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INTRODUCTION 

"There remains one more game." 
"LVhat is it?" 
"Ennui," I said. "The easiest of all. No 

rules, no boards, no equipment." 
"LVhat is Ennui?" Amanda asked. 
"Ennui is the abqence of games." 

-Donald Barthelme, Guzltj Plta tul t i  

Unfortunately, as recent studies of' education in this country 
have made clear, one of the chief characteristics of mathemat-. 
ical classes, especially on the lo~ver levels of public education, is 
ennui. Some teachers may be poorly trained in mathematics 
and others not trained at all. If mathematics bores them, can 
you blame their students for being bored? 

Like science, mathematics is a kind of game that we play ~vith 
the universe. T h e  best mathematicians and the best teachers of 
mathematics obviously are those who both understand the 
rules of the game, and who relish the excitement of playing it. 
Raymond Smullyan, who has enormous zest for the games of 
philosophy and mathematics, once taught an elementary 
course in geometry. In his delightful book 5000 U.C. and  0 t h ~ ~  
Philosophical Fantasies (1983) he tells how- he once introduced 
his students to the Pythagorean theorem: 

I drew a right triangle on the board with squares on the hy- 
potenuse and legs and said, "Obviously, the square on the hy- 
potenuse has a larger area than either of the other two 
squares. Now suppose these three squares were made of 
beaten gold, and you were offered either the one large 
square or  the two small squares. Which would you choose?" 

Interestingly enough, about half the class opted for the one 
large square and half for the two small ones. A lively argu- 
ment began. Both groups were equally amazed when told 
that it would make no difference. 
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It is this sense of surprise that all great mathematicians feel, 
and all great teachers of mathematics are able to communicate. 
I know of no better way to do this, especially fbr- beginning stu- 
dents, than by way of games, puzzles, paradoxes, magic tricks, 
and all the other curious paraphernalia of' "recreational 
mathematics." 

"Puzzles and ganies provide a rich source of example 
problems useful for illustrating and testing problem-solving 
methods," wrote Nils Nilsson in his widely used textbook 
Problem-Solving Met!~od,s in  ArtlJicial Intelligence. He quotes Mar- 
vin Minsky: "It is not that the games and mathematical prob- 
lems are chosen because they are clear and simple; rather it is 
that they g iveus ,  for the smallest initial structures, the greatest com- 
plexity, so that one can engage some really formidable situations 
after a relatively rninirnal diversion into programming." 

Nilsson and Minsky had in mind the value of recreational 
mathematics in learning how to solve pr-ol~lerns by computers, 
but its value in learning how to solve problems by hand is just 
as great. In this book, the tenth collection of the Mathenlatical 
Games colurrins that I wrote for- Scic.ntzjic American, you will 
find an assortment of mathematical recreations of every vari- 
ety. 'I'he last three chapters (the third was written especially for 
this volume) deal with John H. C;onway's fantastic game of 
Life, the full wonders of which are still being explored. 

The two previously published articles on Life, in which I had 
the privilege of introducing this game for the first time, 
aroused more interest among computer buffs around the 
world than any other columns I have written. Now that Life 
software is beconlirlg available for home-computer screens, 
there has been a renewed interest in this remarkable recrea- 
tion. Although Life rules are incredibly simple, the complexity 
of its structure is so awesome that no one can experiment with 
its "life forms" without being overwhelmed by a sense of the 
infinite range and depth and mystery of mathematical struc- 
ture. Few have expressed this emotion Inore colorfully than the 
British-American mathematician .James J .  Sylvester: 

Mathematics is not a book confined within a cover and bound 
between brazen clasps, whose contents it needs orily patience . . 
to ransack; it is not a rnine, whose treasures rnay take long to 
reduce into possession, but which fill only a limited number 
of  veins and lodes; it is not a soil, whose terrility can be ex- 
hausted by the yield of successive harvests; it is not a conti- 
nent or an ocean, whose area can be mapped out and its ron- 
tour defined: it is linlitless as that space which it finds too 
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narrow for its aspirations; its possibilities are as infinite as the 
worlds which are forever crowding in and multiplying upon 
the astronomer's gaze; it is as incapable of being restricted 
within assigned boundaries or being reduced to definitions of' 
permanent validity, as '  the consciousness, the life, which 
seems to slumber in each monad, in every atom of matter, in 
each leaf and bud and cell, and is forever ready to burst forth 
into new forms of vegetable and animal existence. 

Martin Gardner 



WHEELS 

The miraculous paradox of smooth round 
objects conquering space by simply tumbling 
over and over, instead of laboriously lifting 
heavy limbs in order to progress, must have 
given young mankind a most salutary shock. 

Things would be very different without the wheel. Transpor- 
tation aside, if we consider wheels as simple machines-pulleys, 
gears, gyroscopes and so on-it is hard to imagine an) ad- 
vanced society without them. H. G. Wells, in The War of the 
Worlds, describes a Martian civilization far ahead of ours but 
using no  wheels in its intricate machinery. Wells may have in- 
tended this to be a put-on; one can easily understand how the 
American Indian could have missed discovering the wheel, but 
a society capable of sending spaceships from Mars to the earth? 

Until recently the wheel was believed to have originated in 
Mesopotamia. Pictures of wheeled Mesopotamian carts date 
back to 3000 B . C .  and actual remains of massive disk wheels 
have been unearthed that date back to 2700 B.C. Since FYorld 
War 11, however, Russian archaeologists have found potter\ 
models of wheeled carts in the Caucasus that suggest the wheel 
may have originated in southern Russia even earlier than it did 
in Mesopotamia. There  could have been two o r  more inde- 
pendent inventions. O r  it may have spread by cultural diffu- 
sion as John Updike describes it in a stanza of his poem, Whe~ l :  



CHAPTER 1 

The Eskimos had never heard 
Of centripetal force when Byrd 
Bicycled up onto a floe 
And told them, "This how white man go." 

It seems surprising that evolution never hit on the wheel as 
a means for making animals go, but on second thought one re- 
alizes how difficult it would be for biological mechanisms to 
make wheeled feet rotate. Perhaps the tumbleweed is the clos- 
est nature ever came to wheeled transport. (On the other hand, 
the Dutch 'artist Maurits C. Escher designed a creature capable 
of curling itself into a wheel and rolling along at high speeds. 
Who can be sure such creatures have not evolved on other 
planets?) There may also be submicroscopic swivel devices in- 
side the cells of living bodies on the earth, designed to unwind 
and rewind double-helix strands of DNA, but their existence is 
still conjectural. 

A rolling wheel has many paradoxical properties. It is easy 
to see that points near its top have a much faster ground speed 
than points near its bottom. Maximum speed is reached by a 
point on the rim when it is exactly at the top, minimum speed 
(zero) when the point touches the ground. On flanged train 
wheels whose rims extend slightly below a track, there is even 
a short segment in which a point on the rim moves backward. 
G. K. Chesterton, in an essay on wheels in his book Alarms and 
Discursions, likens the wheel to a healthy society in having "a 
part that perpetually leaps helplessly at the sky; and a part that 
perpetually bows down its head into the dust." He reminds his 
readers, in a characteristically Chestertonian remark, that "one 
cannot have a Revolution without revolving." 

