the river. The result is the undirected 

graph in Figure 43. This graph is then transformed into a mixed graph 

by adding arrowheads to show the direction of each transition. The 

Figure 42 
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Figure 43 

transformation of the undirected graph to a mixed graph must be car- 

ried out in accordance with two rules: 

1. The object is to create a directed "walk" that will start at the 

point at the upper right (c = 3, rn = 3) and end at the point at the 

lower left (c = 0, rn = 0), so that all the cannibals and missionaries 

end up on  the left bank. (This route is called a walk rather than a 

path because by definition a path cannot visit the same point more 

than once.) 

2. The directed walk must alternate movements down or to the left 

with movements up or to the right, because each step down or to the 

left corresponds to a trip from the right bank to the left bank, 

whereas each step up or to the right corresponds to a trip in the 

opposite direction. 

With both of these rules in mind it takes only a short time to 

discover that there are just four walks that solve the puzzle. Their di- 

graphs are shown in Figure 44. Each walk completes the transfer in 

eleven moves. Note that the third through ninth steps are the same in 

all four walks. The four variants arise because there are two ways to 

make the first two steps and two symmetrical counterparts for the last 

two steps. 

If the problem is altered to deal with transporting four cannibals 

and four missionaries (and all other conditions remain the same), the 

digraph technique can be applied to show there is no solution. S u p  
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Figure 44 

pose now that the boat is enlarged to hold three passengers and that on 

the boat, as on the bank, the cannibals must not outnumber the mis- 

sionaries. Under these conditions all eight can cross safely in as few as 

nine steps. Five cannibals and five missionaries can also cross in a boat 

that holds three passengers (in eleven steps), but six cannibals and six 

missionaries cannot. 

It is easy to see that given a boat holding four or more passengers 

any group evenly divided between cannibals and missionaries can be 

safely transported across the river. One cannibal and one missionary 

simply do all the rowing, transporting the others one cannibal-mis- 
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sionary pair at a time until the job is done. Now let n be the number of 

cannibals (or missionaries). If the boat holds just four passengers, the 

problem is solvable in 2n - 3 steps. If the boat holds an even number 

of passengers that is greater than 4, more than one cannibal-mission- 

ary pair can of course be taken each time. The technique of always 

keeping the same number of cannibals and missionaries on both sides 

of the river is diagrammed as a braided pattern along the diagonal of 

the matrix of the problem as is shown in Figure 45. This nine-step 

digraph solves the cannibal-missionary problem when n equals 6 and 

the boat holds four passengers. 
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When the capacity of the boat is an even number greater than or 

equal to 4, the diagonal method always gives the best solution. If the 

number of cannibals n is just one more than the capacity of the boat, 

which is an even number greater than 4, then there is always a five-step 

minimum solution. Actually the diagonal method is more powerful 

than this last case implies. With a boat that holds an even number 

greater than 4 it will always provide a five-step minimum solution for 

any case from b + 1 cannibals through (3 b/2) - 2 cannibals, where b is 
the capacity of the boat. 

If the number of passengers the boat can hold is odd, moving 

down the diagonal does not always give the best answer. For example, if 

n equals 6 and the boat holds five, the diagonal method gives the same 

nine-move solution shown in Figure 45, but the problem also has a 

seven-step solution. More generally, if the boat holds an odd number of 

passengers that is greater than three and one less than n, there always is 

a minimum solution in seven moves. Can you find one of many seven- 

step solutions for six cannibals and six missionaries crossing the river 

in a boat that holds five passengers? This is the simplest of an infinity 

of examples in which, for a boat with an odd capacity, there is a proce- 

dure superior to the diagonal procedure. (I am ignoring here the trivial 

cases of a boat with an odd capacity of one or three, where the diagonal 

method will not work at all.) The next simplest case is the one where n 

equals 10 and the boat holds seven passengers. 

The digraph method can be applied to almost any kind of river- 

crossing problem. One famous ~roblem, which goes back at least to the 

eighth century, concerns three jealous husbands and their wives, who 

want to cross a river in a boat that holds two passengers. How can this 

goal be accomplished so that a wife is never alone with a man who is 

not her husband? If you construct the digraph for the problem, you 

may be surprised to discover that it is solved by the same four walks as 

the classic cannibal-missionary problem and has no other solutions. 
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The only difference-and this applies also to generalizations of the jeal- 

ous-husband variant of the puzzle-is that the pairings of individual 

men and women have to be manipulated to meet conditions not essen- 

tial to the cannibal-missionary version. 

Many puzzle books include more exotic variations of the canni- 

bal-missionary problem. For example, in some cases only certain 

people may be able to row. (In the classic problem if only one canni- 

bal and one missionary can row, the solution requires 13 crossings.) 

The boat may also have a minimum capacity (greater than one) as 

well as a maximum capacity. Or  missionaries may outnumber canni- 

bals and be safe only if they outnumber them at all times. An island 

in the river may also be employed as a stopover spot, and certain pairs 

of individuals may be singled out as being too incompatible to be left 

alone together. 

An ancient problem of this last type (it too can be traced back to the 

eighth century) is about a man who wants to ferry a wolf, a goat, and a 

cabbage across a river in a boat that allows him to take only one of them 

at a time. He cannot leave the wolf alone with the goat or the goat alone 

with the cabbage. In this case there are two minimal solutions, each of 

which requires seven trips. One of these solutions is shown in Figure 

46, taken from Moscow Puzzles, by Boris A. Kordemsky (Charles 

Scribner's Sons, 1972). Interested readers will find a good selection of 

such river-crossing problems in books by the British puzzle expert Henry 

Ernest Dudeney. 

I have space for one more digraph puzzle. Paul Erdos has shown 

that on a complete digraph for n points, when n is less than 7, it is not 

possible to place arrowheads so that for any two specified points it is 

always possible to get to each point in one step from some third point. 

Figure 47 shows a complete graph for seven points. Think of the points 

as towns joined by one-way roads. Your task is to label each road with 

an arrowhead so that for any specified pair of towns there is a third 
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Figure 46 

town from which you can drive directly to each of the other two. There 

is only one solution. 

Graphs of this sort are usually called tournament graphs because the 

points can represent players, and the arrows show who beats who. In 
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Figure 47 

this interpretation, no graph with fewer than seven points can show 

that for any two players there is always a third person who beats them 

both. The seven-point graph is the smallest in which this can be the 

case. It is nontransitive. There is no "best" player because each player 

can be defeated by another person. 

Answers 

The unique Hamiltonian circuit is found by starting at A and fol- 

lowing a directed path that spells AMBIDEXTROUS. One more step joins S 
to A, honoring Scientific American. 

Figure 48 shows a digraph for one of many seven-step solutions to 
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Figure 48 

the problem of six missionaries and six cannibals who want to cross a 

river safely in a boat that holds five. 

The Paul Erdos problem is solved by placing arrows on the com- 

plete graph for seven points as is shown in Figure 49. Of course, the 

points and their connecting lines can be permuted in any way to pro- 

vide solutions that do not appear in this symmetrical form, but all such 
solutions are topologically the same. See "On a General Problem in 

Graph Theory," by Paul Erdos in The Mathematical Gazette (Vol. 47, 

No. 361, pages 220-223; October 1963). 
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Frank Harary was the first to define the distance matrix, the reachability 

matrix, and the detour matrix, as well as the first to introduce many other 

graph theory terms that are now standard such as strongly and weakly con- 

nected digraphs. This is why Gerhard Ringel, reviewing Harary's classic text- 

book Graph Theory, called him the graph theory Pope. It is because Harary 

gives the word! 

For many years Harary has been inventing and solving two-person games 

played on graphs. He calls a game in which a defined goal is reached by the 

winner an "achievement game." If the first person forced to reach the goal is 

the loser, it is an "avoidance game." His massive work on both types of 

games remains, alas, unpublished except for occasional papers. 
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An example of one of Harary's digraph games, which he described to 

me in a 1980 letter, is a game he calls Kingmaker. Every tournament 

graph-a complete digraph, every pair of points joined by an arc or di- 

rected line-has at least one point called the King that has a distance of 1 

or 2 from every other point. This is sometimes known as the King Chicken 

Theorem. 

Kingmaker starts with an undirected complete graph of n points. The 

first player draws an arrow on any line. Of course it doesn't matter what line 

he selects because all are alike for symmetry reasons. (Harary suggests that 

the second player and all onlookers shout "Shrewd move!" after this first 

arrow is drawn.) The winner is the first to produce a King, in this case a 

point with a distance of 1 or 2 from all points joined directly from the King 

by arrows. This usually occurs before all the lines are oriented. In the avoid- 

ance game, the player forced to make a King loses. This tends to occur after 

almost all lines have an arrow. 

Steve Maurer, at Swarthmore College, has done much of the work on 

theorems involving Kings. Every tournament-that is, every complete digraph- 

must have at least one King, but no such graph can have exactly two Kings. If 

there are two, there must be a third. Interpreting the points as chickens, a 

chicken who pecks every other chicken must be the group's only King. A 

chicken pecked by all the others cannot be a King. A graph with an odd 

number of points (chickens) can consist entirely of Kings. These theorems 

provided an amusing page of brain teasers titled "Chicken a la King," by 

Maxwell Carver (a pseudonym of Joel Spencer), in Discover, March 1988, 

page 96. 

Digraphs furnish a neat, little known method for diagramming prob- 

lems in the propositional calculus of formal logic. See "The Propositional 

Calculus with Directed Graphs," on which Harary and I collaborated (giving 

me my first Erdos number of 2). It appeared in Cambridge University's 

undergraduate mathematics journal Eureka, March 1988, pages 34-40. The 

technique is also covered in an appendix added to the second edition (Uni- 

versity of Chicago Press, 1982) of my Logic Machines and Diagrams. 
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Dinner 
Guests, 

Schoolgirls, 
and 

Handcuffed 
Prisoners 

woman plans to invite 15 friends to dinner. For 35 days she 

wants to have dinner with exactly three friends a day, and she 

wants to arrange the triplets so that each pair of friends will 

come only once. Is this arrangement possible? 

That question and others like it, which belong to a vast area of 

combinatorics called blockdesign theory, were investigated intensively 

in the 19th century chiefly as recreational problems. Later they turned 

out to have an important role in statistics, particularly in the design of 
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scientific experiments. A small branch of blockdesign theory deals with 

Steiner triple systems, of which the dinner-guest problem is a simple 

example. Jacob Steiner, a Swiss geometer, pioneered the study of these 

systems in the 19th century. 
In general a Steiner triple system is an arrangement of n objects in 

triplets such that each pair of objects appears in a triplet once and only 

once. It is easy to show that the number of pairs is 1/2n(n - 1) and that 

the number of required triplets is one-third the number of pairs, or 

1/6n(n - I). Of course, a Steiner triple system is possible only when 

each object is in 1/2(n - 1) triplets, and these three numbers are inte- 

gers. That happens when n is congruent to 1 or 3 modulo 6, namely, 

there is a remainder of 1 or 3 when n is divided by 6. Therefore the 

sequence of possible values for n is 3, 7, 9, 13, 15, 19, 21, and so on. 

With only three guests the dinner problem has a trivial solution: all 

of them come on the same day. Since Steiner triplets are not ordered, 

the solution is of course unique. There is also a unique solution for 

seven guests: (1,2,4), (2,3,5), (3,4,6), (4,5,7), (5,6,1), (6,7,2), and (7,1,3). 

The order of the triplets and the order of the numbers in each triplet 

can be altered any way you want without changing the basic pattern. In 

addition, the numbers can also be exchanged. To understand this point 

think of each guest as wearing a button with a number painted on it. If 
two or more guests exchange buttons as they please, the new combina- 

tion is considered to be the same as the old one. 

Similarly, for nine guests there is a unique solution, for 13 guests 

there are two solutions and for 15 guests it has long been known there 

are 80 basic solutions. For values of n greater than 15 the number of 

distinct solutions is not known, although it has been proved there is a 

solution for every value of n. For n = 19 there are hundreds of thou- 

sands of solutions. 

Let us now complicate the Steiner triple systems a bit to make 

them more interesting. Suppose the woman decides to invite all 15 
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friends on  each of seven days, seating them three to a table at five 

tables. She wants each pair of friends to be together at a table only 

once. 

Our new problem is equivalent to one of the most famous puzzles 

in the history of combinatorial mathematics: IGrkman's schoolgirl prob- 

lem, named for the Reverend Thomas Penyngton IGrkman, a 19th- 

century amateur British mathematician who was rector of the church at 

Croft in Lancashire for more than 50 years. Although he was entirely 

self-taught in mathematics, his discoveries were so original and diverse 

that he was elected to the Royal Society. In addition to combinatorics 

he did significant work on knots, finite groups and quaternions. There 

is a well-known configuration in projective geometry called Pascal's mystic 

hexagram (six points on a conic curve joined in all possible ways by 

straight lines) in which certain intersections are known as Kirkman 

points. 

Kirkman was notorious for his biting sarcasm, which he frequently 

directed at the philosophy of Herbert Spencer. His parody of Spencer's 

definition of evolution was often quoted: "A change from a nohowish 

untalkaboutable all-alikeness, to a somehowish and in-general- 

talkaboutable not-all-alikeness, by continuous somethingelseifications, 

and sticktogetherations ." 
Kirkman first published his schoolgirl problem in 1847 in the Cam- 

bridge and Dublin Mathematics Journal, Vol. 2, pages 191-204. It ap- 

peared again in The Lady's and Gentleman's Diary for the Year 1851. 

Here is how he presented it. Every day of the week a teacher takes 15 

schoolgirls on a walk. During the walk the girls are grouped in triplets. 

Can the teacher construct the triplets so that after the seven walks each 

pair of girls has walked in the same triplet once and only once? 

Any solution to this problem is of course a Steiner triple system, 

but of the 80 basic solutions for n = 15 only seven are basic solutions to 

the schoolgirl problem. Kirkman designs is the name given to Steiner 
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triple systems with the extra requirement that the triplets be grouped so 

that each group exhausts all the objects. 

Again the number of pairs of girls is l/zn(n - 1) and the number of 

days required for the walks is 1/2(n - 1). The number of girls must be a 

multiple of 3. These values are integers only when n is an odd multiple 

of 3. Thus the sequence of possible values is 3,9,15, 21, and so on, or 

the sequence for the Steiner triple systems with every other number left 

out. Does every value in the sequence have a solution? Since the time 

Kirkman raised the question a host of papers have been written on 

the problem, including many by eminent mathematicians. The case 

of n = 3 is still trivial. The three girls simply go for a walk. The case of 

nine girls in four days has a unique solution: 

Like the Steiner triple systems, the numbers in a triplet are not 

ordered, and so it does not matter how the numbers are permuted, 

how the triplets are arranged within each group, or how the digits are 

exchanged with each other. All variations obtained by these permuta- 

tions are considered to be the same solution. 

There are many novel methods, including geometric ones, for con- 

structing Kirkman designs. One of them would have delighted Ramon 

Lull, the 13th century Spanish theologian whose Ars magna explored 

combinations of symbols with the aid of rotating concentric disks. To 

find a solution for n = 9 draw a circle and write the digits 1 through 8 
around it equally spaced. A cardboard disk of the same size is fastened 

to the circle with a pin through both centers. Label the center of the 

disk 9. On the disk draw a diameter and two scalene triangles as shown 

in Figure 50. 
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1 

Figure 50 

Now rotate the circle in either direction one step at a time to four 

different positions. (The fifth step brings the pattern back to what it was 

originally.) At each step copy down the triplet indicated by the ends and 

the center of the straight line and the two triplets indicated by the 

corners of the two triangles. The three triplets found at each of the 

disk's four position give the triplets for each of the four days. This 

solution seems to be different from the design given above for the 

schoolgirl problem, but by substituting 2 for 5, 3 for 7,4 for 9, 5 for 3, 
6 for 8, 7 for 6 ,8  for 4, and 9 for 2 (and leaving 1 the same) you get the 

identical design. The only other way to put triangles on the disk to 

generate a solution is to draw the mirror image of the pattern in the 

illustration. This procedure, however, will not give rise to a new design. 

Since 1922 the case of n = 15 has been known to have seven basic 

solutions. They can be generated by different patterns of triangles, with 

or without a diameter line. One pattern of five triangles is shown in 

Figure 51. In this case the disk must be rotated two units at a time to 

seven different positions. At each position the corners of each triangle 

provide one of the five triplets for that day. 
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8 
Figure 51 

It should be noted that no two triangles on a disk can be congru- 

ent. If they were that way, they would duplicate triplets in the overall 

design. The classic work on Kirkman designs is Chapter 10 of the 11th 
edition of W. W. Rouse Ball's Mathematical Recreations B Essays, re- 

vised by H. S. M. Coxeter. The same chapter in the 12th edition of the 

book (University of Toronto Press, 1974)) completely rewritten by J. J. 
Seidel, is also valuable. The new chapter replaces the early history of 

the designs with a discussion of how they relate to topics such as affine 

and projective geometry, Hadamard matrixes, error-correcting codes, 

Latin squares, and higher-dimensional geometry. 
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Is there a Kirkman design for every possible value of n? Surpris- 

ingly this question went unanswered until 1970, when D. K. Ray- 

Chaudhuri and Richard M. Wilson of Ohio State University proved 

that the answer is yes. The number of solutions, however, remains 

unknown for values of n = 21 and all higher values. The proof is 

presented in "Solution of Kirkman's Schoolgirl Problem" in Combinat~ 

rics (Proceedings of Symposia in Pure Mathematics, Vol. 19, pages 187- 

203; 1971). 

Kirkman designs have many practical uses. Here is a typical way 

to apply the n = 9 design to a biological experiment. Suppose an in- 

vestigator wants to study the effect of nine environments on a certain 

animal. There are four species of the animal, and any individual ani- 

mal can be affected differently depending on whether it is young, fully 

grown, or aged. Each species is randomly assigned to one of four 

groups. Within each group are three triplets, each of which includes 

a randomly picked animal of each age category. Every animal is now 

assigned to one of the nine environments according to the pattern of 

nine numbers in its group. This design makes possible an extremely 

simple way of statistically analyzing the results of the experiment in 

order to determine what effect the environment has regardless of dif- 

ferences in age and species. 

I described above how Kirkman introduced an additional condition 

that transformed Steiner triple systems into a new kind of blockdesign 

problem. In 1917 the British puzzle genius Henry Ernest Dudeney 

imposed a novel constraint on Kirkman designs that gave rise to still 

another blockdesign problem (see Problem 272 of Dudeney's Amuse- 

ments in Mathematics and Problem 287 of his posthumous work Puzzles 

and Curious Problems). 

"Once upon a time," begins the second story line of Dudeney's 

puzzle, "there were nine prisoners of particularly dangerous character 

who had to be carefully watched. Every week day they were taken out for 
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exercise, handcuffed together, as shown in the sketch made by one of 

their guards [see Figure 521. On no day in any one week were the same 

two men to be handcuffed together. It will be seen how they were sent 

out on Monday. Can you arrange the nine men in triplets for the 

remaining five days? It will be seen that No. 1 cannot again be hand- 

cuffed to No. 2 (on either side), nor No. 2 with No. 3, but, of course, 

No. 1 and No. 3 can be put together. Therefore it is quite a different 

problem from the old one of the Fifteen Schoolgirls, and it will be 

found to be a fascinating teaser and amply repay for the leisure time 

spent on its solution." 

Dudeney gave a solution without explaining how to reach it and 

Figure 52 
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other solutions like it. They can nonetheless be happily found by a 

Lullian technique with two wheels. A sample pair are shown in Figure 

53. Each disk is rotated, say clockwise, three steps at a time. At each 

step a triplet is generated by the corners of the three triangles. In this 

case each triplet must have at its center the number indicated by the 

corner with a spot in it. 

Each disk generates the three groups shown below it. In both sets 

the groups are cyclic in the sense that if you add 3 (modulo 7 )  to every 

number in the first group, you get the second group. Similarly, the 

second group generates the third one, which in turn returns you to the 

first one. The solution does not start with the pattern given by Dudeney 

for the first day, although it is easy to exchange digits to obtain that 

pattern. 

After Dudeney answered the puzzle he teased: "If the reader wants 

a hard puzzle to keep him engrossed during the winter months, let him 

try to arrange twenty-one prisoners so that they can all walk out, simi- 

larly handcuffed in triplets, on fifteen days without any two men being 

handcuffed together more than once. In case he should come to the 

opinion that the task is impossible, we will add that we have written out 

a perfect solution. But it is a hard nut!" 

It is a hard nut indeed. As far as I know the first published solution 

is in Pavol Hell and Alexander Rosa's "Graph Decompositions, Hand- 

cuffed Prisoners and Balanced P-Designs" in Discrete Mathematics (Vol. 

2, No. 3, pages 229-252; June 1972). 

Before I give the solution I should like to make a few general re- 

marks about the handcuffed-prisoner problem. The number of pairs of 

prisoners is i/zn(n - I), as it was with Steiner triple systems and IGrkman 

designs, although the new restraint (handcuffs!) lengthens the required 

number of days to 3/4(n - 1). There is a solution only when this expres- 

sion is an integer, which is the case when n has a value in a sequence 

consisting of exactly half of the possible values for a Kirkman design, 



1st DAY I 2nd DAY I 3rd DAY 4th DAY I 5th DAY I 6th DAY 
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namely the sequence 9, 21, 33,45, 57, 69,81, 93, and so on, in which 

the difference between each adjacent pair of integers is 12. 

In 1971 Charlotte Huang and Rosa published a classification of 

334 basic solutions for n = 9. When Dame Kathleen Ollerenshaw and 

the cosmologist Hermann Bondi checked each of the solutions, how- 

ever, they found two duplications among the 334. The actual number 

of solutions is now thought to be 332. For all values of n greater than 

9 the number of solutions is not known. For n = 21 Rosa thinks the 

number of solutions is in the millions. Hell and Rosa have proved that 

an infinite number of ns have solutions, and they have shown how to 

find cyclic solutions for all ns less than 100 with the exception of 57, 

69, and 93. Wilson (who had helped to crack the Kirkman schoolgirl 

problem) has demonstrated that all values of n have a solution. 

Figure 54 shows a cyclic solution found by Hell and Rosa for 

n = 21. The first seven days form a cyclic set that can be generated by 

a disk with seven triangles whose corners correspond to the triplets 

heading each day's design. The disk is rotated three steps at a time. A 
second disk with seven triangles similarly generates the next seven days, 

and the 15th day has the design shown at the right in the illustra- 

tion. In both cyclic sets a day's design can be changed to the next 

day's by adding 3 (modulo 21) to each number, and doing the same 

to the last day's design brings back the pattern of the first day. Hell 

and Rosa give similar cyclic solutions for n = 33 and n = 45. 

Both the schoolgirl problem and the prisoner problem can be gen- 

eralized to quartets, quintets, sextets, and so on. Such generalization 

leads to deep combinatorial enigmas, many of which are far from an- 

swered. Hundreds of related problems appear in puzzle books, often 

with story lines about seating arrangements, game tournaments, com- 

mittee memberships, and other combinatorial schemes. For example, I 

am often asked how to arrange n members of a bridge club (n must be 

a multiple of 4) so that they can meet daily for n - 1 days at n/4 tables 
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such that each player is the partner of every other player exactly once 

and the opponent of every other player exactly twice. 

The bridge problem seems quite simple, but actually it is so thorny 

that it was not completely solved until a few years ago. The fuIlest analy- 

sis can be found in "Whist Tournaments," an article by Ronald D. 
Baker of the University of Delaware. (The article appeared in Proceed- 

ings of the Sixth Southeastern Conference on Combinatorics, Graph Theory 

and Computing, ~ublished in 1975 by Utilitas Mathematica, Winnipeg, 

as Volume 14 of the series Congressus Numerantium.) Baker shows how 

to find solutions for all values of n except 132, 152, and 264. Since 

then the Israeli mathematician Haim Hanani has cracked the case of 

n = 132, and Baker and Wilson have solved the cases of n = 152 

and n = 264. 

For many values of n, solutions are generated by disks that rotate 

one step at a time. Figure 55 shows disks for n = 4 and n = 8. The 

technique for generating the solutions is straighdonvard. A line is drawn 

fiom 1 (the disk's center) to 2. Another line is drawn to connect two 

other numbers. The end points of each line are bridge partners, and 

the pairs of parmers are opponents at the same table. If there is a 

second table, two more pairs of numbers are joined with colored lines 

to indicate the seating arrangement for the table. More colors are intro- 

duced for additional tables. 

The arrangement of such lines generates a cyclic solution if and only if 

two conditions are met First, no two lines are the same length (as length is 

measured by the number of units a line spans on the circumference). 

Except for the radius line the lengths will necessarily be consecutive 

integers starting with 1 and ending with i/z(n - 1). Second, if all the 
opponents at each table are connected by lines (which are broken in the 

illustration), each length will appear on the disk only twice. 

The lines are positioned chiefly by trial and error. No known proce* 

dure guarantees a correct pattern for all values of n. Once a pattern is 
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DAYS 
1 
2 
3 

DAYS 

TABLE 1 

TABLE 1 
12 67 
13 78 
14 82 
15 23 
16 34 
17 45 
18 56 

TABLE 2 

n = 8  

Figure 55 

found it indicates the seating arrangement for the first day. Rotating the 

disk generates the arrangements for the remaining days. Every column 

of the final design is cyclic, so that once the seating arrangement for the 

first day is determined a seating chart for the other days can be rapidly 

completed without having to turn the disk. The solutions for n = 132, 

n = 152, and n = 264 are not cyclic, although it may be possible to put 

them in a cyclic form by permuting the numbers. According to Baker, 

all values of n may have cyclic solutions, although no general algorithm 

is known for finding them. 
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Now for a pleasant problem. Can you design a disk for 12 bridge 

players that will generate a cyclic tournament meeting all the desired 

conditions? 

Answers 

Figure 56 gives two answers to the problem of designing a bridge 

tournament for 12 players so that they meet at three tables for 11 days 

and each player is a partner of every other player just once and an 

opponent of every other player just twice. The first day's distribution is 

given by a disk on which partners are connected by colored lines and 

tables are denoted by lines of matching color. Rotating the disk clock- 

wise one step at a time generates the cyclic design for the remaining 10 
days. Disk patterns other than the two shown generate additional solu- 

tions. 

Herbert Spencer's definition of evolution, given in his First Principles, 

went like this: "Evolution is a change from an indefinite, incoherent, homo- 

geneity to a definite, coherent, heterogeneity, through continuous differentions 

Figure 56 

2 
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and integrations." Kirkman's travesty appeared in his Philosophy Without As- 

sumptions (1876) followed by the question, "Can any man show that my 

translation is unfair?" Spencer considered it unfair, and in Appendix B to a 

later edition of First Principles he replies at length of what he calls the curious 

mental states of l rkman  and the mathematician P. G. Tait, who agreed with 

lrkman's attacks on evolution. 

The solution to the Steiner triple system for seven guests is closely re- 

lated to a curious solid called the Csaszar polyhedron. This toroid (it has one 

hole) is the only known polyhedron, aside from the tetrahedron, that has no 

diagonals-that is, no lines joining two corners that is not an edge. I describe 

this solid and show how to make a model in Chapter 11 of Time Travel and 

Other Mathematical Bewilderments (1988). 

After this chapter appeared in Scientific American in May 1980, I re- 

ceived the following informative letter from Stanford University's computer 

scientist Donald E. Knuth: 

When I was studying combinatorics in the early 60s it was 
conventional to say that Steiner triple systems were originally 
proposed by Steiner in 1853 and solved by Reiss in 1859, 
with the most elegant known solution being due to E. H. 
Moore in 1893. But one day I happened to look up a wrong 
reference to Kirkman's schoolgirl problem and I discovered 
that Kirkman himself had not only posed the "Steiner" triple 
problem in 1847, he also solved it elegantly for all n of the 
form 6k + 1 and 6k + 3 and gave the maximum approximate 
solutions for 6k and 6k + 4. So I told Marshall Hall about 
this reference, just in time for him to get it into his book 
Combinatorial Theory (1967). Kirkman's schoolgirl problem 
was the subject of another paper, I think in the same journal 
and the same year. It is curious how his first paper was ap- 
parently forgotten for over 100 years. Perhaps the reason was 
that he also gave invalid proofs for cases 3k + 2-his argu- 
ment for these cases can be paraphrased to say "here is a nice 
construction and it must be the best possible because God 
wouldn't want the best answer to be more complicated than 
this." 
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I boiled his valid constructions down to less than a page 
in exercise 6.5-10 of my Volume 3, The Art of Computer Pro- 
gramming: Sorting and Searching, they are actually much sim- 
pler than Moore's 1893 highly regarded solution to "Steiner's" 
problem. 

References 

COMPLETE CLASSIFICATION OF SOLUTIONS TO THE PROBLEM OF 9 PRISONERS. 
Alexander Rosa and Charlotte Huang in Proceedings of the 25th Summer 
Meeting of the Canadian Mathematical Congress, pages 553-562; June 
1971. 

GRAPH DECOMPOSITIONS, HANDCUFFED PRISONERS, AND BALANCED P-DESIGNS. 
Pavol Hell and Alexander Rosa in Discrete Mathematics, Vol. 2, pages 
229-252; June 1972. 

HANDCUFFED DESIGNS. Stephen H. Y. Hung and N. S. Mendelsohn in 
Aequationes Mathematicae, Vol. 11, No. 2/3, pages 256-266; 1974. 

ON THE CONSTRUCTION OF HANDCUFFED DESIGNS. J. F. Lawless in Journal of 
Combinatorial Theory, Series A, Vol. 16, pages 74-86; 1974. 

FURTHER RESULTS CONCERNING THE EXISTENCE OF HANDCUFFED DESIGNS. J. 
F. Lawless, in Aequationes Mathematicae, Vol. 11, pages 97-106; 1974. 

PROJEC~VE SPACE WALK FOR KIRKMAN'S SCHOOLGIRLS. Sister k t a  (Cordia) 
Ehrmann in Mathematics Teacher, Vol. 68, No. 1, pages 64-69; January 
1975. 

KIRKMAN'S SCHOOLGIRLS IN MODERN DRESS. E. J. F. Primrose in The Math- 
ematical Gazette, Vol. 60, pages 292-293; December 1976. 

HANDCUFFED DESIGNS. S. H. Y. Hung and N. S. Mendelsohn in Discrete 
Mathematics, Vol. 18, pages 23-33; 1977. 

THE NINE PRISONERS PROBLEM. Dame Kathleen Ollerenshaw and Sir Hermann 
Bondi in Bulletin of the Institute of Mathematics and its Applications, Vol. 
14, No. 5-6, pages 121-143; Maydune 1978. 

NEW UNIQUENESS PROOFS FOR THE (5, 8, 24), (5, 6, 12) AND RELATED STEINER 
SYSTEMS. Deborah J. Bergstrand in Journal of Combinatorial Theory, Se- 
ries A, Vol. 33, pages 247-272; November 1982. 



138 T h e  L a s t  R e c r e a t i o n s  

DECOMPOSITION OF A COMPLETE MULTIGRAPH INTO SIMPLE PATHS: NONBALANCED 
HANDCUFFED DESIGNS. Michael Tarsi in Journal of Combinatorial Theory, 

Series A, Vol. 34, pages 60-70; January 1983. 

GENERALIZED HANDCUFFED DESIGNS. Francis Maurin in Journal of Combinato- 

rial Theory, Series A, Vol. 46, pages 175-182; November 1987. 



The 
Monster 

and Other 
Sporadic 
Groups t ' 

L ...-. ...-. . . .-. . . -. . w.. . . ~ ~ E % d i  

What's purple and commutes? 
An Abelian grape. 

-Anonymous mathematical riddle, 
ca. 1965 

11 over the world during the last half of the 1970s experts in a 

branch of abstract algebra called group theory struggled to cap- 

ture a group that John Horton Conway nicknamed "The Mon- 

ster." The name derives from its size. When it was finally constructed in 

1980, the number of its elements proved to be 
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The man who captured the beast bare-handed was Robert L. Griess, 

Jr., a mathematician then at the University of Michigan. (His last name 

rhymes with rice.) Griess dislikes the term monster, preferring to call it 

"The Friendly Giant" or to refer to it by its mathematical symbol F,. 

The news of his discovery was enormously exciting to group theorists 

because it brought them closer to completing a task that occupied them 

for more than a century: the classification of all finite simple groups. 

The colorful story of this undertaking begins with a bang. In 1832 

~variste Galois, a French mathematical genius and student radical, was 

killed by a pistol shot in an idiotic duel over a woman. He was not yet 

21. Some early, fragmentary work had already been done on groups, 

but it was Galois who laid the foundations of modern group theory 

and even named it, all in a long, sad letter that he wrote to a friend the 

night before his fatal duel. 

What is a group? Roughly speaking, it is a set of operations per- 

formed on something, with the property that if any operation in the set 

is followed by any operation in the set, the outcome can also be reached 

by a single operation in the set. The operations are called the elements 

of the group, and their number is called the order of the group. 

Before going on to a more precise definition let us consider an 

example. You are standing at attention and must carry out any of four 

commands: "Do nothing," "Left face," "About face" and "Right face." 

Now suppose you execute a left face followed by an about face. A se- 

quence of this kind will be called a multiplication of the two operations. 

Note that the "product" of this particular multiplication can be reached 

by the single operation right face. This set of four operations is a group 

because it meets the following axioms. 
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1. Closure: The product of any pair of operations is equivalent to a 

single operation in the set. 

2. Associativity: If the product of any two operations is followed by 

any operations, the result is the same as following the first operation 

with the product of the second and the third. 

3. Identity: There is just one operation that has no effect, in this 

case doing nothing. 

4. Inverse: For every operation there is an inverse operation such 

that executing an operation and then its inverse is equivalent to execut- 

ing the identity operation. In this example left face and right face are 

inverses of each other, whereas do nothing (the identity) and about face 

are each their own inverse. 

Any set of operations that satisfies these four axioms is a group, and 

the group of four commands I have just described is called the cyclic 4- 
group because it can also be modeled by the cyclic permutations of four 

objects in a row. (In a cyclic permutation of a set of ordered elements 

the first element moves into the second position, the second element 

moves into the third position and so on, with the last element moving 

to the first position.) Label the four objects 1, 2, 3, and 4 and assume 

that they are lined up in numerical order: 1234. The identity operation, 

which I shall call I, leaves the order of the objects unaltered. Operation 

A permutes them to 4123, B to 3412, and C to 2341. This group can be 

completely characterized by the "multiplication" table at the top right in 

Figure 57. Each cell in the table gives the operation that is equivalent to 

performing the operation indicated at the left end of its row followed by 

the operation indicated at the top of its column. If a similar construc- 

tion is carried out for the first model, letting I, A, B, and C stand for the 

four commands ("Do nothing," "Left face," and so on) in their listed 

order, the same table results, proving that the cyclic +group and the 

group of four commands are isomorphic, or equivalent. 
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I I A B C  

IDENTITY 
GROUP 

I A  
B  

I 
CYCLIC 
2-GROUP C  

A  

I A B C  

CYCLIC 
3-G ROU P 

A B C  

C I A  

CYCLIC 
4-GROUP 

Figure 57 

Note that the table for the cyclic 4-group is symmetrical about one 

of its diagonal axes. This characteristic of the table indicates that the 

group also obeys the commutative axiom, meaning that the product of 

any two operations is the same regardless of which one is performed 

first. Groups that display this property are called Abelian groups after 

the Norwegian mathematician Niels Henrik Abel. Any cyclic permuta- 

tion of n objects generates an Abelian group, which is equivalent to the 

group of the orientation-preserving rotations of a regular polygon of n 

sides. (A rotation preserves a figure's orientation if the figure ends up in 

exactly the same position in which it began.) Thus the cyclic 4-group 

can be modeled by the orientation-preserving rotations of a square. 

There is just one group of order 1: the trivial group consisting of 

the identity operation. It is not hard to see that this operation meets 

all four of the criteria defining a group. For example, if you do noth- 
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ing to something twice in succession, it is the same as doing nothing, 

and so the closure axiom is satisfied. The only order-2 group is al- 

most as trivial. This group, the table for which is shown in Figure 57, 
can be modeled with two operations to be performed on a penny: 

doing nothing to the penny (I) and turning the penny over (A). The 

only group of order 3 is the cyclic 3-group, which is equivalent to the 

set of cyclic permutations of three objects and to the set of orienta- 

tion-preserving rotations of an equilateral triangle. There are just two 

groups of order 4: the cyclic 4-group and another group known as 

the Klein 4-group. 

The Klein 4-group can be easily modeled with the following opera- 

tions on two pennies placed side by side: doing nothing (I), turning 

over the left penny (A), turning over the right penny (B), and turning 

over both pennies (C). The table for the group, shown in Figure 57 
reveals that this group too is Abelian. 

The simplest example of a non-Abelian group is the set of six sym- 

metry operations on the equilateral triangle: the identity, rotating the 

triangle 120 degrees clockwise, rotating it 120 degrees counterclock- 

wise, and flipping it over about any of its three altitudes. To prove that 

the elements of this group do not commute label the corners of a 

cardboard triangie, rotate the triangle 120 degrees in either direction 

and turn it over about any altitude; then perform the same two opera- 

tions in the reverse order and compare the results. If each vertex of the 

triangle is identified with a different object, the resulting 6-group is 

equivalent to the group of all permutations on three objects. 

To test your understanding of a group you might pause to consider 

the following three models. 

1. With a deck consisting of four facedown playing cards the fol- 

lowing operations are defined: the identity operation (I), transposing 

the top two cards in the deck (A), transposing the bottom two cards (B), 
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and removing the middle two cards and putting the lower one on the 

bottom of the deck and the other one on the top (C). 

2. A dollar bill is placed either face up or face down and either 

right-side up or upside down. The operations are the identity (I), rotat* 
ing the bill 180 degrees (A), turning it over about its vertical axis (B), 
and turning it over about its horizontal axis (C). 

3. A sock is on either the left foot or the right foot in one of two 

states, right-side out or inside out. The operations are the identity (I); 
taking off the sock, reversing it, and putting it back on the same foot 

(A); moving the sock to the other foot without reversing it (B); and 

taking off the sock, reversing it, and moving it to the other foot (C). 

For each of these groups make a multiplication table and determine 

whether the group is equivalent to the cyclic 4-group or the Klein 4- 
group. 

The multiplication table of a group can be represented graphically 

by a diagram called a Cayley color graph after the mathematician Arthur 

Cayley. For example, the graph at the lower left in Figure 58 is a Cayley 

color graph for the cyclic 4-group, the table for which is at the top of the 

illustration. The four points of the graph correspond to the four opera- 

tions of the group. Every pair of points has been joined by a pair of 

lines going in opposite directions, with the direction of each line indi- 

cated by an arrowhead, and a color has been assigned to each operation 

in accordance with the key shown at the top of the table. To understand 

how the graph reproduces the information in the table consider the 

line from B to A. The color of the line is determined by starting at B on 

the left side of the table, moving to the right to the cell containing A 

and then using the color assigned to the letter, C, at the top of the 

column the cell is in. The same procedure yields the colors of all the 

other lines. 

When two points in a Cayley color graph are joined by two lines 
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I A B C  

\ 

Figure 58 

of differing color, the operations represented by the two colors are the 

inverse of each other. If both lines are the same color, the operation 

associated with that color is its own inverse. In this case the graph 

can be simplified by replacing the two directed lines of like color with 

a single undirected line of that color. In addition the identity opera- 

tion is represented by a loop that joins each point to itself, and so 

because one of these loops is at each corner of the graph they can all 

be omitted. The simplified version of the graph is at the lower right 

in Figure 58. 
A simplified Cayley graph for the Klein +group is shown in Figure 

59, and one for the non-Abelian permutation 6-group is shown in 

Figure 60. For graphs of higher order it is more convenient to stop 
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Figure 59 

I  IDENTITY 

B 

A B C D E  

C B A I  

Figure 60 

A B C  

A C B  

B C I A  
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using colors and instead label each line with the symbol corresponding 

to the operation it represents. 