The most subtle of all wheel paradoxes is surprisingly little 
known, considering that it was first mentioned in the Mechan- 
ica, a Greek work attributed to Aristotle but more likely written 
by a later disciple. "Aristotle's wheel," as the paradox is called, 
is the subject of a large literature to which such eminent math- 
ematicians as Galileo, Descartes, Fermat and many others con- 
tributed. As the large wheel in Figure 1 rolls from A to B, the 
rim of the small wheel rolls along a parallel line from C to D. 
(If the two lines are actual tracks, the double wheel obviously 
cannot roll smoothly along both. It either rolls on the upper 
track while the large wheel continuously slides backward on 
the lower track, or it rolls on the lower track while the small 
wheel slips forward on the upper track. This is not, however, 
the heart of the paradox.) Assume that the bottom wheel rolls 
without slipping from A to B. At every instant that a unique 
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Figure 1 

Aristotle's wheel paradox 

point on the rim of the large wheel touches line AB, a unique 
point on the small wheel is in contact with line CD. In other 
words, all points on the small circle can be put into one-to-one 
correspondence with all points on the large circle. No points 
on either circle are left out. This seems to prove that the two 
circumferences have equal lengths. 

Aristotle's wheel is closely related to Zeno's well-known par- 
adoxes of motion, and it is no less deep. Modern mathemati- 
cians are not puzzled by it because they know that the number 
of points on any segment of a curve is what Georg Cantor 
called c, the transfinite number that represents the "power of 
the continuum." All points on a one-inch segment can be put 
in one-to-one correspondence with all points on a line a million 
miles long as well as on a line of infinite length. Moreover, it is 
not hard to prove that there are aleph-one points within a 
square or cube of any size, or within an infinite Euclidian space 
having any finite number of dimensions. Of course, mathema- 
ticians before Cantor were not familiar with the peculiar prop- 
erties of transfinite numbers, and it is amusing to read their 
fumbling attempts to resolve the wheel paradox. 

Galileo's approach was to consider what happens when the 
two wheels are replaced by regular polygons such as squares 
[see Figure 21. After the large square has made a complete turn 
along AB, the sides of the small square have coincided with CD 

Figure 2 

Galileo's approach to the wheel paradox 
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in four segments separated by three jumped spaces. If the 
wheels are pentagons, the small pentagon will jump four 
spaces on each rotation, and so on for higher-order polygons. 
As the number of sides increases, the gaps also increase in 
number but decrease in length. When the limit is reached-the 
circle with an infinite number of sides-the gaps will be infinite 
in number but each will be infinitely short. These Galilean gaps 
are none other than the mystifying "infinitesimals" that later so 
muddied the early development of calculus. 

And now we are in a quagmire. If the gaps made by the 
small wheel are infinitely short, why should their sum cause the 
wheel to slide a finite distance as the large wheel rolls smoothly 
along its track? Readers interested in how later mathematicians 
replied to Galileo, and argued with one another, will find the 
details in the articles listed in this chapter's bibliography. 

As a wheel travels a straight line, any point on its circumfer- 
ence generates the familiar cycloid curve. When a wheel rolls 
on the inside of a circle, points on its circumference generate 
curves called hypocycloids. When it rolls on the outside of a 
circle, points on the circumference generate epicycloids. Let 
Rlr be the ratio of the radii, R for the large circle, r for the 
small. If Rlr is irrational, a point a on the rolling circle, once in 
contact with point b on the fixed circle, will never touch b again 
even though the wheel rolls forever. The curve generated by a 
will have an aleph-null infinity of cusps. If Rlr is rational, a and 
b will touch again after a finite number of revolutions. If Rlr is 
integral, a returns to b after exactly one revolution. 

Consider hypocycloids traced by a circle of radius r as it rolls 
inside a larger circle of radius R. When Rlr is 2, 3,  4, . . . , 
points a and b touch again after one revolution and the curve 
will have Rlr cusps. For example, a three-cusped deltoid results 
when Rlr equals 3 [see Figure 3 ,  left]. The same deltoid is pro- 
duced when Rlr is 312; that is, when the rolling circle's radius 

Figure 3 

The deltoid The astroid "Two-cusped" hypocycloid 
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is two-thirds that of the fixed circle. All line segments tangent 
to the deltoid, with ends on the curve, have the same length. A 
four-cusped astroid is generated when Rlr equals 4 or 413 [see 
Fzgure 3, rnzcldle]. The two ratios appl) to all higher-order hy- 
pocycloids of this type: when Rlr is either n or ni(n- 1), the 
rolling circle produces an n-cusped curve. 

There is a surprising result when Rlr equals 2 [see Fzgure 3 ,  
rzght]. The hypocycloid degenerates into a straight line coincid- 
ing with a diameter of the larger circle. Its two ends may be 
regarded as degenerate cusps. Can you guess the shape of the 
region swept over by a given diameter of the smaller circle? It 
is a region bounded by an astroid. This is the same as saying 
that the astroid is the envelope of a line segment that rotates 
while it keeps its ends on two perpendicular axes, as shown in 
Figure 4. 

Figure 4 

Astroid drawn as the envelope of a moving line segment 

The simplest case of an epicycloid traced by a point on the 
rim of a wheel rolling outside another circle is seen when the 
two circles are equal. The result is a heart-shaped curve called 
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Figure 5 

The cardioid 

the cardioid [see Fzgure 51. All chords drawn through its cusp 
have the same length. The cardioid in the illustration was 
drawn by dividing the fixed circle into 32 equal arcs and then 
drawing a set of' circles whose centers are on this tixed circle 
and that pass through other points on the same circle. The  fig- 
ure can be shaded to produce a dazzling Op-art pattern [see 
Fzgure 6). (Both pictures are from Hermann von Baravalle, 
Geomvtrie nls Sprache der Formen, Stuttgart, 1963.) 

Figure 6 

Op-art cardioid 
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The cardioid is also generated by a point on the circumfer- 
ence of a circle that rolls twice around a fixed circle inside it 
that is half as large in diameter. This fact underlies a problem 
that was incorrectly answered in The Arnerican Mathematical 
Monthlj for December, 1959 (Problem E 1362) but correctly an- 
swered in the March 1960 issue of the same journal. Imagine 
a girl whose bare waist is a perfect circle. Rolling around her 
waist, while she remains motionless, is a hula hoop with a di- 
ameter twice that of her waist. When a point on the hoop, 
touching the girl's navel, first returns to her navel, how far has 
that point traveled? Since the point traces a cardioid, this is 
equivalent to asking for the cardioid's length. It is not hard to 
show that it is four times the diameter of the hoop or eight 
times the diameter of the girl's waist. 