It should be obvious that given the color graph for any group, the 

table for the group can be constructed. The converse is also true. The 

graphs are valuable aids, however, because they often reveal properties 

that are not easily seen in a multiplication table. For example, it is not 

difficult to see that if on the 6-graph the lines corresponding to opera- 

tions A, B, and C are omitted, leaving only the lines corresponding to 

D and E, two disconnected graphs are obtained. Each is a color graph 

for a cyclic 3-group, but only the set of operations I, D, E actually forms 

such a group because this set alone contains the identity operation. Any 

subset of the elements of a group that itself forms a group is called a 

subgroup, and so inspection of the color graph has revealed that the 

cyclic 3-group is a subgroup of the permutation 6-group. 

So fir only groups with a finite number of operations, or elements, 

have been discussed. There are also infinite groups. They fall into two 

classes: discrete groups, which have a countable infinity of elements, 

and continuous groups, which have an uncountable infinity of ele- 

ments. An infinite set is said to be countable if its members can be 

matched up one for one with the positive integers 1, 2. . . . Hence 

the integers themselves are an example of a countably infinite set, 

whereas the points on the real-number line are an example of an 

uncountably infinite set. In fact, the integers form a discrete Abelian 

group under the operation of addition, with 0 as the identity element 

and -a as the inverse of any element a. The real numbers, on the 

other hand, form a continuous group with respect to addition, and if 

0 is excluded, they form a continuous group with respect to multipli- 

cation as well. (In the latter case 1 is the identity element, and l/a is 

the inverse of a.) Continuous groups are called Lie (pronounced lee) 

groups after the Norwegian mathematician Marius Sophus Lie. A trivial 

geometrical example of a Lie group is the group of symmetry rota- 
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tions of a circle (or a sphere or a hypersphere). The degree of rotation 

can be as small as one likes. 

The group is one of the most powerful and unifying of all concepts 

in mathematics. Moreover, in addition to turning up in every branch of 

mathematics, groups have endless applications in science. Wherever 

there is symmetry there is a group. The Lorentz transformations of 

relativity theory form a Lie group based on the continuous rotation of 

an object in space-time. Finite groups underlie the structure of all crys- 

tals and are indispensable in chemistry, quantum mechanics, and par- 

ticle physics. The famous eighdold way, which classifies the family of 

subatomic particles known as hadrons, is a Lie group. Every geometry 

can be defined as the study of the properties of a figure that are left 

invariant by a group of transformations. 

Even recreational mathematics sometimes involves groups. Since 

every finite group can be modeled by a set of permutations on n ob- 

jects, it is hardly surprising to find groups related to card shuffling, ball 

juggling, campanology (bell ringing), sliding-block puzzles, and all kinds 

of combinatorial puzzles such as Rubik's cube. In an earlier column 

(reprinted in my New Mathematical Diversions from Scientific American) 

I explained how groups apply to braiding theory and so underlie nu- 

merous magic tricks involving ropes and twisted handkerchiefs. 

In view of the great elegance and utility of groups it is understand- 

able that mathematicians would like to be able to classify them. The Lie 

groups have been classified, but there are other infinite groups that still 

elude classification. What about finite groups? One might suppose they 

would be easier to classify than Lie groups, but that has not proved to 

be the case. It is this difficult task that is now on the brink of being 

completed. 

All finite groups are constructed from building blocks called simple 

groups in much the same way that chemical compounds are constructed 

from elements, proteins from amino acids, and composite numbers 
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from primes. A simple group is one that has no "normal" subgroups 

other than itself and the trivial identity subgroup. Remember that a 

subgroup is defined as any subset of the elements of a group that is 

itself a group. What is meant by "normal" is best explained as follows. 

Consider a group G with a subgroup S. The set of products obtained by 

multiplying an element g of the group G by each element of the sub- 

group S is called a right coset of gS. Similarly, the set of products ob- 

tained by multiplying each element of S by g is called a left subset. If for 

all choices of g we have gS = Sg, that is, if the left and right cosets are 

equal, then the subgroup is called normal. 

For example, the cyclic 3-group is a normal subgroup of the permu- 

tation 6-group. Hence the 6-group is not simple. Simple groups are the 

building blocks of all groups, and so to classify the finite groups it is 

necessary to classify all the finite simple groups. 

Almost all finite simple groups belong to families with an infinity of 

members. Families of this type provide a quite satisfactory system of 

classification, since there are procedures for constructing any individual 

member, or group. For example, the cyclic permutation groups of prime 

order (which are modeled by rotations of regular polygons with a prime 

number of sides) are finite simple groups. In fact, they are the only 

finite simple groups that are Abelian as well as the only ones that are 

cyclic. A famous result in mathematics called Lagrange's theorem states 

that the order, or number of elements, of any subgroup must be a 

divisor of the order of the group in which it is contained. Since a prime 

number has no divisor (other than 1 and itself), this theorem implies 

that any group of prime order has no subgroups (other than the iden- 

tity and itself). If a group has no other subgroups, however, then it 

certainly has no normal subgroups, and so it follows that any group of 

prime order is simple. 

Another important family of finite simple groups is the set of 

alternating groups, which are modeled by the even permutations on 
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n objects for all integers n greater than 4. An even permutation is one 

that can be obtained in an even number of steps, where each step 

consists in switching two objects. For example, the cyclic 3-group is also 

an alternating group because 231 can be produced from 123 in two 
steps (transpose first 1 and 2 and then 1 and 3) and the same is true for 

any other pair of the three cyclic permutations of three objects. Exactly 

half of all permutations are even, and because n objects can be per- 

muted in n! ways every alternating group has an order of n!/2. The odd 

permutations do not form groups because any odd permutation fol- 

lowed by another odd permutation is equivalent to an even permuta- 

tion, so that the closure axiom is not satisfied. 

There are 16 other infinite families of finite simple groups, all of 

them non-Abelian and noncyclic. The orders of the simple groups (ex- 

cluding the cyclics) form an infinite sequence that starts with 60, the 

order of the alternating group on five objects. (This group is equivalent 

to the group of rotations of a regular dodecahedron or icosahedron.) 

The sequence begins 60, 168, 360,504,660, 1092, 2448, 2520, 3420, 

4080, 5616, 6048, 6072, 7800, 7920. . . . If 1 and all the prime 

numbers are inserted into this infinite sequence, the resulting sequence 

gives the orders of all finite simple groups. 

Unfortunately the list includes a small number of groups (starting 

with the group of order 7920) that cannot be fitted into any infinite 

family. These are the non-Abelian anomalies, the jokers that defy all 

classification. Mathematicians know them as the sporadic simple groups, 

but they are quite complicated. If there is an infinite number of these 

sporadics, and if there is no pattern ordering them, then the task of 

classifying all finite simple groups, and therefore all finite groups, is 

hopeless. There are, however, compelling reasons for thinking there are 

no sporadics other than the 26 already identified. (A classic history of 

sporadic groups appears in Figure 61. First published in The American 

Mathematical Monthly in November 1973, the ballad is said to have 
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Figure 61 

A Simple Ballad 

(To be sung to the tune of "Sweet Betsy from Pike") 

What are the orders of all simple groups? 
I speak of the honest ones, not of the loops. 
It seems that old Burnside their orders has 

guessed 
Except for the cyclic ones, even the rest. 

Groups made up with permutes will produce 
some more: 

For A, is simple, if n exceeds 4. 
Then, there was Sir Matthew who came into 

view 
Exhibiting groups of an order quite new. 

Still others have come on to study this thing. 
Of Artin and Chevalley now we shall sing. 
With matrices finite they made quite a list. 
The question is: Could there be others they've 

missed? 

Suzuki and Ree then maintained it's the case 
That these methods had not reached the end of 

the chase. 
They wrote down some matrices, just four by 

four, 
That made up a simple group. Why not make 

more? 

And then came the opus of Thompson and Feit 
Which shed on the problem remarkable light. 
A group, when the order won't factor by two, 
Is cyclic or solvable. That's what is true. 

Suzuki and Ree had caused eyebrows to raise, 
But the theoreticians they just couldn't faze. 
Their groups were not new: if you added a twist, 
You could get them from old ones with a flick 

of the wrist. 

Still, some hardy souls felt a thorn in their side. 
For the five groups of Mathieu all reason defied; 
Not A,, not twisted, and not Chevalley, 
They called them sporadic and filed them away. 

Are Mathieu groups creatures of heaven or hell? 
Zvonimir Janko determined to tell. 
He found out what nobody wanted to know: 
The masters had missed 1 7 5 5 6 0. 

The floodgates were opened! New groups were 
the rage! 

(And twelve or more sprouted, to greet the new 
age.) 

By Janko and Conway and Fischer and Held, 
McLaughlin, Suzuki, and Higman, and Sims. 

No doubt you noted the last lines don't rhyme. 
Well, that is, quite simply, a sign of the time. 
There's chaos, not order, among simple groups; 
And maybe we'd better go back to the loops. 
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been "found scrawled on a library table in Eckhart Library at the Uni- 

versity of Chicago; author unknown or in hiding." The "loops" referred 

to therein are the simple cyclic groups, and An is the symbol for the 

alternating group for n objects.) 

The search for the sporadic simple groups began in the 1860s when 

the French mathematician   mile Uonard Mathieu discovered the first 

five. The smallest of them, known as MI,, has 7,920 operations and is 

modeled by certain permutations on 11 objects. A century slipped by 

before the sixth sporadic, of order 175,560, was found in 1965 by 

Zvonimir Janko of the University of Heidelberg. Three years later John 

Horton Conway, then at the University of Cambridge, surprised every- 

one by finding three more sporadics. His work was based on Leech's 

lattice, a scheme devised by John Leech, a British mathematician, for 

packing unit hyperspheres densely in a space of 24 dimensions. (In 

Leech's lattice each hypersphere touches exactly 196,560 others.) 

Leech discovered his lattice while working on error-correcting codes. 

It turns out that there is a close connection between certain sporadic 

groups and codes employed in reconstructing a message distorted by 

noise. Two of Mathieu's sporadic groups, M,, and M,,, are related to 

the Golay error~orrecting code that is often used for military purposes. 

Roughly speaking, a good error-correcting code is based on a subset of 

unit hyperspheres placed as for apart from one another as is possible in 

a dense packing. 

At the start of 1980 two dozen sporadic groups had been proved to 

exist, and two more, J, and F,, were believed to be authentic. (A com- 

plete list of these 26 sporadic groups is shown in Figure 62.) I,, which 

was proposed by Janko in 1975, was finally constructed in February by 

David Benson, Conway, Simon P. Norton, Richard Parker, and Jonathan 

Thackray, a group of mathematicians at Cambridge. Fl (the monster), 

which is by far the largest sporadic, was conjectured independently by 

Griess and by Bernd Fischer of the University of Bielefeld in 1973 and 



NAME OF 
GROUP 

~ 1 1  

M12 

M22 

M23 
M24 
J1 

J2 
J3 
J4 
HS 
MC 

Sz 
CI 

C2 
C3 
He 
F22 
f23 

F24 

LY 
0 
f? 

F5 
F3 

F2 
F1 

NUMBER OF ELEMENTS 

24 ~ 3 2  x 5  x i 1  
26 x33  x 5  x 1 1  
27 x32  x 5  x 7 x i 1  

27 ~ 3 2  x 5  x 7 ~ 1 1  ~ 2 3  
210x33 x 5  x 7 x 1 1  x 2 3  
23 x 3  x 5  x 7 x 1 1  x 1 9  
27 x 33 x 52 x 7 

27 x 35 x 5 x 17 x 19 
221 x33  x 5  x 7 x 1 1 3 x 2 3  ~ 2 9 x 3 1  x 3 7 x  43 

29 ~ 3 2  x s 3 x  7 x 11 
27 x 36 x 53 x 7 x 11 
213x 37 x 52x 7 x 11 x 13 
221 x 39 x 54 x 72 x 11 x 13 x 23 

2 1 8 ~  36 x 53 x 7 x 11 x 2 3  1 210 x 37 x 53 x 7 x 11 x 23 
210 x 33 x !j2 x 73 x 17 

217x39 x ! j 2x  7 x 11 x 13 
2 ' 8 ~  3'3 x !j2x 7 x 11 x 13 x 1 7 ~  23 1 227 x 316x 52 x 73 x 11 x 13 x 1 7 x  23 x 29 
28 x 3 7  x 5 6 x  7 XII x 3 1  ~ 3 7 x 6 7  

29 x 34 x 5 x 73 x 11 x 19 x 31 

214X 33 X S3 X 7 X 13 X 29 

214x36 x 5 6 x  7 x 11 x 19 
215 x 310 x 53 x 72 x 13 x 19 x 31 

241 x313x  56x 72 x 11 x 13 x 17 x 19 x 23 x 31 x 47 
246 x 320 x 59 x 76 x 112 x 133 x 17 x 19 x 23 x 29 x 31 x 41 x 47 x 59 x 71 

DISCOVERED BY 

Mathieu 

Janko 
Hall, Wales 
Higman, McKay 
Benson, Conway, Janko, Norton, Parker, Thackray 
Higman, Sims 
McLaughlin 
Suzuki 

Conway 

Held, Higman, McKay 

Fischer 

Lyons, Sims 
O'Nan, Sims 
Conway, Rudvalis, Wales 
Conway, Fischer, Harada, Norton, Smith 
Smith, Thompson 
Fischer, Leon, Sims 
Fischer, Griess 
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constructed in January by Griess, as I have mentioned. Several much 

smaller sporadics, the construction of which required long computer 

calculations, are embedded in F, in such a way that their existence 

follows almost trivially from the existence of F,. Yet to everyone's aston- 

ishment Griess's construction of F, was carried out entirely by hand. F, 
is said to be based on a group of symmetry rotations in a space of 

196,883 dimensions! 

Is the list of 26 sporadics complete? Most group theorists are con- 

vinced it is, but the task of proving the conjecture could be formidable. 

Indeed, the final published proof is likely to require as many as 10,000 

printed pages. It should be noted, however, that proofs in group theory 

tend to be unusually long. A famous proof by John Thompson and 

Walter Feit, which among other things established William Burnside's 

conjecture that all non-Abelian finite simple groups are of even order, 

covered more than 250 pages: an entire issue of The Pacific Journal of 

Mathematics (Vol. 13, pages 775-1029; 1963). 

In 1972 Daniel Gorenstein of Rutgers University outlined a 16-step 

program for completing the classification of the finite simple groups. 

This guide to a final proof was soon improved and greatly "speeded up" 

by Michael Aschbacher of the California Institute of Technology. Both 

men are world experts on groups. (Aschbacher later won the much 

coveted Cole Prize in algebra.) In May 1977, Gorenstein told The New 

York Times that he had been working on the classification problem five 

hours a day, seven days a week, 52 weeks a year since 1959. "I want to 

solve it," he said, "because I want to solve it, not because it will benefit 

mankind." Like most other group theorists, Gorenstein is convinced 

that no new sporadic groups will be found, and that a proof that the list 

of 26 groups is almost complete. 

There is, of course, no way to predict whether a practical applica- 

tion will or will not be found for any mathematical result whose discov- 

ery was not motivated by practical considerations. We do know that 
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groups lie at the very heart of the structure of the universe. Nature 

seems to prefer small, uncomplicated groups, but this could be an illu- 

sion created by the fact that applications of small groups are the easiest 

to find, particularly in a world limited to three spatial dimensions. W h o  

can say that at some far distant date, if the human race survives, even 

the monster will not turn out to have some remarkable but at present 

unimaginable application? 

Answers 

The problem was to determine whether three models of a 4-group 

are examples of the cyclic 4-group or the Klein 4-group. All three are 

Klein 4-groups. A n  easy test for determining the character of a given 4- 
group is checking to see whether each operation in the group is its own 

inverse. If it is, the group is a Klein 4-group. 

The final classification of all finite simple groups was completed in Au- 

gust 1980. Known as "The Enormous Theorem," the proof rests on hun- 

dreds of papers by more than a hundred mathematicians around the world, 

written over the last three decades. The complete proof, when published in 

many volumes, is expected to require some 5,000 pages! Whether it can be 

simplified and shortened remains to be seen. As everyone had anticipated, 

there are exactly 26 sporadic groups. 

"Simple groups are beautiful things," wrote John Conway shortly before the 

Enormous Theorem was proved, "and I'd like to see more of them, but am 

reluctantly coming around to the view that there are likely no more to be seen." 

When the four-color map theorem was established by a horrendous 

computer printout, some mathematicians suggested that computers were in- 

troducing a qualitatively different kind of proof. Because computers are ma- 

chines that can make mistakes, it was argued, such proofs support the view 
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that mathematics is an empirical science, as fallible as physics. The Enor- 

mous Theorem belies this curious view. It is far more massive than the map 

theorem printout and just as prone to error if not more so. Indeed, one can 

claim that computer proofs are more accurate than enormously long hand 

proofs because a computer proof can be reprogrammed a different way, and 

one program used to check the other. Moreover, a computer differs from an 

adding machine, or even an abacus, only in the speed with which it manipu- 

lates symbols. A mathematician who uses a modem computer is in no essen- 

tial way different from a mathematician who uses a hand calculator to do 

large multiplications and divisions. 

Physicist Tony Rothman, in "Genius and Biographers: The Fictionaliza- 

tions of Evariste Galois" (American Mathematical Monthly, Vol. 89, February 

1982) and "The Short Life of Evariste Galois" (Scientific American, April 

1982), presented evidence that Eric Temple Bell, in his popular Men of Math- 

ematics (1937), overromanticized many facts. In Bell's account, Galois spent 

the night before his duel "feverishly dashing off" what he had discovered 

about groups. "Time after time," wrote Bell, "he broke off to scribble in the 

margin 'I have not time. I have not time."' 

Although young Galois was indeed killed in a duel over a woman, this 

passage is almost entirely wrong. Galois had written several articles on group 

theory, and was merely annotating and correcting those earlier published 

papers. "There are a few things left to be completed in this proof," he wrote 

in the margin. "I have not time." That was the sole basis for Bell's statement 

about Galois writing over and over "I have not time. I have not time." 
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Taxicab 

A conjecture both deep and 
profound 

Is whether a circle is round. 
In a paper by Erdos, 
Written in Kurdish, 

A counterexample is found. 

ltering one or more postulates of Euclidean geometry makes it 

possible to construct all kinds of strange geometries that are 

just as consistent, or free of internal contradictions, as the plane 

geometry taught in secondary schools. Some of these non-Euclidean 

geometries have turned out to be enormously useful in modern physics 

and cosmology, but the two most important, elliptic geometry and hy- 

perbolic geometry, have a structure that is impossible to visualize. Hence 

most laymen find these geometries too difficult to comprehend and are 
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certainly not able to search their structure for new theorems or to work 

on interesting non-Euclidean problems. 

In this chapter we shall take an elementary look at a quite different 

kind of non-Euclidean geometry, one so easy to understand that anyone 

exploring its structure on ordinary graph paper can have the excitement 

of discovering new theorems. Often called taxicab geometry, this sys- 

tem can be modeled by taxicabs roaming a city whose streets form a 

lattice of unit-square blocks. In many ways taxicab geometry is curiously 

like ordinary plane geometry. Yet it is sufficiently different that explor- 

ing it can be great fun. Moreover, such exploration provides a strong 

feeling for how geometries may vary in bizarre ways from Euclidean 

geometry and still form a logically consistent formal system. 

As far as 1 know taxicab geometry was first seriously proposed by 

Hermann Minkowski, a mathematician born in Russia who was young 

Albert Einstein's teacher in Zurich. Minkowski later gave special relativ- 

ity its beautiful formulation in a fourdimensional geometry of space 

and time, and the space-time graphs widely used in relativity theory are 

named for him. At about the turn of the century he published in 

Germany his Collected Works (reprinted in the U.S. by Chelsea Pub- 

lishing Company in 1967), in which he analyzed a variety of metric 

systems: topological spaces consisting of a well-defined set of points and 

a rule for measuring the "distance9' between any two points. 

Taxicab geometry is a metric system in which the points of the 

space correspond to the intersections of the horizontal and vertical 

lines of squarexelled graph paper, or to the intersections of the streets 

in our idealized city. If two points, A and B, are at intersections on the 

same street, the distance between them is measured, as it is in Euclid- 

ean geometry, by counting the number of unit blocks from one to the 

other. If A and B are not on the same street, however, then instead of 

applying the Pythagorean theorem to calculate the distance between 

them we count the number of blocks a taxicab must travel as it goes 
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from A to B (or vice versa) along a shortest-possible route. The structure 

of taxicab geometry can be formalized with definitions and axioms in a 

variety of ways, but here I shall dispense with such technicalities and 

simply describe it in intuitive terms. 

In Euclidean geometry the minimum distance between two points 

(as the crow flies) defines a unique straight line. In taxicab geometry 

there may be many paths, all equally minimal, that join two points. In 

what follows "path" will be used to mean any taxicab route that covers 

the distance between two points with the minimum mileage. 

If two points are not on the same street, how many distinct paths 

connect them? Pascal's famous number triangle comes to our aid on 

this question. Consider the points A and B at opposite corners of a 2- 

by3 rectangle of blocks, as shown in Figure 63. The colored lines at the 

right in the illustration show how the rectangle can be drawn on Pascal's 

triangle to solve the problem. The lowest corner of the rectangle marks 

the answer: There are 10 distinct paths between A and B. Note that 

Pascal's triangle is left-right symmetrical, and so it does not matter in 

the least if the rectangle is drawn so that it leans the other way. The 

same answer is obtained. (Remember that in Pascal's triangle each num- 

ber is the sum of the two numbers above it. For more on Pascal's 

triangle see Chapter 15 of my Mathematical Carnival.) 

Figure 63 
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Readers familiar with combinatorics will recall how Pascal's triangle 

serves to instantly show how many ways a set of n items can be selected 

from a larger set of r  items. The answer is the number at the intersec- 

tion of the nth diagonal and the rth row of the triangle. In the case of 

the taxicab problem 10 is the number of ways two items can be selected 

from five. The two corresponds to one side of our rectangle of blocks 

and the five to the sum of its two sides. Ten is also the number of 

minimal routes a taxicab can follow from one comer of a 3-by-2 rect- 

angle to the diagonally opposite corner. 

It is not necessary to draw Pascal's triangle to determine the 

number of paths between two points in taxicab geometry. We can 

also use the familiar formula for calculating the number N of ways 

to select n objects from r  objects: N = r ! /n ! ( r  - n)! ] .  For example, in 

our taxicab ~ rob lem r !  equals 1 x 2 x 3 x 4 x 5, or 120, n! equals 

1 x 2, or 2, and ( r  - n)! equals 1 x 2 x 3, or 6, so that the formula 

reduces to N = 120/12, or 10. 

The fact that the rectangle can be tipped in either direction on 

Pascal's triangle is a pictorial way of saying that the number of ways of 

selecting n items from a larger set of r  items is the same as the number 

of ways of selecting r  - n items from a set of r  items. This fact becomes 

intuitively obvious if you consider that each time a unique set of n items 

is selected from r  items, a unique set of r  - n items remains. In the 

taxicab model this means that if a Euclidean rectangle is drawn on the 

lattice, the number of distinct taxicab paths between any two diagonally 

opposite corners is the same as the number of paths joining the other 

two corners. 

Since the "straight lines" (the shortest paths) of taxicab geometry 

may be crooked from the Euclidean point of view, the concept of an 

"angle" becomes either meaningless or radically different in this system. 

It is nonetheless possible to define close analogues of Euclidean poly- 

gons, including a two-sided "biangle" that is a stranger to Euclid's ge- 
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ometry. Some examples of biangles are shown in Figure 64. It should 

be obvious that although different biangles can share the same pair of 

"corner" points, the two "sides" of any biangle must be equal because 

they join the same two points. 

A taxicab scalene triangle with corners A, B, and C and sides of 14, 
8, and 6 is shown at the left in Figure 65. The sides of taxi polygons 

must of course be taxi paths, and the paths that make up a polygon of 

specified dimensions may vary in shape but not in length. Observe 

how the triangle in the illustration violates the Euclidean theorem that 

the sum of any two sides of a triangle must be greater than the third 

side. In this case the sum of two sides equals the third: 6 + 8 equals 14. 

Figure 64 

Figure 65 
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A taxi quadrilateral of sides 9, 6, 9, and 12 is shown at the right in the 

illustration. 

Three taxi squares, all of side 6, are shown in Figure 66. Only the 

square at the left obeys the Euclidean theorem that the diagonals of a 

square are equal. As these figures demonstrate, taxicab squares can have 

innumerable Euclidean shapes. 

It is easy to define a circle in taxicab geometry, and the result is 

quite unexpected. As in Euclidean geometry a circle is defined as the 

locus of all the points that are the same distance from a given point. 

Suppose the distance is 2. The resulting circle consists of the eight 

points shown at the left in Figure 67-a neat way to square the circle! 

Note that only one radius goes from the center point 0 to points A, B, 

Figure 66 

Figure 67 
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C, and D, and there are two radiuses going to each of the other four 

points. It is not hard to show that any taxicab circle of radius r consists 

of 4 r  points and has a circumference of 8r. If we adopt the Euclidean 

definition of pi as the ratio of the circumference of any circle to its 

diameter, then taxicab pi is exactly 4. 
Observe that our eight-point taxicab circle includes a variety of 

sets of vertexes for taxi polygons of 2, 3, 4, 5, 6, 7, and 8 sides. For 

example, there is the biangle D,X, the equilateral triangle B,C,D, 

the square A, B, C, D, the regular pentagon A, W, X, 2, Y, the regular 

hexagon A, W, B, X, 2, Y, and the regular heptagon A, W, X, C, 2, D, Y 
And the eight points of the circle lie at the corners of a set of regular 

octagons. 

Another Euclidean theorem that taxicab geometry violates is the 

one stating that two circles can intersect at no more than two points. 

As shown in Figure 68, two taxicab circles may intersect at any finite 

number of points. The larger the circles are, the more points at which 

they can intersect. A lide experimentation NmS up excellent taxicab 

analogues of the other three conic-section curves. Figure 69 shows four 

12-point taxicab ellipses. As in Euclidean geometry, a taxicab ellipse 

is the locus of points whose distances from two fixed points A and B 
have the same sum. The points, called foci, are marked here with col- 

ored circles, and in all the examples shown in the illustration the con- 

stant sum is 6. 

The fourth curve is actually a degenerate ellipse corresponding to 

the straight line that results when the constant sum that defines a 

Euclidean ellipse equals the distance between its foci. If this equality 

holds in taxicab geometry, then when A and B are on the same street, 

the result is a straight line of points. Otherwise the ellipse consists of 

all the points within the Euclidean rectangle of lattice lines that has 

A and B at diagonally opposite corners. For example, suppose that A 
and B are opposite corners of a square with lattice sides of length 4. 
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Figure 68 

Figure 69 
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In this case the taxi distance between A and B is 8, and for each of 

the square's 25 points the sum of their distances from A and B is 8. 
These 25 points will be the degenerate ellipse of constant sum 8 whose 

foci are A and B. If the constant sum is greater than the taxi distance 

between A and B, then as in Euclidean geometry the taxi ellipse be- 

comes more circular as the foci move closer together. When A and B 
coincide, then once again as in Euclidean plane geometry the ellipse 

becomes a circle. 

A Euclidean parabola is the locus of all points whose distance from 

a focus A is equal to its shortest distance from a fixed straight line: the 

directrix. If a taxicab directrix is defined as the set of points along a 

Euclidean straight line, then taxicab parabolas can also be constructed. 

Two are shown at the left in Figure 70. Try drawing the parabola for 

the directrix and the focus shown at the right. 

Taxicab hyperbolas are more complex. A Euclidean hyperbola is the 

locus of all points for which the difference between the distances from 

a pair of foci A and B is constant. The appearance of a taxicab hyper- 

bola varies considerably as the ratio of its basic parameters varies. In the 

figure at the lefi in Figure 71, the foci A and B are placed to show the 

limiting case, a degenerate hyperbola of just one branch, where the 

constant difference is 0. The figure at the right in the illustration shows 

two infinitely long branches of a taxicab hyperbola with a constant 

difference of 4. 
Taxicab geometry springs another surprise in Figure 72. In this 

hyperbola the constant difference is 2. Here the two branches are two 

infinite sets of points, one in the sector of the plane at the upper lefi 

and one in the sector at the lower right, and each with a "tail" of 

infinite length. As shown at the bottom in the illustration, the results 

are similar when the constant is 8, except that the infinite sets of points 

are in the sectors of the plane at the upper right and the lower left, and 

there are no tails. 
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Figure 70 
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Figure 71 

With the foci placed as shown in all of these examples the constant 

difference cannot be an odd number because the resulting figure would 

include points away from intersections, the only allowable points in 

taxicab space. As an exercise place A and B at diagonally opposite 

corners of a 3-by-6 Euclidean rectangle of lattice sides and draw the 

hyperbola for which the constant difference is 1. The result is two 

"parallel" branches, each resembling the degenerate hyperbola with a 

constant difference of 0. A not-so-easy problem is to define the exact 

conditions under which taxicab hyperbolas of the five general types are 

created. 

Only one book has been published on taxicab geometry: it is Taxi- 

cab Geometry, a paperback by Eugene F. Krause, a mathematician at 

the University of Michigan. (This work along with a few of the dozen 

or so papers on the topic that have appeared in British mathematical 

journals over the past two decades are listed in the bibliography at 

the end of this chapter) Krause's book is recommended particularly to 
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Figure 72 

students who want to learn how taxicab geometry can be elegantly 

generalized to the entire Cartesian plane, where all points are repre- 

sented by ordered pairs of real numbers from the two coordinate axes. 

The rule of measuring distance by the shortest path along line seg- 
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ments that parallel the axes must of course be preserved, so in this 

continuous form of taxicab geometry an infinite number of distinct 

paths, all of the same minimum length, connect any two points that 

are not on the same street. 

Krause shows how continuous taxicab geometry satisfies all but 

one of the postulates of Euclidean geometry. Instead of violating the 

notorious parallel postulate, as elliptic and hyperbolic geometries do, 

taxicab geometry violates the side-angle-side postulate, which states 

that two triangles are congruent if and only if two sides and the in- 

cluded angle of one are congruent to two sides and the included angle 

of the other. 

Midway between the discrete taxicab geometry I have described 

(which is confined to what is often called the lattice of integers) and the 

continuous version is another taxicab geometry in which the points of 

the associated space are defined by ordered pairs of rational numbers. 

Even on the lattice of integers, however, taxicab geometry provides a 

fertile field for investigation by recreational mathematicians and should 

present a splendid and enriching challenge for high school students. I 

have barely scratched the surface here, leaving many fundamental ques- 

tions unanswered. How should parallel lines be defined? What is the 

best analogue of a perpendicular bisector? Are there useful ways to 

define area? 

Moreover, taxicab geometry extends readily to integer lattices of three 

dimensions and higher. The exploration of taxicab geometries on other 

kinds of lattices, such as triangular or hexagonal ones that are either 

finite or infinite, is still a wide-open field. Indeed, the lattices need not 

be confined to a plane. They can be defined on the surface of cylinders, 

spheres, toruses, Mobius bands, Klein bottles-anything you like! Just 

make sure your cabbies stick to the streets and always take you by the 

shortest path to where you want to go. 
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Figure 73 

Answers 

The solution to the problem of constructing a taxicab parabola with 

a given focus A and a given directrix is shown in Figure 73. 

Kenneth W. Abbott, a New York computer consultant, sent an amusing 

generalization of discrete "taxicab" geometq. As in taxicab geomew, the 

points of the non-Euclidean space are the intersections of lattice lines on a 

square grid. In Abbott's generalization the "distance" between any two points 

is an integer defined as being equal to where x is measured hori- 

zontally, y is measured vertically and n is any positive integer. 

When n is 1, we have the simple taxicab geometry explained in this 

chapter. All "circles" are sets of points equidistant from the circle's center. 

They have the forms shown at the left in Figure 74, where the radii are 1, 2, 

3, 4, and 5. 
When n is 2, circles of the same radii take the forms shown in the 

middle of the illustration. Note that the first four circles consist of just 
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four points lying on the two axes that pass through the common center of 

the five circles. We shall call such circles "trivial." When n is 1, only the 

circle of radius 1 is trivial. All other circles are not. When n is 2, the fifth 

circle is nontrivial. In this geometry there are an infinite number of both 

kinds of circles. Pi is 2JS for all trivial circles, but it has different values 

for the nontrivial ones. For the fifth circle, which has a radius of 5, pi is 

( 4 f i + 2 6 / 5 .  

When n is 3, the first five circles [at right in Figure 741 are all trivial. In 

this geometry pi is 2'" + 
for all trivial circles. 

We now state a remarkable theorem. Any generalized taxicab geom- 

etry with n greater than 2 can contain only trivial circles. This assertion 

as Abbott pointed out, is easily seen to be equivalent to Fermat's last 

theorem! 
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Figure 74 
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The 
Power 
of the 

Pigeonhole 

If m male pigeons have sex with n 

female pigeons and m > n, then at 

least two male pigeons must have 

sex with the same female pigeon. 

an you prove that a large number of people in the U.S. have 

exactly the same number of hairs on their head? And what 

does this question have in common with the following prob- 

lem? In a bureau drawer there are 60 socks, all identical except for their 

color: 10 pairs are red, 10 are blue, and 10 are green. The socks are all 

mixed up in the drawer, and the room the bureau is in is totally dark. 

What is the smallest number of socks you must remove to be sure you 

have one matching pair? 
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Consider two less simplistic examples. Can you prove that when a 

common fraction a/b is expressed in decimal form, the resulting num- 

ber will be either a terminating decimal or one that repeats with a 

period no longer than b? Can you show that if five points are placed 

anywhere on an equilateral triangle of side 1, at least two points will be 

no farther apart than .5? (Hint: Divide the triangle into four smaller 

equilateral triangles of side .5.) 

The quality these problems and thousands of others in both seri- 

ous and recreational mathematics have in common is that they can all 

be solved by invoking an old and powerful principle. It is the pigeon- 

hole principle, which some mathematicians prefer to call the Dirichlet 

drawer principle after the 19thcentury German mathematician Peter 

Gustav Lejeune Dirichlet. The pigeonhole principle is the topic of this 

chapter-a chapter written not by me but by Ross Honsberger, a math- 

ematician at the University of Waterloo. He is the author of Ingenuity 

in Mathematics, Mathematical Gems, Mathematical Gems 11, Mathemati- 

cal Gems III, and has edited the anthologies Mathematical Morsels, 

More Mathematical Morsels, Mathematical Plums, and most recently, 

Episodes in Nineteenth and Twentieth Centuy Euclidean Geometry. All 

eight are excellent sources of unusual problems with a strong recre- 

ational flavor. Everything that follows (up to my concluding comments) 

was written by Honsberger, who calls his discussion of the pigeonhole 

principle "Can anything this simple be useful?" 

Consider the statement "If two integers add up to more than 100, 

at least one of them is greater than 50." It is far from obvious that the 

"overflow" principle behind this simple assertion is not trivial. In its 

simplest form the principle can be stated as follows: If n + 1 (or more) 

objects are to be distributed among n boxes, some box must get at least 

two of the objects. More generally, if kn + 1 (or more) objects are 

distributed among n boxes, some box must get at least k + 1 of the 

objects. 
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Even in its most general form this pigeonhole principle states for a 

set of data only the obvious fact that it is not possible for every value to 

be below average or for every value to be above average. Nevertheless, 

the principle is a mathematical concept of major importance and re- 

markable versatility. Here we shall take up seven of its prettiest elemen- 

tary applications. Let us begin with a simple geometric example. 

1. The Faces of a Polyhedron. Try counting the edges around the 

faces of a polyhedron. You will find that there are two faces bounded by 

the same number of edges. To prove that this is always the case it is 

only necessary to imagine what happens when the faces are distributed 

among a set of boxes numbered 3 ,4 ,  . . . n, so that a face with r edges 

is put in the box numbered r. Since edges separate faces, a face with the 

maximum number of edges n is itself bordered by n faces, implying 

that the polyhedron must have a total of at least n + 1 faces. O n  the 

pigeonhole principle, then, some box must contain at least two of the 

faces, and the proof is complete. In fact, it is a simple exercise to show 

that there are always at least two different pairs of faces with the same 

number of edges. 

2. Ten Positive Integers Smaller than 100. Here is an application of 

the pigeonhole principle that will baffle your friends. No matter how a 

set S of 10 positive integers smaller than 100 is chosen there will always 

be two completely different selections from S that have the same sum. 

For example, in the set 3, 9, 14, 21, 26, 35,42, 59,63, 76 there are the 

selections 14,63, and 35,42, both of which add up to 77; similarly, the 

selection 3, 9, 14 adds up to 26, a number that is a member of the set. 

To see why this is always the case observe that no laelement subset 
of S can have a sum greater than the 10 largest numbers from 1 to 100: 
90, 91, . . . 99. These numbers add up to 945, and so the subsets of S 
can be sorted according to their sum into boxes numbered 1, 2, . . . 
945. Since each member of S either belongs to a particular subset or 
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does not belong to it, the number of subsets to be classified (not 

counting the empty set, which has no elements) is 2''- 1, or 1,023. By 

the pigeonhole principle, then, some box must contain (at least) two 

different subsets A and B. Discarding any numbers that are in both A 
and B creates two disjoint subsets, A' and B', with equal sums. Indeed, 

because there are 78 more subsets than there are boxes, every set S 
must actually yield dozens of different pairs of subsets with equal sums. 

3. The Pills. For this next application of the pigeonhole principle 

we are indebted to Kenneth R. Rebman, a mathematician at California 

State University at Hayward. A physician testing a new medication 

instructs a test patient to take 48 pills over a 30day period. The patient 

is at liberty to distribute the pills however he likes over this period as 

long as he takes at least one pill a day and finishes all 48 pills by the 

end of the 30 days. No matter how the patient decides to arrange 

things, however, there will be some stretch of consecutive days in which 

the total number of pills taken is 11. In fact, for every value of k from 

1 to 30 except 16, 17, and 18 it is always possible to find a period of 

consecutive days in which a total of k pills were taken. 

To prove that a particular value of k is an exception to the rule 

it is necessary only to find a distribution of the pills for which there 

is no stretch of days when k pills are taken. Thus the cases k = 16, 

k = 17, and k = 18 are eliminated at a stroke by the following 

distribution in which one pill is taken each day except for the 16th, 

when 19 pills are taken: 

Now consider the case k = 11. If pi denotes the total number of pills 

that have been taken up to the end of the ith day, then p,, equals 48 
and the positive number p,, p,, . . . p,, form a strictly increasing se- 

quence 0 < p, < p, < . . . < p3, = 48. (The sign "<" is read "less than," 
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and a strictly increasing sequence is one where each element is larger 

than its predecessor.) Adding 11 to each of the numbers in this se- 

quence creates a new strictly increasing sequence: 11 < pi + 11 < p, + 11 
< .  . . < p,,+ 11 = 59. 

There are 30 numbers pi in the first sequence and 30 numbers pi + 
11 in the second, and all 60 of these positive numbers are less than or 

equal to 59. Therefore by the pigeonhole principle at least two of them 

must be equal. No two pis are the same, however, and as a result no two 

pi + 11s are the same. Hence some pi must be equal to some pj + 11, 

that is pi = pj + 11 for some values of i and j. Hence pi minus pj equals 

11, which implies that precisely 11 pills were taken on the consecutive 

days j + 1, j + 2, . . . i. 
This argument holds for any value of k up to and including 11, 

establishing the property for the entire block of values of k from 1 

through 11. It is somewhat more complicated to dispose of the remain- 

ing cases, but the pigeonhole principle is the critical tool throughout. 