When a rolling circle is half the diameter of a fixed circle 
that it touches externally, the epicycloid is the two-cusped ne- 
phroid (meaning kidney-shaped) that is shown in Figure 7. 
The drawing both shows the rolling circle and demonstrates a 
method of constructing the nephroid as the envelope of circles 
whose centers are on the fixed circle and that are tangent to 
the vertical central axis. As before, the curve can also be gen- 
erated by rolling a circle around a smaller circle inside it; in 
this case, when Rlr is 312. This is the same ratio as that which 
produces a deltoid, but now it is the larger circle that does the 
rolling. 

Figure 7 

The nephroid 
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The cardioid and the nephroid are both caustics, curves en- 
veloped by reflected light rays. The cardioid appears when the 
rays originate at a point on the circumference and are reflected 
by the circumference. The nephroid is produced by parallel 
rays crossing the circle, or from rays originating at the cusp of 
a cardioid and reflected by the cardioid. The cusped curve that 
one often sees on the surface of tea or coffee in a cup, when 
slanting light falls across the liquid from a window or other 
light source far to one side, is a good approximation of a ne- 
phroid cusp. Pleasant approximations are also frequently seen 
on photographs that appear in girlie magazines. 

There are varied and perplexing problems that involve non- 
circular "wheels." For example, suppose a square wheel rolls 
without slipping on a track that is a series of equal arcs, convex 
sides up. What kind of curve must each arc be to prevent the 
center of the wheel from moving up and down? (In other 
words, the wheel's center must travel a straight horizontal 
path.) The curve is a familiar one and, amazingly, the same 
curve applies to similar tracks for wheels that are regular poly- 
gons with any number of sides. The answer will be disclosed in 
the answer section at the end of this chapter. 

And can any reader solve this new riddle from Stephen 
Barr: What type of conveyance has eight wheels, carries only 
one person and never pollutes the atmosphere? 

ANSWERS 

The main problem was to describe the track that allows a 
square wheel to roll along it so that its center travels a straight 
horizontal line. The track is a series of catenary arcs. This ap- 
plies to all wheels that are regular polygons. (If a wheel is an 
irregular convex polygon, the track must have arcs that are dif- 
ferently shaped catenaries, one for each side of the wheel.) If 
the wheel turns with a constant speed, its hcrizontal speed will 
vary. For details of the proof I must refer readers to "Rockers 
and Rollers," by Gerson B. Robison, in Mathematics Magazine 
for January, 1960, pages 139-144, and the solution to Problem 
El668 in The American Mathematical Monthly for January, 1965, 
pages 82-83. 

The riddle's answer is a pair of roller skates. 

ADDENDUM 

When I said that a point at the top of a wheel moves faster with 
respect to the ground than any other point on the wheel, I 
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could have added that it moves exactly twice as fast as the cen- 
ter of the wheel. A. J. Knisely called attention to this in a short 
article, "The Rolling Wheel," in Scientzfic American, July 1891, 
and described a simple way of demonstrating it with a spool of 
thread. 

George Lenfestey wrote to say that although he enjoyed my 
column on the wheel, it ruined his day: 

The trouble is, I've been sitting here wasting the better part 
of' the afternoon imagining that gorgeous blue-eyed blond 
girl of yours in the hip huggers and halter top, twirling that 
hula hoop around her perfectly-formed golden middle. 
Please try to be more considerate in the future. 

In  my column I spoke of how difficult it would be for evo- 
lution to introduce a wheel into living organisms. A few years 
later, to my amazement, I read in Scientzfic American ("How 
Bacteria Swim," by Howard C. Berg) about the discovery that 
bacteria rotate their flagella like tiny propellers! In his Oz 
books L. Frank Baum introduced the "Wheelers" who have 
four wheels instead of four feet, and a bird called the "Ork" 
that flies by means of a propeller on its tail. These creatures 
are of course as imaginary as Escher's rolling animal or  the fa- 
bled "hoop snake" that is said to bite its tail and roll like a 
hoop. However, there are spiders in Africa that actually escape 
from predators by curling into a ball and rolling down a hill. 
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DlOPHANTlNE ANALYSIS 
- - - - - - .. - - - 

AND FERMAT'S LAST THEOREM 

The methods of Diophantus 
May cease to enchant us 
After a life spent trying to gear 'em 
To Fermat's Last Theorem. 

-J. A. LINDON, A Clerihew 

An old chestnut, common in puzzle books of the late 19th cen- 
tury (when prices of farm animals were much lower than to- 
day), goes like this. A farmer spent $100 to buy 100 animals of 
three different kinds. Each cow cost $10, each pig $3 and each 
sheep 50 cents. Assuming that he bought at least one cow, one 
pig and one sheep, how many of each animal did the farmer 
buy? 

At first glance this looks like a problem in elementary alge- 
bra, but the would-be solver quickly discovers that he has writ- 
ten a pair of simultaneous equations with three unknowns, 
each of which must have a value that is a positive integer. Find- 
ing integral solutions for equations is today called Diophantine 
analysis. In earlier centuries such analysis allowed integral frac- 
tions as values, but now it is usually restricted to whole num- 
bers, including zero and negative integers. Of course in prob- 
lems such as the one I have cited the values must be positive 
integers. Diophantine problems abound in puzzle literature. 
The well-known problem of the monkey and the coconuts, and 
the ancient task of finding right-angle triangles with integral 
sides, are among the classic instances of Diophantine problems. 

The term "Diophantine" derives from Diophantus of Alex- 
andria. He was a prominent Greek mathematician of his time, 
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but to this day no one knows in what century he lived. Most 
authorities place him in the third century A.D. Nothing is 
known about him except some meager facts contained in a 
rhymed problem that appeared in a later collection of Greek 
puzzles. The verse has been quoted so often and its algebraic 
solution is so trivial, that I shall not repeat it here. If its facts 
are correct, we know that Diophantus had a son who died in 
his middle years and that Diophantus lived to the age of 84. 
About half of his major work, Arithmetica, has survived. Be- 
cause many of its problems call for a solution in whole num- 
bers, the term Diophantine became the name for such analysis. 
Diophantus made no attempt at a systematic theory, and al- 
most nothing is known about Diophantine analysis by earlier 
mathematicians. 

Today Diophantine analysis is a vast, complex branch of 
number theory with an enormous literature. There is a com- 
plete theory only for linear equations. No general method is 
known (it may not even exist) for solving equations with pow- 
ers of 2 or higher. Even the simplest nonlinear Diophantine 
equation may be fantastically difficult to analyze. It may have 
no solution, an infinity of solutions or any finite number. 
Scores of such equations, so simple a child can understand 
them, have resisted all attempts either to find a solution or to 
prove none is possible. 