Consider next the cases k = 31 through k = 47. Although these values 

of k certainly admit of solutions in many instances, the following fam- 

ily of distributions shows that no one of them guarantees a solution. 

When n is between 1 and 17, the value k = 30 + n is eliminated by the 

following sequence: 

For example, when n equals 7, the following distribution eliminates 

the case k = 37. 

4. 101 Numbers. Suppose some set of 101 numbers a,, a,, . . . a,, 

is chosen from the numbers 1, 2, . . . 200. Surprisingly, it turns out to 
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be impossible to choose such a set without taking two numbers for 

which one divides the other evenly, that is, with no remainder. Proving 

that this assertion is true provides an opportunity to make use of a 

rather neat way of expressing integers. 
Given a positive integer n, it is possible to factor out of it as many 

2s as it contains in order to reduce it to the form n = 2'q, where q is an 

odd integer (possibly as small as 1). If each of the selected numbers ai 

is expressed in this form, a set of 101 values of q is obtained, each value 

belonging to the set of 100 odd numbers 1, 3, 5, . . . 199. O n  the 

pigeonhole principle it can be concluded that two of these values of q 

must be the same. Therefore for some integers i and j, a, equals 2'14 

and aj equals 27q. Of these two numbers the one with the smaller 

power of 2 clearly divides the other. 

Similarly, it is not difficult to apply the pigeonhole principle to 

show that any set S consisting of 102 numbers from the set 1, 2,. . . 200 

must have two distinct numbers that add up to a third number in S. 
(Here it is not necessary to employ the form 2'q.) I shall turn next to 

two spectacular applications of the pigeonhole principle in geometric 

settings. 

5. Six Hundred and Fifty Points in a Circle. Consider a circle C 
with a radius of 16 and an annulus, or ring A, with an outer radius 

of 3 and an inner radius of 2. Is it not remarkable that wherever one 

might sprinkle a set S of 650 points inside C the annulus A can 

always be placed on the figure so that it covers at least 10 of the points? 

To demonstrate the truth of this assertion one could place 650 c o p  

ies of the ring A on the region enclosed by the circle C so that each 

point of S was the center of one of the rings, as is suggested in Fig 

ure 75. For points of S near the circumference of C the correspond- 

ing annuli will extend beyond the circle. O n  the other hand, a circle 

concentric with C that has radius 19 (equal to the radius of C plus 

the outer radius of A) will certainly enclose all the copies of A. Call 
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Figure 75 

this new circle D. Note that the area of D is ~ 1 9 ~ ,  or 3 6 1 ~ ,  and since 

the area of A is ~3~ - ~ 2 ~ ,  or 571, then 650 copies of A have a total 

area of 3 ,250~.  

It is at this point that a "continuous" version of the pigeonhole 

principle can be applied. Each copy of A covers certain parts of the 

circle D when it is placed on that figure. Suppose when all 650 copies 

have been put in place, there is no part of D that lies under more than 

nine different copies of A. In that case the total area of the copies could 

not exceed nine times the area of D. This, however, cannot be the case, 

because 9(361~) is only 3,24971, whereas the annuli have a total area of 

3 ,250~ .  The pigeonhole principle, then, implies that some point X of 

D must be covered by at least 10 copies of A. 

Now suppose Y is a point of S that is at the center of one of 

these 10 copies of A. Then the distance from X to Y must be larger 

than the inner radius of A and smaller than the outer radius, and 

as is shown at the right in Figure 75 another copy of A centered at 

X would cover Y Call this copy A*. Since there are at least nine 
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other centers like Y, A* must cover at least 10 points of S, and the 

assertion is proved. (This problem was proposed by Viktors Linis 

of the University of Ottawa in Crux Mathematicorurn, Vol. 5 ,  page 

271 ; November 1979.) 

6. The Marching Band. The next example concerns a marching 

band whose members are lined up in a rectangular array of m rows and 

n columns. Viewing the band from the left side, the bandmaster no- 

tices that some of the shorter members are hidden in the array. He 

rectifies this aesthetic flaw by arranging the musicians in each row in 

nondecreasing order of height from left to right, so that each one is of 

height greater than or equal to that of the person to his left (from the 

viewpoint of the bandmaster). When the bandmaster goes around to 

the front, however, he finds that once again some of the shorter mem- 

bers are concealed. He proceeds to shuffle the musicians within their 

columns so that they are arranged in nondecreasing order of height 

from front to back. At this point he hesitates to go back to the left side 

to see what this adjustment has done to his carefully arranged rows. 

When he does go, however, he is pleasantly surprised to find that the 

rows are still arranged in nondecreasing order of height from left to 

right! Shuffling an array within its columns in this manner does not 

undo the nondecreasing order in its rows. 

This startling fact can be proved indirectly, by assuming that it is 

false and arriving at a contradiction. In other words, we shall assume 

that after the columns have been arranged there is a row in which a 

taller musician a is placed ahead, or to the left, of a shorter one b. Call 

the column the taller musician a is in i and the column the shorter 

musician b is in j, as is shown in Figure 76. Since the columns have 

just been arranged, it can be assumed that every musician in the seg- 

ment P from a back in column i is at least as tall as a and that every 

musician in the segment Q from b forward in column j is no taller 
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LEFT RIGHT 

FRONT 
Figure 76 

than b. Moreover, since a is taller than b, it follows that every member 

of P is taller than every member of Q. 

Now consider the halfway point at which the rows have been ar- 

ranged but not the columns. To get back to this point it is necessary to 

return the musicians in segment P to their former positions through- 

out column i and to return those in segment Q to their former posi- 

tions throughout column j. In other words, the members of P and Q 

will be distributed over the rows 1,2, . . . m as if the m rows were boxes. 

Segments P and Q, however, have a total length of rn + 1, that is, there 

is a total of m + 1 musicians in the two segments. On the pigeonhole 

principle two of the musicians must end up in the same row. They 

could not both have come from the same segment, and so in some row 

there must be a member x from P in column i ahead, or to the left, of 

a member y from Q in column j, as is shown at the right in Figure 76. 
Since x is taller than y, this arrangement violates the already estab- 

lished nondecreasing order of the rows, and the conclusion follows by 

contradiction. 

7. Subsequences in a Permutation. This final example establishes an 

engaging property of every arrangement of numbers from the sequence 
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1, 2, . . . n2 + 1 into a row. When each arrangement is scanned from 

left to right, it must contain either an increasing subsequence of length 

(at least) n + 1 or a decreasing subsequence of length (at least) n + 1. 

For example, when n equals 3, the arrangement 6,5,9,  3, 7, 1, 2, 8,4, 
10 includes the decreasing subsequence 6, 5, 3, 1. (As this example 

demonstrates, a subsequence need not consist of consecutive elements 

of the arrangement.) 

The assertion that every arrangement includes a subsequence of 

this kind can be demonstrated easily by specifying that for each num- 

ber i in the row, x stands for the length of the longest increasing 

subsequence that begins with i, and y stands for the length of the 

longest decreasing subsequence that begins with i. 

In this way n2 + 1 pairs of "coordinates" (x, y) are obtained for the 

row of numbers, and if any value of x or y is as great as n + 1, the 

assertion is valid. O n  the other hand, if every value of x and y is less 

than or equal to n, there are only n2 possible different pairs (x, y). In 

this case the pigeonhole principle implies some pair (x, y) would have 

to be the coordinates of at least two numbers i and j in the row. But i 

is not equal to j, and if i is less than j, then the x coordinate of i would 

be greater than that of j, and if i is greater than j, then the y coordinate 

of i would be greater than that of j. In either case a contradiction has 

been reached and so the assertion is proved. 

Let us close with three exercises the reader may enjoy. 

1. A lattice point is a point in a coordinate plane for which both 

coordinates are integers. Prove that no matter what five lattice points 

might be chosen in the plane at least one of the segments that joins 

two of the chosen points must pass through some lattice point in the 

plane. 

2. Six circles (including their circumferences) are arranged in the 

plane so that no one of them contains the center of another. Prove that 

they cannot have a point in common. 
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3. Prove that in any row of rnn + 1 distinct real numbers there 

must be either an increasing subsequence of length (at least) rn + 1 or 

a decreasing subsequence of length (at least) n + 1. 

The counterintuitive result Honsberger describes for the marching 

band can be demonstrated dramatically with a deck of playing cards. 

Shuffle and deal the cards face up in any rectangular array, say four 

rows of six cards each as is shown in Figure 77, top, and then rearrange 

the cards in each row so that from left to right the six values never 

decrease, as is shown in the middle of the illustration. (For example, 

an acceptable arrangement is 6, 7, 10, 10, J, K.) Now rearrange each 

column so that from top to bottom the four values never decrease, as is 

Figure 77 
Qv K *  9 . F  4V 7 . F  
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shown at the bottom. Permuting the cards in a column will of course 

alter the cards in the rows. Nevertheless, after ordering the columns 

you will find that the rows remain ordered! 

A card trick based on this surprising finding appeared in the 

magic periodical The Pallbearers Review (page 513, April 1972). Deal 

five poker hands and then rearrange each hand so that its five cards are 

in increasing order from back to front. Assemble the hands any way 

you like and then deal five new hands face down in the conventional 

manner. The hands will be entirely different and will not be ordered. 

Explain that you are trying to teach the cards to order themselves. Pick 

up each hand, order its cards once more, and turn the hand face down. 

Assemble the hands by placing the fifth hand (the dealer's) on top of 

the fourth hand, those two hands on top of the third, and so on. Deal 

five more hands face down in the usual way. The cards will have learned 

their lesson: although once again the hands will all be altered, each 

hand will be ordered! 

This result is part of the theory of Young Tableux, a class of num- 

ber arrays named for the Reverend Alfred Young, the British clergy- 

man who proposed and analyzed them in a paper published in 1900. 

The arrays have been shown to have important applications in quan- 

tum mechanics. 

In the early 1960s the marching-band problem appeared in vari- 

ous guises in several mathematics journals. David Gale and kch-  

ard M. Karp wrote a monograph on the subject titled "The Non- 

messingup Theorem," published in 1971 by the operations research 

center of the engineering school of the University of California at 

Berkeley. 

Donald Knuth, in the third volume of his classic Art of Computer 

Programming, discusses the theorem in connection with a method of 

sorting called "shellsort." 
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Answers 

1. To show that one of the line segments connecting five lattice 

points must pass through some lattice point in the coordinate plane, 

note that there are four "parity" classes for the coordinates of a lattice 

point: odd, odd; odd, even; even, odd; and even, even. On the pigeon- 

hole principle some two of five lattice points, say (x,, y,) and (x,, Y,), 

must belong to the same class. This implies that x, + x, and y, + y, are 

both even numbers, making the midpoint of the segment joining the 

points, namely [(x, + x2)/2, (y, + y,)/2], a lattice point. 

2. To prove that six circles arranged in the plane so that none of 

them contains the center of another cannot have a point in common, 

assume the converse is true, namely, that there is a point 0 common 

to six such circles. Now suppose 0 is joined to each of the six centers. 

No two centers can be colinear with 0 because no circle contains the 
center of another circle and all the circles contain 0 .  Therefore the six 

lines all fan out from 0 .  Let OA and OB be consecutive segments in 

the fan. Since 0 belongs to each circle, the segments OA and OB are 

not larger than the radii of the circles in which they lie. But since 

neither circle contains the other center, AB must be larger than either 

of these radii. Thus AB is longer than the other two sides of triangle 

AOB, which implies that angle AOB opposite AB is larger than either 

of the other angles in the triangle. Hence angle AOB must exceed 60 

degrees. If this is so, however, there is not room in the 36Odegree 

sweep around 0 for six angles such as AOB, which establishes the 

conclusion by contradiction. 

3. To prove that in any row of rnn + 1 distinct real numbers 
there is either an increasing subsequence of length rn + 1 or a ded 

creasing subsequence of length n + 1 let "coordinates" (x, Y) be as- 

signed as in example 7. The conclusion holds either if x is greater 
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than m or if y is greater than n. Now, when x is less than or equal to 

m and y is less than or equal to n, there are only mn different pairs 

(x, y). O n  the pigeonhole principle two of the pairs assigned to the 

mn + 1 numbers in the row must be the same, and as was shown, a 

contradiction follows. 

One of the simplest examples of how quickly the pigeonhole principle 

solves a geometrical problem-Honsberger did not mention it because it is so 

well known-is to prove that if five points are in or on a square of side 1, then 

at least one pair of points will be no farther apart than half the square root 

of 2. 

Divide the square into four squares, each of side 1/2. By the pigeonhole 

principle, one of the four squares must contain two of the five points. Be- 

cause the small square's diagonal is half the square root of 2, the two points 

must be that distance apart or less. 
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Strong 
Laws of 

Small 
Primes 

Let us now praise prime numbers 
With our fathers that begat us: 
The power, the peculiar glory 

of prime numbers 
Is that nothing begat them, 
No ancestors, no factors. 
Adams among the multiplied 

generations. 

-Helen Spalding 

"T he Strong Law of Small Numbers" is the provocative title of an 

unpublished paper by Richard Kenneth Guy, a mathematician 

at the University of Calgary. For many years Guy has edited 

the "Research Problems" department of The American Mathematical 

Monthly. He is the author of numerous technical papers and is coau- 

thor with John Horton Conway and Elwyn R Berlekamp of Winning 

Ways, a twowolume work about new mathematical recreations. The 

material that follows is taken almost entirely from Guy's paper. 
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"We think of mathematics as an exact science," Guy begins, "but in 

the field of discovery this is not at all the right picture. Two of the most 

important elements in mathematical research are asking the right ques- 

tions and recognizing patterns." 

Unfortunately there is no procedure for generating good questions 

and no way of knowing whether an observed pattern will lead to a 

significant new theorem or whether the pattern is just a lucky coin- 

cidence. In these respects the research mathematician is in a position 

strangely like that of the scientist. Both ask questions, do experiments 

and observe patterns. Will an observed pattern be repeated when new 

observations are made, with new parameters, leading to the discov- 

ery of a general law, or will counterexamples turn up that contradict 

a hypothesis? It is true that mathematicians can do something scien- 

tists cannot: they can prove theorems within a formal system. Until 

a proof is found, however, a mathematician relies on fallible empiri- 

cal induction in much the same way a scientist does. This is particu- 

larly true in combinatorial problems that involve infinite sequences of 

numbers. 

In examining cases involving small numbers a striking pattern may 

be encountered that strongly implies a general theorem. It is this impli- 

cation Guy calls the strong law of small numbers. Sometimes the law 

works, sometimes it does not. If the pattern is no more than a set of 

coincidences, as it often is, a mathematician can waste an enormous 

amount of time trying to prove a false theorem. The law can also mis- 

lead in an opposite way. A few counterexamples may cause the math- 

ematician to prematurely abandon a search for a theorem that is actually 

true but slightly more complicated than expected. 

Today's computers are a big help because they often can quickly 

explore cases of higher numbers that will either explode a hypothesis or 

greatly increase the probability of its being true. In many combinatorial 

problems, however, the numbers grow at such a fantastic rate that the 
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computer can examine only a few more cases than can be examined by 

hand, and the mathematician may be left with an extremely intractable 

problem. 

One could fill many books with examples of how the strong law of 

small numbers has led to significant theorems, or has misled investiga- 

tors into looking for theorems that are not there, or has deceived them 

by suggesting a theorem is not there when it is, or has suggested theo- 

rems that may be there but resist all efforts to prove them. In the ragbag 

of examples that follow we shall limit our attention to positive prime 

numbers. 

Primes are the natural numbers larger than 1 with no factors except 

1 and themselves: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . . All are odd 

except 2, which has the reputation, Guy points out, of being the "oddest" 

of all the primes. No simple formula generates all the primes and only 

primes. As the second stanza of Helen Spalding's poem goes: 

None can foretell their coming. 
Among the ordinal numbers 
They do not reserve their seats, 

arrive unexpected. 
Along the line of cardinals 
They rise like surprising pontiffs, 
Each absolute, inscrutable, 

self-elected. 

Euclid proved that the primes are infinitely many, but the higher 

they go the larger the gaps between them are. The same is true of the 

prime powers. Apart from 6 every natural number smaller than 10 is a 

power of a prime, and more chan a third of all numbers smaller than 

100 are prime powers. Yet it would be folly to conclude from these 

small primes that the density of prime powers has a lower bound. They 

thin out so rapidly as the numbers get larger that their density can be 

made as low as one likes. 
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In the beginning where chaos 
Ends and zero resolves, 
They crowd the foreground prodigal 

as forest, 
But middle distance thins them, 
Far distance to infinity 
Yields them rarely as unreturning 

comets. 

Primes offer rich examples of remarkable patterns that are entirely 

accidental and lead nowhere. Consider the following sequence of primes 

3, 31, 331, 3331, 33331, 333331, 3333331, 33333331. One is tempted 

to think the pattern will continue, but it fiils in the next case: 333333331 

is composite (nonprime) with the prime factors of 17 x 19,607,843. 

Indeed, in all cases of patterns of this kind it is a safe bet that the 

pattern will not continue to yield primes. Wade Philpott and Joe Reitch, 

Jr., checked the 3333. . . .1  pattern for runs of 9 through 14 threes and 

found all six numbers to be composite. 

Several years ago Reo F. Fortune, an anthropologist at the Univer- 

sity of Cambridge (who was once married to Margaret Mead), noted a 

curious pattern involving small primes. Starting with 2, take the prod- 

uct of a set of consecutive primes. Add 1. Find the next largest prime 

and from it subtract the product of the consecutive primes. Is the result 

always a prime? The chart in Figure 78 shows the procedure applied to 

the first eight cases and gives the eight "fortunate primes" that are 

generated. 

Figure 78 
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Fortune conjectures that the result is always a prime. Most number 

theorists believe this is true, but no proof has been found and there 

seems to be little hope, Guy says, of finding one in the foreseeable 

future. Perhaps some reader of this column can "cook" (falsify) the 

conjecture by finding what one might call a "fortune cookie." Note that 

in the chart the first five numbers at the right side of the equation on 

the left are primes. Is this always the case? No, it fails for the next three 

numbers. Mark Templer in his article titled "On the Primality of k! + 1 
and 2 3 5 . . . . p + 1" has shown (Mathematics of Computation, Vol. 

34, No. 149, pages 303-304; January 1980) that one more than the 

product of primes up to p is prime for the first five primes and for p = 

31, p = 379, p = 1019 and p = 1021, and for no other p less than 1032. 

[In a letter received after this chapter appeared in Scientific American, R. 

E. Crandall extended the list of primes to 2657, but for no other primes 

less than 3000.1 

Another strange hypothesis, not yet proved, is known as the 

Gilbreath conjecture after Norman L. Gilbreath, an American math- 

ematician and amateur magician who proposed it in 1958. Write the 

sequence of primes in a row and under them list the differences be- 

tween successive primes. Under that second row list the absolute val- 

ues of the differences, and continue the procedure for as long as you 

like. Figure 79 shows a table of nine rows of differences for the first 

24 primes. Note that each row begins with 1. Will every row begin 

with l? Gilbreath guesses that it will. This has been verified by Ray 

B. Killgrove and Ken E. Ralston up to the 63,419th prime (Mathemati- 

cal Tables and Other Aids to Computation, Vol. 13, No. 66, pages 121- 

122; April 1959). 

"It does not seem likely," writes Guy, "that we shall see a proof of 

Gilbreath's conjecture in the near future, although the conjecture is 

probably true." Guy adds that the truth may have nothing to do with 

the primes as such. Hallard Croft has suggested the conjecture may 
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1 0 0 0 0 0 0 2 0 0 2 2 0 0 0  

Figure 79 

apply to any sequence beginning with 2 and followed by odd numbers 

that increase at a "reasonable" rate and with gaps of "reasonable" size. 

If this is the case, Gilbreath's hypothesis may not be as mysterious as it 

first seems, even though it may be enormously difficult to prove. 

One of the most notorious of all unsolved prime conjectures is that 

there are an infinite number of twin primes. These are pairs of primes 

that differ by 2. The smallest instances are 3 and 5 ,5  and 7,11 and 13, 

17 and 19, 29 and 31, 41 and 43, 59 and 61, and 71 and 73. Many 

giant examples are known. Until recently the largest example was a pair 

of 303digit primes found by Michael A. Penk in 1978. It was sur- 

~assed  in 1979 when A. 0. L. Atkin and Neil W. Rickert found two 

larger pairs: 694503810 22304 * 1 and 1159142985 22304* 1. In the 

larger twin pair each number begins 4337 . . . , ends with 17760 * 1 
and consists of 703 digits. 

The twin-prime conjecture generalizes to prime pairs that differ 

by any even number n. (Apart from 2, no two primes can have an 
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odd difference because that would make one number even and hence 

composite.) It can be further generalized to certain finite patterns of 

numbers separated by specified even differences. For example, the fol- 

lowing triplets of primes all fit the pattern k, k + 2, and k + 6: 5, 7, 

and 11; 11, 13, and 17; 17, 19, and 23; 41, 43, and 47; and 101, 103, 

and 107. 
It is believed that for any such pattern not forbidden by divisibility 

considerations there are infinitely many examples. (The pattern k, k + 2 

and k + 4 has only one solution in primes, 3, 5, and 7, because any 

larger triplet of this pattern would contain a number divisible by 3.) 

Quartets of the form k, k + 2, k + 6, and k + 8 (the smallest example is 

5, 7, 11, and 13) are thought to be infinite. For some patterns no 

example is known, or only one. R. E. Crandall has called attention to 

the pattern exhibited by the octet 11, 13, 17, 19, 23, 29, 31, and 37. 
There are surely other instances of this pattern, but so far none has 

been found. 

The Mersenne numbers-numbers of the form 2n - 1, or one less 

than a power of 2-have fascinated number theorists since classical 

times, particularly because of their connection with perfect numbers: 

numbers that are the sum of their divisors, including 1 but not the 

number itself (6, 28, 496, . . .). If a Mersenne number is prime, it 

automatically leads to a perfect number by way of Euclid's formula 

2n-1(2n- I), where the number in parentheses is a Mersenne prime. 

It is easy to show that a Mersenne number cannot be prime unless 

the exponent n is prime. If n is prime, will the Mersenne number be 

prime? The strong law of small numbers suggests it will, because it is true 

when n equals 2, 3,5, and 7. ' f i e  law fails for n = 11, however, because 

211 - 1 equals 2047, which equals 23 x 89. It holds for n = 13, n = 17, 
and n = 19, then fails again for n = 23. From here on successes rapidly 

become rarer. At the moment only 27 Mersenne primes (hence only 27 

perfect numbers) are known. The 27th Mersenne prime, 244497 - 1, was 
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discovered in 1979 by a computer program written by David Slowinski 

with the assistance of Harry L. Nelson at the Lawrence Livermore Labe 

ratory of the University of California. The number starts 854. . . , ends 

. . .671 and has 13,395 digits. No one knows if the number of Mersenne 

primes is infinite, or even if there is a 28th one. 

Fermat numbers have the form 2'" + 1. For n = 0, n = 1, n = 2, n 

= 3, and n = 4 the number is prime (3, 5, 17, 257, and 65537). Pierre 

de Fermat thought all numbers of this form are prime, but he overlooked 

the fact that n = 5 yields 4294967297, which has the prime factors 641 

x 6700417. No Fermat primes other than the five known to Fermat have 

been found, and no one knows whether or not others exist. 

Here is a curious pattern involving factorials and primes. Factorial 

n, written n!, means 1 x 2 x 3 x . . . x n. Note how plus and minus 

signs alternate in the following pattern: 

In each case the number on the right is prime. Alas, the strong law 

of small numbers fails on the next step. It yields 326981, the product of 

primes 79 and 4139. The next primes result when n equals 10, 15, and 

19. 

The chart in Figure 80 is formed as follows. We start with 41, then 

add 2 to get prime 43. To 43 add 4 to get prime 47. To 47 add 6 to get 

prime 53. Continue in this manner, bringing each prime down as the 

first number of the next row, and adding numbers from the sequence 

2 ,4 ,6 ,8 ,  . . . In every case on the chart the result is a prime. Does this 

success continue forever or does it fail at some point? 
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EVEN 
NUMBERS PRIMES 

Figure 80 

The Canadian mathematician Leo Moser constructed the curiosity 

displayed in Figure 81. A study of the pattern shows that each sequence 

is formed from the one above it by inserting n, the row number, be- 

tween all pairs of numbers that add to n. On  the right k stands for the 

number of numbers in each sequence. Note that the first six k numbers 

are the first six primes. The next k number skips 17, but 19 is a prime. 

Are all k numbers prime? What is the formula for finding the nth k 
number? 

Figure 81 
n SEQUENCE K 
1 1,1 2 
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Except for 2, all primes have the form 4k it 1, which means that 

every prime except 2 is one more or one less than a multiple of 4. (This 

follows trivially from the fact that every odd number is one more or one 

less than a multiple of 4.) Write the odd primes in consecutive order, 
putting the 4k - 1 primes in the top row and the 4k + 1 primes under 

them: 

At this point the top row is "winning the race." If we continue the 

two sequences, will the top row always be ahead? You should not waste 

time trying to settle this empirically, Guy advises, because you have to 

go a long way before the second row gets ahead, and even then you will 

not have proved anything. The eminent Cambridge mathematician John 

E. Littlewood showed that the rows alternately lead infinitely often. 

Above 5 all primes have the form 6k * 1. If we race these two 

"horses," they too change lead infinitely often. Other prime-number 

races have been investigated, such as the four horses in the 8k * 1,8k h 

3 race. Although it is far from established, most number theorists be- 

lieve that in all such races, regardless of the number of horses, every 

horse is ahead infinitely often in the long run. 

Primes of the form 4k + 1 (the bottom row of the 4.k + 1 race) can 

always be expressed as the sum of a unique pair of distinct square 

numbers. Hence 5 equals 4 + 1, 13 equals 4 + 9, and so on. This was 

proved by Fermat and is known as Fermat's twesquare theorem. It is 

an excellent example of a pattern for which the strong law of small 

numbers is not deceptive but leads to a genuine theorem. Many ways to 

prove the theorem have long been known, but in 1977 Loren C. Larson 

of St. Olaf College in Minnesota published a delightful new proof 

based on the familiar problem of placing n queens on an n-by-n chess- 

board so that no queen attacks another. 
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The figure at the top of Figure 82 shows the smallest solution for 

the queens problem that displays the following properties: (1) there is a 

queen on the center square, (2) all other queens are reached from the 

center by a generalized knight move of rn cells in one direction followed 

by n cells in a direction at right angles to the first (where rn and n are 

distinct integers), and (3) the final pattern has fourfold rotational sym- 

metry (is unchanged by 90degree rotations). The next-largest solution 

with all these features is shown at the bottom of the illustration: 13 
queens on a 13-by13 board. 

Apart from the center queen, for all such solutions each quadrant 

of the board obviously must hold the same number of queens. The 

number therefore will have the form 4 k  + 1. Larson shows that solu- 

tions of this type can be constructed if and only if the number of 

queens is a prime of this form. 

In all such solutions the board can be divided into identical smaller 

squares in the manner shown by the slanting lines in Figure 82. If we 

imagine the board formed into a torus by joining the top and bottom 

edges and the left and right edges, we see that each board of side p is 

made up of p tilted squares. Since the board has an area of p2, the area 

of each small square is &. Since p is the hypotenuse of a right triangle 

with sides equal to m and n (the two components of the generalized 

knight move), it follows from the Pythagorean theorem that p (the area 

of the square on the hypotenuse) must equal the sum of the squares of 

rn and n. And since p is any prime of the form 4 k  + 1, it follows that 

every such prime is the sum of two distinct squares. I have given Larson's 

proof, based on earlier work by George Polya, in highly abbreviated 

form. For more details see his article "A Theorem about Primes Proved 
on a Chessboard" (Mathematics Magadne, Vol. 50, No. 2, pages 69- 

74; March 1977). 

The fourth and last stanza of Spalding's poem gives a fitting con- 

clusion: 
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Figure 82 
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0 prime improbable numbers, 
Long may formula-hunters 
Steam in abstraction, waste 

to skeleton patience: 
Stay non-conformist, nuisance, 
Phenomena irreducible 
To system, sequence, pattern 

or explanation. 

Answers 

Two questions about prime-number patterns were left unanswered. 

The first concerned a procedure that seems to generate only primes. 

Did you recognize this as a clever disguise of Euler's famous prime- 

generating formula 41 + x2 + X? Letting x have integral values starting 

with 0, the formula generates 40 primes. It fails for n = 40, which gives 

the composite number 1,681 = 41 '. 
Leo Moser's triangle pattern is based on the properties of a se- 

quence known as Farey fractions. It produces a sequence with a prime 

number of numbers for the first nine rows, but it fails for n = 10, which 

gives a sequence of 33 numbers. If one counts digits instead of num- 

bers, the 10th sequence has 37 digits, a prime, but the next sequence 

has 57 = 3 x 19 digits. 

To obtain the k numbers for the nth row, add 1 to the sum of the 

Euler totients for numbers 1 through n. The Euler totient for a natural 

number n is the number of natural numbers not greater than n that 

have no common divisors with n other than 1. For 1 through 10 the 

Euler totients are 1, 1, 2, 2, 4, 2, 6, 4, 6, and 4. The sum of these 

numbers is 32. Adding 1 gives the composite number 33 for the 10th 

row. I do not know if Moser ever published this curiosity. 
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In 1994 David Slowinski and Paul Gage found the Mersenne prime 

2858433 - 1. In 1996 Slowinski and his coworkers at Cary Research found 

21257787 - 1. Later a group of some 700 number crunchers banded together for 
what they called "The Great Internet Mersenne Prime Search." In 1996 one 

of its members, Joel Armengaud, discovered the 35th known Mersenne prime, 

21398269 - 1. It has 420,921 digits and is the largest known prime. It provides, 

of course, a 35th perfect number, also the largest known. 

The largest twin prime known to me as I write was found in 1995. It is 

242206083 x 238880 plus or minus 1. Each consists of 11,713 digits. 

Fermat numbers for n = 5 through 9 have now been factored and shown 

to be composite. The tenth Fermat number, 309 digits long, still seems out 

of the reach of known methods of factoring large numbers. Incidentally, 

when written in binary, all Fermat numbers have the form 1 followed by n 

Os, with a final 1 at the end. Mersenne numbers in binary consist entirely of 

1 s. 

The chapter mentioned a sequence of eight primes having the form k, k 
+ 2, k + 6, k + 8, k + 12, k + 18, k + 20, k + 26, and it stated that the only 

known instance is 11, 13, 17, 19, 23, 29, 31, 37. John C. Hallyburton, Jr., 

who works for the Digital Equipment Corporation, found seven other such 

sequences. The starting numbers of each are 

Ken Conrow extended Hallyburton's list of starting numbers for the 

octets to 49 primes with Hallyburton's six primes as the smallest. His list 

found all primes below ten billion. 
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Helen Spalding's poem about primes appeared in the Guiness Book of 

Poetry 1958/59, and in Elizabeth Jenning's An Anthology of Modern Verse 

1940-1960 (Methuen, 1961). I know nothing about Ms. Spalding beyond 
the fact that she was born in 1920. The poem was sent to me by J. A. 
Lindon, England, and Philip Gaskell, Glasgow. 
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Checker 
Recreations, 

Part I 

"The game of draughts we know is 
peculiarly calculated to fix the atten- 
tion without straining it. There is a 
composure and gravity in draughts 
which insensibly tranquillises the 
mind." 

-James Boswell, 
The Life of Samuel Johnson 

T he quotation is from a section for the year 1756 in which 

Boswell writes about Johnson's preface to William Payne's In- 

troduction to the Game of Draughts, published the same year in 

London. That book, by a mathematics teacher, was the first in English 

on the game that in the U.S. is known as checkers. Johnson seldom 

played the game after leaving college. Boswell expresses regret over it 

because he thinks checkers playing would have afforded his friend "in- 

nocent soothing relief" from periodic bouts of depression. 
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Nothing is known about the beginnings of checkers, although most 

game historians now think it originated in southern France sometime 

in the 12th century. In Britain and the U.S. it is surely the best known 

of all board games when you consider the number of children who 

learn to play it and never forget its rules, even though checkers is far 

below chess in the size of its literature, in the number of adults who 

become top-level players, and in the public excitement generated by 

contests for world championship. How many people can name a single 

checkers expert or tell you who the current world champion is? He is 

Dr. Marion F. Tinsley, a topologist in the department of mathematics at 

Florida A. and M. University and probably the greatest checkers player 

who ever lived. 

Rules for chess are now standard throughout the Western world, 

but not so for checkers. Outside of English-speaking countries there are 

dozens of regional variations. The version most popular in Europe and 

Russia, called Polish checkers (except in Poland, where it is called French 

checkers), is played on a 10-by10 board, each side starting with 20 

men. It is the standard French form of the game. In French Canada the 

board is even larger: 12-by-12, with 30 pieces to a side. Rules for check 

ers differ widely around the world. It is curious to note that in all 

European countries except Britain the pieces are called ladies; only here 

and in English-speaking countries are they men. 

Several consequences follow from the fact that checkers is simpler 

than chess. One is that a grandmaster checkers player is less likely than 

his chess counterpart to lose to an inferior by making an error. For 

checkers buffs this is one of the game's great attractions. They love to 

quote Edgar Allan Poe's discussion of the two games at the beginning 

of The Murders in the Rue Morgue: 

I will, therefore, take occasion to assert that the higher pow- 
ers of the reflective intellect are more decidedly and more 
usefully tasked by the unostentatious game of draughts than 
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by all the elaborate frivolity of chess. In  this latter, where the 
pieces have different and bizarre motions, with various and 
variable values, what is only complex is mistaken (a not un- 
usual error) for what is profound. The attention is here called 
powerfully into play. If it flag for an instant, an oversight is 
committed, resulting in injury or defeat. The possible moves 
being not only manifold but involute, the chances of such 
oversights are multiplied; and in nine cases out of ten it is 
the more concentrative rather than the more acute player who 
conquers. In  draughts, on the contrary, where the moves are 
unique and have but little variation, the probabilities of 
inadvertence are diminished, and the mere attention being 
left comparatively unemployed, what advantages are obtained 
by either party are obtained by superior acumen. 

Tinsley has put it this way: "Playing chess is like looking out 

over a limitless ocean; playing checkers is like looking into a bottom- 

less well." 

Another consequence of the simplicity of checkers is that by 1900 

the game's openings had been so completely analyzed that most tourna- 

ments ended in draws. To inject more drama into the play Britain 

introduced (in about 1900) the practice of putting on cards every pair 

combination of Black's first move and White's response. Before each 

match a card was chosen at random, and the game had to be played 

with the specified pair of opening moves. Since each side has a choice 

of seven moves, there are 49 possible pairs. Two of them (9-14, 21 -17, 

and 10-14, 21 -17) were ruled out because they give away a white piece. 

Later it was found that two more pairs (11 -16, 23-19, and 12-16, 23- 

19) give Black such a strong advantage that they too were discarded, 

leaving 45 cards. 

Standard checkers notation is based on the numbering of squares 

as shown in Figure 83. For reasons of clarity it is customary in checkers 

diagrams to reverse the colors of squares and show the pieces on white 

cells instead of black. Actual play is always on black squares, with the 
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Figure 83 

"double comer" at each player's lower right. The players are customarily 

called Black and White even though the pieces are red and white. 

Tournament games are now played on green-and-buff boards; black 

and-red boards are considered toy-store atrocities. Black always moves 

first, and games are recorded with Black starting on the low-numbered 

cells. If you work on any of the recreations in this chapter it is a good 

idea to label the black squares of your board as shown. 

Alas, as decades went by experts soon became so familiar with all 

variations that follow the two-move openings that "safe" play was adopted 

and the draws began to pile up again. The British "two-move restric- 

tion" was replaced in the U.S. in the mid-1930s by the "three-move 

restriction," a practice now followed in most checkers tournaments here 

and in Britain. There are 142 cards, each with a different triplet of the 

first three moves. Because many of these triplets give an advantage to 

one side (usually the second player) two games are played with each 

selection to allow each player the first move. 

Without the opening-moves restrictions, a practice known as go-as- 

you-please play, experts would play nothing but draws. Even with the 

three-move restriction about 80 percent of all tournament games still 
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end in draws. When an expert does win, it is usually because the loser 

made a blunder or because the winner managed to keep secret (some- 

times for years) a "cook" he had discovered. In checkers a cook is an 

improvement on standard "book play" that catches an opponent by 

surprise. Players have traditionally been allowed only five minutes to 

think before each move and one minute for a capture that can be made 

only one way. In recent years this practice has been replaced by the use 

of chess clocks, and players are allowed 30 moves in an hour. When 

someone springs a new cook, his victim simply does not have enough 

time to analyze it. 

In 1967 the late Walter Hellman, a steelworker in Gary, IN, who 

was then world champion, defended his title against the U.S. cham- 

pion, Eugene Frazier. The contest went to 36 games, of which 31 were 

draws and five were wins by Hellman. Hellman's last win was on a 

cook. "I had used that cook once before," Hellman told a reporter, "but 

it had never been published. Frazier had one possible move to thwart 

the attack, and five minutes doesn't allow much time to figure it out." 

A third consequence of the simplicity of checkers is that the best 

computer programs for checkers play a more formidable game against 

middle-level players than the best computer programs for chess. Until 

about 1975 the strongest checkers program was the work of Arthur L. 
Samuel, a learning program that improves as it plays. After retiring as 

IBM's director of research, Samuel continued to improve his program 

at Stanford University's Artificial Intelligence Laboratory. In 1977 a 

powerful program of the nonlearning type was developed by Eric C. 
Jensen and Tom R. Truscott, two graduate students at Duke University 

working under Alan W. Biermann, who teaches artificial intelligence. 

Checkers players are ranked on three levels: minor, major, and 

master. Backers of the Duke program believe it plays initially on a mas- 

ter level. After playing against the program for a while, however, a grand 

master can discern its weaknesses and begin to exploit them. Its great- 
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est weakness is that it plays without master plans. It does not even 

follow book moves in opening play, usually scattering its pieces over the 

board in patterns grand masters consider stupid. Its strength is the 

incredible speed with which it can analyze all possible moves to much 

greater depths than a human opponent, and within those depths it 

never makes a mistake. Chess programs may still be decades away from 

routinely defeating grandmasters, but the Duke program, Biermann 

believes, is already "knocking at the door" of the world championship. 

Grandmaster checkers players, like their chess counterparts, take a 

dim view of the quality of computer programs. They all agree with W. 
Burke Grandjean, secretary of the American Checker Federation, who 

considers the optimism of the Duke group to be ludicrously naive. 

Backed by the federation, Tinsley had a standing bet of $5,000 that in 

a stake match of 20 games he could beat any computer program devised 

over the next five years. (Readers interested in joining the American 

Checker Federation and receiving its monthly Bulletin can write to 

Grandjean at 3475 Belmont Avenue, Baton Rouge, LA 70808.) Fidel- 

ity Electronics now has on the market Checker Challenger 2, an inex- 

pensive solid-state machine that plays on two levels, and also Checker 

Challenger 4, which plays on five levels, although its top level is consid- 

ered below the levels of the Samuel and Duke programs. 

In chess it is easy to prove that the "fool's mate," in which the 

second player checkmates on his second move, is the shortest possible 

chess game. Surprisingly, the shortest checkers game is not yet known. 

Until two years ago it was thought to be the 24-move blocked game, the 

final position of which is shown in Figure 84. There are many se- 

quences of 24 moves that lead to this position, but the position itself is 

thought to be unique. In the line of play given, every White move is 

symmetrically opposite (with respect to the board's center) to Black's 

preceding move. I do not know who first put the play in this symmetri- 

cal form. The version I give, worked out by Rudolf Ondrejka of Linwood, 
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BLACK WHITE 
1. 9-43 24-20 

2. 12-16 21-17 

3.1615 23-18 

4. 15-19 18-14 

5. 8-12 25-21 

6. 4-8 2425 
7. 6-10 27-23 

8.10-15 23-18 

9. 2-6 31 -27 

10. 6-9 27-24 

11. 1-6 32-27 

12. 6-10 27-23 

Figure 84 

NJ, begins with the two-move Edinburgh opening. Because 9-13, a 

favorite first move among tyros, is considered the worst possible start 

for Black, the symmetrical game is more often started with 10-15, 23- 

18, an opening known as the Kelso Cross. 

Sam Loyd, in his Cyclopedia of Puzzles (1914), page 379, using an 

eccentric notation that incorrectly assumes the board has been rotated 

90 degrees, records a nonsymmetrical sequence of moves ending with 

the same pattern. Loyd states flatly that it is the "shortest possible 

game." The 24-move blocked game is indeed (as can be proved) the 

shortest game in which there are no captures. In 1978, however, Alan 

Malcolm Beckerson, problems editor of English Draughts Journal, dis. 

covered that White could win on his 10th move (20 moves in all) by 

capturing all Black's pieces! This is now the shortest checkers game 

known, although no one has yet proved that no game can be shorter. 

Beckerson found other 20-movers that capture all the black pieces, as 

well as some 20-movers that end in blocked games after some captures. 

The version given in Figure 85, with the board showing the final posi- 
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BLACK WHITE 
1. 11-16 21-17 

2. 10-14 17x10 
3. 6x15 23-1 8 

4. 2-6 18x2 (K) 
5. 914 2x1 8 
6. 3-7 24-20 

7. 1-6 20x2 (K) 
8. 12-16 2x9 
9. 5x23 26x3 (K) 

10. 4-8 3x1 2 

Figure 85 

tion, was first published in the British monthly Games and Puzzles for 

March 1978. Its two-move opening is known as the Newcastle. 

Many other minimum-move checkers tasks are far from settled. In 

how few legal moves can a game produce 24 kings? The best-known 

solution, in 180 moves (90 for each side) by John Harris, appeared in 

Journal of Recreational Mathematics (Vol. 9, No. 1, page 45; 1976). In 

how few moves (jumps required) can Black and White reverse their 

initial positions? It takes at least 60 moves for either side, alone on the 

board, to occupy the opposite starting cells, and so it follows that 2 x 60, 

or 120, is an absolute lower bound. A solution in 172 moves is given in 

a late-19th-century English book, The Draughts-Player's Guide and Com- 

panion, by Frank Dunne, pages 94-95. At the finish each side has six 

kings. It seems likely that 172 moves can be considerably lowered. 

It is interesting to try this problem on smaller boards. The 3-by3 is 

trivial, but the 4-by4 presents a pleasant puzzle. Starting as is shown in 

Figure 86, the task is to interchange the two sides in a minimum num- 

ber of legal moves. Captures are of course compulsory. At the finish all 



C h e c k e r  R e c r e a t i o n s ,  P a r t  l 

Figure 86 

four pieces will necessarily be kings. Incidentally, five moves are needed 

for the shortest game on this miniboard. If both sides play to win and 

follow their best strategy, the game is a draw. 

As with chess, endless ways of playing checkers have been proposed 

by varying the shape of the board, the starting position, the rules and so 

on. A privately published French book, Les jeux de dames non orthodoxes 

et autres jeux a pions, by Joseph Boyer and Vern R. Parton, gives more 

than 100 such variants. Some are played on triangular or hexagonal 

tessellations and some on three-dimensional boards; some mix chess 

pieces with checkers, and some allow three or four players to compete at 

once. As one would imagine, it is hard to draw a line between a game 

similar enough to checkers to be called a variant and one so different 

from checkers that it is best regarded as another game altogether. The s e  

called Turkish checkers, for example, has almost no resemblance to 

checkers except that it is played on an 8-by-8 board with counters of two 

colors. One simple way to vary standard checkers is to start with the men 

positioned as is shown in Figure 87. All checkers rules hold. The open- 

ing moves quickly lead to patterns not encountered in orthodox games. 
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Figure 87 

The most eccentric variation of checkers, about which one would 

like to know more, is "supercheckers," invented by Charles Fort, the 

Bronx collector of science anomalies who had a marked influence on 

science fiction as well as on the current epidemic of interest in the 

paranormal. According to Fort's biographer Damon Knight (Charles 

Forr, Doubleday, 1970), supercheckers was played "with armies of men 

on a board with thousands of squares. Fort used bits of cardboard with 

carpet-tack handles for the men, and a piece of checkered cloth for the 

board." 

The two players start with their forces in any agreed-on formation 

that has a space between the two armies. If a player moved only one man 

at a time a game might last for weeks, and so Fort allowed for movements 

en masse. Here is how he put it in a letter: "Let A start out, moving until 

B tells him to stop-say a hundred moves. Then B makes a hundred 

moves. A may want to make another hundred moves, but B, sizing up 

the situation, tells him to stop, say at thirty. Then perhaps occurs 'fight- 

ing,' at close quarters, one move at a time, as in ordinary checkers. But, 

at any time, if either player wants to make a 'mass movement,' that is a 

matter of obtaining permission from his opponent." 
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A game usually lasted all night. In 1930 Fort wrote to Tiffany Thayer, 

who edited the first Fortean magazine, Doubt: "Supercheckers is going 

to be a great success. I have met four more people who consider it 

preposterous ." 
In Britain and the U.S. the most popular variant of checkers is 

"giveaway." It differs from the standard game only in that the object 

is to be the first to lose all one's men. In Dunne's book cited above, 

pages 91-92, there is a fantastic giveaway "sucker bet," presumably 

devised by British checkers hustlers. White begins with his 12 men 

in the usual starting position. Black has only a king on cell 7. Black 

wins if he loses his king. White wins if he loses all 12 men. Dunne 

shows how White can always win and gives three similar wagers in 

which Black begins with a single uncrowned piece on cell 1, cell 4, 
or cell 5. 

Among hundreds of hustler wagers, one of the best begins with the 

position shown in Figure 88. (I am indebted to Me1 Stover for passing 

it along.) It is Black's turn. White wagers that Black will not be able to 

crown the piece he moves first. Clearly Black should not move the piece 

on cell 21 because he would lose it immediately, so that the question is 

Figure 88 
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whether Black can move the piece on cell 19 and advance it to his 

king's row. The more you study the pattern, the more obvious it seems 

that Black can win the bet easily. Nevertheless, White wins. It is an 

amusing bet to make with friends. 
One final problem. It is widely believed two kings can always win 

against one king, but that is not invariably true. See if you can place two 

white kings and one black king on the board in such a way that when 

it is White's turn, Black can force a draw. We ignore the trivial case in 

which black is between two white pieces along a diagonal. 

Answers 

The first problem was to exchange the position of the two black and 

the two white pieces on a 4-by4 minicheckerboard, making the fewest 

possible moves. The minimum number of moves needed to solve this 

minicheckers puzzle is 16. Numbering the black squares of the board 1 
through 8, as was shown, the first four moves must be 2-4, 8-5, 4-6, 

and 5-4. The fifth move may be 1-3 or 6-8, with many variations 

thereafier. A typical sequence of the last 12 moves is 1-3,4-1, 6-8, 7- 
5, 8-6, 5-4, 3-5, 4-2, 5-7, 1-3, 6-8, and 3-1. 

White can win the checkers hustler's wager as follows: 

Black Mhi te 

At this point the game is over, and although Black has won the 

game, he has failed to crown the piece he moved first, thereby losing 

the wager. 
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Finally, Figure 89 shows a checkers position in which White has 

two kings against Black's one king and is the next to move. By playing 

properly Black can force a draw. It is the only position in which one 

king can draw against two kings, aside from familiar traps in which 

Black slides between two White kings on a diagonal. If neither White 

king is at the board's edge, Black forces a capture of one of the White 

kings. The trap also works if the White kings are at a single corner, say 

at 30 and 21, and Black is on 22. 

Herschel F. Smith pointed out that a Black king on 2 also wins 

against White kings on 6 and 7, but of course there is no way this joke 

position can occur with legal moves. 

Figure 89 
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Checker 
Recreations, 

Part II 

S ince writing the previous chapter in 1980 I have encountered so 

much new material about checkers that I decided to patch it to- 

gether in a new chapter rather than try to force it into the older one. 

In its August 1980 edition Scientific American published the follow- 

ing letter from Marion Tinsley, of Tallahassee, FL, then the World 

Checkers Champion: 

Sirs: 
I have a few comments about Martin Gardner's January 
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article on checkers. He writes: "When an expert does win, it 
is usually because the loser made a blunder or because the 
winner managed to keep secret . . . a 'cook' he had discov- 
ered." This is completely misleading. Certainly blunders oc- 

cur and cooks are pulled. Knowledge is important in check* 
ers. However, the ability to see deeply into the game is far 
more important. In his two world-title matches with Asa Long 
(1948 and 1961) Walter Hellman sprang a great number of 
cooks from his vast storehouse of knowledge. Yet Long, be- 
cause of his tremendous analytical ability, made the wins so 
difficult that Hellman could not find them. Wins between 
experts tend to be very narrow indeed. In 1922 Long won his 
first national tournament at the age of 18, besting players 
who greatly surpassed him in knowledge. He did it on ability, 
not cooks. One further illustration. In  1876, at the age of 19, 
R. D. Yates won the world title from James Wyllie. Wyllie 
had been a great scholar of the game for 40 years and had 
introduced many important openings and developments. Yet 
Yates beat him. His games were not a testimony to his knowl- 
edge but a monument to his great ability to see deeply into 
the game. 

Finally, a remark about checkers-playing computer pro- 
grams. 1 have seen games played by most of them, including 
six games played by the Duke program. They all play at the 
very weak amateur level. The programs may indeed consider 
a lot of moves and positions, but one thing is certain. They 
do not see much! Nevertheless, for 20 years claims have been 
made repeatedly that there exist programs playing at the mas- 
ter level. It is because of exasperation with such false and 
aggravating claims that the wager has been made. We are not 
a fraternity of gamblers. The idea of a stake challenge, how- 
ever, has become accepted as the only way to effectively ex- 
pose fakery. Perhaps someday the programmers will have a 
real breakthrough. But until then let them behave like true 
scientists and refrain from undue boasting about their off- 
spring. 

The 120-move way to interchange the two sides with legal moves, 
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both sides cooperating, has an interesting history. The problem was 

first proposed by a Dr. Brown in England's Gentleman's Journal (Sep 

tember 1872), who gave a solution in 172 moves. Jumps are, of course, 

compulsory, so in any solution no possibility of a jump can arise. A Mr. 

Harber, in a four-part article in the Weekly Times of Melbourne, Austra- 

lia (June 19 and 26, and July 3 and 10,1968), reduced the number of 

moves to 120! Brown had wasted many moves by pushing kings back- 

ward and forward to make "traffic lanes" for other pieces. In the final 

article of the series-the series was titled "The Interchangen-Harber 

included a proof that 120 moves was minimal. 

For the 14-move checker game with no captures, Alan Malcolm 

Beckerson, of London, found 28 possible final positions, of which only 

two (including the one I gave) show symmetry. In 16 of them, were it 

not Black's turn, White would be able to make one move more. 

I carelessly said it could be proved that no game shorter than 24 

moves, with no captures, was possible. I was wrong. In 1963 Beckerson 

composed several no-capture games that end after the 21st move. One 

was published in Games and Puzzles (June 1976), and recognized as the 

shortest checkers game in the 24th edition of the Guinness Book of 

Records. One of five such games is shown in Figure 90. 
Checkers on a +by4 board is a draw when played rationally. A 

large part of the complete game tree was given by A. K. Dewdney in his 

Scientific American column listed as a reference for the previous chapter. 

Dewdney is convinced that the 6-by-6 game is "very likely" a draw, 

and the standard &by8 "probably" a draw. In a much earlier Scientific 

American column, reprinted as Chapter 8 in The Unexpected Hanging 

and Other Mathematical Diversions, I gave reasons for being almost cer- 

tain that the 4-by4 game is a draw. 

What about the 5-by-5, each side starting with three checkers on its 

first row? The surprising answer, as I explain in the chapter cited above, 

is that the first player has a sure win! The board's lack of a double 



The L a s t  R e c r e a t i o n s  

FINAL POSITION 

BLACK 
1. 12-16 
2. 16-20 
3. 11-15 
4. 9-14 
5. 14-18 
6. 5-9 
7. 9-14 
8. 6-9 
9. 9-13 

10. 7-11 
11. 11-16 

WHITE 
22- 1 7 
23-19 
19-16 
16-12 
26-22 
31 -26 
26-23 
23-19 
30-26 
26-23 

Figure 90 

corner, where a king can safely shuttle back and forth, is responsible 

for eliminating a forced draw. 

Gilbert Chesterton, in the second chapter of Orthodoxy, his great 

book of Christian apologetics, had this comment o n  Poe's preference 

for checkers over chess: 

Moreover, it is worthy of remark that when a poet really was 
morbid it was commonly because he had some weak spot of 
rationality on his brain. Poe, for instance, really was morbid; 
not because he was poetical, but because he was specially 
analytical. Even chess was too poetical for him; he disliked 
chess because it was full of knights and castles, like a poem. 
He avowedly preferred the black discs of draughts, because 
they were more like the mere black dots on  a diagram. 
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A good checkers player is seldom interested in chess, and good 

chess players usually have a similar disinterest in checkers, but there are 

at least three notable exceptions. Harry Nelson Pillsbury, a chess grand- 

master, was also a master at checkers. Newel1 Banks was both a check 

ers master and a top chess player. The third person was Irving Chernev, 

a master at both games, and a popular writer of books about chess. In 

Chess Life and Review (September 1979) he had this to say: 

I n  fact I gave up chess for five years, in my twenties, to study 
checkers. Early in my youth I was beaten badly, and I decided 
that nobody would ever beat me that way again. They might 
beat me, but not that way. 

I was interested in seeing how great masters played, and I 
discovered that there was a great literature on  checkers, and 
that it could be a great game. There's a lot of beauty and 
science in  it. And so I've decided to write a book o n  check- 
ers, and to give it all that I've discovered in  the intervening. 

I once invented a checkers-type game called Solomon. Played on a 

board based on the Star of David, its rules are the same as in checkers. 

It is not known which side can win in rational play, or if Solomon is a 

draw, although the game is simple enough to be solvable by a computer 

program. An interesting feature of the game is that two kings can always 

defeat a single king, although the strategy for doing so is harder to 

discover than the strategy by which two checkers kings defeat a single 

king moving back and forth in a double corner. The game is available 

from Kadon Enterprises, 1227 Lorene Drive, Pasadena, MD 21 122. 

It has long been noticed that two games of checkers can be played 

simultaneously on the same board, one game played on black squares, 

the other played on white squares. 
What is the maximum number of kings that can be jumped by a 

king of opposite color? The answer is nine, arranged in a 3-by-3 square 

formation. 
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Two kings can usually defeat a single king. Not so well known is 

that three kings can also defeat two opposing kings even when the two 

are in double corners. In general, the best way for three kings to win 

against two kings is to force an exchange, leaving two against one. 

A Braille board and men for blind checker players has been mar- 

keted. The squares are indented to keep the men in place. Checkers of 

one color are square, those of the other color are round. 

Reader Abe Schwartz called my attention to the fact that in the 

miniature %by4 game two kings cannot defeat a single king in the 

double corner. The board must be at least 6-by6 for the familiar strat- 

egy to work. Schwartz also found that three kings against two kings, 

each in a double corner, can win on the standard &by8 board, but the 

game is a draw on all larger boards. 

Ike Kisch, then secretary emeritus of The American International 

Checkers Society, wrote to say that the term "Polish Checkers," played 

on a 10-by10 board, is now called "International Checkers." According 

to Kisch, the name Polish Checkers originated in France about 1750 

when a Polish gentleman introduced the 100-squares board. It became 

popular in France, and quickly spread to other countries, becoming 

especially popular in Russia and Holland. 

For readers familiar with computer complexity, it has been shown 

that checkers generalized to a 2n-by2n board, like generalized go, is "P- 

space hard." This implies, for example, that other games like chess and 

go, when generalized to n x n boards, can be simulated by equivalent 

checker positions on boards whose size is a polynomial function of n. 

The proof that checkers is P-space hard was made by Aviezri Fraenkel, 

in Israel, in collaboration with Michael Garey and David Johnson, of 

Bell Labs. 

John Rogers (1829-1904) was a famous early American sculptor 

whose plaster-of-Paris statuettes of familiar scenes made him the three- 

dimensional Norman Rockwell of his time. One of his most popular 
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works was "Checkers Up at the Farm." Five thousand copies were sold 

throughout the nation. In 1979 the John Rogers Commemorative So- 
ciety made and sold a bronze copy of this work in an edition limited to 

650. (See Figure 91.) The young man is pointing gleefully at his win- 

ning move. Original plaster-of-Paris copies of Rogers' many statuettes 

often turn up in antique stores and shows, usually in chipped condi- 
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tion, where they sell from $500 to more than $1,000 depending on 

their condition. 

Founders of artificial intelligence have been notoriously wrong in 

predicting when a computer chess program would defeat all grandmas- 

ters to become world champion. Similar over-optimistic prophecies have 

been made about checkers. Richard Bellman of the Rand Corporation, 

for example, published an article "On the Application of Dynamic 

Programming to the Determination of Optimal Play in Chess and 

Checkers," in the Proceedings of the National Academy of Sciences (Vol. 

53, February 1965, pages 244-247). In this paper he wrote: "With 

bigger computers . . . it seems safe to predict that within ten years 

checkers will be a completely decidable game." 

More than thirty years have passed since Bellman's rash proph- 

ecy, and checkers is still far from having been decided, although check- 

ers programs are rapidly improving. At the time I write (1996) there 

are several strong programs commercially available but the best is CHI- 

NOOK, developed at the University of Alberta, Edmonton, Alberta, 

Canada, by three computer scientists: Jonathan Schaeffer, Robert Lake, 

and Paul Lu, with the assistance of two checkers experts, Martin 

Bryant and Norman Treloar. The story was dramatically told in 

1996 in "CHINOOK, the World Man-Machine Checkers Cham- 

pion," by Schaeffer, Lake, Lu, and Bryant. A nontechnical book about 

CHINOOK, by Schaeffer, is scheduled for publication by Springer- 

Verlag in 1997. 

Tinsley first played CHINOOK in a 1990 exhibition match, win- 

ning one game, losing none, and drawing 13. He and the program 

were officially matched in London in 1992. Tinsley won 4 games, lost 

2, and drew 33. The losses were only the sixth and seventh defeats by 

Tinsley in 42 years! 

A rematch was held in 1994. CHINOOK had greatly improved, 

with scores of new and secret "cooks" of openings, and an ability to 
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search all branches of the game tree for at least 21 moves! The first six 

games were draws. Tinsley resigned to have health tests made. He was 

diagnosed with cancer, and died in 1995, an undefeated champion. 

His resignation gave the world championship to CHINOOK, leaving 

open the question of whether Tinsley or CHINOOK was the better 

player. 

CHINOOK retained its title by drawing a match with master Don 

Lafferty. In 1995 it won a rematch with Lafferty by winning one game, 

losing none, and drawing 31. 
The present human world champion is Ron King. So far he has 

not had an official match against CHINOOK, but Schaeffer and his 

associates are confident that since Tinsley's death there is no checkers 

player around capable of defeating CHINOOK. The world's four top 

players are rated as follows: CHINOOK 2712, Ron King 2632, Asa 

Long 2631, and Don Lafferty 2625. 

CHINOOK improves almost daily, and its makers are actually h o p  

ing to achieve the goal of "solving" checkers by improving their pro- 

gram until it plays a perfect game. 

A truly fantastic checkers bet was contributed by Me1 Stover to 

Recreational Mathematics Magazine (April 1961), a forerunner of the 

Journal of Recreational Mathematics. With Stover's permission, here is 

how he dramatized the bet: 

To follow the different possibilities in this clever production, 
let's visit the "Mythical Chess and Checker Club". Joe Kalyika 
was absorbed in a game of checkers with his friend Sam Palooka. 
Except for a lone kibitzer the club was empty. 

Sherwin Betts, a stranger to the checker players, was well 
known to the pool hall gentry as a shrewd operator who made 
a good living out of gambling. He had already classified the 
two as mediocre players and he had noticed that Joe Kalyika 
had a large measure of that ostentatious smugness known to 
grifters the world over as the mark of the mark. 
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Sam had moved 7-10 and Joe claimed the game. (See 
Figure 92.) "I go here and you go there and I go here and you 
go either there or there and 1 go here and win. 

(translation) 22-17 21-25 
17-13 25-29 or 30 
18-14 and White wins 

Betts interrupted this demonstration, "I know it's none 
of my business but Black should draw that game every day in 
the week." 

"Are you out of your cotton-picking mind? That is a clear- 
cut win for White," shouted Joe. 

"I can see that a beginner might think so," said Betts in 
a tone calculated to irritate. 

"Beginner, am I. Put up some money and take the Black 
and I'll demonstrate it move by move." 

Betts placed a five dollar bill on the table and occupied 
Palooka's empty chair. This time the game proceeded: 

22-17 21-25 
17-13 10-14 
18-9 25-30 
9-6 30-26 
6-2 26-23 and Black draws 

Kalyika was silent and Betts made no attempt to pick up 
the money. "I don't like to take a person's money without 

Figure 92 
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giving him a chance to win it back. So for ten dollars I'll let 
you take either side. If you take the White you must win. If 
you take the Black you must draw." Kalyika placed a tenspot 
beside the two fives and sat down at the seat that Betts had 
just vacated. Betts moved 22-17 and the game went: 

21 -25 
17-21 25-30 
18-14 10-17 
21-14 30-26 
14-18 and White wins 

Betts' smile infuriated Joe. Kalyika replaced the checkers 
and sat down at the white side of the board. "I guess it is my 
turn at the White," said Kalyika as he placed twenty dollars 
on the table. Betts, still smiling, again took the black men. 

22-17 21 -25 
17-21 10-14 
18-9 25-30 
9-6 30-26 
6-2 26-23 and Black draws 

"Want to try again?" asked Betts. Kalyika said nothing 
but a clue to his thoughts was visible in the puce tone which 
tinged his ruddy complexion. Once again they changed places. 
By now the wager was forty dollars. The moves: 

22-17 21 -25 
17 -21 10-14 
18-9 25-30 
21-25 30-21 
9-6 21 -17 
6-2 17 - 14 
2-7 and White wins 

"Perhaps if you took the Black and we bet eighty dollars," 
said Betts as he turned around but Kalyika had already gone. 

Stuffing the bills into his wallet Sherwin Betts sadly shook 
his head and slowly walked away. 
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Modulo 
Arithmetic 

and 
Hummer's 

Wicked 

There was a young fellow named , Witch 
Ben $- -.=-. . - . . . . . .... m 

Who could only count modulo 
ten. 

He said, "When I go 
Past my last little toe, 

I shall have to start over again." 

C. ongruence theory (sometimes called modular arithmetic) is 

based on principles as old as arithmetic, but it was the German 

prince of mathematicians," Karl Friedrich Gauss (he has been 

called the greatest mathematician who ever lived), who pulled them all 

together and unified them with a notation so compact and powerful 

that it is hard to imagine how number theory could have advanced 

without it. The son of an uneducated bricklayer, Gauss was a child 

prodigy whose most influential book, Disquisitiones Arithmeticae, was 
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published by himself in 1801 when he was 24. He had written it four 

years earlier. It was this book that introduced the concept of number 

congruence. 

Gauss defined two integers a and b to be congruent for a modulus 

rn (modulus is Latin for a small measure) if their difference is divisible 

by a nonzero integer rn. To say the same thing another way, two integers 

are congruent modulo rn if they have the same remainder when they 

are divided by rn. Gauss symbolized congruence by three short parallel 

lines, a symbol still used today: a=  b (mod rn). Incongruence is indi- 

cated like this: a f  b (mod rn). 

For example, 17 and 52 are congruent modulo 7 because each has 

a remainder of 3 when it is divided by 7. Expressed the other way, 52 - 

17 = 35, which is 7 x 5. If we call the multiplier k (in this instance k is 

5) and let a be the larger integer, then b = a + krn, where rn is the 

modulus and k is some integer. Many of the rules of ordinary arith- 

metic and algebra (such as addition, subtraction, and multiplication) 

apply to the manipulation of congruences. 

Remainders are called residues, and for every modulus rn there are 

rn "residue classes." The smallest modulus, 2, distinguishes even and 

odd numbers. All even numbers are congruent to 0 (mod 2) and have 

the infinite residue class . . . -4, -2,0, 2,4, . . . All odd numbers are 

congruent to 1 (mod 2) and have the infinite residue class . . . -3, -1, 

1, 3, 5, . . . . For rn = 3 the residues are 0, 1, and 2. There are three 

infinite classes (mod 3) and so on for higher values of rn. 

As Gauss made clear, his congruence algebra provided simple proofs 

for various rules that determine whether a number is divisible by a 

given number. (From here on "number" will mean "integer.") Thus n is 

divisible by 3 if and only if the sum of its digits is congruent to 0 (mod 

3). Similarly n is congruent to 0 (mod 9) if and only if the sum of its 

digits is congruent to 0 (mod 9). A number n is congruent to 0 (mod 4) 
if and only if its last two digits form a number congruent to 0 (mod 4), 
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and n is congruent to 0 (mod 8) if and only if its last three digits form 

a number congruent to 0 (mod 8). A number is congruent to 0 (mod 

11) if and only if the difference between the sum of its digits in even 

positions and the sum of its digits in odd positions is congruent to O 
(mod 11). 

Congruence algebra led to important theorems about prime num- 

bers and also simplified proving them. For example, Fermat's "little 

theorem,'' which is useful in testing for primality, states that if a num- 

ber a is raised to the power of (p - I), where p is a prime that does not 

divide a,  then when the result is divided by p, the remainder is always 

1. In Gauss's terminology, a'P- l) is congruent to 1 (mod p). Thus a 

number can be raised to the power of one less than a prime so large 

that the result can have billions of digits and be far beyond the ability of 

computers to calculate, yet we know that if we subtract 1 from this 

unprintable monster, we shall have a number that is a multiple of the 

prime. 

Another famous result related to Fermat's little theorem is known 

as Wilson's theorem. If you multiply consecutive numbers starting with 

1 and stop at any number immediately preceding a prime, the product 

obviously is divisible by any number up to p but not by p itself. If you 

add 1 to the product, however, lo and behold the result becomes a 

multiple of p. For example, 1 times 2 times 3 times 4 is equal to 24, 

which is not divisible by the next number, 5, a prime. But 24 plus 1 is 
equal to 25, which is a multiple of 5. Using factorial and congruence 

signs, Wilson's theorem is (p - I)! + 1 = 0 (mod p). 
The theorem was known to Leibniz but was rediscovered by a Brit- 

ish scholar named John Wilson. Edward Waring credited it to him in a 

1770 algebra book and remarked that the theorem would be extremely 

difficult to prove because mathematicians had no good notation for 

primes. When Gauss was told this, he commented that for such proofs 

one needs not notationes (notations) but notiones (notions). Wilson's 
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theorem is a marvelous criterion for primality, but unfortunately it is of 

no use in computer searches for big primes. 

Thousands of basic theorems in number theory are compactly ex- 

pressed and their proofs made easy and elegant by modular theory, and 

endless puzzles have been based on such theorems. For example, sup  

pose a manufacturer of dice ships his product to wholesalers in large 

cubical boxes. A wholesaler removes one row of dice from the cubical 

array to test them for possible flaws, and during the tests these dice are 

destroyed. The remaining dice are packed into small boxes, six to a box. 

How many dice are left over? Surprisingly, regardless of the size of the 

original box none are left over. This follows from the congruence theo- 

rem n3 - n=O (mod 6). 

Here is a problem that demonstrates the power of congruence alge- 

bra to provide solutions. (1 found it in Allan Gottlieb's "Puzzle Corner" 

in Technology Review for May 1978.) You want to prove the curious 

theorem that every integer n has some multiple that consists of a string 

of 1s followed by a string of 0s. How can you go about it? One way 

is to list n "rep unit" numbers starting with 1,11,111,1111 up through 

n such numbers. The number of possible remainders when any num- 

ber is divisible by n is obviously n. To our list of n repunit numbers we 

add one more. O n  the pigeonhole principle at least two numbers on 

this list must have the same remainder and therefore be congruent 

modulo n. Now, the difference between any two numbers that are 

congruent modulo n is congruent to 0 (mod n), which means that the 

difference is a multiple of n. Therefore we subtract the smaller of the 

pair of congruent repunit numbers from the larger, and the result will 

be a number of the form we seek. 

To see better how this works, let us find a number of the form 111 
. . . 0 . . . that is a multiple of 7. The first eight repunit numbers are 1, 

11,111,1111,11111,111111,1111111, and 11111111. Their residues (mod 

7) are respectively 1, 4, 6, 5, 2, 0, 1, and 4. Since there are eight 



numbers, we must have at least two numbers with the same residues
(mod 7). In this instance there are two such pairs. The smallest pair is 1
and 1111111. The difference is 1111110, or 7 × 158730. It is the small-
est number of the form we seek.

Measurements of time in most cultures are made in modular sys-
tems. We measure hours by a mod-12 arithmetic. If it is 3:00 now and
we want to know what time it will be 1,000 hours from now, we simply
add 1,000 to 3, then divide 1,003 by 12. The residue, 7:00, is our
answer. The clock is such a familiar model of a modular system that
when schoolteachers introduce number congruences, they like to
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call it "clock arithmetic." The U.S. armed forces use a mod-24 clock. 

Days of the week conform to mod-7 arithmetic, the months of the year 

to mod 12, and the years of the century to mod 100. 

Many problems about the calendar yield readily to congruence for- 

mulas. Gauss himself gave algorithms for determining the day of the 

week when one is given the year and the day of the month, and also 

algorithms for calculating the date of Easter. According to the Gospels, 

the resurrection of Jesus took place on a Sunday morning during the 

Jewish Passover week, celebrated after the first full moon of spring. The 

early Christians wanted to keep the symbolic connection between the 

Passover sacrifice and the sacrifice of Christ, and so it was decided at 

the First Council of Nicaea (A.D. 325) that Easter would be the first 

Sunday after the first full moon after the vernal equinox. Unfortu- 

nately the old Julian calendar made the year slightly longer than it 

actually is, so that the date of the vernal equinox was creeping slowly 

backward from March 21 toward April. 

When Pope Gregory XI11 introduced the present calendar in 1582, 

he did so mainly to restore Easter to spring. It is a sad commentary on 

the Middle Ages that calculating the exact dates of Easter was then one 

of the most important of all applications of mathematics to nature. 

Gauss's algorithms for determining Easter dates in both the Julian 

and the Gregorian calendars are complicated, and they have to be patched 

by special rules to take care of exceptions. If we limit our concern to the 

years from 1900 to 2099 inclusive, however, there is a straighdorward 

procedure, with no exceptions, that was devised by Thomas H. O'Beime 

of Glasgow and first published in his paper "The Regularity of Easter" 

(Bulletin of the Institute of Mathematics and Its Applications, Vol. 2, No. 

2, pages 46-49; April 1966). O'Beirne found he could memorize his 

procedure and as a party stunt give the date of Easter for any year 

during the relevant period by making all the calculations mentally. 

O'Beirne's algorithm is summarized in Figure 93. Easter always 
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1. Call the year Y Subtract 1900 from Y and call the difference N. 
2. Divide N by 19. Call the remainder A. 
3. Divide (7A + 1) by 19. Ignore the remainder and call the quotient 6. 
4. Divide (1 1A + 4 - 6) by 29. Call the remainder M. 
5. Divide N by 4. Ignore the remainder and call the quotient Q. 
6. Divide (N + Q+ 31 - M )  by 7. Call the remainder W. 

\ 

7. The date of Easter is 25 - M - W. If the result is positive, the month is April. 
If it is negative, the month is March (interpreting 0 as March 31, -1 as 
March 30, -2  as March 29 and so on to -9  for March 22. 

Figure 93 

falls in March or April. The earliest possible date is March 22. It last 

happened in 1818 (when it fell on a full-moon day), and it will not 

happen again until 2285. The latest possible date is April 25. It last 

happened in 1943, and it will not happen again until 2038. You might 

like to test O'Beirne's procedure to see that it correctly gives April 6 for 

Easter in 1980, April 19 for 1981, and April 11 for 1982. April 19 is the 

most frequent of all Easter dates, with April 18 running a close second. 

Countless magic nicks, particularly with numbers and playing cards, 

are based on congruences, and many have been described in my Scientific 

American columns. A nick 1 have not discussed earlier depends on the 

fact that the sum of all the values of the 52 cards in a deck is 364 = 0 (mod 

13). (Jacks count as 11, queens as 12, and kings as 13.) Iat someone 

shuffle the deck, then remove a card without anyone's seeing its face. 

After dealing just once through the deck of 51 cards, looking at the face 

of each card, you correctly name the card that was removed. 

Magicians have devised many algorithms for this trick, but the 

following one seems to me the easiest. As you deal the cards keep in 

your head a running total of the values but cast out 13 as you go along. 

In other words, whenever the total goes above 13, subtract 13 and keep 

in mind only the difference. The task is greatly simplified by two rules: 

1. Ignore all kings. Their value, 13, is congruent to 0 (mod 13); 

therefore they do not alter the number you keep in mind. 
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2. For 10s, jacks, and queens, instead of adding 10, 11, and 12, 

subtract 3, 2, or 1 respectively. This reflects the fact that in the mod-13 

system 10 is congruent to -3 , l l  is congruent to -2, and 12 is congru- 

ent to -1. 

After the last card is turned subtract the number in your head from 

13 to get the value of the missing card. If the result is 0, the card is a 

king. 

How do you know the suit! A good procedure is to use your feet for 

secret calculating in mod-2 arithmetic. Start with both feet flat on the 

floor. For each spade raise or lower your left heel. For each club raise or 

lower your right heel. For each heart alter the positions of both feet 

simultaneously. Ignore all diamonds. After the deal your feet indicate 

the suit of the missing card as follows: 

-If only the left heel is up, the card is a spade. 

-If only the right heel is up, the card is a club. 

-If both heels are up, it is a heart. 

-If both heels are down, it is a diamond. 

After some practice it is surprising how quickly you can deal through 

the deck and name the missing card. 

Robert Hummer, a magician, has been unusually productive in 

inventing mathematical tricks, and many of his creations are based on 

mod-2, or odd-even, principles. I give here for the first time a set of 

mysterious fortunetelling cards that is one of Hummer's most inge- 

nious ideas. 

First you must make a set of the seven cards shown in Figure 94. 
Photocopy them, paste them on a sheet of cardboard, and cut them out. 

Here is how they are used. 

You are allowed to ask the Wicked Witch of the West only one 

question a day. Of course, you may experiment with more questions if 
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Figure 94 
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you like, but the answers are not guaranteed to be trustworthy. Each 

answer applies only to a period of seven days following the day the 

question is asked. Select the card with the desired question and put it 

aside. Shuffle the remaining six cards and hold them face down in one 

hand. Wave your other hand over the packet and slowly pronounce the 

mystic precognitive mantra "Puthoffa Targu." 

From the top of the packet remove the first pair of cards. If the 

colors of the hats match, put the cards aside to form a pile. Discard 

them if the hats fail to match. Repeat with the next pair. If the colors of 

the hats match, put the pair on top of the pile. Otherwise discard them. 

Check the remaining pair and repeat the procedure. Now count the 

number of matching pairs. The number will be 0, 1, 2, or 3. Write this 

down as the first digit of a threedigit number. 

Assemble the six cards, shuffle, pronounce the mystic mantra, and 

repeat the procedure, except this time look for matching eyes. Record 

the number of matching pairs as the second digit of your number. 

Shuffle the six cards for the third and last time, say the mantra and 

go through the packet by pairs as before. This time look for matching 

expressions (smile or frown). The matching pairs are counted-remem- 

ber, you count pairs, not single cards-to get the last digit of your num- 

ber. 

Find your number in Figure 95 and read the answer. Even though 

the digits of your number were randomly obtained, you will find a 

specific answer that applies only to the question asked. 

If you want to ask the Wicked Witch a yes-no question that is not 

on any card, you may do so, but now you must use all seven cards. 

Follow the same procedure, looking first at the hats, then at the eyes, 

and then at the expression. This time, however, you must form two 

piles, one of matching pairs and one of nonmatching pairs. Ignore the 

last card. Subtract the number of pairs in the smaller pile from the 

number of pairs in the larger and record the number. Afier three trials 
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Figure 95 

000 You will dream about a relative. 
001 You will have an argument on the telephone. 
002 You will dream about elephants. 
003 You will exchange angry words with a plumber. 
010 You will find a lost ring. 
01 1 Something you say will harm you. 
012 You will find the weather abominable. 
013 Be alert for an injuly to your foot. 
020 You will dream about an old friend. 
021 Yes, but it wiU be a fight you did not start. 
022 You will dream about an airplane. 
023 Not if you can control your temper. 
030 You will find a coin on the street. 
031 Only a slight nick while shaving your face or your legs. 
032 You will find a lost object in the pocket of an old bathrobe. 
033 No, but you will injure someone else. 
100 No, because you know counterfeiting is illegal. 
101 You will make a trip to the liquor store. 
102 Just the usual amount. 
103 You will make a short jwrney swth. 
110 You will fall in love with a cat. 
111 Maybe. 
112 You will fall in love with a stranger in a self-service laundry. 
113 Absolutely not. 
120 An unexpected check will come by mail. 
121 You will trip over a beer can. 
122 Not more than $1,000. 
123 You will visit an out-of-town friend. 
130 You will fall in love with a new car. 
131 Positively yes. 
132 You will fall in love with a real estate agent. 
133 Foolish queslion. 

200 You will dream you are a bird. 
201 You never get in brawls. 
202 A dream will wake you in the middle of the night. 
203 You will have a falling-out with an old friend. 
210 You will find a lost key. 
21 1- No injury of any sort for the next seven days, but be careful on the eighth. 
212 You will find something unpleasant in your bed. 
213 Watch out for a punch on your nose. 
220 You will dream of coconut pie. 
221 Avoid arguments on a bus. 
222 You will dream about a flying saucer. 
223 Be careful not to antagonize anyone named Harvey. 
230 You will find this trick puzzling. 
231 It is a dangerous week to stand on stepladders. 
232 You will find the news tomorrow disturbing. 
233 Climbing stairways can be dangerous. 
300 Yes, lots of money. 
301 You will not leave your neighborhood all week. 
302 On the contrary, you will lose some money. 
303 You will take a marvelous trip in your imagination. 
310 You will not fall in love with anyone for a change. 
31 1 You can answer that as well as I, can. 
312 You will fall for someone in show business. 

313 Whom do you think you are kidding? 
320 Yes, but most of it will go for taxes. 
321 Yes, but you will not enjoy the trip. 
322 Some, but you wilt spend it immediabely. 
323 You will go on a long trip by plane. 
330 You will fall in love twice. 
331 1 don't know. 
332 You will fall out of love. 
333 You should be ashamed to ask such a question. 
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you will have a threedigit number that gives the answer to your ques- 

tion. 