The simplest nontrivial Diophantine equation has the linear 
form ax + by = c, where x and y are two unknowns and a, b and 
c are given integers. Let us see how such an equation underlies 
the puzzle in the opening paragraph. Letting x be the number 
of cows, y the number of pigs and z the number of sheep, we 
can write two equations: 

To get rid of the fraction, multiply the first equation by 2. 
From this result, 20x + 6y + z = 200, subtract the second equa- 
tion. This eliminates z, leaving 19x+ 5y= 100. How do we find 
integral values for x and y? There are many ways, but I shall 
give only an old algorithm that utilizes continued fractions and 
that applies to all equations of this form. 

Put the term with the smallest coefficient on the left: 5y= 
100 - 19x. Dividing both sides by 5 gives y = (100 - 19x)l5. We 
next divide 100 and 19x by 5,  putting the remainders (if any) 
over 5 to form a terminal fraction. In this way the equation is 
transformed to J = 20 - 3x - 4x15. 
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It is obvious that if x and y are positive integers (as they must 
be), x must have a positive value that will make 4x15 an integer. 
Clearly x must be a multiple of 5. The lowest such multiple is 
5 itself. This gives y a value of 1 and z (going back to either of 
the two original equations) a value of 94. We have found a so- 
lution: 5 cows, l pig, 94 sheep. Are there other solutions? If 
negative integers are allowed, there are an infinite number, but 
here we cannot allow negative animals. When x is given a value 
of 10, or any higher multiple of 5, y becomes negative. The 
problem therefore has only one solution. 

In this easy example the first integral fraction obtained, 4x15, 
does not contain a y term. For equations of the same form but 
with larger coefficients, the procedure just described must 
often be repeated many times. 'The terminal fraction is made 
equal to a new unknown integer, say a, the term with the low- 
est coefficient is put on the left, and the procedure is repeated 
to obtain a new terminal fraction. Eventually you are sure to 
end with a fraction that has only one unknown and is simple 
enough so that you can see what values the unknown must 
have to make the fraction integral. By working backward 
through whatever series of equations has been necessary, the 
original problem is solved. 

For an example of an equation similar to the one just ana- 
lyzed that has no solution, assume that cows cost $5, pigs $2 
and sheep 50 cents. The two equations are handled exactly as 
before. The first is doubled to eliminate the fraction and the 
second is subtracted, producing the Diophantine equation 9x + 
3y= 100. Using the procedure of continued fractions, you end 
with y = 33 - 3x - 113, which shows that if x is integral, y cannot 
be. In this case, however, we can tell at once that 9x + 3y = 100 
has no solution by applying the following old theorem. If the 
coefficients of x and y have a common factor that is not a factor 
of the number on the right, the equation is unsolvable in inte- 
gers. In this case 9 and 3 have 3 as a common divisor, but 3 is 
not a factor of 100. It is easy to see why the theorem holds. If 
the two terms on the left are each a multiple of n, so will their 
sum be; therefore the term on the right also must be a multiple 
of n. An even simpler instance would be 4x + 8 j  = 10 1. The left 
side of the equality obviously must be an even integer, so that 
it cannot equal the odd number on the right. It is also good to 
remember that if all three given numbers do have a common 
factor, the equation can immediately be reduced by dividing all 
terms by the common divisor. 

As an example of a variant of the basic problem that has a 
finite number (more than one) of positive-integer solutions, 
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consider the case in which cows cost $4, pigs $2 and sheep a 
third of a dollar. As before, the farmer spends $100 on 100 
animals, buying at least one of each. How many of each does 
he buy? 

Many geometric problems are solved by finding integral so- 
lutions for Diophantine equations. In the chapter on triangles 
in my iZlathe~natzcu1 Czrcus I gave th70 classic examples: Finding 
integer solutions for a problem involving two crossed-ladders, 
and for a problem concerning the location of a spot inside an 
equilateral triangle. Among the many geometrical Diophantine 
problems that are still unsolved, one of the most difficult and 
notorious is known as the problem of the "integral brick" or 
"rational cuboid." The "brick" is a rectangular parallelepiped. 
There are seven unknowns: The brick's three edges, its three 
face diagonals, and the space diagonal that goes from one cor- 
ner through the brick's center to the opposite corner [see Fzgure 
81. Can a brick exist for which all seven variables have integer 
\ alues? 

Figure 8 

The integral brick, an unsolved Diophantine problem 

The problem is equivalent to finding integer solutions for 
the seven unknowns in the following set of equations: 

The problem has not been shown to be impossible, nor has 
it been solved. John Leech, a British mathematician, has been 
searching for a solution, and I am indebted to him for the fol- 
lowing information. The smallest brick with integral edges and 
face diagonals (only the space diagonal is nonintegral) has 
edges of 44, 117 and 240. This was known by Leonhard Euler 
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to be the minimum solution. If all values are integral except a 
face diagonal, the smallest brick has edges of 104, 153 and 672, 
a result also known to Euler. (The brick's space diagonal is 
697). The  third case, where only an edge is nonintegral, has 
not, as far as Leech knows, been considered before. It  too has 
solutions, but the numbers are, as Leech puts it, "hideous." He 
suspects that the smallest such brick may be one with edges of 
7,800, 18,720, and the irrational square root of 211, 773, 121. 
Of course the brick's volume is also irrational. 

A much easier geometric problem, which I took from a puz- 
zle book by L. H. Longley-Cook, is illustrated in Figure 9. A 
rectangle (the term includes the square) is drawn on graph pa- 
per as shown and its border cells are shaded. In this case the 
shaded cells do not equal the unshaded cells of the interior rec- 
tangle. Is it possible to draw a rectangle of proportions such 
that the border-one cell wide--contains the same number of 
cells as there are within the border? If so, the task is to find all 
such solutions. The  Diophantine equation that is involved can 
be solved easily by a factoring trick, which I shall explain in the 
answer section. 

Figure 9 

A simple Diophantine problem 

In ancient times the most famous Diophantine problem, 
posed by Archimedes, became known as the "cattle problem." 
It involves eight unknowns, but the integral solutions are so 
huge (the smallest value contains more than 200,000 digits) 
that it was not solved until 1965 when a computer managed to 
do it. The  interested reader will find a good discussion of the 
cattle problem in Eric Temple Bell's The Last Problem, and the 
final solution, by H. C. Williams and others, in the journal 
Mathematics of Computation (see bibliography). 

The  greatest of all Diophantine problems, still far from 
solved, is the "last theorem" of Pierre de Fermat, the 17th- 
century French amateur number theorist. (He was a jurist by 
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profession.) Every mathematician knows how Fermat, reading 
Diophantus' Arithmetica, added a note in Latin to the eighth 
problem of the second book, where an integral solution is 
asked for x2 +y2 = u2. Fermat wrote that such an equation had 
no solution in integers for powers greater than 2. (When the 
power is 2, the solution is called a "Pythagorean triple" and 
there are endless numbers of solutions.) In brief, Fermat as- 
serted that xf i+gn=a"  has no solution in integers if n is a posi- 
tive integer greater than 2. "I have discovered a truly marvel- 
ous demonstration," Fermat concluded his note, "which this 
margin is too narrow to contain." 