Larger sets of cards can be designed for answering a larger number 

of questions. The number of cards must be one less than a power of 2. 
In  1980 Karl Fulves published Bob Hummer's Collected Secrets, a compi- 

lation of all known Hummer tricks. This gold mine of ideas for math- 

ematical magic is available from Fulves at Box 433, Teaneck, NJ 07666. 

Page 77 of the book describes a set of 15 fortunetelling cards, each with 

four features that may or may not match, to be used with a fortunetelling 

book (not provided!) of g4 = 4,096 answers. I leave it to readers to 

puzzle out why the answers are always appropriate. 

Having opened with an anonymous limerick about congruences, I 
shall close with one by John McClellan, an artist living in Woodstock, 

NY, whose work reflects a lifelong interest in recreational mathematics 

and wordplay: 

A lady of 80 named Gertie 
Had a boyfriend of 60 named Bertie. 

She told him emphatically 
That viewed mathematically 

By modulo 50 she's 30. 

If any reader is puzzled by "Puthoffa Targu," my suggested precognitive 

mantra, it is a play on the names of Harold Puthoff and Russell Targ. They 

were two scientists at Stanford Research International who "confirmed" the 

psychic powers of Uri Geller. They have since left SRI to go their separate 

ways, though both remain firmly convinced of the reality of ESP, PK, and 

precognition. 

Phil Goldstein, a magician whose stage name is Max Maven, marketed 

in 1981, under the name "Mixed Emotions," a clever version of Hummer's 

witch cards. It comes with seven cards and a booklet of 333 answers titled 

The Book of Sins. 
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Among hundreds of mathematical card tricks based on congruences, 

one of the most beautiful involves five cards that are torn in half and appar- 

ently randomized by a dealing process. You will find it described as Riddle 5 

in my Riddles of the Sphinx (Mathematical Association of America, 1987). 

Magicians have devised numerous variations. 

When I said that April 19 was the most frequent date of Easter, I was 

relying on reported results for short spans of time. Several readers used 

computers to check time spans longer than Thomas O'Beirne's span of 1900 

to 2099. They found that March 31, April 12, and April 15 tied for the most 

likely date. Thomas L. Lincoln conjectured that with still longer intervals, 

extending the present rules for Easter far into the future, April 19 would 

eventually become the commonest date. His conjecture was confirmed by 

many readers who tested for extremely long future spans. They found April 

19 to be the most frequent date, with March 22 the least frequent. 
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Lavinia 
Seeks 

a Room 
and Other 
Problems 

1 Lavinia Seeks a Room 

The line in Figure 96 represents University Avenue in a small 

college town where Lavinia is a student. The spots labeled A through K 
are buildings along the avenue in which Lavinia's eleven best friends 

are living. 

Lavinia has been living with her parents in a nearby town, but now 

she wants to move to University Avenue. She would like a room or an 

apartment at a location L on the street that minimizes the sum of all its 

distances from her eleven friends. Assuming that a place is available at 
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Figure 96 

the right location, specify where Lavinia should live and prove it does 

make the sum of all its distances to the other locations as small as 

possible. 

2 Mirror-Symmetric Solids 

O n  plane figures an axis of symmetry is a straight line that divides 

the figure into congruent halves that are mirror images of each other. 

The hearts on playing cards, for example, have one axis of symmetry. 

So do spades and clubs, but the diamond has two such axes. A square 

has four axes of symmetry. A regular five-pointed star has five, and a 

circle has an infinite number. A swastika or a yin-yang symbol has no 

axis of symmetry. 

If a plane figure has at least one axis of symmetry, it is said to be 

superposable on its mirror image in the following sense. If you view 

the figure in a vertical mirror, with the edge of the mirror resting on a 

horizontal plane, you can imagine sliding the figure into the mirror 

and, if necessary, rotating it on the plane so that it coincides with its 

mirror reflection. You are not allowed to turn the figure over on the 

plane because that would require rotating it through a third dimen- 

sion. 

A plane of symmetry is a plane that slices a solid figure into congru- 

ent halves, one half a mirror reflection of the other. A coffee cup has a 

single plane of symmetry. The Great Pyramid of Egypt has four such 

planes. A cube has nine: three are parallel to a pair of opposite faces and 

six pass through corresponding diagonals of opposite faces. A cylinder 

and a sphere each have an infinite number of planes of symmetry. 

Think of a solid object bisected by a plane of symmetry. If you 
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place either half against a mirror, with the sliced cross section pressing 

against the glass, the mirror reflection, together with the bisected half, 

will restore the shape of the original solid. Any solid with at least one 

plane of symmetry can be superposed on its mirror image by making, 

if necessary, a suitable rotation in space. 

Discussing this in my book The Ambidextrous Universe (Charles 

Scribner's Sons, 1979), I stated on page 19 that if a three-dimensional 

object had no plane of symmetry (such as a helix, a Mobius strip, or an 

overhand knot in a closed loop of rope), it could not be superposed on 

its mirror image without imagining its making an impossible rotation 

that "turned it over" through a fourth dimension. 

The statement is false! As many readers of the book pointed out, 

there are solid figures totally lacking a plane of symmetry that nonethe- 

less can, by a suitable rotation in ordinary space, be superposed on 

their mirror images. In fact, one is so simple that you can fold it in a 

trice from a square sheet of paper. How is it done? 

3 The Damaged Patchwork Quilt 

The patchwork quilt in Figure 97, of size 9 by 12, was originally 

made up of 108 unit squares. Parts of the quilt's center became worn, 

making it necessary to remove eight squares as indicated. 

The problem is as follows. Cut the quilt along the lattice lines into 

Figure 97 
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just two parts that can be sewn together to make a 10-by10 square 

quilt. The new quilt cannot, of course, have any holes. Either part can 

be rotated, but neither one can be turned over because the quilt's 

underside does not match its upper side. 
The puzzle is an old one, but the solution is so beautiful and the 

problem is so little known that I constantly get letters about it from 

readers who are not aware of its origin. The solution is unique even if 

it is not required that the cutting be along lattice lines. 

4 Acute and Isosceles Triangles 

An acute triangle is one with each interior angle less than 90 de- 

grees. What is the smallest number of nonoverlapping acute triangles 

into which a square can be divided? 

I asked myself that question some twenty years ago, and I solved it 

by showing how to cut a square into eight acute triangles as is indicated 

in Figure 98, top. Reporting this in a column, reprinted as Chapter 3 
of my New Mathematical Diversions from Scientific American (Simon 

and Schuster, 1966), I said: "For days I was convinced that nine was 

the answer; then suddenly I saw how to reduce it to eight." 

Since then I have received many letters from readers who were unable 

to find a solution with nine acute triangles but who pointed out that 

solutions are possible for ten or any higher number. The middle illus- 

tration in Figure 98 shows how it is done with ten. Note that obtuse 

triangle ABC is cut into seven acute triangles by a pentagon of five acute 

triangles. If ABC is now divided into an acute and an obtuse triangle by 

BD, as is indicated in Figure 97, bottom, we can use the same pentagonal 

method for cutting the obtuse triangle BCD into seven acute triangles, 

thereby producing eleven acute triangles for the entire square. A 
repetition of the procedure will produce 12, 13, 14, . . . acute triangles. 

Apparently the hardest dissection to find is the one with nine 

acute triangles. Nevertheless, it can be done. 
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Figure 98 



252 T h e  L a s t  R e c r e a t i o n s  

There are many comparable problems about cutting figures into 

nonoverlapping triangles, of which I shall mention only two. It is easy 

to divide a square into any even number of triangles of equal area, but 

can a square be cut into an odd number of such triangles? The surpris- 

ing answer is no. As far as I know, this was first proved by Paul Monsky 

in American Mathematical Monthly (Vol. 77, No. 2, pages 161 -164; 

February 1970). 

Another curious theorem is that any triangle can be cut into n 

isosceles triangles provided n is greater than 3. A proof by Gali Salvatore 

appeared in Crux Mathematicorum (Vol. 3, No. 5, pages 134-135; May 

1977). Another proof, by N. J. Lord, is in The Mathematical Gazette 

(Vol. 66, pages 136-137; June 1982). 

The case of the equilateral triangle is of particular interest. It is 

easy to cut it into four isosceles triangles (all equilateral) or into three 

isosceles triangles. (Some triangles cannot be cut into three or two 

isosceles triangles, which is why the theorem requires that n be 4 or 

more.) Can you cut an equilateral triangle into five isosceles triangles? 

I shall show how it can be done with none of the five triangles equi- 

lateral, with just one equilateral, and with just two equilateral. It is 

not possible for more than two of the isosceles triangles to be 

equilateral. 

5 Measuring with Yen 

This problem was originated by Mitsunobu Matsuyama, a reader 

in Tokyo. He sent me a supply of Japanese one-yen coins and told me 

of the following remarkable facts about them that are not well known 

even in Japan. The one-yen coin is made of pure aluminum, has a 

radius of exactly one centimeter, and weighs just one gram. Thus a 

supply of yens can be used with a balance scale for determining the 

weight of small objects in grams. It also can be used on a plane surface 

for measuring distances in centimeters. 
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It is easy to see how one#yen coins can be placed on a line to 

measure distances in even centimeters (two centimeters, four, six, and 

so on), but can they also be used to measure odd distances (one, three, 

five, and so on)? Show how a supply of oneyen coins can be used for 

measuring all integral distances in centimeters along a line. 

6 A New Map-Coloring Game 

This problem comes to me from its originator, Steven J. Brams, a 

political scientist at New York University. He is the author of Game 

Theory and Politics (1975), Paradoxes in Politics (1976), and The Presiden- 

tial Election Game (1978). His Biblical Games (The MIT Press, 1980) is 

a surprising application of game theory to Old Testament episodes of 

a game-like nature in which one of the players is assumed to be an 

omniscient deity. This was followed by Superior Beings: If They Exist, 

How Would W e  Know? (1983), Rational Politics (1985), Superpower Games 

(1985), Negotiating Games (1990), and Theory of Moves (1994). His lat- 

est book, written with Alan D. Taylor, is Fair Division (1996), an analy- 

sis of cake cutting and other fair division problems. 

Suppose we have a finite, connected map on a plane and a supply 

of n crayons of different colors. The first player, the minimizer, selects 

any crayon and colors any region on the map. The second player, the 

maximizer, then colors any other region, using any of the n colors. 

Players continue in this way, alternately coloring a region with any of 

the n colors but always obeying the rule that no two regions of the 

same color can share any portion of a common border. Like colors 

may, of course, touch at points. 

The minimizer tries to obviate the need for an n + 1 color to 

complete the map. The maximizer tries to force the use of it. The 

maximizer wins if either player is unable to play, using one of the n 

crayons, before the map is fully colored. If the entire map is colored 

with n colors, the minimizer wins. 
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The subtle and difficult problem is: What is the smallest value of n 

such that when the game is played on any map, the minimizer can, if 

both players play optimally, always win? 

To make the problem clearer, consider the simple map in Figure 

99. It proves that n is at least 5. Of course, if no game is played, the 

map can be easily colored with four colors, as indeed any map on the 

plane can be. (This is the famous four-color theorem, now known to 

be true.) But if the map is used for playing Brams's game, and only 

four colors are available, the maximizer can always force the minimizer 

to use a fifth color. If five colors are available, the minimizer can always 

win. 

Brams conjectures that the minimum value of n is 6. A map has 

been found on which five colors allow the maximizer always to win. 

Can you construct such a map and give the maximizer's winning strat- 

egy? Remember, the minimizer goes first, and neither player is under 

any compulsion to introduce a new color at any turn if he can legally 

play a color that has already been used. 

Figure 99 
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7 Whim 

In his Pulitzer-prize book Godel, Escher, Bach, Douglas R Hofstadter 

introduces the concept of self-modifying games. These are games in 

which on his turn a player is allowed, instead of making a legal move, 

to announce a new rule that modifies the game. The new rule is called 

a metarule. A rule that modifies a metarule is a metametarule, and so 

on. Hofstadter gives some chess examples. Instead of moving, a player 

might announce that henceforth a certain square may never be occu. 

pied, or that all knights must move in a slightly different manner, or 

any other metarule that is on a list of allowed alterations of the game. 

The basic idea is not entirely new; before 1970 John Horton Conway 

proposed a whimsical self-modifying variation of nirn that he called 

whim. Nim is a -person game played with counters that are ar- 

ranged in an arbitrary number of piles, with an arbitrary number of 

counters in each pile. Players take turns removing one or more counters 

from any one pile. In normal nirn the person taking the last counter 

wins; in misere, or reverse nim, the person taking the last counter 

loses. The strategy for perfect play has long been known. You will find 

it in the chapter on nirn in my Scientific American Book of Mathematical 

Puzzles B Diversions (Simon and Schuster, 1959). 
Whim begins without any decision on whether the game is normal 

or misere. At any time in the game, however, either player may, instead 

of making a move, announce whether the game is normal or misere. 

This "whim move" is made only once; from then on the game's form 

is frozen. It is well known that in nirn the strategy is the same for both 

forms of the game until near the end, so that you may be tempted to 

suppose whim strategy is easily analyzed. Try playing a few games and 

you will find it is not as simple as it seems! 

Suppose you are the first to play in a game with many piles and 

many counters in each pile, and the position is a nirn loss for you. You 
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should at once make the whim move because it leaves the position 

unchanged and you become the winning player. Suppose, however, 

you are first to play and the position is a win for you. You dare not 

make a winning move because this allows your opponent to invoke 

the whim and leave you with a losing position. Hence you must 

make a move that would lose in ordinary nim. For the same reason 

your opponent must follow with a losing move. Of course, if one 

player fails to make a losing move, the other wins by invoking the 

whim. 

As the game nears the end, reaching the point where the winning 

strategy diverges for normal or for reverse nim, it may be necessary to 

invoke the whim in order to win. How is this determined? And how 

can one decide at the start of a game who has the win when both sides 

play as well as possible? Conway's strategy is easy to remember but, as 

he once remarked, hard to guess even by someone well versed in nim 

theory. 

Answers 

1 Lavinia Seeks a Room 

Consider the two outermost spots, A and K. A spot L on the line 

anywhere between A and K (inclusive) will have the same sum of its 

distances to A and K. Clearly this is smaller than the sum if L is not 

between A and K. Now consider B and I, the next pair of spots as you 

move inward. As before, to minimize the sum of L's distances from B 
and I, L must be between B and I. Since L is then also between A and 

K, its position will minimize the sum of its distances to A, K, B, and I. 
Continue in this way, taking the spots by pairs as you move inward 

to new nested intervals along the line. The last pair of spots is E and 

G. Between them is the single spot F. Any spot between E and G will 

minimize the distances to all spots except F. Obviously if you want also 
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to minimize the distance to F, the spot must be exactly at F. In brief, 

Lavinia should move into the same building where her friend Frank 

lives. 

To generalize, for any even number of spots on a straight line, any 

spot between the two middle spots will have a minimal sum of dis- 

tances to all spots. For any odd number of spots the center spot is the 

desired location. The problem appeared in "No Calculus, Please," by J. 
H. Butchart and Leo Moser (Scripta Mathematics, Vol. 18, Nos. 3-4, 

pages 221 -236; September-December 1952). 

2 Mirror-Symmetric Solids 

Figure 100 shows how to fold a square of paper into a shape that 

has no plane of symmetry yet can be superposed on its mirror reflec- 

tion. The figure is said to have "mirror-rotation symmetry," a type of 

symmetry of great importance in crystallography. I took this example 

from page 42 of Symmetry in Science and Art, by A. V. Shubnikov and 

V. A. Koptsik (Plenum Press, 1974). 

3 The Damaged Patchwork Quilt 

Figure 101 shows how the damaged patchwork quilt is cut into two 

parts that can be sewn together to make a square quilt without a hole. 

The problem is No. 215 in Henry Ernest Dudeney's Puzzles and Curi- 

ous Problems (Thomas Nelson and Sons, Ltd., 1931). 
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Figure 101 

4 Acute and Isosceles Triangles 

Figure 102 shows how to cut a square into nine acute triangles. The 

solution is unique. If triangulation is taken in the topological sense, so 

that a vertex is not allowed to be on the side of a triangle, then there is 

no solution with nine triangles, although there is a solution for eight 

triangles, for 10 and for all higher numbers. This curious result has 

been proved in an unpublished paper by Charles Cassidy and Graham 

Lord of Lava1 University in Quebec. 

Figure 103 shows four ways to cut an equilateral triangle into five 

Figure 102 
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isosceles triangles. The first pattern has no equilateral triangle among 

the five, the second and third patterns both have one equilateral tri- 

angle and the fourth pattern has two equilateral triangles. The four 

patterns, devised by Robert S. Johnson, appear in C r u x  

Mathematicorum (Vol. 4, No. 2, page 53; February 1978). A proof 

by Harry L. Nelson that there cannot be more than two equilateral 

triangles is in the same volume of the journal (No. 4, pages 102- 

104; April 1978). 

The first three patterns of Figure 101 are not unique. Many readers 

sent alternate solutions. The largest number, 13, came from Roberto 

Teodoro Garrido, a civil engineer in Buenos Aires. 

Figure 103 
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5 Measuring with Yen 

Integral distances in centimeters along a line can be measured by 

oneyen Japanese coins, each with a radius of one centimeter, in the 

manner shown in Figure 104. 

6 A New Map-Coloring Game 

The map shown in Figure 105 found by Lloyd Shapley, a mathema- 

tician at the Rand Corporation, proves that when five colors are used 

in playing Steven J. Brams's map-coloring game, there is a map on 

which the maximizer can always win. 

The map is a projection of the skeleton of a dodecahedron, with an 

outside region (A) that represents the "back" face of the solid. The 

maximizer's strategy is always to play on the face of the dodecahedron 

opposite the face where the opponent last played, using the same color. 

(In the illustration regions representing pairs of opposite faces are given 

Figure 104 
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Figure 105 

the same letter.) As you can readily see, this strategy eliminates succes- 

sive colors from further use, forcing the game to the point where the 

minimizer cannot play without using a sixth color. 

Is there a map on which the maximizer can force the use of a 

seventh color when the opponent plays optimally? This remains an 

unsolved problem. 

7 Whim 

John Horton Conway's strategy for his game of whim is as follows. 

Treat the whim move as if it were another pile consisting of one counter 

if there is a pile of four or more counters, and as if it were another pile 

consisting of two counters if there is no pile of four or more. Until 

someone makes the whim move the invisible whim pile remains. Mak- 

ing the whim move removes the whim pile. A whim position is a 

winning position for the player who would win in ordinary nim if the 

whim pile were actually there. The winning strategy, therefore, is sim- 

ply to imagine the whim is present until a player removes it and to play 

the strategy of ordinary nim. If a move changes a position from one in 

which at least one pile has four or more counters to one in which there 
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is n o  such pile, the whim pile acquires its second counter after the 

move, not before. 

Thomas Szirtes made the following comment on the problem about 

Lavinia's room: "The solution is interesting because it is contrary to 

intuition. According to the rules, the location of the minimum-sum dis- 

tance is independent of the relative or even the absolute distances among 

the points. One would feel, for example, that if the rightmost point K 
receded 100 miles, it would somehow 'pull' the minimum sum distance 

point to the right. But this is not the case. In fact, all points to the right 

of F could recede to infinity and all points to the left of F could be 

infinitely close to F, and the minimum sum distance point still would be 

at F!" 

I showed how a square sheet of paper can be folded obliquely along four 

sides to produce a shape that lacks any plane of symmetry yet is superposable 

on its mirror image. Paul Schwink of Carlisle, Iowa, and Piet Hein of 

Copenhagen pointed out that the solution is unnecessarily complicated. The 

same result can be obtained by folding just one pair of opposite sides, one 

up, one down. 

The problem of the mutilated quilt leads to a variety of generalizations. 

In the problem given, if the rectangle is chessboard colored, the 10-by-10 

square will not preserve such coloring. I spent several days exploring squares 

of side n, with an associated rectangle of (n - 1) x (n + 2) sides, with a hole 

of 1 x (n - 2) sides parallel to the rectangle's long side and as centered as 

possible. Assuming the rectangle to be chessboard colored, reader Eric Stott 

asked, Into how few pieces can it be sliced along lattice lines to form a 

properly colored square? 

Consider the rectangle shown in Figure 106. I found it could be sliced 

into as few as three pieces that will form a standard chessboard as shown at 

the top of Figure 107. The generalization to squares of even-numbered sides 

is obvious. If the square's side is odd, one must distinguish between n = 1 



Lav in ia  Seeks a Room a n d  O the r  Prob lems 263 

Figure 106 

Figure 107 
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(mod 4) and n = 3 (mod 4). Examples of each are shown in the middle and 

bottom illustrations. Again it is easy to see how they generalize. 

Twepiece dissections are impossible; four-piece dissections are plentiful 

and easy to find. In all such solutions with three pieces I believe it is impos- 

sible to avoid mirror reflecting the asymmetric piece. 

The task of minimizing the number of acute triangles into which a 

square can be cut suggests companion problems for right triangles, ob- 

tuse triangles, and scalene triangles. For right triangles the trivial answer 

is two; for scalene triangles the easy answer is three. Figure 108 shows 

how a square can be cut into six obtuse triangles. I believe this to be 

minimal. 

Into how many equilateral triangles can an equilateral triangle be cut? 

Two and three are impossible, four is obvious, five is impossible, and any 

number above five is possible. 

Steven J. Brams's mapcoloring game led Robert High, a mathematician 

with Informatics, Inc., of New York City, to some surprising results. Call the 

first player Min (who tries to minimize colors) and the second player Max 

(who tries to maximize colors). I had given a map of six regions on which 

Max can force five colors. High found that a projection of the cube gives a 

simpler six-region map for forcing five colors. Max merely places at each turn 

a new color on the face opposite Min's last play. 

Figure 108 
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The map forcing six colors, which I gave, was a projection of the skel- 

eton of a dodecahedron. High found that if four corners of a cube are 

replaced by triangular faces, as shown in Figure 109, a projection gives a map 

of only ten regions on which Max can force six colors. The strategy is less 

elegant than the one on the dodecahedra1 12-region map and is a bit too 

involved to give here. 

The biggest surprise was High's discovery of a 20-region map on 

which Max can force seven colors! Imagine each corner of a tetrahedron 

replaced by a triangular face, then each of the 12 new corners is replaced 

by a triangular face. Figure 110 shows a planar projection of the resulting 

polyhedron's skeleton. Here the strategy is more complex than the one 

for High's 10-region map, but he sent a game tree that proves the case. 

High conjectures that no planar map allows Max to force more than 

seven colors, but this remains unproved. It is even possible that there is 

no minimum upper bound. 

Figure 109 
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The 
Svmmetrv 
Creations 

of 
Scott Kim 

cott Kim's Inwe~s ions, published in 1981 by Byte Publications, 

is one of the most astonishing and delightful books ever printed. 

Over the years Kim has developed the magical ability to take 

just about any word or short phrase and letter it in such a way that 

it exhibits some kind of striking geometrical symmetry. Consider 

Kim's lettering of my name in Figure 111. Turn it upside down and 

presto! It remains exactly the same. 

Students of curious wordplay have long recognized that short words 
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Figure 111 

can be formed to display various types of geometrical symmetry. O n  

the Rue Mozart in Paris a clothing shop called "New Man" has a large 

sign lettered "New MaN" with the e and the a identical except for 

their orientation. As a result the entire sign has upside-down symme- 

try. The names VISTA (the magazine of the United Nations Associa- 

tion), ZOONOOZ (the magazine of the San Diego zoo) and NISSIN (a 

Japanese manufacturer of camera flash equipment) are all cleverly de- 

signed so that they have upsidedown symmetry. 

BOO HOO, DIOXIDE, EXCEEDED and DICK COHEN DIED 10 DEC 1883 all 

have mirror symmetry about a horizontal axis. If you hold them upside 

down in front of a mirror, they appear unchanged. One day in a super- 

market my sister was puzzled by the name on a box of crackers, "spep 

oop," until she realized that a box of "doo dads" was on the shelf 

upside down. Wallace Lee, a magician in North Carolina, liked to amuse 

friends by asking if they had ever eaten any "ittaybeds," a word he 

printed on a piece of paper like this: 

After everyone said no, he would add: 

"Of course, they taste much better upside down." 

Many short words in conventional typefaces turn into other words 

when they are inverted. MOM turns into WOW and "up" becomes the 

abbreviation "dn." SWIMS remains the same. Other words have mirror 

symmetry about a vertical axis, such as "bid" (and "pig" if the g is 

drawn as a mirror image of the p). Here is an amusing way to write 

"minimum" so that it is the same when it is rotated 180 degrees: 
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It is Kim who has carried this curious art of symmetrical calligra- 

phy to heights not previously known to be possible. By ingeniously 

distorting letters, yet never so violently that one cannot recognize a word 

or phrase, Kim has produced incredibly fantastic patterns. His book is 

a collection of such wonders, interspersed with provocative observa- 

tions on the nature of symmetry, its philosophical aspects, and its em- 

bodiment in art and music as well as in wordplay. 

Kim is no stranger to my Scientific American columns. He is a 

young man of Korean descent, born in the U.S., who in 1981 was 

doing graduate work in computer science at Stanford University. He 

was in his teens when he began to create highly original problems in 

recreational mathematics. Some that have been published in Scientific 

American include his "lost-king tours" (April 1977), the problem of 

placing chess knights on the corners of a hypercube (February 1978), 

his solution to "boxing a box" (February 1979), and his beautifully 

symmetrical "m-pire map" given here in Chapter 6. In addition to a 

remarkable ability to think geometrically (not only in two and three 

dimensions but also in four-space and higher spaces) Kim is a classical 

pianist who for years could not decide between pursuing studies in 

mathematics or in music. At the moment he is intensely interested in 

the use of computers for designing typefaces, a field pioneered by his 

friend and mentor at Stanford, the computer scientist Donald E. Knuth. 

For several years Kim's talent for lettering words to give them unex- 

pected symmetries was confined to amusing friends and designing fam- 

ily Christmas cards. He would meet a stranger at a party, learn his or 

her name, then vanish for a little while and return with the name 

neatly drawn so that it would be the same upside down. His 1977 
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Christmas card, with upside-down symmetry, is shown in Figure 112. 

(Lester and Pearl are his father and mother; Grant and Gail are his 

brother and sister.) The following year he found a way to make "Merry 

Christmas, 1978," mirror-symmetrical about a horizontal axis, and in 

1979 he made the mirror axis vertical. (See Figures 113 and 114.) 

For a wedding anniversary of his parents Kim designed a cake with 

chocolate and vanilla frosting in the pattern shown in Figure 115. ("Les- 

ter" is in black, "Pearl" is upside down in white.) This is Kim's "figure 

and ground" technique. You will find another example of it in Godel, 

Figure 112 
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Figure 113 

Figure 114 

- 

Figure 115 

Escher, Bach: An Eternal Golden Braid, the Pulitzer-prize-winning book 

by Kim's good friend Douglas R. Hofstadter. Speaking of Kurt Godel, 

J. S. Bach and M. C. Escher, Figure 116 shows how Kim has given each 

name a lovely mirror symmetry. In Figure 117 Kim has lettered the entire 

alphabet in such a way that the total pattern has lefc-right symmetry. 

Kim's magic calligraphy came to the attention of Scot Morris, an 

editor at Omni. Morris devoted a page of his popular column on games 
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1 
Figure 116 

to Kim's work in Ornni's September 1979 issue, and he announced a 

reader's contest for similar patterns. Kim was hired to judge the thou- 

sands of entries that came in. You will find the beautiful prizewinners 

Figure 117 
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in Omni's April 1980 issue and close runners-up in Morris' columns 

for May and November of the same year. 

All the patterns in Kim's book are his own. A small selection of a 

few more is given in Figure 118 to convey some notion of the amazing 

variety of visual tricks Kim has up his sleeve. 

I turn now to two unusual mathematical problems originated by 

Kim, both of which are still only partly solved. In 1975, when Kim was 

Figure 118 

updoe 
aavJn 
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in high school, he thought of the following generalization of the old 

problem of placing eight queens on a chessboard so that no queen 

attacks another. Let us ask, said Kim, for the maximum number of 

queens that can be put on the board so that each queen attacks exactly 

n other queens. As in chess, we assume that a queen cannot attack 

through another queen. 

When n is 0, we have the classic problem. Kim was able to prove 

that when n is 1, 10 queens is the maximum number. (A proof is in 

Journal of Recreational Mathematics, Vol. 13, No. 1, page 61 ; 1980-81.) 

A pleasing solution is shown in Figure 119, at the top. The middle 

illustration shows a maximal solution of 14 queens when n is 2, a 

pattern Kim described in a letter as being "so horribly asymmetric that 

it has no right to exist." There are only conjectures for the maximum 

when n is 3 or 4. Kim's best result of 16 queens for n = 3 has the 

ridiculously simple solution shown in Figure 119, bottom, but there is 

no known proof that 16 is maximum. For n = 4 Kim's best result is 20 

queens. Can you place 20 queens on a chessboard so each queen at- 

tacks exactly four other queens? 

The problem can of course be generalized to finite boards of any 

size, but Kim has a simple proof based on graph theory that on no 

finite board, however large, can n have a value greater than 4. For n = 1 
K m  has shown that the maximum number of queens cannot exceed 

the largest integer less than or equal to 4k/3, where k is the number of 

squares along an edge of the board. For n = 2 he has a more difficult 

proof that the maximum number of queens cannot exceed 2k - 2, and 

that this maximum is obtainable on all even-order boards. 

Kim's problem concerning polycube snakes has not previously been 

published, and he and I would welcome any light that readers can 

throw on it. First we must define a snake. It is a single connected chain 

of identical unit cubes joined at their faces in such a way that each cube 

(except for a cube at the end of a chain) is attached face to face to exactly 
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Figure 119 
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two other cubes. The snake may twist in any possible direction, pro- 

vided no internal cube abuts the face of any cube other than its two 

immediate neighbors. The snake may, however, twist so that any num- 

ber of its cubes touch along edges or at corners. A polycube snake may 

be finite in length, having two end cubes that are each fastened to only 

one cube, or it may be finite and closed so that it has no ends. A snake 

may also have just one end and be infinite in length, or it may be 

infinite and endless in both directions. 

We now ask a deceptively simple question. What is the smallest 

number of snakes needed to fill all space? We can put it another way. 

Imagine space to be completely packed with an infinite number of unit 

cubes. What is the smallest number of snakes into which it can be 

dissected by cutting along the planes that define the cubes? 

If we consider the twodimensional analogue of the problem (snakes 

made of unit squares), it is easy to see that the answer is two. We simply 

intertwine two spirals of infinite one-ended flat snakes, one gray, one 

white, as in Figure 120. 
The question of how to fill three-dimensional space with polycube 

snakes is not so easily answered. Kim has found a way of twisting four 

Figure 120 
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infinitely long oneended snakes (it is convenient to think of them as 

being each a different color) into a structure of interlocked helical shapes 

that fill all space. The method is too complicated to explain in a limited 

space; you will have to take my word that it can be done. 

Can it be done with three snakes? Not only is this an unanswered 

question but also Kim has been unable to prove that it cannot be done 

with two! "A solution with only two snakes," he wrote in a letter, "would 

constitute a sort of infinite three-dimensional yin-yang symbol: the 

negative space left by one snake would be the other snake. It is the beauty 

of such an entwining, and the possibility of building a model large 

enough to crawl through, that keeps me searching for a solution." 

The problem can of course be generalized to snakes made of unit 

cubes in any number of dimensions. Kim has conjectured that in a 

space of n dimensions the minimum number of snakes that completely 

fill it is 2(n - I), but the guess is still a shaky one. 

A few years ago I had the pleasure of explaining the polycube-snake 

problem to John Horton Conway, the Cambridge mathematician. When 

I concluded by saying Kim had not yet shown that two snakes could not 

tile three-dimensional space, Conway instantly said, "But it's obvious 

that-" He checked himself in mid-sentence, stared into three-space for 

a minute or two, then exclaimed, "It's not obvious!" 

I have no idea what passed through Conway's mind. I can only 

say that if the impossibility of filling three-space with two snakes is 

not obvious to Conway or to Kim, it probably is not obvious to any- 

one else. 

Answers 

Readers were asked to place 20 queens on a chessboard so that each 

queen attacks exactly four others. A solution is given in Figure 121. 
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Figure 121 

Dozens of readers sent examples of printed words and even sentences 

that are unreversed in mirrors, or which change to other words. (See Fig- 

ure 122 for an example.) Several readers noticed that TOYOTA, written 

vertically, is unaltered by a mirror. I discovered that the following garbled 

sentence: 

Figure 122 



MOM
top

OTTO
A

got

reads properly when you see it in a mirror.
David Morice published this two-stanza “poem” in Wordways

(November 1987, page 235).

DICK HID
CODEBOOK +

DOBIE KICKED
HOBO–OH HECK–I DECIDED

I EXCEEDED ID–I BOXED
HICK–ODD DODO–EH KID

DEBBIE CHIDED–HOCK CHECKBOOK
ED–BOB BEDDED CHOICE CHICK

HO HO–HE ECHOED–OH OH
DOBIE ICED HOODED IBEX

I COOKED OXHIDE COD
EDIE HEEDED COOKBOOK +

ED
DECKED

BOB

To read the second stanza, hold the poem upside down in front of a
mirror.

Donald Knuth, Ronald Graham, and Oren Patashnik, in their marvel-
ous book Concrete Mathematics (the word is a blend of Continuous and
Discrete mathematics), published by Addison-Wesley in 1989, introduce
their readers to the “umop-apisdn” function. Rotate the word 180 degrees
to see what it means in English.

One conjecture about the origin of the expression “Mind your ps and
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qs" is that printers often confused the two letters when they were in lower- 

case. A more plausible theory is that British tavern owners had to mind their 

pints and quarts. 

In his autobiography Arrow in the Blue, Arthur Koestler recalls meeting 

many science cranks when he was a science editor in Berlin. One was a man 

who had invented a new alphabet. Each letter had fourfold rotational symme- 

try. This, he proclaimed, made it possible for four people, seated on the four 

sides of a table, to simultaneously read a book or newspaper at the table's 

center. 

Have you heard about the dyslexic atheist who didn't believe in dog? Or  

D.A.M.N., an organization of National Mothers Against Dyslexia? 

I could easily write another chapter about the amazing Scott Kim. He 

received his Ph.D. in Computers and Graphic Design, at Stanford University, 

working under Donald Knuth. At a curious gathering of mathematicians, 

puzzle buffs, and magicians, in Atlanta in 1995, Kim demonstrated how your 

fingers can model the skeleton of a tetrahedron and a cube, and how they can 

form a trefoil knot of either handedness. He also played an endless octave on 

a piano, each chord rising up the scale yet never going out of hearing range, 

and proved he could whistle one tune and hum another at the same time. 

During the Atlanta gathering, he and his friends Karl Schaffer and Erik 

Stern of the Dr. Schaffer & Mr. Stem Dance Ensemble presented a dance 

performance titled "Dances for the Mind's Eye." Choreographed by the 

three performers, the performance was based throughout on mathematical 

symmetries. 

Among books illustrated by Kim are my Aha! Gotcha (W. H. Freeman) 

and Ilan Cardi's Illustrated Computational Recreations in Mathematica 

(Addison-Wesley). Together with Ms. Robin Samelson, Kim produced 

Letterform and Illusion, a computer disk with an accompanying 48-page book 

of programs designed for use with Claris's MacPaint. In 1994 Random 

House published Kim's Puzzle Workout, a collection of 42 brilliant puzzles 

reprinted from his puzzle column in New Media Magazine. It is the only 

book of puzzles known to me in which every single puzzle is totally origi- 

nal with the author. 
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Scott Kim's queens problem brought many letters from readers who sent 

variant solutions for n = 2, 3, and 4 on the standard chessboard, as well as 

proofs for maximum results, and unusual ways to vary the problem. The 

most surprising letters came from Jeffrey Spencer, Kjell Rosquist, and Wil- 
liam Rex Marshall. Spencer and Rosquist, writing in 1981, each indepen- 

dently bettered by one Kim's 20-queen solution for n = 4 on the chessboard. 

Figure 123 shows how each placed 21 queens. It is not unique. Writing in 

1989 from Dunedin, New Zealand, Marshall sent 36 other solutions! 

Marshall also went two better than Kim's chessboard pattern for n = 3. 
He sent nine ways that 18 queens can each attack three others on the chess- 

board. The solution shown in Figure 124 is of special interest because only 

three queens are not on the perimeter. Marshall found a simple pigeonhole 

proof that for the order-8 board, n = 4, 21 queens is indeed maximum. His 

similar proof shows 18 maximum for n = 3. More generally, he showed that 

for n = 4, with k the order of the board, the maximum is 3k - 3 for k greater 

than 5. When n = 3, Marshall proved that the maximum number of queens 

is the largest even number less than or equal to (12k - 4)/5. For n = 2, he 

found that Kim's formula of 2k - 2 applies to all boards larger than order 2, 

not just to boards of even order. 

Figure 123 

Figure 124 
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Perhaps it is worth noting that when n = 4, no queen can occupy a 

corner cell because there is no way it can attack more than three other 

queens. Dean Hoffman sent a simple proof that n cannot exceed 4. Consider 

the topmost queen in the l e h o s t  occupied row. At the most it can attack 

four other queens. 

In 1991 Peter Hayes sent a letter from Melbourne, Australia, in which he 

independently obtained the same results, including all proofs, as those ob- 

tained by William Marshall. They were published in a paper tided "A Prob- 

lem of Chess Queens," in the Journal of Recreational Mathematics, Vol. 24, 

pages 264-271; No. 4, 1992. 

In 1996 I received a second letter from William Marshall. He sent me 

the results of his computer program which provided complete solutions of 

Kim's chess problem for k (the order of the board) = 1 through 9, and n 

(number of attacked queens) = 1 through 4. A chart extending these results 

to k = 10 is shown in Figure 125. 

Note that in four cases there are unique solutions. These are shown in 

Figure 126. Figure 127 shows a second solution for n = 2, k = 8, and Figure 

128 is an elegant solution for n = 3, k = 9 found among the 755 patterns 

produced by Marshall's program. 

Dr. Koh Chor Jin, a physicist at the National University of Singapore, 

sent a clever proof that given a finite volume of space it is possible to cover it 

with two of Kim's cube-connected snakes. However, as Kim pointed out, Jin's 

construction does not approach all of space as a limit as the volume of space 

Figure 125 



T h e  Svrnmet rv  C rea t i ons  o f  Sco t t  K i m  

increases. Each time you wish to enlarge his construction, it has to be modi- 

fied. Kim is convinced that tiling all of space with two snakes is impossible, 

but for three snakes the question remains open. 

Figure 126 

Figure 127 Figure 128 
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Parabolas 

athematicians are constantly constructing and exploring the 

properties of abstract objects only because they find them beau- 

tiful and interesting. Later, sometimes centuries later, the o b  

jects may Nrn out to be enormously useful when they are applied to the 

physical world. There are no more elegant examples of this than the 

work done in ancient Greece on the four conic-section curves. Earlier 

articles of mine have dealt with three of them: circles, ellipses, and 

hyperbolas. This time we take a look at parabolas. 
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If a right circular cone is sliced by a plane parallel to its base, the 

cross section is a circle. Tip the plane ever so slightly and the section 

becomes an ellipse, the locus of all points with distances from two fixed 

points (foci) that have a constant sum. Think of the circle as an ellipse 

with foci that have merged to become the center of the circle. As the 

cutting plane tips at progressively steeper angles, the two foci move 

farther apart and the ellipses become progressively more "eccentric." 

When the plane is exactly parallel to the side of the cone, the cross 

section is a parabola. It is a limit curve, like the circle, only now one 

focus has vanished by moving off to infinity. It is an ellipse, as Henri 

Fabre once put it, that "seeks in vain for its second, lost center." 

As you follow the parabola's arms toward infinity, they get pro- 

gressively closer to being parallel without ever making it except at in- 

finity. Here is how Johannes Kepler put it in a discussion of conic 

sections: 

Because of its intermediate nature the parabola occupies a 
middle position [between the ellipse and the hyperbola]. As 
it is produced it does not spread out its arms like the hy- 
perbola but contracts them and brings them nearer to par- 
allel, always encompassing more, yet always striving for less- 
whereas the hyperbola, the more it encompasses, the more 
it tries to obtain. 

A parabola is the locus of all points in a plane whose distance from 

a fixed line (the directrix) is equal to its distance from a fixed point 

(focus) not on the line. Figure 129 shows the traditional way of graph- 

ing a parabola so that its Cartesian-coordinate equation is extremely 

simple. Note that the axis of the parabola passes through the focus at 

right angles to the directrix, and that the tip of the curve, called the 

vertex, is at the 0,O point of origin. The chord passing through the 

focus, perpendicular to the axis is the parabola's latus rectum, or focal 

width. Let a be the distance from the focus to the vertex. Obviously a 
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is also the distance from the vertex to the directrix. It is not hard to 

prove that the latus rectum must be 4a. The parabola can now be 

described as the locus of all points on the Cartesian plane given by the 

parabola's type equation: y2 = 4ax. If y2 = x2, the parabola's vertex is at 

0,O. More generally, any quadratic equation of the form x = a$ + by + 
c, where a is not zero, graphs as a parabola, although not necessarily a 

parabola positioned like the typical one shown in the illustration. 

A surprising property of the parabola is that all parabolas have the 

same shape. To be sure, pieces of parabolas, like the two shown in 

Figure 130, have different shapes. If you think of either segment as 

being extended to infinity, however, you can take the other one, make a 

Figure 129 

VERTEX ' 
(AT 0,O) 

PARABOLA A 

/ I ) LATUS RECTUM (4a) 
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suitable change of scale and then place it somewhere on the infinite 

curve where it will exactly fit. 

This property of varying only in size is one the parabola shares with 

the circle, although not with ellipses and hyperbolas. All circles are 

similar because single points are similar. All parabolas are similar be- 

cause all pairs of a line and a point not on the line are similar. To put 

it another way, any directrix-focus pair will coincide with any other by 

a suitable dilation, translation, and rotation. Any parabola, drawn on 

graph paper of the right size and properly positioned, can be given any 

desired quadratic formula of the form x = ay2 + by + c. 

Figure 130 
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If you throw a stone horizontally, it follows a path close to a pa- 

rabola, as Leonardo da Vinci conjectured in the 1490s, and Galileo 

proved in 1609, although he did not publish his proof until 30 years 

later. You can repeat one of Galileo's experiments by rolling a marble 

dipped in ink sideways across an inclined plane. If the plane is covered 

with graph paper, the path recorded by the marble will enable you to 

calculate the curve's parabolic formula. I n  actual practice the parabolic 

path of a projectile is slightly distorted by the earth's roundness and 

much more by air resistance. 

In  Galileo's Dialogues Concerning Two New Sciences he discusses at 

length the distorting influence of both the earth's not being flat and 

the air's viscosity. It is amusing to note that he discounts the deviation 

caused by the earth's roundness as being negligible because the range 

of military projectiles "will never exceed four miles." 

The resistance of air to the flight of a bullet gives rise to a trajectory 

so resembling the curve of a breast that one of Norman Mailer's army 

officers, near the end of his novel The Naked and the Dead, sketches 

several pictures of the curve and muses: 

That form . . . is the fundamental curve of love, I suppose. It 
is the curve of all human powers (disregarding the plateau of 
learning, the checks upon decline) and it seems to be the 
curve of sexual excitement and discharge, which is after all 
the physical core of life. What is this curve? It is the funda- 
mental path of any projectile, of a ball, a stone, an arrow (Nietzsche's 
arrow of longing) or of an artillery shell. It is the curve of 
the death missile as well as an abstraction of the life-love 
impulse; it demonstrates the form of existence, and life and 
death are merely different points of observation on the same 
trajectory. The life viewpoint is what we see and feel astride 
the shell, it is the present, seeing, feeling, sensing. The death 
viewpoint sees the shell as a whole, knows its inexorable end, 
the point toward which it has been destined by inevitable 
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physical laws from the moment of its primary impulse when 
it was catapulted into the air. 

To carry this a step further, there are two forces con- 
straining the projectile to its path. If not for them, the mis- 
sile would forever rise on the same straight line. 7' These 
forces are gravity and wind resistance and their effect is pro- 
portional to the square of the time; they become greater and 
greater, feeding upon themselves in a sense. The projectile 
wants to go this way /r and gravity goes down J. and wind 
resistance goes t. These parasite forces grow greater and 
greater as time elapses, hastening the decline, shortening the 
range. If only gravity were working, the path would be sym- 
metrical 

it is the wind resistance that produces the tragic curve 

In  the larger meanings of the curve, gravity would occupy 
the place of mortality (what goes up must come down) and 
wind resistance would be the resistance of the medium . . . 
the mass inertia or  the inertia of the masses through which 
the vision, the upward leap of a culture is blunted, slowed, 
brought to its early doom. 

A jet of water from a hose also follows an almost perfect pa- 

rabola. If when you water a lawn you slowly lower the angle of the 

hose jet from the near vertical to the near horizontal, the tops of the 

parabolic jets trace an ellipse, but the envelope of the jets is another 

parabola. 

Some comets may follow parabolic paths. Comets that return peri- 

odically to the solar system move along extremely eccentric elliptical 

paths, but (as we have seen) the more eccentric an ellipse is, the closer 
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it resembles a parabola. Since the parabola is a limit between the el- 

lipse and the hyperbola, it is almost impossible to tell from observing 

a comet near the sun whether it is following an extremely eccentric 

ellipse (in which case it will return) or a parabola or hyperbola (in 

which case it will never return). If the path is parabolic, the comet's 

velocity will equal its escape velocity from the solar system. If the veloc- 

ity is less, the path is elliptical; if it is more, the path is hyperbolic. 

The parabola's outstanding applications in technology are based 

on the reflection property displayed in Figure 131. Draw a line from 

the focus f to any point p, and draw tangent a b  to the curve at p. A line 

cd,  drawn through p so that angle a p f  equals angle bpd,  will be perpen- 

dicular to the directrix. It follows that if the parabola is viewed as a 

reflecting line, any ray of light from the focus to the curve will rebound 

along a path parallel to the curve's axis. 

Imagine now that the parabola is rotated about its axis to gener- 

ate the surface called a paraboloid. If light rays originate at the focus, 

the paraboloid will reflect the rays in a beam parallel to the axis. That 

is the principle behind the searchlight. Of course the principle also 

works the other way. Rays of light, parallel to the axis, shining into a 

concave mirror with a paraboloid surface, will all be directed toward 

the focus. That is the secret of reflecting telescopes, solar-energy con- 

centrators, and microwave receiving dishes. Because large paraboloid 

mirrors are easier to build than transparent lenses of comparable size 

all giant telescopes are now of the reflecting type. Other optical de- 

vices serve to bring the image from the focus to an eyepiece or a pho- 

tographic plate. As a child you may have learned how to set fire to a 

piece of paper by focusing the sun's rays with a glass lens. It can be 

done just as efficiently with a paraboloid mirror, with the paper held 

at the surface's focus. 

If a pan of water is rotated, the surface of the water forms a parabo- 

loid. This suggested to the physicist R. W. Wood that perhaps a reflect- 
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Figure 131 

ing telescope could be made by rotating a large dish of mercury and 

exploiting the paraboloid surface as a mirror. He actually built such a 

telescope, but there were so many difficulties in making the surface 

sufficiently smooth that the idea had to be abandoned. 

Assume that a paraboloid has a flat base perpendicular to its axis, 

so that it looks like a rounded hill. How do you calculate its volume? 

Archimedes found the amazingly simple formula. The volume is pre- 

cisely 1.5 times that of a cone with the same circular base and the same 

axis. 

A parabola is closely approximated by the cables that support a 

suspension bridge. The curve is distorted if the weight of the bridge is 



not uniform or if the weight of the cables is great in relation to that of the
bridge. In the latter case the curve is hard to distinguish from the one
known as a catenary (from the latin catena, chain). Galileo mistakenly
thought the curve formed by a chain suspended at the ends was a parabo-
la. Decades later it was shown to be a catenary, a curve that is not even
algebraic because its equation contains the transcendental number e.

There is a curious relation between the parabola and the catenary
that is not well known. If you roll a parabola along a straight line, as
shown in Figure 132, top, the “locus of the focus” is a perfect catenary.
Perhaps more surprising (although it is easier to prove) is what happens
whenen two parabolas of the same size are placed with their vertexes
touching and one is rolled on the other as shown in Figure 132, bottom.
The focus of the rolling parabola moves along the directrix of the fixed
parabola, and its vertex traces a cissoid curve!

One of the earliest problems concerning parabolas was that of
“squaring” the area of a section of the curve bounded by a chord, such
as the shaded region in Figure 133. The problem was first solved by
Archimedes in his famous treatise Quadrature of the Parabola. By an

The Gateway Arch at the Jefferson
National Expansion Memorial in
St. Louis, Missouri is the largest 
such arch. It rises 630 ft. above the
ground at its center and the feet
stand 630 ft apart.
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Figure 132 

ingenious method of limits that anticipated the integral calculus, he 

was able to prove that if you circumscribe a parallelogram as is shown 

in the illustration, with its sides parallel to the parabola's axis, the area 
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of the parabolic segment is 2/3 that of the parallelogram. (Archimedes 

first guessed this by comparing the weight of the parallelogram with 

the weight of the segment.) Archimedes also used the parabola for an 

elegant way to construct the regular heptagon. Earlier geometers had 

exploited parabolas for the classic task of doubling the cube: construct- 

ing a cube with twice the volume of a given cube. 

There are many techniques for drawing parabolas without having to 

plot myriads of points on a sheet of paper. Perhaps the simplest relies 

on a T square and a piece of string. One end of the string is attached to 

a corner of the T square's arm as shown in Figure 134, and the other 

end is attached to the parabola's focus. The string must have a length 

AB. A pencil point at x, pressing against the arm of the T square, keeps 

the string taut. As the T square slides along the directrix, the pencil 

moves up the side of the T square to trace the parabola's right arm. 

Reflecting the arrangement to the other side draws the left arm. This 

method was invented, or possibly reinvented, by Kepler. You can work 

with a right triangle or a rectangle instead of a T square and slide it 

Figure 133 
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Figure 134 

along the edge of a ruler. It is easy to see that the string's constant 

length ensures that any point on the curve is equally distant from the 

focus and the directrix. 

Lovely parabolas can be produced more easily by paper folding. Just 

mark a focus point anywhere on a sheet of translucent paper, rule a 

directrix, and fold the sheet many times so that the line goes through 

the point each time. Each crease will be tangent to the same parabola, 

outlining the curve shown in Figure 135. If the paper is opaque, use 

one edge of the sheet for the directrix, folding it over to meet the point. 

Familiarity with parabolas can ofien provide quick answers to alge- 

braic questions. Consider, for example, this pair of simultaneous equa- 

tions involving the two lucky numbers of craps: 



P a r a b o l a s  297 

Figure 135 

It does not take long to discover that if x equals 2 and y equals 3, 
both equations are satisfied. Let us ask two questions: 

1. Are there other integral solutions (where x and y are whole num- 

bers, positive or negative)? 

2. How many solutions are there altogether? 

A more difficult problem, for which a parabola gives an answer, 

comes from Ronald L. Graham of Bell Laboratories, who both framed 

and solved it. It is published here for the first time. Imagine that you 

have an infinite supply of identical disks with a diameter less than 1/2 
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of some unit distance, say 1/10. Is it possible to put all of them in a 

plane, without overlapping, so that no distance between any pair of 

points in the disks is an integer? 

Since each disk is only 1/10 in diameter, no two points on the same 

disk can be an integral distance apart, but it is conceivable that by a 

clever arrangement of disks, with their centers on a straight line, no 

point in one disk will be an integral distance from a point in any other 

disk. It is not difficult to prove that it is impossible. In fact, any arrange- 

ment of an infinity of disks on a straight line will create an infinity of 

pairs of disks in which an infinity of pairs of points (all exactly on the 

line) will be separated by integral distances. 

To see how it works suppose you have placed a disk of diameter 

1/10 on the line as shown by the unshaded circle in Figure 136, top. The 

shaded circles (marked a ') are spaced with their centers a unit distance 

apart, extending to infinity in both directions. Clearly no second disk 

can be put on the line where it overlaps or touches a shaded circle; oth- 

erwise the disk will contain a point on the line that is an integral dis- 

tance from a point on the line in disk a. W e  assume that points on the 

circumference of a disk are in the disk.) 

It is possible, of course, to put a second disk on the line between 

any pair of adjacent circles provided it does not touch or overlap either 

circle. For example, a second disk b can be placed as shown at the 
bottom of Figure 136. At once the line acquires another infinite set of 

circles (shaded and labeled b ') at regular unit spacings, indicating that 

no third disk can be put where it overlaps or touches them. The same 

holds for additional disks. Since no more than eight disks will go 

without touching or overlapping in the finite space separating any pair 

of the first set of circles, it follows that no more than nine disks can be 

put on the line. A 10th disk, added anywhere, will contain an infinity 

of points that are integral distances from points in one of the nine 

previously positioned disks. 
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Figure 136 

The proof generalizes in an obvious way to all disks smaller than 1 
in diameter. If the denominator of the diameter is an integer, subtract 

1 to get the maximum number of disks that can be positioned. If the 

denominator is not an integer, round it down to the nearest integer. 

Thus no disk of diameter 1 can be used. Only one disk of diameter 

1/2 or diameter I /& can be put on the line, only two disks of diam- 

eter 1/3, only three of diameter 1/4 or diameter l/x, only four of diam- 

eter i/4.5, and so on. 

Although the problem cannot be solved by a straight line, it can be 

solved by a parabola. 

Answers 

The first problem asked for the use of a parabola to provide a quick 

proof of the number of solutions for the pair of equations: xZ + y = 7 and 

x + y2 = 11. The equations graph as two crossed parabolas, as shown in 

Figure 137. Since the parabolas intersect at just four points, there are just 

four solutions. Only one (x = 2, y = 3) is in integers. Even if your graphing 

is imprecise, you can prove that the other three solutions are not in whole 

numbers by testing the numbers indicated by the lattice crossings nearest 

the intersections. The actual numbers, all of them irrational, have the 

approximate values given in the illustration. 

The second problem, from Ronald L Graham, asked how an infi- 
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Figure 137 

nite number of identical disks with diameters of less than 1, say 1/10, 

could be placed in the plane so that n o  two points in the disks are an 

integral distance apart. One  solution is to place them with their centers 

o n  a parabola of the form y = x2, with their centers at points (1,1), 

(3,9), (9,81), . . ., (3k,32k), . . . . I lack space for Graham's unpublished 

proof, so I reluctantly leave it as an exercise for interested readers. 

In Thomas Pynchon's well-known novel Gravity's Rainbow, the rainbow 

is the parabolic trajectory of a rocket, a symbol of the rise and fall of cultures. 

Pynchon strengthens the metaphor by other references to parabolas, such as 

the parabolic arches that led to Berlin's slums, and Germany's failed effort to 

construct a parabolic sound-mirror. 
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Non-Euclidean 

"Lines that are parallel 
meet at Infinity!" 
Euclid repeatedly, 
heatedly, 

urged. 
Until he died, 
and so reached that vicinity: 
in it he 
found that the damned things 

diverged. 

-Piet Hein, Grooks VI 

uclid's Elements is dull, long-winded, and does not make explicit 

the fact that two circles can intersect, that a circle has an outside 

and an inside, that triangles can be turned over, and other as- 

sumptions essential to his system. By modem standards Bertrand Russell 

could call Euclid's fourth proposition a "tissue of nonsense" and de- 

clare it a scandal that the Elements was still used as a textbook. 

O n  the other hand, Euclid's geometry was the first major effort to 

organize the subject as an axiomatic system, and it seems hardly fair to 
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find fault with him for not anticipating all the repairs made when 

David Hilbert and others formalized the system. There is no more 

striking evidence of Euclid's genius than his realization that his notori- 

ous fifth postulate was not a theorem but an axiom that had to be 
accepted without proof. 

Euclid's way of stating the postulate was rather cumbersome, and it 

was recognized early that it could be given the following simpler form: 

Through a point on a plane, not on a given straight line, only one line 

is parallel to the given line. Because this is not quite as intuitively 

obvious as Euclid's other axioms mathematicians tried for 2,000 years 

to remove the postulate by making it a theorem that could be estab- 

lished on the basis of Euclid's other axioms. Hundreds of proofs were 

attempted. Some eminent mathematicians thought they had succeeded, 

but it always turned out that somewhere in their proof an assumption 

had been made that either was equivalent to the parallel postulate or 

required the postulate. 

For example, it is easy to prove the parallel postulate if you assume 

that the sum of the angles of every triangle equals two right angles. 

Unfortunately you cannot prove this assumption without using the par- 

allel postulate. An early false proof, attributed to Thales of Miletus, rests 

on the existence of a rectangle, that is, a quadrilateral with four right 

angles. You cannot prove, however, that rectangles exist without using 

the parallel postulate! In the 17th century John Wallis, a renowned 

English mathematician, believed he had proved the postulate. Alas, he 

failed to realize that his assumption that two triangles can be similar but 

not congruent cannot be proved without the parallel postulate. Long 

lists can be made of other assumptions, all so intuitively obvious that 

they hardly seem worth asserting, and all equivalent to the parallel 

postulate in the sense that they do not hold unless the postulate holds. 

In the early 19th century trying to prove the postulate became some- 

thing of a mania. In Hungary, Farkas Bolyai spent much of his life at 
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the task, and in his youth he discussed it often with his German friend 

Karl Friedrich Gauss. Farkas' son Janos became so obsessed by the 

problem that his father was moved to write in a letter: "For God's sake, 

I beseech you, give it up. Fear it no less than sensual passions because 

it too may take all your time and deprive you of your health, peace of 

mind and happiness in life." 

Janos did not give it up, and soon he became persuaded not only 

that the postulate was independent of the other axioms but also that a 

consistent geometry could be created by assuming that through the 

point an infinity of lines were parallel to the given line. "Out of nothing 

I have created a new universe," he proudly wrote to his father in 1823. 

Farkas at once urged his son to let him publish these sensational 

claims in an appendix to a book he was then completing. "If you have 

really succeeded, it is right that no time be lost in making it public, for 

two reasons: first, because ideas pass easily from one to another who 

can anticipate its publication; and secondly, there is some truth in this, 

that many things have an epoch in which they are found at the same 

time in several places, just as the violets appear on every side in spring. 

Also every scientific struggle is just a serious war, in which I cannot say 

when peace will arrive. Thus we ought to conquer when we are able, 

since the advantage is always to the first comer." 

Janos' brief masterpiece did appear in his father's book, but as it 

happened the publication of the book was delayed until 1832. The 

Russian mathematician Nikolai Ivanovitch Lobachevski had beat him 

to it by disclosing details of the same strange geometry (later called by 

Felix Klein hyperbolic geometry) in a paper of 1829. What is worse, 

when Farkas sent the appendix to his old friend Gauss, the Prince of 

Mathematicians replied that if he praised the work, he would only be 

praising himself, inasmuch as he had worked it all out many years 

earlier but had published nothing. In other letters he gave his reason. 

He did not want to arouse an "outcry" among the "Boeotians," by 
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which he meant his conservative colleagues. (In ancient Athens the 

Boeotians were considered unusually stupid.) 

Crushed by Gauss's response, Janos even suspected that his father 

might have leaked his marvelous discovery to Gauss. When he later 
learned of Lobachevski's earlier paper, he lost interest in the topic and 

published nothing more. "The nature of real truth of course cannot but 

be one and the same in Marcos-Vasarhely as in Kamchatka and on the 

moon," he wrote, resigned to having published too late to win the 

honor for which he had so passionately hoped. 

In some ways the story of the Italian Jesuit Giralamo Saccheri is 

even sadder than that of Bolyai. As early as 1733, in a Latin book called 

Euclid Cleared of All Blemish, Saccheri actually constructed both types 

of non-Euclidean geometry (we shall come to the second type below) 

without knowing it! Or so it seems. At any rate Saccheri refused to 

believe either geometry was consistent, but he came so close to accept- 

ing them that some historians think he pretended to disbelieve them 

just to get his book published. "To have claimed that a non-Euclidean 

system was as 'true' as Euclid's," writes Eric Temple Bell (in a chapter 

on Saccheri in The Magic of Numbers), ('would have been a foolhardy 

invitation to repression and discipline. The Copernicus of Geometry 

therefore resorted to subterfuge. Taking a long chance, Saccheri de- 

nounced his own work, hoping by this pious betrayal to slip his heresy 

past the censors." 

I cannot resist adding two anecdotes about the Bolyais. Janos was a 

cavalry officer (mathematics had always been strictly a recreation) known 

for his swordsmanship, his skill on the violin, and his hot temper. He 

is said to have once challenged 13 officers to duels, provided that after 

each victory he would be allowed to play to the loser a piece on his 

violin. The elder Bolyai is reported to have been buried at his own 

request under an apple tree, with no monument, to commemorate 

history's three most famous apples: the apple of Eve, the golden apple 
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Paris gave Venus as a beauty-contest prize, and the falling apple that 

inspired Isaac Newton. 

Before the 19th century had ended it became clear that the parallel 

postulate not only was independent of the others but also that it could 

be altered in two opposite ways. If it was replaced (as Gauss, Bolyai, and 

Lobachevski had proposed) by assuming an infinite number of 

"ultraparallel" lines through the point, the result would be a new geom- 

etry just as elegant and as "true" as Euclid's. All Euclid's other postu- 

lates remain valid; a "straight" line is still a geodesic, or shortest line. In 

this hyperbolic space all triangles have an angle sum less than 180 
degrees, and the sum decreases as triangles get larger. All similar poly- 

gons are congruent. The circumference of any circle is greater than pi 

times the diameter. The measure of curvature of the hyperbolic plane is 

negative (in contrast to the zero curvature of the Euclidean plane) and 

everywhere the same. Like Euclidean geometry, hyperbolic geometry 

generalizes to three-space and all higher dimensions. 

The second type of non-Euclidean geometry, which Klein names 

"elliptic," was later developed simultaneously by the German mathema- 

tician Georg Friedrich Bernhard Riemann and the Swiss mathemati- 

cian Ludwig Schlafli. It replaces the parallel postulate with the assump- 

tion that through the point no line can be drawn parallel to the given 

line. In this geometry the angle sum of a triangle is always more than 

180 degrees, and the circumference of a circle is always less than pi 

times the diameter. Every geodesic is finite and closed. The lines in 

every pair of geodesics cross. 

To prove consistency for the two new geometries various Euclidean 

models of each geometry were found showing that if Euclidean geom- 

etry is consistent, so are the other two. Moreover, Euclidean geometry 

has been "arithmetized," proving that if arithmetic is consistent, so too 

is Euclid's geometry. We now know, thanks to Kurt Godel, that the 

consistency of arithmetic is not provable in arithmetic, and although 
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there are consistency proofs for arithmetic (such as the famous proof by 

Gerhard Gentzen in 1936), no such proof has yet been found that can 

be considered entirely constructive by an intuitionist [see "Constructive 

Mathematics," by Allan Calder: Scientific American, October 19791. God 
exists, someone once said, because mathematics is consistent, and the 

Devil exists because we are not able to prove it. 

The various metaproofs of arithmetic's consistency, as Paul C. 
Rosenbloom has put it, may not have eliminated the Devil, but they 

have reduced the size of hell almost to zero. In any case no mathemati- 

cian today expects arithmetic (therefore also Euclidean and non-Euclid- 

ean geometries) ever to produce a contradiction. Curiously, Lewis Carroll 

was one of the last mathematicians to doubt non-Euclidean geometry. 

"It is a strange paradox," the geometer H.S.M. Coxeter has written, 

"that he, whose Alice in Wonderland could alter her size by eating a 

little cake, was unable to accept the possibility that the area of a triangle 

could remain finite when its sides tend to infinity." 

What Coxeter had in mind can be grasped by studying M.C. Escher's 

Circle Limit III, reproduced in Figure 138. This 1959 woodcut (one of 

Escher's rare works with several colors in one picture) is a tessellation 

based on a Euclidean model of the hyperbolic plane that was con- 

structed by Henri Poincare. In Poincare's ingenious model every point 

on the Euclidean plane corresponds to a point inside (but not on) the 

circle's circumference. Beyond the circle there is, as Escher put it, "abso- 

lute nothingness ." 
Image that Flatlanders live on this model. As they move outward 

from the center their size seems to us to get progressively smaller, al- 

though they are unaware of any change because all their measuring 

instruments similarly get smaller. At the boundary their size would 

become zero, but they can never reach the boundary. If they proceed 

toward it with uniform velocity, their speed (to us) steadily decreases, 

although to them it seems constant. Thus their universe, which we see 
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Figure 138 

as being finite, is to them infinite. Hyperbolic light follows geodesics, 

but because its velocity is proportional to its distance from the bound- 

ary it takes paths that we see as circular arcs meeting the boundary at 

right angles. 

In this hyperbolic world a triangle has a maximum finite area, as is 

shown in Figure 139, although its three "straight" sides go to infinity in 

hyperbolic length and its three angles are zero. You must not think of 

Escher's mosaic as being laid out on a sphere. It is a circle enclosing an 

infinity of fish-Coxeter calls it a "miraculous draughty'-that get progres- 

sively smaller as they near the circumference. In the hyperbolic plane, of 

which the picture is only a model, the fish are all identical in size and 
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Figure 139 

shape. It is important to remember that the creatures of a hyperbolic 

world would not change in shape as they moved about, light would not 

change in speed, and the universe would be infinite in all directions. 

The curved white lines in Escher's woodcut do not, as many people 

have supposed, model hyperbolic geodesics. The lines are called equi- 

distant curves or hypercycles. Each line has a constant perpendicular 

distance (measured hyperbolically) from the hyperbolic straight line that 

joins the arc's ends. Note that along each white curve fish of the same 

color swim head to tail. If you consider all the points where four fins 

meet, these points are the vertexes of a regular tiling of the hyperbolic 

plane by equilateral triangles with angles of 45 degrees. The centers of 

the triangles are the points where three left fins meet and three mouths 

touch three tails. The 45-degree angles make it possible for eight tri- 

angles to surround each vertex, where in a Euclidean tiling by equilat- 

eral triangles only six triangles can surround each vertex. 

Escher and Coxeter had corresponded from the time they met in 

1954, and Escher's interest in tilings of the hyperbolic plane had been 

aroused by the illustrations in a 1957 paper on crystal symmetry that 

Coxeter had written and sent to him. In a lovely article titled "The 
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Non-Euclidean Symmetry of Escher's Picture 'Circle Limit 111'" (in the 

journal Leonardo, Vol. 12, pages 19-25; 1979) Coxeter shows that each 

white arc meets the boundary at an angle of almost 80 degrees. (The 

precise value is 27'4 + 25'4 arc secants.) Coxeter considers Circk Limit III 
the most mathematically sophisticated of all Escher's pictures. It even 

anticipated a discovery Coxeter did not make until five years after the 

woodcut was finished! 

Elliptic geometry is roughly modeled by the surface of a sphere. 

Here Euclidean straight lines become great circles. Clearly no two can 

be parallel, and it is easy to see that triangles formed by arcs of great 

circles must have angles that add up to more than two right angles. The 

hyperbolic plane is similarly modeled by the saddle-shaped surface of a 

pseudosphere, generated by rotating a tractrix about its asymptote. 

It is a misuse of the word "crank" to apply it to mathematicians 

who erred in thinking, before the independence of the parallel postu- 

late was established, that they had proved the postulate. The same can- 

not be said of those amateurs of later decades who could not under- 

stand the proofs of the postulate's independence or who were too 

egotistical to try. Augustus De Morgan, in his classic compendium of 

eccentric mathematics, A Budget of Paradoxes, introduces us to Britain's 

most indefatigable 19thcentury parallel-postulate prover, General Perronet 

Thompson. Thompson kept issuing revisions of his many proofs (one 

was based on the equiangular spiral), and although De Morgan did his 

best to dissuade him from his futile efforts, he was unsuccessful. 

Thompson also wanted to replace the tempered scale of the piano with 

an octave of 40 notes. 

The funniest of the American parallel-postulate provers was the 

Very Reverend Jeremiah Joseph Callahan, president of Duquesne Unie 

versity in Pittsburgh. In 1931, when Father Callahan announced he 

had trisected the angle, Time gave the story sober treatment and ran his 

photograph. The following year Callahan published his major work, 
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Euclid or Einstein: A Proof of the Parallel Theory and a Critique of 

Metageomety (Devon-Adair, 1932), a 310-page treatise in which he as- 

cended to heights of argumentem ad hominem. Einstein is "fuddled," he 

"has not a logical mind," he is in a "mental fog," he is a "careless 

thinker." "His thought staggers, and reels, and stumbles, and falls, like 

a blind man rushing into unknown territory." "Sometimes one feels 

like laughing," Callahan wrote, "and sometimes one feels a little 

irritated. . . . But there is no use expecting Einstein to reason." 

What Callahan found so irritating was Einstein's adoption of a 

generalized non-Euclidean geometry, formulated by Riemann, in which 

the curvature of physical space varies from point to point depending on 

the influence of matter. One of the great revolutions brought about by 

relativity theory was the discovery that an enormous overall simplifica- 

tion of physics is obtained by assuming physical space to have this kind 

of non-Euclidean structure. 

It is now commonplace (how astonished, and I think delighted, 

Kant would have been by the notion!) to recognize that all geometric 

systems are equally "true" in the abstract but that the structure of physi- 

cal space must be determined empirically. Gauss himself thought of 

triangulating three mountain peaks to see if their angles added up to 

two right angles. It is said he actually made such a test, with inconclu- 

sive results. Although experiments can prove physical space is non- 

Euclidean, it is a curious fact that there is no way to prove it is Euclid- 

ean! Zero curvature is a limiting case, midway between elliptic and 

hyperbolic curvatures. Since all measurement is subject to error, the 

deviation from zero could always be too slight for detection. 

Poincare held the opinion that if optical experiments seemed to 

show physical space was non-Euclidean, it would be best to preserve the 

simpler Euclidean geometry of space and assume that light rays do not 

follow geodesics. Many mathematicians and physicists, including Russell, 
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agreed with Poincare until relativity theory changed their mind. Alfred 

North Whitehead was among the few whose mind was never changed. 

He even wrote a book on relativity, now forgotten, in which he argued 

for preserving a Euclidean universe (or at least one of constant curva- 

ture) and modifying the physical laws as necessary. (For a discussion of 

Whitehead's controversy with Einstein, see Robert M. Palter's Whitehead's 

Philosophy of Science, University of Chicago Press, 1960.) 

Physicists are no longer disturbed by the notion that physical space 

has a generalized non-Euclidean structure. Callahan was not merely 

disturbed; he was also convinced that all non-Euclidean geometries are 

selficontradictory. Einstein, poor fellow, did not know how easy it is to 

prove the parallel postulate. If you are curious about how Callahan did 

it, and about his elementary error, see D. R. Ward's paper in The 

Mathematical Gazette (Vol. 17, pages 101 -104; May 1933). 

Like their cousins who trisect the angle, square the circle, and find 

simple proofs of Fermat's last theorem, the parallel-postulate provers are 

a determined breed. A recent example is William L. Fischer of Munich, 

who in 1959 published a 100-page Critique of Non-Euclidean Geometry. 

Ian Stewart exposed its errors in the British journal Manifold (No. 12, 

pages 14-21; Summer 1972). Stewart quotes from a letter in which 

Fischer accuses establishment mathematicians of suppressing his great 

work and orthodox journals of refusing to review it: "The university 

library at Cambridge refused even to put my booklet on file. . . . I had 

to write to the vice-chancellor to overcome this boycott." 

There are, of course, no sharp criteria for distinguishing crank 

mathematics from good mathematics, but then neither are there sharp 

criteria for distinguishing day from night, life from non-life, and where 

the ocean ends and the shore begins. Without words for parts of 

continuums we could not think or talk at all. If you, dear reader, have a 

way to prove the parallel postulate, don't tell me about it! 
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Imagine a small circle around the north pole of the earth. If it keeps 

expanding, it reaches a maximum size at the equator, after which it starts to 

contract until it finally becomes a point at the south pole. In similar fashion, 

an expanding sphere in four-dimensional elliptical space reaches a maximum 

size, then contracts to a point. 

In addition to the three geometries described in this chapter, there is 

what Bolyai called "absolute geometry" in which theorems are true in all 

three. It is astonishing that the first 28 theorems of Euclid's Elements are in 

this category, along with other novel theorems that Bolyai showed to be 

independent of the parallel postulate. 

I was surprised to see in a 1984 issue of Speculations in Science and 

Technology (Vol. 7, pages 207-216), a defense of Father Callahan's proof of 

the parallel postulate! The authors are &chard Hazelett, vice president of the 

Hazelett Stripcasting Corporation, Colchester, VT, and Dean E. Turner, 

who teaches at the University of North Colorado, in Greeley. Hazelett is a 

mechanical engineer with master's degrees from the University of Texas and 

Boston University. Taylor, an ordained minister in the Disciples of Christ 

Church, has a doctorate from the University of Texas. 

It is easy to understand why both men do not accept Einstein's general 

theory of relativity. Indeed, they have edited a book of papers attacking Einstein. 

Titled The Einstein Myth and the Ives Papers, it was published in 1979 by 

Devin-Adair. 
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Voting 
Mathematics 

A variety of curious paradoxes and anomalies are involved in 

the process of democratic voting. The way these contradictions 

touch on plurality voting and the proceedings of the electoral 

college will be dealt with here, as will the relatively new system known 

as approval voting. A procedure of increasing interest to political sci- 

entists, approval voting manages to avoid many of the logical inconsis- 

tencies inherent in other voting schemes. 

This chapter's discussion of the mathematics of voting is written 
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not by me but by Lynn Arthur Steen, professor of mathematics at St. 

Olaf College in Northfield, MN. A former editor of Mathematics Maga- 

zine, Steen writes frequently on mathematical subjects and has twice 

been awarded the Mathematical Association of America's Lester R. 
Ford award for excellence in writing. He has also edited a variety of 

books, including Mathematics Today: Twelve Informal Essays (Springer- 

Verlag, 1978) and (with Matthew P. Gafhey) Annotated Bibliography of 

Expository Writing in  the Mathematical Sciences (Mathematical Associa- 

tion of America, 1976). 

All that follows was written by Steen, who titles his article "Election 

Mathematics: Do All Those Numbers Mean What They Say?" 

Over past years the prospect of a three-way race for president of the 

United States has focused public attention on the importance of strat- 

egies for voting and on the special vagaries of the electoral college. 

Although the complications imposed by the electoral college are unique 

to presidential elections, other uncertainties imposed by three-way con- 

tests for public office are not. When the public must choose among more 

than two alternatives, the task of making the choice is frustratingly 

difficult. The source of both the difficulties and the possible solutions 

is to be found in the little-known mathematical theory of elections. 

The social contract of a democracy depends in an obvious and funda- 

mental way on a simple mathematical concept, namely the concept of a 

majority. Barring the unlikely event of a tie, in any dichotomous ballot one 

side or the other must receive more than half of the votes. When there are 

three or more choices of approximately equal strength, however, it is un- 

likely that such a ballot will yield a majority decision. It is primarily for this 

reason that many people believe the two-party system is essential to the 

stability of democracy in the U.S., even though that system is neither 

mandated nor recognized by the Constitution. 

Mathematical theory and political idealism notwithstanding, quite of- 
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ten the public does face a choice among three or more significant altema- 

tives. The same problem that appeared as Carter v. Reagan v. Anderson 

has developed in other years. Such multiplecandidate contests are difficult 

to resobe fairly if there is no clear-cut majority, but they can easily arise in 

any free election. Indeed, it follows from some simple mathematics that 

there are practically no positions candidates in a two-way contest can take 

that are invulnerable to attack by a third or a fourth candidate. 

If each issue in a two-candidate election is represented by a rating 

of voter preference on a one-dimensional scale, then regardless of the 

distribution of attitudes among the voters the optimal position for each 

candidate is the median: the point that divides the electorate into two 

camps of equal size. The same is true whether public opinion is distrib 

uted normally (so that the graph of position v. number of supporters 

has a single, centered hump), is split bimodally (so that the graph has 

two approximately equal humps), is skewed sharply to one side or is 

divided in a highly irregular way. An example of each of these distribu- 

tions, with the median marked, is given in Figure 140. 
Consider a two-candidate contest in which one candidate adopts a 

position a little to the left of the median and the other candidate begins 

with a position at about the middle of the right half of the population. 

This would be typical of a centrist candidate C running against a mod- 

Figure 140 
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erate rightwing candidate R. In this case it is reasonable to assume that 

as far as this particular issue is concerned the voters whose preference 

lies to the left of the position held by the centrist candidate C will favor 

C, the voters whose preference lies to the right of candidate R will favor 

R, and the voters whose preference lies in between will be divided about 

evenly between the two candidates. Under these circumstances, in a 

preelection poll the centrist candidate would receive a majority of the 

votes. 

The only way for candidate R to improve his standing in the poll 

(on this single issue) is to shift his position toward the middle of the 

distribution, to ensure that more voters will be to his right. Moving 

toward the center, or to the left, will always be advantageous for the 

right-wing candidate. Similarly, a left-leaning candidate can improve his 

standing with the voters by moving toward the center, or to the right. 

The median position is the only one that cannot be improved on by 

further shifting on the part of either candidate. 

There is, of course, nothing very novel about this analysis. It is part 

of our common experience in presidential politics. Candidates repre- 

senting the right or the left tend to begin distinctly to the right or to the 

left and then move progressively closer to the center as they attempt to 

appeal to a greater number of voters. The appeal of the median position 

in a two-candidate contest, however, is precisely what makes such a 

contest vulnerable to assault from either side by a third or a fourth 

candidate. In any contest with two candidates near the center a third 

candidate entering on the left or the right can always gain a plurality. 

Indeed, for practically any distribution of the electorate there are no 

positions in a two-candidate contest where at least one of the candidates 

cannot be beaten by a third. As is shown in Figure 141, there is always 

a place along the onedimensional continuum where a new candidate 

can position himself to displace one or more nearby candidates. 

A single issue rarely plays a deciding role in an election. Hence 
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Figure 141 
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election analyses based on single issues are not very helpful, unless they 

can be combined to show how to design a platform that will ensure a 

candidate's election. Shaping a winning platform is a complex busi- 

ness, however, because it is possible for a platform consisting entirely of 

winning, or majority, planks to be defeated. The reverse side of the coin 

is that a majority platform can be constructed from minority planks. 

Hence a majority can be formed from a coalition of minorities. 