To this day no one knows if Fermat really had such a proof. 
Because the greatest mathematicians since Fermat have failed 
to find a proof, the consensus is that Fermat was mistaken. Lin- 
gering doubts arise from the fact that Fermat always did have 
a proof whenever he said he did. For example, consider the 
Diophantine equation y" x2+ 2. It is easy to find by trial and 
error that it has the solutions 3" 55? + 2 and 3" ( - 3)" 2 .  To 
prove, however, that there are no other integral solutions, Bell 
writes in Men of lMwthemutics, "requires more innate intellectual 
capacity. . . than it does to grasp the theory of relativity." Fer- 
mat said he had such a proof although he did not publish it. 
"This time he was not guessing," Bell continues. "The problem 
is hard; he asserted that he had a proof; a proof was later 
found." Fermat did publish a relatively elementary proof that 
x4 +y4 = a4 has no solution, and later mathematicians proved the 
impossibility of the more difficult x3 + j 3  = a" The cases of n = 

5 and n= 7 were settled early in the 19th century. 
It can be shown that Fermat's last theorem is true if it holds 

for all prime exponents greater than 2. By 1978 the theorem 
had been proved for all exponents less than 125,000, so if 
there is a counterexample it will involve numbers with more 
than a million digits. Proving the theorem continues to be the 
deepest unsolved problem in Diophantine theory. Some math- 
ematicians believe it may be true but unprovable, now that 
Kurt Godel has shown, in his famous undecidability proof, that 
arithmetic contains theorems that cannot be established inside 
the deductive system of arithmetic. (If Fermat's last theorem is 
Godelian-undecidable, it would have to be true, because if it 
were false, it would be decidable by a single counterexample.) 

I earnestly ask readers not to send me proofs. I am not com- 
petent to evaluate them. Ferdinand Lindemann, the first to 
prove (in 1882) that pi is transcendent, once published a long 
proof of Fermat's last theorem that turned out to have its fatal 
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mistake right at the beginning. Dozens of other fallacious proofs 
have been published by leading mathematicians. TYhen David 
Hilbert was asked why he never tackled the problem, his reply 
was: "Before beginning I should put in three years of intensive 
study and I haven't that much time to squander on a probable 
failure." 

The mathematics departments of many large universities re- 
turn all proofs of Fermat's last theorem with a form letter stat- 
ing that the paper \trill be evaluated only after an advance pay- 
ment of a specified fee. Ediiiund Landau, a German iiiathe- 
matician, used a form letter that read: "Dear Sii-/Madam: Your 
proof of Fermat's last theorem has been received. The first mis- 
take is on page - line - ." Landau would then assign the 
filling in of the blanks to a graduate student. 

Donald E. Kiiuth whimsically asks for a proof of Fermat's last 
theorem as the last exercise at the end of his preface to the first 
volume of his series The Art of Computer Progrnmn~zng (1968). His 
answer states that someone who read a preliminary draft of the 
book reported that he had a truly remarkable proof but that the 
margin of the page was too small to contain it. 

Euler failed to prove Fermat's last theorem, but he made a 
inore general conjecture that, if it is true, would include the 
truth of Fermat's last theorem as a special case. Euler suggested 
that no nth power greater than 2 can be the integral suili of 
fewer than n nth powers. As we have seen, it has long been 
kno~t~n that the conjecture holds ~vhen n is 3, for this is nierely 
Fei-mat's last theorem with powers of 3. In 1987, Noam Elkies 
found an infinity of solutions to a" b4 + c" d4. The solution 
with the smallest d is: 

958004 + 21751g4 + 4145604 = 4224814. 
In 1966, about two centuries after Euler made his guess, a 

counterexample was published. Leon J. Lander and Thomas R. 
Parkin, with the help of a computer program, showed that 
Euler's conjecture fails for n = 3. The counterexample with the 
lowest coefficients is: 

27j + 84; + 1105 + 133j = 144;. 
This result suggests that if there are ilitelligelit creatures li\,- 

ing some~t~here in a space of five dimensions, their puzzle books 
surely contain the follo~ving problem. TYhat is the smallest 
hypercube of five dimensions that call be built with unit hy- 
percubes such that the same number of unit hypercubes will 
form four smaller hypercubes, with no unit hypercubes left 
over? The answer is a cube of 144x 144x 144x 144x 144 units. 
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ANSWERS 

1. The problem about the farmer and the animals reduces 
to the Diophantine equation 1 1x + 5)  = 200. Applying the 
method of continued fractions, three solutions in positive in- 
tegers can be found: 

Cows Pigs Sheep 

2. L. H. Longley-Cook, in Fun with Brain Puzzlers (Fawcett, 
1965), Problem 87, solves the rectangle problem as follows. Let 
x and y be the sides of the large rectangle. The total number of 
cells it contains is xy. The border, one cell wide, contains 2x+ 
2y - 4 cells. Since we are told that the border contains xyl2 cells, 
we can write the equation: 

Double both sides and rearrange the terms: 

xy-4x-4y= -8. 

Add 16 to each side: 

xy-4x-4y+ 16=8. 

The left side can be factored: 

(x-4)Cy-4)=8. -- 

It is clear that (x - 4) and (y - 4) must be positive integral fac- 
tors of 8. The only pairs of such factors are 8, 1 and 4, 2. They 
provide two solutions: x = 12, y = 5, and x = 8, y = 6. 

The problem is closely related to integral-sided right trian- 
gles. The width of the border is an integer only when the di- 
agonal of the large rectangle cuts it into two such "Pythagorean 
triangles." 

If we generalize the problem to allow nonintegral solutions 
for borders of any uniform width, keeping only the proviso 
that the area of the border be equal to the area of the rectangle 
within it, there is an unusually simple formula for the width of 
the border. (I am indebted to S. L. Porter for it.) Merely add 
two adjacent sides of the border, subtract the diagonal of the 
large rectangle and divide the result by four. This procedure 
gives the width of the border. 
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Several readers generalized this problem to three dimen- 
sions, seeking integral edges for a brick composed of 'unit  
cubes equal to the number of unit cubes required to cover it on 
all sides with a one-unit layer of cubes. Daniel Sleator used a 
computer to find the complete solution, a total of 20 bricks. 
The smallest uncovered brick has edges of 6, 8, 10; the largest, 
3, 11, 130. This confirms a guess made by M. H. Greenblatt in 
Mathematical Entertainments (Crowell, 1965), page 11, that: the 
problem has "about" 20 solutions. 

ADDENDUM 

One of the most famous of all unsolved problems in Diophan- 
tine theory, the so-called Hilbert's tenth problem, was bril- 
liantly solved in 1970 by Yu. V. Matijasevic, a 22-year-old grad- 
uate student at the University of Leningrad. In 1900 the great 
German mathematician David Hilbert compiled a list of 23 out- 
standing unsolved problems that he hoped would be solved 
during the twentieth century. Problem 10 was to find a general 
algorithm that would decide whether any given polynomial 
Diophantine equation, with integer coefficients, has a solution 
in integers. 

Matijasevic proved that there is no such algorithm. In other 
words, he "solved" Hilbert's tenth problem by proving it had 
no solution. The Fibonacci number sequence plays a key role 
in his proof. 

For details see "Hilbert's Tenth Problem," by Martin Davis 
and Reuben Hersh in Scientific American, November 1973, 
pages 84-91, and "Hilbert's Tenth Problem is Unsolvable," by 
Martin Davis in The American Muthematical Monthlj, Volume 80, 
March 1973, pages 233-269. 
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THE KNOTTED MOLECULE 

AND OTHER PROBLEMS 

1. THE KNOTTED MOLECULE 

Enormously long chainlike nlolecules (long in relation to their 
breadth) have been disco\.ered in living organisms. The ques- 
tion has arisen: Can such molecules have knotted forms? Max 
Delbriick of the California Institute of  'I'echnology, who re- 
ceived a Nobel prize in 1960, proposed the follo~i-ing idealized 
problem: 

Assume that a chain of atoms, its ends joined to form a 
closed space curve, consists of rigid, straight-line segments 
each one unit long. ,4t every node ~vhere two such "links" meet, 
a 90-degree angle is formed. At each end of each link, there- 
fore, the next link may have one of four different orientations. 
The entire closed chain could be traced along the edges of a 
cubical lattice, with the proviso that at each node the joined 
links form a right angle [see Figztre 101. At no point is the chain 
allowed to touch or intersect itself; that is, two and only two 
links meet at every node. 

Figure 10 

Example of a 13-link chain 
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What is the shortest chain of this type that is tied in a single 
overhand (trefoil) knot? In  the answer I shall reproduce the 
shortest chain Delbruck has found. It has not been proved 
minimal; perhaps a reader will discover a shorter one. (I wish 
to thank John McKay for calling this problem to my attention.) 

2. PIED NUMBERS 

The old problem of expressing integers with four 4's (dis- 
cussed in a Scientijic American column reprinted as Chapter 5 of 
The Incredible Dr. Matrix) has been given many variations. In an 
intriguing new variant proposed by Fitch Cheney one is al- 
lowed to use only pi and symbols for addition, subtraction, 
multiplication, division, square root and the "round-down 
function." In the last operation, indicated by brackets, one 
takes the greatest integer that is equal to or less than the value 
enclosed by the brackets. Parentheses also may be used, as in 
algebra, but no other symbols are allowed. Each symbol and pi 
may be repeated as often as necessary, but the desideratum is 
to use as few pi symbols as possible. For example, 1 can be writ- 
ten [.\/*] and 3 even more simply as [=]. 

The reader is invited to do his best to express the integers 
from 1 through 20 according to these rules, and to compare 
them with the best Cheney was able to achieve. 

3. THE FIVE CONGRUENT POLYGONS 

L. Vosburgh Lyons contributed a fiendish dissection problem 
to a magic magazine in 1969 [see Figure 111. The polygon [at 
left in  illustration] can be dissected into four congruent polygons 
[at right]. Can the reader discover the only way in which the 
same polygon can be cut into five congruent polygons? 

Figure 11 

L. Vosburgh Lyons' dissection problem 
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4. STARTING A CHESS GAME 

A full set of 32 chessmen is placed on a chessboard, one piece 
to a cell. A "move" consists in transferring a piece from the cell 
it is on to any empty cell. (This has nothing to do with chess 
mol~es.) Gilbert W. Kessler, a mathematics teacher in a Br.ook- 
Iyn high school, thought of the following unusual problem: 
How can you place the 32 pieces so that a maximum number 
of transfer moves are required to arrange the pieces in the cor- 
rect starting position for a game of chess? 

It is not specified ~vhich side of the board is the black side, 
but the playing sides must, as in regulation chess, be sides with 
a white square in the bottom right corner, and of course the 
queen must go on a square matching her own color. One is 
tempted at first to think that the maximum is 33 moves, but the 
problem is trickier than that. 

5. THE TWENTY BANK DEPOSITS 

A Texas oilman who \\as an amateur number theorist opened 
a riel* bank account b) depositing a certain integral number of 
dollars, ~vhich we shall call x. His second deposit, g, also was an 
integral number of dollars. Thereafter each deposit was the 
sum of the two previous deposits. (In other words, his deposits 
formed a generalized Fibonacci series.) His 20th deposit was 
exactly a million dollars. \$'hat are the values of x and y,  his 
first two deposits? (I am indebted to Leonard 4. Monzert of 
West Ne~vton, Mass., for sending the problem of which this is 
a version.) 

The problem reduces to a Diophantine equation that is 
some~.hat  tedious to solve, but a delightful shortcut using the 
golden ratio becomes a\ailable if I add that x and g are the two 
positive integers that begin the longest possible generalized Fi- 
bonacci chain ending in a term of 1,000,000. 

6. THE FIRST BLACK ACE 

A deck of 52 playing cards is shuffled and placed face down 
on the table. Then, one at a time, the cards are dealt face up 
from the top. If you were asked to bet in advance on the dis- 
tance from the top of the first black ace to be dealt, what posi- 
tion (first, second, third, . . .) would you pick so that if the 
game were repeated many times, you would maximize your 
chance in the long run of guessing correctly? 
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7. A DODECAHEDRON-QUINTOMINO PUZZLE 

John Horton Conway defines a "quintomino" as a regular pen- 
tagon whose edges (or triangular segments) are colored with 
five different colors, one color to an edge. Not counting rota- 
tions and reflections as being different, there are 12 distinct 
quintominoes. Letting 1, 2, 3, 4, 5 represent the five colors, the 
12 quintominoes can be symbolized as follows: 

The numbers indicate the cyclic order of colors going either 
clockwise or counterclockwise around the pentagon [see Figure 
12, left]. In 1958 Conway asked himself if it was possible to 
color the edges of a regular dodecahedron [Figure 12, middle] 
in such a way that each of the 12 quintominoes would appear 
on one of the solid's 12 pentagonal faces. He found that it was 
indeed possible. Can readers find a way to do it? 

Figure 12 

The A quintomino The dodecahedron Schlegel diagram of dodecahedron 

Those who like to make mechanical puzzles can construct a 
cardboard model of a dodecahedron with small magnets glued 
to the inside of each face. The quintominoes can be cut from 
metal and colored on both sides (identical colors opposite each 
other) so that any piece can be "reflected" by turning it over. 
The magnets, of course, serve to hold the quintominoes on the 
faces of the solid while one works on the puzzle. The problem 
is to place the 12 pieces in such a way that the colors match 
across every edge. 