To see how this paradox can arise consider the simplest possible 

case: a ballot to decide two unrelated, dichotomous issues, represented 

by resolutions A and B. In this case the voters actually have four o p  

tions: 

I. Approve A and B. 
11. Approve A and defeat B. 

111. Defeat A and approve B. 
IV. Defeat A and B. 

The voters who favor both A and B would choose option I as their 

first choice, option IV as their fourth choice, and option I1 as their 

second or third choice, depending on whether they feel more strongly 

about A or about B. The voters who favor A but object to B might rank 

the four options in the order 11, I, IV, and 111 (or 11, IV, I, and 111). In 

general each voter will have a preference ranking for one of the 4 x 3 x 

2 x 1, or 24, possible permutations of the four available options. (The 

rankings are by no means equally likely; it would be hard to imagine 

circumstances under which many people would rank the options in the 

order of preference I, IV, 11, IIL) 

Now, for the sake of simplicity suppose 500 voters (say at a party 

convention) are divided into three caucuses as follows: caucus X, with 

150 votes, ranks the four options in the order I, 11, 111, IV; caucus Y, 
with 150 votes, ranks them 11, IV, I, 111, and caucus 2, with 200 votes, 

ranks them 111, IV, I, 11. In this case caucuses X and Y, with 300 votes, 
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favor the approval of resolution A, whereas caucuses X and 2, with 350 
votes, favor the approval of resolution B. Because there are different 

voters making up these majorities, however, the platform consisting of 

the planks "Approve A" and "Approve B" will be defeated by the 350 
vote block of caucuses Y and Z! 

This surprising phenomenon is a special case of the well-known 

anomaly of cyclic majorities: If three voters respectively prefer A to B to 

C, B to C to A, and C to A to B, then any candidate can be defeated by 

some other candidate by a vote of two to one in a twecandidate contest. 

When the issues in an election create cyclic majorities, no set of positions 

on the issues is invulnerable to assault by a new coalition of minorities, 

another factor that encourages third- and fourth-party candidates. 

The accompanying diagram (Figure 142) shows how the four op- 

tions from which party planks in the example must be constructed 

create a variety of cyclic majorities, thereby explaining how a platform 

Figure 142 
Options 

I. Approve resolutions A and B. 

11. Approve resolution A and defeat resolution B. 

Ill. Defeat resolution A and approve resolution B. 

IV. Defeat resolutions A and B. 

X and Y X and Y 

Order of Preference 

I, 11, Ill, IV 

11, IV, I ,  111 

Ill, IV, I, I1 

Votes 

1 50 

150 

200 

Caucus 

X 

Y 

Z 

I 

Approve A 
Defeat B 

Approve A 
Approve B 

Policy 

Favors A strongly and favors B mildly 

Opposes B strongly and favors A mildly 

Opposes A strongly and favors 6 mildly 

X and Z 

Defeat A 
Approve B 

X and Z > Defeat A 
Defeat 6 
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consisting of majority planks can represent the will of only a minority. 

The arrows joining various platforms depict voting dominance: the 

pladorm to which an arrow points will always lose to the platform at 

which the arrow originates in a dichotomous contest. The winning 

caucuses in each case appear beside the corresponding arrow. As this 

distribution demonstrates, any possible platform can be defeated by 

some other pladorm, and so a real convention whose divisions re- 

semble the ones given in this example could become mired in an un- 

ending sequence of pladorm motions, with each motion defeating the 

one before. 

The phenomenon of cyclic majorities is also responsible for the 

most famous election paradox, Kenneth J. Arrow's 1951 proof that 

certain generally accepted desiderata for voting schemes are logically 

inconsistent. If there are only two candidates, no problems arise. If 

three or more candidates appear on a single ballot, however, chaos 

reigns. 

There are diverse schemes other than plurality voting for determin- 

ing the winner in an election. Many were suggested by 18thcentury 

scholars concerned about implementing the democratic ideals of the 

French Revolution. Although some of these proposals are so complex 

as to be completely impractical, several are still in common use, in 

particular the method of assigning points that reflect degrees of prefer- 

ence to the candidates in a contest (where the candidate receiving the 

most points is the winner) and various methods of holding runoff 

elections. Yet as Arrow has shown, none of these schemes-indeed, no 

method other than a rational benevolent dictatorship-satisfies such 

commonsense rules as: If A is preferred to B, and B is preferred to C, 
then A should be preferred to C. Cyclic majorities reduce all voting 

schemes to unpredictable mystery. 

Another important problem with voting in three-option contests is 

that in many circumstances a vote for the candidate a person prefers 
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most will increase the likelihood that the candidate he prefers least will 

be elected. (This dilemma was the one often seen in Anderson's candi- 

dacy. Many voters who preferred Anderson to Carter and Carter to 

Reagan believed most Anderson votes would be at Carter's expense.) 

The anomaly frequently leads thoughtful voters to what is called (de- 

pending on a voter's point of view) insincere or sophisticated voting. 

If sophisticated voting is widely practiced, it can lead to a state of 

serious confusion where no one votes for his first choice, and so the 

public will is effectively camouflaged. An Anderson backer for whom 

Carter was a second choice might have voted for Carter instead of for 

Anderson in order to prevent the election of Reagan. If there were 

enough Anderson backers who reasoned this way, of course, some 

Reagan supporters might have begun to support Anderson to prevent 

Carter's reelection. The process of second-guessing the voting strategies 

of other segments of the electorate can quickly lead to an absurd hierar- 

chy of insincerity in which the votes cast fail to reflect real preferences. 

Such a process, which it should be added is more a part of game theory 

than of classical voting theory, rarely gives a legitimate mandate to the 

victor. 

Arrow's theorem shows there is no "perfect" voting scheme for 

multicandidate elections. The procedure known as approval voting, 

however, manages to reflect a popular will without inducing anyone to 

vote insincerely. In approval voting each voter marks on the ballot every 

candidate who meets with his approval, and the candidate who receives 

the most votes of approval is the winner. 

With this system it is never to a voter's advantage to withhold a vote 

for his first choice while voting for a less preferred candidate. Indeed, if 

most candidates seem to have an equal chance of winning, a rational 

voter should vote for all the candidates he believes are above the average 

of those running. To vote for more candidates would give unnecessary 

support to individuals the voter does not endorse, whereas to vote for 



326 T h e  L a s t  R e c r e a t i o n s  

fewer candidates (say to vote only for one's first choice) is to withhold 

support from an acceptable compromise candidate and to risk victory 

by an unacceptable candidate. 

Steven J. Brams, professor of politics at New York University, has 

described approval voting with the phrase "One man, n votes." It is an 

apt description because approval voting is merely a way of letting a 

person cast as many votes as he wishes, one for each acceptable candi- 

date. It is easy to count votes that have been cast under this system, and 

no runoff elections are needed. For both theoretical and practical rea- 

sons approval voting is a good compromise between the singleuote 

ballot that encourages insincerity and the complete preference ordering 

whose complexity renders it useless in any practical situation. 

Figure 143 shows how approval voting might compare with plural- 

ity voting, runoff voting, and point voting in an entirely hypothetical 

three-way contest. The number of voters supporting each of the six 

possible rankings of candidates are listed in the column "Total votes," 

and since C would receive the largest block of first-choice votes, he 

would win in a plurality contest. In a runoff election B would be elimi- 

nated, and A would pick up enough second-choice votes (from those 

Figure 143 

Order of preference 

A, B, C 
A1 Cl B 
B1 A, C 
BI Cl A 
c, A, B 
Cf B, A 

Total votes 
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Approval votes 
First choice 

20 
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5 
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First and second choices 
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B 15 + 10 + 20 = 45 
C 25+15+ 0=40 
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who had first voted for B) to defeat C by 55 votes to 45. In the simplest 

system of point voting first choices are assigned three points, second 

choices two points, and third choices one point. Because of the large 

number of voters (60) for whom B is the second choice, with this 

voting scheme B, who was eliminated in the runoff, would be the 

winner. 

The results of approval voting depend on whether voters find only 

their top choice acceptable or whether they could accept some other 

choices as well. (Because there are only three candidates in this ex- 

ample it is assumed that no one votes for all three; such a vote is legal, 

but it would be wasted since it would raise each candidate's total by the 

same amount.) In this case, with 65 voters approving only their first 

choice, A would receive 50 votes of approval and win the election. If 

some voters choose to approve two of the three candidates, however, B 
stands to gain most because of the large number of people who rank 

him as their second choice. With approval voting a shift in the number 

of candidates meeting the approval of even a small number of voters 

can easily change the outcome of the election. Hence the implementa- 

tion of this voting scheme would necessitate a transformation of cam- 

paign strategies, from trying to convince voters that a candidate is the 

best choice to trying to convince them that he is acceptable. 

In the U.S., of course, presidential elections are held by the totally 

different rules of the electoral college. Through most of U.S. history the 

electoral college has served mainly to impose a unit rule on individual 

states so that the winner of the popular vote in each state receives that 

state's entire electoral vote. According to the Constitution of the U.S., 

there are other significant consequences of this system that affect the 
outcome of three-candidate contests (in particular provisions for trans- 

ferring the responsibility of deciding a presidential election from the 

electoral college to Congress), but here we shall examine only the con- 

sequences of the unit rule. 
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The most widely held view of the electoral college's unit rule has 

been that it favors smaller, or less populated, states, because the num- 

ber of votes accorded to each state in the college is two more than its 

number of representatives. In relative terms these two extra votes, which 

represent the two senators from each state, do increase the voting 

strength of smaller states and diminish that of larger ones. 

Paradoxically, however, the effective strength of a state in a presiden- 

tial election is actually proportional to the population of the state raised 

to the 312 power. And as a result individual votes cast in the largest 

states are as much as three times as important as those cast in the 

smallest ones. This surprising conclusion is a direct consequence of 

elementary probability theory, and it is consistent with the spending 

record of candidates in recent presidential elections: candidates do de- 

vote disproportionate resources to the larger states at the expense of the 

smaller ones. 

The ' '312 rule" is based on the assumption that candidates will 

generally match one another's campaign efforts in the various states. 

(Comparison of candidates' allocations of time and money in recent 

election campaigns shows that the assumption is entirely realistic.) The 

reasoning begins with the obvious: Each candidate seeks to maximize 

his expected electoral vote, which is the sum over all 50 states of the 

product of each state's electoral vote and the probability that the candi- 

date will win a majority in that state. By expressing this relation in the 

form of an equation and taking into account candidates' tendencies to 

match one another's campaign efforts fiom state to state it can be shown 

that the optimal way to maximize the expected electoral vote is to all@ 

cate campaign resources approximately in proportion to the 312 power 

of the electoral vote of each state. Thus although California has about 

four times the electoral vote of Wisconsin (45 compared with 11)' the 

312 rule would suggest that candidates should devote 43/2, or 8, times 

more resources to California than to Wisconsin. 



V o t i n g  M a t h e m a t i c s  329 

Another way to understand why larger states gain power rather 

than lose it in electoral-college politics is to examine the likelihood that 

any particular vote may be decisive in swinging the state for or against a 

particular candidate. This measure of decisiveness is the traditional way 

of gauging the power of an individual voter. What is needed is a mea- 

sure of the average number of votes necessary to reverse the result of an 

election in each state. 

Calculations show that the decision power of an individual in a 

state with w electoral votes (to be cast as a unit in the electoral college) 

is proportional to J;. Since the power of a state in the electoral college 

is magnified by the number of electoral votes cast by the state, the 

contribution of each state to the presidential decision is approximately 

proportional to w times J;, or w3I2. 

In order to gauge the relative voting power of individuals in differ- 

ent states the large-state bias created by the 3/2 rule must be weighed 

against the small-state bias of the two-senator electoral-college bonus. 

The significance of an individual's vote, instead of being equal for all 

voters, is determined by the individual's share of his state's power, and 

as shown in Figure 144 the different states' powers are decidedly un- 

Figure 144 
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equal. (The broken line on the graph marks the hypothetical even dis- 

tribution of power.) 

Elections will always remain a matter of passion more than of logic, 

based on belief more than on reason. As these examples demonstrate, 
however, the mathematics of elections can have subtle and unexpected 

consequences. As in many other realms of human experience, naive 

expectations can be shattered by simple mathematical structures dis- 

guised as paradoxes and anomalies. 
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A Toroidal 
Paradox 

and Other 
Problems 

1 A Poker Puzzle 

As every poker player knows, a straight flush (Figure 145, left) beats 

four of a kind (Figure 145, right). 

How many different straight flushes are there? In each suit a straight 

flush can start with an ace, a deuce, or any other card up to a 10 (the 

ace may rank either high or low), making 10 possibilities in all. Since 

there are four suits, there are four times 10, or 40, different hands that 

are straight flushes. 

How many different four-of-a-kind hands are there? There are only 
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Figure 145 

13. If there are 13 four-of-a-kind hands and 40 straight flushes, why 

does a straight flush beat four of a kind? 

2 The Indian Chess Mystery 

Raymond M. Smullyan's long-awaited collection of chess problems 

was published in 1979 by Knopf with the title The Chess Mysteries of 

Sherlock Holmes. Just as there has never been a book of logic puzzles 

quite like Smullyan's What  is the Name of This Book?, so there has 

never been a book of chess problems as brilliant, original, funny, and 

profound as this one. 

Although a knowledge of chess rules is necessary, as Smullyan says 

in his introduction, the problems in the book actually lie on the bor- 

derline between chess and logic. Most chess problems deal with the 

future, such as how can White move and mate in three. Smullyan's 

problems belong to a field known as retrograde analysis (retro analysis 

for short), in which it is necessary to reconstruct the past. This can be 

done only by careful deductive reasoning, by applying what Smullyan 

calls "chess logic." 

Sherlock Holmes would have had a passion for such problems, 

and his enthusiasm would surely have aroused the interest of Dr. Watson, 

particularly after Watson had learned from Holmes some of the rudi- 

ments of chess logic. Each problem in Smullyan's book is at the center 

of a Sherlockian pastiche narrated by Watson in his familiar style. 

Some of the problems are so singular that it is difficult to believe they 
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have answers. In one, for example, Holmes proves that White has a 

mate in two but that it is not possible to show the actual mate. In 

another problem Holmes shows that in the days when chess rules 

allowed a promoted pawn to be replaced by a piece of the opposite 

color, a position could arise in which it is impossible to decide if 

castling is legal even when all the preceding moves are known. 

In the second half of the book Holmes and Watson set sail for an 

island in the East Indies where they hope to find a buried treasure by 

combining cryptography with retrograde chess analysis. Their first ad- 

venture takes place on the ship. Two men from India have been play- 

ing a game with pieces that are colored red and green instead of the 

usual black and white or black and red. 

The players have temporarily abandoned the game to stroll around 

the deck when Holmes and Watson arrive on the scene. The position 

of the game is shown in Figure 146. Several chess enthusiasts are study- 

ing the position and trying to decide which color corresponds to White, 

that is, which side had made the first move. 

"Gentlemen," says Holmes, "it turns out to be quite unnecessary to 

guess about the matter. It is deducible which color corresponds to White." 

In re-chess problems it is not required that one side or the other 

play good chess, only that they make legal moves. Your task is to decide 

which color moved first and prove it by ironclad logic. 

3 Redistribution in Oilaria 

"Redistributive justice" is a phrase much heard these days in argu- 

ments among political philosophers. Should the ideal modern indus- 

trial state tax the rich for the purpose of redistributing wealth to the poor? 

Yes, says Harvard philosopher John Rawls in his influential book A 

Theory of Justice. No, says his colleague (they have adjoining offices) 

Robert Nozick in his controversial defense of extreme libertarianism, 

Anarchism, State and Utopia. It is hard to imagine how two respected 
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GREEN 

RED 

Figure 146 

political theorists, both believing in democracy and free enterprise, 

could hold such opposing views on the desirable powers of government. 

The Sheik of Oilaria, in this problem devised by Walter Penney of 

Greenbelt, MD, has never heard of Rawls or Nozick, but he has p r e  

posed the following share-the0wealth program for his sheikdom. The 

population is divided into five economic classes. Class 1 is the poorest, 

class 2 is the next-poorest, and so on to class 5, which is the richest. 

The plan is to average the wealth by pairs, starting with classes 1 and 2, 
then 2 and 3, then 3 and 4, and finally 4 and 5. Averaging means that 

the total wealth of the two classes is redistributed evenly to everyone in 

the two classes. 
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The Sheik's Grand Vizier approves the plan but suggests that aver- 

aging begin with the two richest classes, then proceed down the scale 

instead of up. 

Which plan would the poorest class prefer? Which would the rich- 

est class prefer? 

4 Fifty Miles an Hour 

A train goes 500 miles along a straight track, without stopping, 

completing the trip with an average speed of exactly 50 miles per hour. 

It travels, however, at different speeds along the way. It seems plausible 

that nowhere along the 500 miles of track is there a segment of 50 
miles that the train traverses in precisely one hour. 

Prove that this is not the case. 

5 A Counter-Jump "Aha!" 

Draw a five-bysix array of spots on a sheet of paper, then rule a line 

as is shown in Figure 147 to divide the array into two triangular halves 

of 15 spots each. O n  the spots above the line [shown black] place 15 
pennies or any other kind of small object. 

Figure 147 
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The task is to move all the pennies from above the line to the 

spots below the line. Each move is a jump of one counter over an 

adjacent counter to an unoccupied spot immediately beyond it on 

the other side. Jumps may be to the left or the right and up or 

down but not diagonal. For example, as a first move the penny at 

the fourth spot on the top row may jump to the top white spot, or 

it may jump down to the third spot from the top of its column. All 

the jumps are like the jumps in checkers except that they are con- 

fined to horizontal and vertical directions and the jumped pieces 

are not removed. 

We are not concerned with transferring the pennies to the white 

spots in a minimum number of moves, only with whether the transfer 

can be made at all. There are three questions: 

A. Can the task be accomplished? 

B. If a penny is removed from a black spot, can the 14 pennies 

that remain be jumped to white spots? 

C. If two pennies are removed from black spots, can the remain- 

ing 13 be jumped to white spots? 

This new problem was devised recently by Mark Wegman of the 

Thomas J. Watson Research Center of the International Business Ma- 

chines Corporation. It is of special interest because all three questions 

can be answered quickly by an "Aha!" insight well within the grasp of 

a 10-year-old. 

6 A Toroidal Paradox 

Two topologists were discussing at lunch the two linked surfaces 

shown at the left in Figure 148, which one of them had drawn on a 

paper napkin. You must not think of these objects as solids, like ropes 

or solid rubber rings. They are the surfaces of toruses, one surface of 

genus 1 (one hole), the other of genus 2 (two holes). 
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Figure 148 

Thinking in the mode of "rubber-sheet geometry," assume that the 

surfaces in the illustration can be stretched or shrunk in any desired 

way provided there is no tearing or sticking together of separate parts. 

Can the two-hole torus be deformed so that one hole becomes un- 

linked as is shown at the right in the illustration? 

Topologist X offers the following impossibility proof. Paint a ring 

on each torus as is shown by the black lines. At the left the rings are 

linked. At the right they are unlinked. 

"You will agree," says X, "that it is impossible by continuous defor- 

mation to unlink two linked rings embedded in three-dimensional 

space. It therefore follows that the transformation is impossible." 

"But it doesn't follow at all," says Y 
Who is right? I am indebted to Herbert Taylor for discovering and 

sending this mystifying problem. 

Answers 

1 A Poker Puzzle 

The poker puzzle is answered when we consider the fact that a 

hand with four identical values always has a fifth card. For each 
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four of a kind there are 48 different fifth cards. Consequently there 

are 48 x 13, or 624, different poker hands containing four of a kind, 

compared with 40 hands that are straight flushes. It is therefore much 

less likely that you will be dealt a straight flush, and for this reason a 
straight flush beats four of a kind. The problem was contributed by M. 

H. Greenblatt to Journal of Recreational Mathematics (Vol. 5, No. 1, 

page 39; January 1972). 

2 The Indian Chess Mystery 

Here is how Raymond Smullyan proves that Green made the first 

move: 

Red is now in check, hence Green moved last. It remains to 
determine who moved first, which can be done by figuring 
whether an odd or an even number of moves have been made. 

The rook on  b l  has made an odd number of moves; the 
other three rooks have each made an even number of moves 
(possibly zero). The Red knights have collectively made an 
odd number of moves, since they are on squares of the same 
color, and the Green knights have collectively made an even 
number of moves. [A knight changes square color on  each 
move.] One king has made an even number of moves (possi- 
bly zero), and the other king an odd number. The bishops and 
pawns have never moved, and both queens were captured 
before they ever moved. So the grand totality is odd. Thus 
Green moved first. Hence Green is White and Red is Black. 

3 Redistribution in Oilaria 

Surprising as it may first seem, both the richest and the poorest 

classes in Oilaria would prefer pair averaging from the top down. Those 

in the richest class would prefer to be averaged with the next-richest 

class before the latter is reduced in wealth by averaging. Those in the 

poorest class would prefer being averaged with the next-poorest class 

after the latter has been increased in wealth by averaging. 
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A n  example will make this clear. Assume that the wealth of the five 

classes is in the proportions 1 : 3 : 4 : 7 : 13. Averaging from the 

bottom u p  changes the proportions to 2 : 3 : 5 : 9 : 9. Averaging from 

the top down changes the proportions to 3 : 3 : 5 : 7 : 10. 
Robert Summers, professor of economics at the University of Penn- 

sylvania, sent the following comments o n  the Oilaria problem: 

Of course, it is trivial to show that both the low and high 
income people would prefer the Grand Vizier's variant to the 
original income redistribution plan proposed by the Sheik. 
It should be enough simply to observe that both the poor 
and the rich would like their incomes averaged with others 
having as large an income as possible. The Grand Vizier's 
variant-averaging from above-adjusts upward the income of 
the next-to-the-bottom class before it is combined with the 
bottom class; similarly, the income of the next-to-the-top class 
is combined with the top class before it is lowered through 
the averaging process. Whether or not another income class, 
the second or next to last or any one in between, would like 
the redistribution from either or both averaging methods de- 
pends upon the particular income distribution. The fact that 
the so-called Lorenz curves cross reflects this indeterminacy. 

There are several interesting questions that go beyond 
the exercise as you gave it: (1) If the two redistribution schemes 
were repeated over and over again, how would the limiting 
distributions obtained by averaging from above and below 
compare? Is one better than the other from the standpoint of 
any particular class? Repeating the arithmetic over and over 
again with any starting income distribution will suggest that 
if either averaging process is repeated indefinitely, a com- 
pletely equal-egalitarian-distribution will eventually result. 
Any one with an initial income below the average will be 
pleased with the iterated redistribution done either way; any- 
one above the average will dislike either redistribution. This 
can be shown in general by drawing upon some theorems 
about doubly stochastic matrices. (2) Suppose a random pair 
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of persons is selected from Oilaria's population, and each 
person in the pair is given half of the total income of the 
two. If this process were repeated to cover every possible pairing, 
what would the resulting distribution be like? Suppose the 
random pairings, independent from trial to trial, occurred 
an infinite number of times. What would the limiting distri- 
bution be? Strong conjecture: Again an egalitarian distribu- 
tion would result. 

4 Fifty Miles an Hour 

Divide the 500-mile track into 10 segments of 50 miles each. If any 

segment is traversed in one hour, the problem is solved, and so it must 

be assumed that traversing each segment takes either less than an hour 

or more than an hour. It then follows that somewhere along the track 

there will be at least one pair of adjacent segments, one (call it A) 

traversed in less than an hour and the other (call it B) traversed in more 

than an hour. 

Imagine an enormous measuring rod 50 miles long that is placed 

over segment A. In your mind slide the rod slowly in the direction of 

segment B until it coincides with B. As you slide the rod the average time 

taken by the train to go the 50 miles covered by the rod varies continu- 

ously fiom less than an hour (for A) to more than an hour (for B). 

Therefore there must be at least one position where the rod covers a 50- 
mile length of track that was traversed by the train in exactly one hour. 

For a more technical analysis of the problem, in terms of a jogger 

who averages a mile in eight minutes and runs an integral number of 

miles, see "Comments on 'Kinematics Problem for Joggers,' by R. P. 
Boas, in the American lournal of Physics (Vol. 42, page 695, August 

1974). 

5 A Counter-Jump "Aha!" 

The Aha! insight that solves the counter-jumping puzzle is to color 

nine spots black as is shown in Figure 149. It is obvious that, no 
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Figure 149 

matter how many jumps are made, a penny on any black spot can go 

only to another black spot. 

There are six black spots above the line and only three below it. 

Therefore, by the pigeonhole principle, there must be three pennies 

above the line that have nowhere to go below the line. The task of 

moving all the pennies to spots below the line cannot be accomplished 

unless at least three pennies, on three black spots, are removed from 

the top triangular array. Remove any three such pennies and the trans- 

fer of the remaining 12 is a simple task. 

Benjamin L Schwartz wrote to point out that the proof of impossi- 

bility holds even if the allowed moves are extended to include diagonal 

jumps, or bishop moves along diagonals without jumping. David J. 
Abineri sent a different proof of impossibility also based on the pi- 

geonhole principle. 

Number the columns 1, 2, 3 ,4 ,5 ,  6. Spots in columns 1, 3, and 5 
are black. No matter how a penny jumps, orthogonally or diagonally, it 

must remain on a black spot. At the start nine pennies occupy black 

spots. But there are only six black spots above the line. 

6 A Toroidal Paradox 

Figure 150 shows how a continuous deformation of the twehole 
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Figure 150 
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torus will unlink one of its holes from the single-hole torus. The argu- 

ment for the impossibility of this task fails because if a ring is painted 

around one hole (as is shown by the black line), the ring becomes 

distorted in such a way that after the hole is unlinked the painted ring 

remains linked through the one-hole torus. 

For a mind-boggling selection of similar problems involving linked 

toruses, see Herbert Taylor's article "Bicycle Tubes Inside Out," in The 
Mathematical Gardner (1981), edited by David Klarner. 



Minimal 
Steiner 
Trees 

No tree in all the grove but has its 

charms, 
Though each its hue peculiar. 

-William Cowper, The Task, 
Book 1 : The Sofa 

n graph theory, the study of structures formed by joining points with 

lines, a tree is a connected network of line segments that includes no 

circuits. A circuit is a closed path that allows one to travel along a 

connected netmork from a given point back to itself without retracing 

any lines. It follows that any two points on a tree are joined by a unique 

path. Trees are extremely important in graph theory, and they have 

endless applications in other branches of mathematics, particularly prob 

ability theory, operations research, and artificial intelligence. 
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Suppose a finite set of n points are randomly scattered about in the 

plane. How can they be joined by a network of straight lines that has 

the shortest possible total length? The solution to the problem has 

practical applications in the construction of such networks as roads, 

power lines, pipelines, and electrical circuits. If no new points are 

allowed to be added to the original set, the shortest network connect- 

ing them is called a minimal spanning tree. It is easy to see the net- 

work must be a tree: if it included a circuit, one could shorten it at 

once by removing a line from the circuit. 

There are many ways to construct a minimal spanning tree. The 

simplest is known as a greedy algorithm, because at each step it bites 

off the most desirable piece. It was published in 1956 by Joseph B. 

Kruskal, now at the AT&T Bell Laboratories. First find two points 

that are closer together than any other two and join them. If more than 

one pair of points are equally close, choose any such pair. Repeat the 

procedure with the remaining points in such a way that joining a pair 

never completes a circuit. The final result is a spanning tree of minimal 

length. 

A minimal spanning tree is not necessarily the shortest network 

spanning the original set of points. In most cases a shorter network 

can be found if one is allowed to add more points. For example, s u p  

pose you want to join the three points defining the corners of an 

equilateral triangle. Two sides of the triangle make up a minimal span- 

ning tree. The spanning tree can be shortened by more than 13 per- 

cent by adding an extra point at the center and then making connec- 

tions only between the center point and each corner (see Figure 151, 
top). Each angle at the center is 120 degrees. 

A less obvious example is the minimal network spanning the four 

corners of a square. You might suppose one extra point in the center 

would give the minimal network, but it does not. The shortest network 

requires two extra points (see Figure 151, right). Again all the angles 
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Figure 151 

around the extra points in the network are 120 degrees. The network 

with one extra point in the center has length 2 8 ,  or about 2.828. The 

network with two extra points reduces the total length to 1 + f i ,  or 

about 2.732. 

One of the first mathematicians to investigate such networks was 

Jacob Steiner, an eminent Swiss geometer who died in 1863. The extra- 

neous points that minimize the length of the network locally are now 

called Steiner points. (I shall describe what is meant by "locally" be- 

low.) It has been proved that all Steiner points are junctions of three 

lines forming three 12Odegree angles. A tree with Steiner points is 

called a Steiner tree. Although adding Steiner points can reduce the 

length of the spanning tree, a Steiner tree is not always the shortest 

network spanning the original set of points. When it is, it is called a 

minimal Steiner tree. 

Minimal Steiner trees are almost always shorter than minimal span- 

ning trees, but the reduction in length may depend on the length of 

the original spanning tree. It has been conjectured that for any given 

set of points in the plane, the length of the minimal Steiner tree can- 

not be less than JTj2 , or about .866, times the length of the minimal 

spanning tree; the result has been proved, however, only for three, 

four, and five points. Just as a set of points can have more than one 
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minimal spanning tree, so it can have more than one minimal Steiner 

tree, although of course all minimal Steiner trees for a given set of 

points have the same length. A Steiner tree can have at most n - 2 

Steiner points, where n is the number of points in the original set. 

Many simple Steiner trees can be found empirically by a simple 

analog device you can build. Two parallel sheets of Plexiglas are joined 

by perpendicular rods that correspond to the points to be spanned in 

a given network. Drill holes in the sheets, insert the rods and immerse 

the entire assembly in a soap solution of the kind used for making 

bubbles. When the assembly is lifted out of the solution, a soap film 

forms surfaces that span the rods. Because such surfaces shrink to 

minimal area, the pattern formed by the film when it is viewed from 

above is a Steiner tree. 

Such a device can find the minimal Steiner tree for the corners of 

a rectangle (see Figure 152). The tree can take either of two forms, one 

of them a 90-degree rotation of the other. By blowing on the film you 

can make it jump from one pattern to its rotated form. Similarly, the 

device can model the minimal Steiner tree for the five points at the 

corners of a regular pentagon. For the six corners of a regular hexagon 

(and all higher regular polygons) extra Steiner points are of no help. 

The minimal spanning network is simply the perimeter of the polygon 

with one edge removed. 

Even in these simple cases, however, one must be wary of the soap 

film computer. For example, if the four points in the given network 

mark the corners of a rectangle a trifle wider than it is high, the film 

Figure 152 
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Figure 153 

can stabilize in one of two patterns (see Figure 153). Both are Steiner 

trees, but only the one at the left is minimal. As the rectangle widens, 

the vertical line AB in the nonminimal pattern on the right becomes 

shorter. The line shrinks to a point when the vertical side of the rect- 

angle is 1 and the base is 6, and for all wider rectangles only the 

minimal Steiner tree is stable. The tree at the right is said to be locally 

minimal. In other words, if you think of the lines as being elastic 

bands anchored at their ends to the four corner pegs, any slight shift- 

ing of the extra points will increase the length of the tree. 

Given the simplicity of Kruskal's greedy algorithm for the construc- 

tion of minimal spanning trees, one might suppose there would be 

correspondingly simple algorithms for finding minimal Steiner trees. 

Such, alas, is not the case. The task is part of a special class of "hard" 

problems known in computer science as NP-complete. When the num- 
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ber of points in a network is small, there are known algorithms for 

finding Steiner trees in a reasonably short time. As the number of 

points grows, however, the computing time needed increases at a rap. 

idly accelerating pace. Even for a relatively small number of points it 

can be thousands or even millions of years. Most mathematicians be- 

lieve no efficient algorithm exists for constructing minimal Steiner 

trees that connect arbitrary points in the plane. 

Imagine, however, that the points are arranged in a regular lattice 

of unit squares, like the points at the corners of the cells of a checker- 

board. Is there a "good" algorithm for finding a minimal Steiner tree 

spanning the points of such regular patterns? 

The question occurred to me several years ago when I thought of 

the following problem. What is the length of the minimal Steiner tree 

that joins the 81 points at the corners of a standard checkerboard? 

Henry Ernest Dudeney, England's greatest puzzle maker, and his Ameri- 

can counterpart Sam Loyd were both fond of puzzles based on checker- 

board patterns, I checked all their books carefully, but they had not 

considered the problem. Indeed, I could find no evidence it had ever 

been posed before, let alone solved. 

When I tried to solve the problem, I was surprised by its complex- 

ity. Although I could not prove it, it seemed obvious that the minimal 

Steiner tree would be constructed by joining many replicas of the regu- 

lar four-point tree. The four-point tree has no name; let us call it X 
because in working on Steiner-tree problems for rectangular lattices, an 

X is easier to draw than the full tree. The difficulty in solving such 

problems is that it is hard to know where to place the Xs. It is easy to 

place them so as to make a Steiner tree, but it is not so easy to make 

the tree minimal. 

I finally convinced myself that the checkerboard puzzle has a unique 

answer, although I could not prove it (see Figure 154, center). I call 

it the conjectured solution for the order-9 array, where the order is 
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Figure 154 90.318 ... 

73.033 ... 
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the number of points on the side of the square. Because the length 

of the line segments that make up each X is 1 + &, it is easy to deter- 

mine the total length of the tree: 26& + 28, or about 73.033. Although 

it seemed I had found a new puzzle, I suspected that in the growing 

mathematical literature on Steiner trees there must surely be a paper 

describing a simple algorithm for finding minimal Steiner trees on 

rectangular lattices. I was encouraged by knowing that many prob 

lems involving paths through points in the plane, which are hard when 

the points are arbitrary, become trivial when the points form regular 

lattices. 

The traveling salesman problem is a notorious example. What is 

the shortest path allowing a salesman to visit each of n towns once and 

only once and return to the starting town? m e n  the points are arbi- 

trary, the task is NP-complete, and no efficient algorithm for solving it 

is known. But when the points are placed at the corners of squares and 

packed into a rectangular lattice, the problem is absurdly easy. If a 

rectangular array of m-by-n points includes an even number of points, 

the minimal path has length rn x n. If the array includes an odd num- 

ber of points, the path has length m x n+JZ-1 (see Figures 155 and 

156). I fully expected that the task of spanning points in such arrays by 

minimal Steiner trees would be equally trivial. I could not have been 

more wrong. 

My first step was to send the checkerboard problem to my friend 

Ronald L. Graham, a distinguished mathematician at Bell Laborate 

ries. I also asked him to direct me to a paper that might answer such 

questions. To my amazement, it turned out that the only relevant paper 

was one Graham himself had coauthored in 1978 with Fan R. K. 
Chung, also of Bell Laboratories. Titled "Steiner Trees for Ladders," it 

showed how to construct minimal Steiner trees for 2-by-n rectangular 

arrays of points, as well as for other kinds of 2-by-n "ladders." Aside 

from these special cases, nothing seemed to be known about how to 
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Figure 155 

Figure 156 

find minimal Steiner trees for rectangular arrays when the number of 

points on each side is greater than 2. 
The more Graham and Chung considered the matter, the more it 

intrigued them. On  and off for better than a year they have been 

seeking an algorithm for the general case, but without success. Chung 

has recently been lecturing on the topic, and she and Graham plan 

eventually to write a paper on their progress. 

Their best results are shown along with my checkerboard solution 

in Figures 154 and 157. Some of the trees have more than one minimal 

solution. Incredibly, only the pattern for the order-2 square lattice has 

been proved to be minimal. (There is a proof in Problem 73 of the 

book 100 Problems in Elementary Mathematics, by Hugo Steinhaus.) 

Even the seemingly trivial order-3 pattern has eluded proof, although it 
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Figure 157 
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would yield to brute-force methods carried out by computer. Graham 

and Chung firmly believe all their trees are minimal, but in the ab- 

sence of proofs there may still be room for improvements. 

It would be interesting to know whether soap film will solve the 

square lattices of order 3 and order 4. If it does, how far up the scale 

will soap film continue to find minimal trees? What happens when 

Plexiglas sheets, joined by 81 rods in the checkerboard pattern, are dipped 

into the soap solution and then lifted out7 Will the film generate Steiner 

trees spanning all 81 rods? If it does, what is the probability the tree 

will be minimal? Perhaps some venturesome readers will carry out 

these experiments. 

The order-6 square lattice is the smallest one from which an unex- 

pected solution springs. When I worked on this forest of trees (sets of 

disconnected trees are known as forests to graph theorists), my order4 

pattern had length 1 lJS + 13, or about 32.053. I almost fell out of my 

chair when I saw the shorter tree found by Graham and Chung. The 

little three-point tree in their pattern has length (I + JS) / JS, and so 

the total length of their network is [(I + a) / &I + [I 1 x (1 + a)] , or about 

31.984. It beautifully illustrates the kind of surprises-the "hue pecu- 

liar" of Cowper's epigraph-that lie in wait for anyone who tries to 

climb the ladder of square arrays in search of minimal solutions. 

If you look closely, you will note that only squares of orders that are 

powers of 2 (2,4,8, and so on) have trees made entirely of Xs. Graham 

and Chung have proved an even more general result: a rectangular 

array can be spanned by a Steiner tree made up entirely of Xs if and 

only if the array is a square and the order of the square is a power of 2. 
Their clever proof, based on mathematical induction, is still unpub 

lished. The unique spanning pattern generalizes in an obvious way to 

all squares whose order is a higher power of 2. 
Space does not allow me to provide examples of the best-known 
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patterns for nonsquare rectangular arrays, for which Graham and Chung 

have many curious results and conjectures. 1 close by giving the best 

Steiner tree they have found for the order-22 square (see Figure 158). It 
includes a pattern bounded by six points on two squares, which does 

not match the familiar X. The six-point pattern also appears in the 

Steiner tree of order 10, and its length is 

or about 4.625. The total length of the tree is approximately 440.021. 

Figure 158 
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Answers 

Readers were challenged to find a Steiner tree shorter than 32.095 
units that would span a 4-by-9 array. No one yet has improved on the 
result obtained by Ronald L. Graham and Fan R. K. Chung of AT&T 
Bell Laboratories (see Figure 159). Its length is 

or approximately 32.094656. . . . 

Two major breakthroughs relating to MSTs (minimal Steiner trees) have 

occurred since this chapter was written in 1986. In 1968 two Bell Labs 

mathematicians, H. 0. Pollok and E. N. Gilbert, conjectured that the ratio 

of the length of an MST to the length of the minimal spanning tree for the 

same set of points is at least J j j 2  = 3 6 6  . . . , a savings in length of about 

13.4 percent. This is the ratio for the two kinds of trees that join the corners 

Figure 15 9 
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of an equilateral triangle. (See the 1968 paper by Gilbert and Pollok.) In 

1985 Ronald Graham and his wife Fan Chung raised the lower bound of the 

ratio to .8241. The proof was so horrible, Graham said, that he urged those 

interested not to look up their paper. 

The problem was important enough to Bell Labs, where finding shorter 

networks is an obvious cost saving, for Graham to offer $500 to anyone who 

could prove the 6 1 2  conjecture. The prize was won in 1990 by two Chi- 

nese mathematicians, Ding Zhu Du, then a postgraduate student at Princeton 

University, and Frank Hwang, of Bell Labs. (See their 1992 paper.) 

A simplex is a regular polyhedron, in any dimension, with a mini- 

mum number of sides, such as the 3-space tetrahedron. MSTs are known 

only for simplexes through five dimensions. (See the 1976 paper by Chung 

and Gilbert.) Calculating them for higher dimensions is far from solved. 

The MST for the corners of a unit cube is shown in Figure 160. Its 

length is 6.196. . . . 
Hwang and Du, in their 1991 paper, study MSTs on isometric (equilat- 

eral triangle) lattice points. 

The other breakthrough, by five Australian mathematicians, was a 

complete solution to finding MSTs for both square and rectangular lat- 

tices of points in a matrix of unit squares. (See the 1995 Research Re- 

port by M. Brazil and his four associate~.) In a 1996 paper by Brazil 

and five associates they confirmed the unpublished proof by Graham 

and Chung about the form of MSTs for sets of points at the vertices of 

a 2k x 2k square lattice. 

Figure 160 
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There is a growing literature on minimal rectilinear Steiner trees-trees 

with only horizontal and vertical lines. They have important applications to 

electrical circuit design. See Dana Richard's "Fast Heuristic Algorithms for 

Rectilinear Steiner Trees," in Algorithmica, Vol. 4, 191-207; 1989. 

In a lecture on Steiner trees by Graham, which I had the pleasure of 

attending, he included the following points: 

Jacob Steiner made no contributions to the theory of Steiner trees except 

to get his name attached to them. The points were earlier called Fermat 

points, but their existence was known even before Fermat's time. 

The first proof that finding Steiner trees for n points is NP-complete 

was in the 1977 paper by Graham and two Bell Labs colleagues Michael 

Garey and David Johnson. Also NP-complete is the problem of calculating 

the exact length of a minimal spanning tree. Intuitively it seems as if the 

greedy algorithm would make this easy. It is not easy because the points 

may not be at integer coordinates on the plane. As such points increase 

in number, calculating the exact length of the tree rapidly becomes more 

difficult. 
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Trivalent 
Graphs, 
Snarks, 

and 
Boojums 

hen the 

American W was still a 

following chapter ran as a column in Scientific 

(April 1976) the famous four-color map theorem 

n open question. A number of distinguished math- 

ematicians were on record as believing the theorem false. 

The simplest flawed proof rests on a common confusion of the 

fourcolor theorem with a much simpler theorem that is easy to prove. 

No more than four regions can be drawn on the plane so that every 

pair share a common border segment. It is tempting to think this can 
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lead to a proof of the four-color theorem. The great British puzzle 

expert Henry Dudeney, in Modern Puzzles (1926), actually published 

just such a "proof." Where did it go wrong? Because it is conceivable 

that a map with a large number of regions, say many thousands, might 

not be four-colorable even though nowhere on it would be a spot 

where five regions mutually shared borders. Any attempt to four-color 

such a map would lead to a spot where two regions of the same color 

came together. Of course one could always eliminate the spot by back- 

tracking and altering colors, only to discover that as coloring contin- 

ued the troublesome spot would turn up somewhere else. To prove the 

four-color theorem it would be necessary to specify a precise coloring 

procedure guaranteed to four-color the entire map. 

Because the four-color map theorem was finally proved in 1976, I 

left this column out of a previous book collection which otherwise 

should have included it. We now know that what I called a Boojum- 

a Snark that does not contain the Petersen graph-cannot exist. How- 

ever, interest in Snarks has persisted, with numerous papers about 

them still appearing in the journals. For this reason I decided to re- 

print the column here, deleting paragraphs that are no longer of any 

interest. Snark theory has become much too complicated to cover ad- 

equately in my brief addendum. Interested readers must consult the 

articles listed in the references. 

Dozens of conjectures, seemingly unrelated to maps, are equivalent 

to the four-color map theorem in the sense that if you settle any one of 

them, you settle the four-color problem. Is it always possible to slice 

corners from a convex polyhedron until every face is a polygon with a 

number of sides that is a multiple of 3? If you can do that, the four- 

color conjecture is true! For instance, by truncating four corners of a 

cube in such a way that no two corners are diagonally opposite, you can 

produce a solid with four triangular faces and six hexagonal ones. If 
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you can find a convex polyhedron that cannot be properly transformed 

by truncation, you will have found a solid whose skeleton will produce 

a map disproving the four-color theorem. 

A much easier way to search for a countermap is to look for a 

graph (a set of points called vertexes joined by lines called edges) that 

has the following properties: 

1. It is connected. (It is all in one piece.) 

2. It is planar. (It can be drawn on the plane with no edge intersec- 

tions.) 

3. It has no bridge (or isthmus). A bridge is an edge such that if it is 

removed, the graph falls apart into two disconnected pieces. 

4. It is trivalent. (Three edges meet at every vertex.) 

5. It is not three-colorable. (The edges cannot be colored with three 

colors, one to an edge, so that all three colors meet at every vertex.) 

To explain this more fully, let us go back to a paper published in 

1880 by Peter G. Tait, a mathematical physicist at the University of 

Edinburgh. Tait and others showed how easily any map can be trans- 

formed into a trivalent map with the same coloring properties. If a 

vertex has more than three edges, draw a small circle around it. Erase 

what is inside, and also erase one of the circle's arcs (see Figure 161). 

The vertex of n edges is replaced by an extension of one region, now 

Figure 161 
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surrounded by n - 2 trivalent vertexes. It is obvious that any coloring 

of the regions will color the original map. We do not have to worry 

about a vertex with only two edges because it is just a spot on a border 

and can be removed. In brief, any map can be changed to a network of 

trivalent forking lines, producing a trivalent map, and if the trivalent 

map can be four-colored, so can the original map. In addition Tait was 

able to prove that if the regions of a planar trivalent map can be four- 

colored, the edges of its graph can be three-colored, and vice versa. 

The equivalence of the two colorings is evident from the following 

procedures. Assume that the regions of a trivalent map are colored with 

A, B, C, and D. Label each edge with a letter that is the "sum" of the 

regions on each side, using the following addition table: 

The result is a three-coloring of the edges. To go from edgecoloring to 

region-coloring assume that the edges of a trivalent graph are colored 

with B, C, and D. Label any region A. From A take any path that goes 

from face to face. When you cross an edge, label the new region with 

the "sum" of the edge and the last region visited. Use the same addi- 

tion table as before if the two letters differ, and call the new region A if 

they are the same. The result is a four-coloring of the regions. 

Tait believed all trivalent graphs are three-colorable (and therefore 

all maps are four-colorable), with the exception of two kinds of trivalent 

graphs. One consists of trivalent maps with bridges. Three simple graphs 

of this type are shown in Figure 162. The two loops in the first graph 

make it obviously uncolorable, and it is almost as trivially obvious that 
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BRIDGES 

Figure 162 

the other two graphs also cannot be three-colored. Such graphs can- 

not, of course, be those of any legitimate map because the bridge would 

divide the outside region-a connected region if the map is on a sphere- 

from itself. (When any map is four-colored on the plane, the "outside" 

must always be treated as a region.) The bridge would be an absurd 

border: if you crossed it, you would still be in the same region. 

The other class of uncolorable trivalent maps are all nonplanar 

(impossible to draw on the plane without at least one intersecting edge). 

The simplest example, known as the Petersen graph, is shown in Figure 

163. The form on the left is the one usually seen in textbooks. Rufus 

Isaacs of Johns Hopkins University, an applied mathematician noted for 

his work on game theory, prefers the one on the right. It is drawn with 

fewer strokes, and all the vertexes except one are on the outside, where 

Figure 163 
1 
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they can be used for "hooking" the graph to other graphs in a manner 

to be explained below. By tracing each graph along its edges, taking the 

spots in order, you can easily verify that the two are topologically iden- 

tical. The inner star is colored to make the isomorphism more obvious, 

What can we conclude from all of this? If an uncolorable trivalent 

graph exists that is equivalent to a map disproving the four-color theo- 

rem, it must be trivalent, planar and bridge-free. No such graph has 

been found, and the reader would be ill-advised to search for one. On 

the other hand, as Isaacs recently discovered, the search for nonplanar 

graphs that cannot be "Tait-colored" (three-colored) can be a delightful 

pastime. Isaacs' book Differential Games (Robert E. Krieger, 1975) has 

provided material for several of my columns. The results of his search 

for uncolorable trivalent graphs are reported in his fascinating paper 

"Infinite Families of Nontrivial Trivalent Graphs Which Are Not Tait 

Colorable," in The American Mathematical Monthly, Vol. 82, No. 3, 

pages 221 -239; March 1975. 

By nontrivial Isaacs means primarily a graph without a bridge. It is 

so easy to attach a bridge to any graph and render it uncolorable that we 

can ignore all graphs with bridges and concentrate on trivalent graphs 

without them. Isaacs also considers trivial any graph that has a "digon" 

(multiple edges joining two points), ('triangle" (or quadrilateral) because 

these are trivial features that can be added to or removed from any 

uncolorable graph without altering its uncolorable property. 

To avoid the constant use of "nontrivial uncolorable trivalent" it 

would be helpful to have a single term for it. My first thought was the 

acronym NUT, suggesting that such graphs, like buried nuts, are hard 

to find. Indeed, as Isaacs puts it, anyone who searches for them "will be 

vividly impressed with the maddening difficulty of finding" a single 

one. NUT, however, implies that the search is a bit nutty when in fact 

it is serious mathematical business. The problem of defining and clas- 

sifying all nontrivial uncolorable trivalent graphs is as worthy of being 
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tackled as proving the four-color-map theorem. If it is ever solved, and 

one can prove that all such graphs are planar, the four-color-map prob 

lem will also be solved. 

I propose calling nontrivial uncolorable trivalent graphs Snarks. A 
trivalent graph is a network of forking paths, and the person who tries 

to prove that it is uncolorable is certainly pursuing "with forks and 

hope" like the mad Snark-hunting crew in Lewis Carroll's immortal 

nonsense ballad. We know that Snarks are difficult to find, and that 

there is an exceedingly rare and dangerous variety called a Boojum. In 

our terminology the Boojum is none other than the planar Snark: the 

trivalent graph that explodes the four-color conjecture by providing a 

countermap. If anyone discovers a Boojum, he and the graph are in. 

stantly translated into hyperspace, This may explain why the four-color 

problem remains open. Was Judge Crater an amateur mathematician? 

The Petersen graph, first published in 1898, not only is the smallest 

possible Snark but also is (as W. T. Tutte, a great expert on graph 

theory, has shown) the only Snark with as few as 10 spots (points) on 

its hide. It is hard to believe, but more than half a century passed 

before the second Snark (with 18 spots) was discovered by Danilo 

Blanusa, who published it in 1946. Two years later Blanche Descartes 

(a pseudonym used by Tutte) published a 210-spot Snark. Not until 

1973 was the fourth Snark (50 spots) published by G. Szekeres, 

The main outcome of Isaacs's Snark expedition was the discovery 

of two infinite sets of Snarks. One set includes the graphs of BlanuSa, 

Descartes, and Szekeres. Isaacs calls them BDS graphs to honor the 

three mathematicians on whose work he based his own. The graphs 

are formed by hooking together graphs previously known to be 
uncolorable, and also by hooking on other arbitrary graphs. BlanuSa 

was not aware of it, but his graph can be obtained by joining two 

Petersen graphs in the manner shown in Figure 164. Remove any two 

nonadjacent edges from the Petersen graph on the left, then remove the 



T h e  L a s t  R e c r e a t i o n s  

Figure 164 

three adjacent edges and their two vertexes shown missing on the Petersen 

graph on the right. Hook the two graphs together as indicated. The 

pairs of edges at A can be crossed or not, and the same is true of the 

pair at B. Moreover, at A or B (or both) one can hook in arbitrary 

graphs without destroying colorability. Any two uncolorable graphs can 

be joined in this way, with or without additional arbitrary graphs, to 

produce an infinity of Snarks. Szekeres' graph is formed by hooking 

together five Petersen graphs. Descartes's graph is a combination of 

Petersen graphs with inserted nonagons. Readers interested in these 

constructions can consult Isaacs' paper for details. 

The second infinite set of Snarks found by Isaacs is shown in 

Figure 165. The first graph is the Petersen graph with a trivial "triangle" 

of three spots substituted for the central vertex. By increasing the num- 

ber of large petals in the series 3,5, 7,9, . . . one obtains an infinite set 

of flower Snarks with spots in the series 12, 20, 28, 36, . . . . Isaacs 

provides a simple visual proof that all flower Snarks are uncolorable. 

All trivalent graphs, by the way, necessarily have an even number of 

spots. If the number is 2n, the number of edges is 3n, and if the graph 

is threecolorable, there are n edges of each color. 

Isaacs also discovered one Snark (30 spots) of a wild variety that 

does not belong to either the BDS or the flower sets. He calls it the 

double-star (see Figure 166). Of course, the double-star Snark, as well 
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Figure 165 

as any flower graph, can be hooked to BDS graphs, or the flower 

graphs can be hooked to one another. The combinatorial possibilities 

are endless, and complex BDS graphs can be drawn in such a way that 

it is extremely difficult to sort out their component parts. 

To introduce readers to the excitement of Snark hunting, four simple 

trivalent graphs that are three-colorable are presented in Figure 167. 

Readers are invited to see how quickly they can threecolor any one graph 

or all four graphs. The bottom graph is drawn in canonical form; that 

is, so all its points are on a straight line. After some practice at three- 

coloring the reader may want to try the more difficult task of proving that 

the Petersen graph or any of the other Snarks is uncolorable. To do this 
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Figure 166 

you must test all possible ways of threecoloring, and that can be time- 

consuming, particularly if you are not using an efficient procedure. 

The following backtrack algorithm, which is not given in Isaacs' 

paper, is the one he has found most useful, both for three-coloring 

trivalent graphs and for proving their uncolorability. I shall describe it 

in pencil-and-paper terms (see Figure 168), although it can be made 

even more efficient by working with extremely large graphs and small 

numbered counters. 

1. Draw a large picture of the graph in ink. Let 1, 2, and 3 stand 

for the colors. All the labeling should be done with a soft lead pencil 

because there may be many erasures. 
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Figure 167 

2. Pick any vertex and label its three forking paths, 1,2, and 3. It does 

not matter how you distribute the numbers. They merely stand for 

different colors, so that there is no loss of generality by permuting them. 

3. Move to any adjacent vertex. Its two unlabeled edges can be 
labeled in two ways. In our example the upper edge must be 1 or 3. 
Label it 1, putting a bar over the numeral to indicate that it is a free 

choice. Add subscript 1 to show that it is your first free choice. We call 

this the step number. 
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Figure 168 

4. Label all edges that are determined by the first free choice. In 

our example there is only one. It gets a 3. Add the same step number 

(subscript 1). No bar goes over the 3 because the labeling is forced. 

5. Move to another adjacent vertex where there is a free choice. As 

before, the first decision gets a bar over it, but now the subscript is 2. 
This shows that it is your second free choice. 

6. Continue in this way until the entire graph is labeled or you 

encounter a contradiction-a forced choice that puts two edges of the 

same color at a vertex. When that occurs, at step n, erase all labels 

having subscript n. It is wise to leave the erasure of the barred label to 

the last. 

7. Make the alternative choice at step n. This time, however, no bar 

is put over the label. Why? Because it is no longer a free choice. It was 

forced by the contradiction that resulted from the previous choice at 

step n. It gets the subscript n - 1. This shows that you were forced to 

backtrack one step. In other words, the new step has now become part 

of the previous step, so that it gets the previous step's number. 

8. Keep repeating the procedure. If the graph is colorable, you will 

eventually color it. If it is not, you will keep encountering contradictions 
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that force backtracking. Subscripts will become fewer only to increase 

again. If there is a contradiction after all edges have acquired labels with 

no bars, then the graph is uncolorable. You have found a Snark. 

"The task is simpler," Isaacs writes in a letter, "the more omni* 

scient we are in foreseeing the consequences of each step." After a 

while numerous dodges will occur to the experienced Snark hunter. 

Figure 169 shows some useful coloring tips. For example, a digon (a 

two-sided cycle) on a path can be skipped because clearly the same 

color is forced on both sides. Similarly, a triangle can be treated like a 

single vertex because the three edges leading to it (as you can easily 

Figure 169 
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prove) must have three colors. Squares can be simplified by remember- 

ing that either the four edges leading to it are all the same color or two 

adjacent edges are one color and the other two are another. Pentagons 

are simplified by remembering that, of the five leading edges, three 

adjacent edges must be the same, the other two colors being on the 

remaining pair. 

It is good, Isaacs advises, to hunt for forks of the kind depicted in 

the last graph in Figure 168. If two edges are the same color, as shown, 

the edge marked with the arrow must also be the same color. Finding 

forced labels of these kinds can eliminate unnecessary backtracking. 

Every known Snark, Isaacs tells us, contains at least one Petersen 

graph. This means that by erasing certain edges and removing spots from 

edges that remain, you are left with a structure topologically identical with 

the Petersen graph. It does not mean that the Petersen graph is a sub- 

graph. Subgraphs have to correspond, point for point, edge for edge, to 

a portion of a graph. Although subgraphs are contained within graphs, 

not all contained graphs are subgraphs. Indeed, the Petersen graph 

cannot be a subgraph of a trivalent graph, because if you add an edge to 

any vertex of the Petersen graph, it raises the order of the vertex to 4. 
Figure 170 shows one way to remove five edges (shown as broken 

lines) and 10 spots from the flower Snark to leave a Petersen graph. The 

graph is numbered and colored to correspond with the graph in Figure 

163. The presence of this graph inside the Snark proves it is not planar, 

because no planar graph can contain a nonplanar one. There is a fa- 

mous theorem that states all nonplanar graphs (not necessarily trivalent 

ones) must contain either the complete graph for five points or the six- 

point "utilities" graph. Along similar lines Tutte has conjectured that 

all Snarks contain Petersen graphs. If that is true, the fouFcolor theo- 

rem is also true and Boojums do not exist. 

In our Carrollian terminology Petersen graphs are the "bathing ma- 

chines" that Snarks are so fond of, and that Carroll says every Snark 



Trivalent Graphs, Snarks, and Boojurns 

Figure 170 

. . . constantly carries about, 
And believes that they add to the beauty 

of. scenes- 
A sentiment open to doubt. 

Finding bathing machines inside Snarks is not always easy. You 

might try looking for one in the other two flower Snarks and inside 

the double-star. Perhaps you will become sufficiently intrigued to em- 

bark on a Snarkhunting expedition of your own. Try drawing and 

testing a variety of trivalent graphs. Your ability to color them will 

improve rapidly with practice, and you will become impressed with 

how difficult it is to find genuine Snarks. If you bag any with more 

than 10 spots (a Petersen graph) and fewer than 18 (a Blanuga graph), 

I should like to see their picture. No Snarks are known with spots 

numbering between 10 and 18. The first flower Snark (12 spots) does 

not count because the triangle at its center makes it a trivial variation 

of the Petersen graph. 

Hold on a minute! I have just finished sketching a fantastic trivalent 

graph with 50 projections that stick out like feathers. There are no 

intersections. It just might be a Bo. . . . 
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When I asked readers for examples of Snarks with 12, 14, or 16 points, 

I failed to make clear that they must be nontrivial Snarks. A Snark is consid- 

ered trivial if it contains loops (cycles) that are digons (double edges), triangles, 

or quadrilaterals, or if an arbitrary subgraph is added by means of "bridges." 

Multiple edges can of course be changed to a single edge. A triangle (three-sided 

loop) can be contracted to a single point to make a smaller Snark, and a 

quadrilateral (four-sided loop) can be replaced by two edges. 

One trivial way to add a subgraph is to sever an edge, as shown at the lefi 

of Figure 171, and use bridges to add a subgraph. Another way uses bridges 

to replace any point with an arbitrary subgraph as shown on the right of the 

same figure. Snarks remain Snarks under both types of alteration. Isaacs' 

original paper bans such trivial changes. Many readers sent Snarks with 12, 

14, and 16 points but which were trivial. Since my column appeared it has been 

proved that nontrivial Snarks with 12,14, and 16 points cannot exist. Snarks 

have been constructed with 18, 20, 22, 26, 28, 30 points, and higher. 

Roman Nedela and Martin Skoviera, in their 1996 paper, show that a 

24-point nontrivial Snark (they call such Snarks "irreducible") does not exist. 

They raise the open question: For which even numbers n greater than 10 

does there exist an irreducible Snark of order n? 

There are many ways to draw a Petersen graph. Jan Mycielski prefers the 

graph at the lefi of Figure 172. O n  the right is shown how Isaacs drew a 

Figure 171 
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Figure 172 

Petersen graph on a torus. It requires five colors. A proof that the Petersen 

graph requires four colors is so simple and elegant that I present it here in 

the form given in the paper by Amanda Chetwynd and Robin Wilson. 

Color the outside edges of the Petersen graph with three colors, a, b, c, as 

shown in Figure 173. This forces the colors of the five spokes. The two dotted 

edges now contradict the assumption that the Petersen graph is four-color- 

able. One dotted line must be colored a, forcing the other dotted line to have 

a fourth color. 

Before Isaacs wrote his 1975 paper only four nontrivial Snarks were 

known. Several infinite families of Snarks have since been discovered 

Figure 173 
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(Figure 174 shows an example of a nontrivial Snark with 22 points). The 

major task still open is to classify all types of Snarks in a systematic way. Is 

there, for instance, a way to define "prime Snarks" so that every Snark can 

be constructed from prime Snarks? 

The following two conjectures also remain unsolved: 

1. Does every Snark contain a Petersen graph? As we have seen, if this 

can be proved it would provide a simple proof of the four-color map theorem. 

2. Does every Snark contain a cycle of 5 or 6 points? This is known as 

the "girth conjecture." A graph's girth is the smallest cycle (if any) that it 

contains. A Snark cannot have a cycle of 2, 3, or 4 points, so it must have a 

cycle of at least 5.  Put another way, no Snark has a girth of 7 or greater. 

Figure 174 
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Descartes, Blanche, 367 

Descartes, oval of, 46-49 

Detour matrix, 102, 118 
Detrick, Peter, 108 

Dewdney, Alexander Keewatin, 1, 2, 
223 

Digraphs, 101 -116 

complete, 102 

Dinesman, Howard P., 97 

Dinner-guest problem, 121 -1 22 
Directed graphs, see Digraphs 

Directed lines, 101 

Directed walks, 110 

Dirichlet, Peter Gustav Lejeune, 178 
Dirichlet drawer principle, 178 
Discrete groups, 147 

Distance matrix, 102, 118 

DNA strands, 81 

Dominance relations, 105 

Double-star Snarks, 368-369, 370 

Drobot, Stefan, 24 

Du, Ding Zhu, 358 

Dudeney, Henry Ernest, 114, 127, 

350, 362 

Dunne, Frank, 214 

Easter, calculating date of, 238 

Eden partitions, 38 

"The Egg" (Anderson), 55-57 

Eggleton, Roger B., 106 

Eggs, 45-65 

air cells in, 62-63 
balancing, 50-51, 62 

drawing, 63, 64 

drawing shape of, 45-49 

dropping, 54 
forcing hard-boiled, into bottles, 

54-55, 59-60 

puncturing shells of, 53-54 

spinning, 51 -52 

standing on end, 49-50 

stunts with, 51 

18-point problem, 34-36 

Eightfold way, 148 

"Election Mathematics: Do All 

Those Numbers Mean What 

They Say?" (Steen), 318 

Elections, presidential, U.S., 327- 

330 

Elements, planiversal, 6 -7 
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Elements (Euclid), 303 
Ellipses, 286 

taxicab, 165-167 
Elliptic geometry, 31 1 
Endless tasks, 27-42; see also Tasks, 

endless 
"The Enormous Theorem," 155- 

156 
An Episode of Flatland (Hinton), 2 
Erdos, Paul, 114, 117 
Error-correcting code, 152 
Escher, M.C., 308, 310-311 
Euclid, 303 
Euclidean geometry, 159, 303-304 
Euler totients, 203 

Fabre, Henri, 286 
Factorials, 198 
Farey fractions, 203 
Feit, Walter, 154 
Fermat numbers, 198, 204 
Fermat points, 359 
Fermat's little theorem, 235 
Fermat's two-square theorem, 200 
Fifty miles an hour problem, 335, 

340 
Figure-eight knots, 68, 69 
Finite groups, 148 
Fischer, William L., 313 
Flatland (Abbott), 2 
"Flatlands" (Gardner), 2 
Fort, Charles, 216 
Fortune, Reo F., 194 
"Fortune cookie," 195 

Four-color-map problem, 85-89 
Fourcolor map theorem, 361 -362 
Four Color Puzzle Game, 96-97 
Fraenkel, Aviezri S., 106, 226 
Fraley, Robert, 108 
Frazier, Eugene, 211 
French checkers, 208 
Fulves, Karl, 244 

Gage, Paul, 204 
Gale, David, 188 
Galileo, 289 
Galois, ~variste, 140, 156 
Games, planiversal, 17- 21 
Gardner, Martin, vii 
Garey, Michael, 226, 359 
Garrido, Roberto Teodoro, 259 
Gaskell, Philip, 205 
Gauss, Karl Friedrich, 233-234, 

305, 312 
Gentzen, Gerhard, 308 
Geometry 

elliptic, 311 
Euclidean, 159, 303-304 
hyperbolic, 305 
non-Euclidean, 303-314 
taxicab, 160-174 

Gilbert, E.N., 357 
Gilbreath, Norman L., 195 
Gilbreath conjecture, 195-196 
Godel, Kurt, 307 
Goldstein, Phil, 244 
Goodstein, R.L., 33 
Gordon, Cameron M., 82 
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Gorenstein, Daniel, 154 
Gott, Richard, 111, 22 
Gottlieb, Allan, 236 
Graham, Ronald L., 36, 279, 297, 

352-353, 357, 358 
Grandjean, W. Burke, 212 
Granny knots, 69-70 
Graphs, 101 

directed, see Digraphs 
mixed, 104 
simple, 101 
tournament, 103-105, 115-116 
trivalent, 361 -378 

Graph theory, 345 
Gravity, in planiverse, 3, 5 
Greedy algorithm, 346, 359 
Greenblatt, M.H., 338 
Griess, Robert L., 140 
Group, 140-141, 148 
Guy, kchard Kenneth, 191 -192 

Haken, Wolfgang, 85 
Hallyburton, John C., Jr., 204 
Hamilton, William Rowan, 103 
Hamiltonian circuit, 103 
Hamiltonian path, 103 
Hanani, Hail, 133 
Handcuffed-prisoner problem, 127- 

133 
Harary, Frank, 94, 118 
Hardy, G.H., 41 
Harris, John S., 23, 214 
Hartley, Richard, 71 
Hayes, Peter, 282 

Hazelett, Richard, 314 
Heawood, Percy John, 87, 90 
Hegde, Majunath M., 75 
Hein, Piet, 262, 303 
Hell, Pavol, 131 
Hellman, Walter, 211, 222 
Henle, James Marston, 18 
High, Robert, 264-265 
Hilbert, David, 304 
Hinges, planiversal, 12, 13 
Hinkle, Horace W., 74 
Hinton, Charles Howard, 2 
Hoffman, Dean, 282 
Hofstadter, Douglas R., 255 
Hoist, planiversal, 4-5 
Holmes, Sherlock, 332-333 
Homfly polynomial, 80 
Honsberger, Ross, 178 
House, Astrian, 10, 11 
Houseman, A.E., 98 
Huang, Charlotte, 131 
Hummer, Robert, 240 
Huygens, Christian, 49 
Hwang, Frank, 358 
Hydras, 31 - 34 
Hyperbolas, taxicab, 167, 169 
Hyperbolic geometry, 305 
Hypercycles, 310 

Identity operation, 141 
Incongruence, 234 
Indian chess mystery, 332-333, 

338 
Infinite groups, 147 
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International Checkers, 226 

Inversions (Kim), 267 

Invertible knots, 70- 71 
Isaacs, Rufus, 365 

Janko, Zvonimir, 152 

Jensen, Eric C., 211 
Jin, Koh Chor, 282 

Johnson, David, 226, 359 

Jones polynomial, 80, 81 

Jump knots, 78-79 

Karp, Richard M., 188 

Kawauchi, Akro, 71 
Kempe, Alfred Bray, 87 

Kepler, Johannes, 286 

Gllgrove, Ray B., 195 
Kim, Scott, 90, 98, 267, 269, 280 

King, Ron, 229 
Kingmaker game, 119 
Kirby, Laurie, 31 

Kirkman, Thomas Penyngton, 123 

Kirkman designs, 123 

Grkman points, 123 

Kirkman's schoolgirl problem, 123- 

127 
Kirkup, James, 98 
Kisch, Ike, 226 
Klein 4-group, 143 

Knight, Damon, 216 

Knot poem, 82-83 

Knots, 67 

alternating, 69 

amphicheiral, 69 

bowline, 70 

figure-eight, 68, 69 

granny, 69-70 

invertible, 70-71 

jump, 78-79 
noninvertible, 71 

pretzel, 71, 72 

prime, 69-70, 73 
square, 69- 70 

topology of, 67-83 
trefoil, 68-69 

trivial, 74 
Knot theory, 80-82 

Knuth, Donald E., 38, 136, 188, 

269, 279 

Koch, John, 85 
Kodama, Yukihiro, 94 

Koestler, Arthur, 280 
Kolm, Fred, 63 

Krause, Eugene F., 169, 171 
Kruskal, Joseph B., 31, 346 

Lafferty, Don, 229 

Lagrange's theorem, 149 

Lake, Robert, 228 

Lariger, Joel, 78-79 

Larson, Loren C., 200-201 
Lattice points, 186 
Lavinia seeks a room problem, 

247-248, 256-257 

Lee, Wallace, 268 

Leech, John, 152 

Leech's lattice, 152 
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Lie, Marius Sophus, 147 
Lie groups, 147-148 

Lincoln, Thomas L., 245 
Lindon, J.A., 205 

Linis, Viktors, 184 

Links, 67 

Littlewood, John E., 200 

Lobachevski, Nikolai Ivanovitch, 

305 

Lock, planiversal, 13-14, 16 
Long, Asa, 222, 229 

Longfellow, Henry Wadsworth, 27 

Lord, Graham, 258 

Lord, N.J., 252 

Loyd, Sam, 213, 350 

Lu, Paul, 228 

Luecke, John E., 82 
Lull, Ramon, 124 

Machines, planiversal, 17 

Mailer, Norman, 289 

Manna, Zohar, 31 

Map-coloring game, new, 253-254, 

260-261 

Maps, m-pire, 85-99 
Markov chains, 105 
Marshall, William Rex, 281, 282 
Mathematics, voting, 317 -330 
Mathieu,   mile Uonard, 152 

Matsuyama, Mitsunobu, 252 
Maurer, Steve, 119 

Maxwell, James Clerk, 49 

McClellan, John, 244 

Measurements of time, 237-238 

Measuring with yen problem, 252- 
253, 260 

Mersenne numbers, 197 - 198 
Metric systems, 160 
Miller, Charlie, 51 
Miller, Kevin, 60 

Minimal spanning tree, 346 

Minimal Steiner trees, 345-357 

Minkowski, Hermann, 160 

Mirror-symmetric solids, 248-249, 

257 
Missionaries and cannibals, 108- 

114 
Mixed graphs, 104 

Modular theory, 236 
Monsky, Paul, 252 

"The Monster," 139-140 
Morice, David, 279 
Morris, Scot, 271 

Moser, Leo, 199 
rn-pire chromatic number, 89 

rn-pire maps, 85-99 

m-pire problem, 89 

Mycielski, Jan, 376 

Nash-Williams, C.St.J.A., 31 
Nedela, Roman, 376 
Nelson, Harry L, 198 

Nested boxes, set of, 34 

Neuwirth, Lee, 68 
Newton, Isaac, 49 

Nim game, 255 

Non-Abelian anomalies, 150 
Non-Euclidean geometry, 303 -314 
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Noninvertible knots, 71 

Nozick, Robert, 333 

Number congruence, concept of, 

234 

Number triangle, Pascal's, 161 -162 

O'Beirne, Thomas H., 238 
Ollerenshaw, Kathleen, 131 

Ondrejka, Rudolf, 212 
O'Neil, Sharon, 79 

Ordered partitions, 40-41 
Outerbridge, Paul, Jr., 64 

Oval of Descartes, 46-49 

Ovals, Cassini, 49 

Packard, Mary J., 62 
Parabolas, 285-301 

drawing, 295-296 

by paper folding, 296-297 

taxicab, 167, 168 

Paraboloid, 291 -293 
Paris, Jeff, 31 
Parris, kchard L., 71, 83 

Partitions 

Eden, 38 
ordered, 40-41 

selficonjugate, 40 

Partition theory, 37-41 

Parton, Vern R., 215 

Pascal's mystic hexagram, 123 

Pascal's number triangle, 161 -162 

Patashnik, Oren, 279 

Paths, 161 
Payne, William, 207 

Penney, Walter, 334 

Penrose, Roger, 77 

People, Astrian, 9 

Permutations, cyclic, 141 

Petersen graph, 362, 365, 367 
Snarks and, 374-375 

Philpott, Wade, 194 

Pi, taxicab, 165 
Pierce, Charles, 83 
Pigeonhole principle, 178 

Pigeonhole principle applications, 

179 
faces of polyhedron, 179 

the marching band, 184-185 

101 numbers, 181 -182 

the pills, 180-181 

six hundred and fifty points in a 

circle, 182-184 

subsequences in permutation, 

185 - 186 

ten positive integers smaller than 
100, 179-180 

Pillsbury, Harry Nelson, 225 

Pinch, game of, 18-19 
Planar phenomena, 21 

Planiversal elements, 6- 7 
Planiversal games, 17- 21 

Planiversal hinges, 12, 13 

Planiversal hoist, 4-5 

Planiversal lock, 13-14, 16 

Maniversal machines, 17 
Planiversal steam engine, 12- 13, 14 
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Planiverse, 1 - 25 
gravity in, 3, 5 

Poe, Edgar Allan, 208 
Poincare, Henri, 308, 312-313 
Poker puzzle, 331 -332, 337-338 
Polish checkers, 208, 226 
Pollok, H.O., 357 
Polya, George, 201 
Polycube snakes, 274, 276-277 
Presidential elections, U.S., 327- 

330 
Pretzel knots, 7 1, 72 
Prime knots, 69-70, 73 
Primes, 193 
Puthoff, Harold, 244 
Putnam, Hilary, 86 
hnchon, Thomas, 300 

Queens on chessboard problem, 
274, 275 

Rademacher, Hans A., 41 
Ralston, Ken E., 195 
Ramanujan, Srinivasa, 41 
Rawls, John, 333 
Ray-Chaudhuri, D.K., 127 
Reachability matrix, 102-103, 118 
Rebman, Kenneth R., 180 
Redistribution in Oilaria problem, 

333-335, 338-340 
Reitch, Joe, Jr., 194 
Richards, John, 76 

Riemann, Georg Friedrich 
Bernhard, 307 

Ringel, Gerhard, 94, 118 
hver-crossing problems, 108- 114 
Rogers, John, 226-227 
Rolfsen, Dale, 73 
Rosa, Alexander, 131 
Rosenbloom, Paul C., 308 
Rosquist, Kjell, 281 
Rothman, Tony, 156 
Russell, Bertrand, 303 

Saccheri, Giralamo, 306 
Salvatore, Gali, 252 
Samuel, Arthur L., 211 
Santayana, George, 65 
Scalene triangle, taxicab, 163 
Schaeffer, Jonathan, 228 
Schaffer, Karl, 280 
Scheduling problems, 106 
Scherer, Karl, 74 
Schlafli, Ludwig, 307 
Schoolgirl problem, Irkman's, 

123-127 
Schwartz, Abe, 226 
Schwartz, Benjamin L., 87-88, 108, 

341 
Schwink, Paul, 262 
Scientific American, vii 
Seidel, J.J., 126 
Selficonjugate partitions, 40 
Sextus Empiricus, 65 
Shapley, Lloyd, 260 
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"A Simple Ballad," 150-152 

Simple graphs, 101 
Simple groups, 148-149 

Sinks and sources, 107-108 

Skoviera, Martin, 376 

Slade, Henry, 76 

Slowinski, David, 198, 204 

Small numbers, strong law of, 192 

Smith, Herschel F., 219 

Smullyan, Raymond M., 28, 332, 

338 

Snakes, polycube, 274, 276-277 

Snarks, 362, 367 

double-star, 368-369, 370 

Petersen graphs and, 374-375 

trivial, 376 

Solitaire, Bulgarian, 36-42 

Solomon game, 225 

Sources and sinks, 107-108 

Spalding, Helen, 191, 205 

Spencer, Herbert, 123, 135-136 

Spencer, Jeffrey, 281 

Spencer, Joel, 119 

Spencer-Brown, G., 88-89 

Sporadic groups, 150-154 

Square knots, 69-70 

Squares, taxicab, 164 

Steam engine, planiversal, 12-13, 

14 
Steen, Lynn Arthur, 318 

Steiner, Jacob, 122, 347 

Steiner points, 347 
Steiner tree, 347 

Steiner triple systems, 122 

Steinhaus, Hugo, 35 

Stern, Erik, 280 

Stewart, Ian, 98, 313 

Stott, Eric, 262 

Stover, Mel, 217, 229 

Strong law of small numbers, 192 

"The Strong Law of Small Num- 

bers" (Guy), 191 -205 

Sulanke, Thom, 94 

Summers, Robert, 339 

Supercheckers, 216-217 

Supereggs, 49 

Superstrings, 81 

Swenson, May, 45, 57, 62 

Swift, Jonathan, 65 

Symmetry, axis of, 248 

Symmetry creations of Scott Kim, 

267-283 

A Symposium of Two-Dimensional 

Science and Technology 

(Dewdney), 21 

Szekeres, G., 367 

Szirtes, Thomas, 262 

Tait, Peter Guthrie, 79, 363 

Targ, Russell, 244 

Tasks, endless, 27-42; see also 

Endless tasks 

Taxicab circles, 164-165 

Taxicab ellipses, 165 - 167 

Taxicab geometry, 160-174 

Taxicab Geometry (Krause), 169 

Taxicab hyperbolas, 167, 169 
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Taxicab parabolas, 167, 168 

Taxicab pi, 165 

Taxicab scalene triangle, 163 

Taxicab squares, 164 

Taylor, Alan D., 253 

Taylor, Herbert, 89, 343 

Templer, Mark, 195 

Thales of Miletus, 304 

Thayer, Tiffany, 217 

Thompson, John, 154 

Thompson, Perronet, 311 

Three-option contests, voting in, 

324-327 

Tietze, Heinrich, 82 

Time, measurements of, 237-238 

Tinsley, Marion F., 208, 221, 228- 

229 
Tompkins, Pendleton, 61 

Topology of knots, 67-83 

Toroidal paradox, 336-337, 341 - 

343 
Tournament graphs, 103- 105, 115- 

116 

Traffic Jam game, 107 

Transportation problems, 106 

Traveling salesman problem, 

352 

Tree graphs, 30-34 

Trees, 345 

Trefoil knots, 68-69 

Treloar, Norman, 228 
Triangular numbers, 36 

Trivalent graphs, 361 -378 

Trivalent maps, uncolorable, 365 

Trivial knots, 74 
Trotter, Hale F., 71 

Truscott, Tom R., 211 

Turkish checkers, 215 

Turner, Dean E., 314 

Tutte, W.T., 367 

Twain, Mark, 85 

Twin-prime conjecture, 196-197 

Two-candidate contests, 319-3 20 

Two-Dimensional Science and 

Technology (Dewdney), 2, 21 

Two dimensions, 1 

Tymoczko, Thomas, 86 

Uncolorable trivalent maps, 365 
The Unexpected Hanging and Other 

Mathematical Diversions 

(Gardner), 2 

Voting in three-option contests, 

324-327 

Voting mathematics, 317-330 

Walks, directed, 110 

Wallis, John, 304 

Waring, Edward, 235 

Warmus, M., 36 

Weather, Astrian, 6 
Wegman, Mark, 336 

Whim game, 255-256, 261-262 

Whitehead, Alfred North, 313 
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Wicked Witch of the West, 240- Wyllie, James, 222 
244 

Wilson, John, 235 
Wilson, Richard M., 127 
Wilson, Robin, 377 
Wilson's theorem, 235 
Witten, Edward, 81 
Wood, R.W., 292 

Yates, R.D., 222 
Young, Alfied, 188 
Young tableaux, 41, 

Zollner, Johann C.F., 76 
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