Without such a model, the Schlegel diagram of a dodecahe- 
dron [Figure 12, right] can be used. This is simply the distorted 
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skeleton of the solid, with its back face stretched to become the 
figure's outside border. The edges are to be labeled (or col- 
ored) so that each pentagon (including the one delineated by 
the pentagonal perimeter) is a different quintomino. 

8. SCRAMBLED QUOTATION 

Letters in the sentence "Roses are red, violets are blue" are 
scrambled by the following procedure. The words are written 
one below the other and flush at the left: 

ROSES 
ARE 
RED 
L'IOLETS 
,4RE 
BLUE 

The columns are taken from left to right and their letters 
from the top down, skipping all blank spaces, to produce this 
ordering: 

RARVABOREIRLSEDOEUELESETS. 

The task is to find the line of poetry that, when scrambled 
by this procedure, becomes 

1'INFLABTTULAHSORIOOASA\VEIKOKNARGEKEDYE- 
ASTE. 

Walter Penney of Greenbelt, hld., contributed this nojel 
word problem to the February 1970 issue of Wo)d 1Yn~x:  The 
Journal of Rec~eatzonal Lznguutzcs. That lijelk quarterly is cur- 
rently being published privately by A. Ross Eckler, Spring iTal- 
ley Road, hlorristown, N.J. 07960. 

9. THE BLANK COLUMN 

A secretary, eager to try out a new typewriter, thought of a 
sentence shorter than one typed line, set the controls for the 
two margins and then, starting'at the left and near the top of 
a sheet of paper, proceeded to type the sentence repeatedly. 
She typed the sentence exactlj the same way each time, with a 
period at the end folloived by the usual two spaces. She did 
not, however, hyphenate any words at the end of a line: F$'hen 
she saw that the next word (including whatever punctuation 
marks may hake followed it) would not fit the remaining space 
on a line, she shifted to the next line. Each line, therefore, 
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started flush at the left with a word of her sentence. She fin- 
ished the page after typing 50 single-spaced lines. 

Without experimenting on a typewriter, answer this ques- 
tion: Is there sure to be at least one perfectly straight column 
of blank spaces on the sheet, between the margins, running all 
the way from top to bottom? (T. Robert Scott originated this 
problem, which was sent to me by his friend W. Lloyd Milligan 
of Columbia, S.C.) 

10. THE CHILD WITH THE WART 

A: "What are the ages, in years only, of your three children?" 
B: "The product of their ages is 36." 
A: "Not enough information." 
B: "The sum of their ages equals your house number." 
A: "Still not enough information." 
B: "My oldest child-and he's at least a year older than either 

of the others-has a wart on his left thumb." 
A: "That's enough, thank you. Their ages are. . . ." 
Complete A's sentence. (Me1 Stover of Winnipeg was the first 

of several readers to send this problem, the origin of which I 
do not know.) 

ANSWERS 

1. The shortest knotted chain known that meets all the con- 
ditions specified has 36 links [see Figure 131. It is reproduced 
from Max Delbriick's paper, "Knotting Problems in Biology," 

Figure 13 

Solution to the knot problem 
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in Mathematzcal Problems zn the Bzologzcal Sczences: Proceedzngs of 
Symposza zn Applzed Mathernntzcs, Vol. 14, 1962, pages 55-68. 

If links are not required to be at right angles to their adja- 
cent links, knots of 24 links are possible. 

2. Figure 14 gives Fitch Cheney's answers to the problem of 
expressing the integers 1 through 20 by using pi, as few times 
as possible, and the symbols specified. He was able to express 
all integers from 1 through 100 without using more than four 
pi's in each expression. 

Figure 14 

1 = [V;;] 11 = [ ( ~ x T ) + & ]  
2 = [ v a  61 12 = [nxn]+ [n ]  
3 = [n] 13 = [ ( T x ~ ) + T ]  
4 = [ n + G ]  14 = [ ( P x ~ ) + T + & ]  
5 = [n*] 15 = [nx?i]+[n+n] 
6 = [n+n] 16 = [ ( T x T ) + ~ + H ]  
7 = 17 = [T~xTXL/;;] 

8 = [ ( n x n ) - 6 )  18 = [ T X ~ ] + [ T X ~ ]  
9 = [T IXT]  19 = [(TxP)+(TxT)] 

10 = [?ixn]+[v;;] 20 = [n&] [ T + G l  

How the first 20 integers can be "pied" 

Hundreds of readers improved on Cheney's ansv7ers. Here 
are some typical ways of shortening six of the expressions: 

These improvements reduce the total number of pi's to 50. 
John W. Gosling was the first of many readers to achieve 50, 
but it is only fair to add that the problem did not specifically 
allow exponention and that many who wrote earlier than Gos- 
ling would probably have achieved 50 had they used exponents 
for integers 7 and 20. (Without exponents, 7 requires three pi's 
and 20 requires four.) Numerous readers lowered the number 
of pi's below 50 by adding other symbols, such as the factorial 
sign or the "unary negative operator," which has the effect of 
rounding up instead of down. Bernard Wilde and Carl Thune, 
Mark T. Longley-Cook, V. E. Hoggatt, Jr., Robert L. Caswell 
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and others conjectured that by using nested radical signs to re- 
duce a divisor, any positive integer can be expressed with three 
pi's. 

Cheney and John Leech each pointed out that if -[-TI is 
interpreted in a standard way to mean 4, then further reduc- 
tions are possible: 

3. The large polygon in Figure 15 can be cut into five con- 
gruent polygons as shown. The method obviously enables one 
to dissect the polygon into any desired number of congruent 
shapes. L. Yosburgh Lyons first published this in Tlze Pnllbenr- 
ers Reilzew for July, 1969, page 268. 

Figure 15 

Solution to the dissection problem 

4. The 32 chess pieces can be placed so that 36 "moves" are 
needed to transfer the pieces to a correct starting position with 
black at the top and white at the bottom [see Figure 161. 

It was stated in the problem that it was not necessary for 
black to be at the top. However, if the final position is black at 
the bottom, then 37 moves are required to produce a starting 
pattern with the queens on the right color. If it is required that 
black be at the top, then a standard starting position, with 
white at the bottom, requires 36 moves to effect the change. 

5. The Texas oilman's bank deposit problem reduces to the 
Diophantine equation 2 ,584~  + 4,18 1y = 1,000,000. It can be 
solved by Diophantine techniques such as the continued-frac- 
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Figure 16 

A solution to the chess problem 

tion method explained in Chapter 2. The first two deposits are 
$154 and $144. 

The shortcut, given that x and y start the longest possible Fi- 
bonacci chain terminating in 1,000,000, rests on the fact that 
the longer a generalized Fibonacci series continues, the closer 
the ratio of two adjacent terms approaches the golden ratio. T o  
find the longest generalized Fibonacci chain that ends with a 
given number, place the number over x and let it equal the 
golden ratio. In this case the equation is 

Solve for x and change the result to the nearest integer. It is 
618,034. Because no other integer, when related to 1,000,000, 
gives a closer approximation of the golden ratio, 618,034 is the 
next-to-last term of the longest possible chain of positive inte- 
gers in a generalized Fibonacci series ending in 1,000,000. One 
can now easily work backward along the chain to the first two 
terms. (This method is explained in Litton Industries' Proble- 
matical Recreations, edited by Angela Dunn, Booklet 10, Prob- 
lem 41.) 

6. Contrary to most people's intuition, your best bet is that 
the top card is a black ace. 

The situation can be grasped easily by considering simpler 
cases. In a packet of three cards, including the two black aces 
and, say, a king, there are three equally probable orderings: 
AAK, AKA, KAA. It is obvious that the probability of the first 



THE KNOTTED MOLECULE AND OTHER PROBLEMS 

ace's being on top is 213 as against 113 that it is the second card. 
For a full deck of 52 cards the probability of' the top card's 
being the first black ace is 5111,326, the probability that the 
first black ace is second is 5011,326, that it is third is 4911,326, 
and so on down to a probability of 111,326 that it is the 5lst 
card. (It cannot, of course, be the last card.) 

In general, in a deck of n cards (n being equal to or greater 
than 2) the probability that the first of two black aces is on top 
is n - 1 over the sum of the integers from 1 through n - 1. The 
probability that the first black ace is on top in a packet of four 
cards, for instance, is 112. 

The problem is given by A. E. Lawrence in "Playing with 
Probability," in The  lllathematical Gazette, Vol. 53, December 
1969, pages 347-354. -4s David L. Silverman has noticed, by 
symmetry the most likely position for the second black ace is on 
the bottom. The probability for each position of the second 
black ace decreases through the same values as before but in 
reverse order from the last card (5111,326) to the second from 
the top (111,326). 

Several readers pointed out that the problem of the first 
black ace is a special case of a problem discussed in Probabilitj 
with Stati~ticul Applications, by Frederick Mosteller, Robert E. K. 
Rourke and George B. Thomas, Jr. (Addison-Wesley, 1961). 
Mosteller likes to call it the "needle in the haystack" problem 
and give it in the practical form of a manufacturer who has, 
say, four high-precision widgets randomly mixed in his stock 
with 200 low-precision ones. An order comes for one high- 
precision widget. Is it cheaper to search his stock or to tool up 
and make a new one? His decision depends on how likely he is 
to find one near the beginning of a search. In the case of the 
52-card deck there is a better-than-even chance that an ace will 
be among the first nine cards at the top of a shuffled deck or- 
what amounts to the same thing-among the first nine cards 
picked at random without replacement. 

7. The three essentially distinct solutions of the dodecahe- 
dron-quintomino puzzle are shown on Schlegel diagrams in 
Figure 17. They were first published by John Horton Conway, 
the inventor of the problem, in the British mathematical jour- 
nal Eureka for October, 1959, page 22. Each solution has a mir- 
ror reflection, of course, and colors can be interchanged with- 
out altering the basic pattern. The letters correspond to those 
assigned previously to the 12 quintominoes. The letter outside 
each diagram denotes the quintomino on the solid's back face, 
represented by the diagram's perimeter. 
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Figure 17 

Three basic solutions to the dodecahedron-quintomino problem 

Conway found empirically that whenever the edges of 11 
faces were correctly labeled, the 12th face was automatically la- 
beled to correspond with the remaining quintomino. He did 
not prove that this must always be true. 

Because the regular dodecahedron is the "dual" of the reg- 
ular icosahedron, the problem is equivalent to coloring the 
edges of the regular icosahedron so that at its 12 vertexes the 
color permutations correspond to the permutations of colors 
on the 12 quintominoes. 

In 1972 a white plastic version of Conway's puzzle was on 
sale in the United States under the name "Enigma." Patterns 
of black dots were used instead of colors. 

8. The scrambled quotation is "There is no frigate like a 
book/To take us lands away." It is the first two lines of a poem 
by Emily Dickinson. 

9. There is certain to be at least one column of blank spaces 
on that typed page. Assume that the sentence is n spaces long, 
including the first space following the final period. This chain 
of n spaces will begin each typed line, although the chain may 
be cyclically permuted, beginning with different words in dif- 
ferent lines. Consequently the first n spaces of every line will 
be followed by a blank space. 

10. Only the following eight triplets have a product of 36: 1, 
1, 36; 1, 2, 18; 1, 3, 12; 1 , 4 ,  9; 1, 6 , 6 ;  2, 2, 9; 2, 3 , 6 ,  and 3, 
4, 3. Speaker A certainly knew his own house number. He 
would therefore be able to guess the correct triplet when he 
was told it had a sum equal to his house number-unless the 
sum was 13, because only two triplets have identical sums, 1 + 
6 + 6 and 2 + 2 + 9, both of which equal 13. As soon as A was 
told that B had an oldest child he eliminated 1, 6, 6, leaving 2, 
2, 9 as the ages of B's three children. 
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Points 
Have no parts or joints. 
How then can they combine 
To form a line? 

-J. A. LINDON 

Every finite set of n elements has 2" subsets if one includes the 
original set and the null, or empty, set. For example, a set of 
three elements, ABC, has 23 = 8 subsets: ABC, AB, BC, AC, A, B,  
C,  and the null set. As the philosopher Charles Sanders Peirce 
once observed (Collected Papers 4. 181), the null set "has obvious 
logical peculiarities." You can't make any false statement about 
its members because it has no members. Put another way, if 
you say anything logically contradictory about its members, you 
state a truth, because the solution set for the contradictory 
statement is the null set. Put colloquially, you are saying some- 
thing true about nothing. 

In modern set theory it is convenient to think of the null set 
as an "existing set" even though it has no members. It can also 
be said to have 2" subsets because 2O= 1, and the null set has 
one subset, namely itself. And it is a subset of every set. If set 
A is included in set B, it means that every member of set A is a 
member of set B.  Therefore, if the null set is to be treated as 
a legitimate set, all its members (namely none) must be in set 
B .  T o  prove it by contradiction, assume the null set is not in- 
cluded in set B .  Then there must be at least one member of the 
null set that is not a member of B, but this is impossible be- 
cause the null set has no members. 
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The n elements of any finite set obviously cannot be put into 
one-to-one correspondence with its subsets because there are 
always more than n subsets. Is this also true of infinite sets? The 
answer is yes, and the general proof is one of the most beautiful 
in all set theory. 

It is an indirect proof, a reductio ad absurdurn. Assume that all 
elements of AT, a set with any finite or infinite number of mem- 
bers, are matched one-to-one with all of i lT 's  subsets. Each match- 
ing must meet one of tmTo conditions: 

(1) An element is paired with a subset that includes that ele- 
ment. Let us call all such elements blue. 

(2) An element is paired with a subset that does not include 
that element. TZ'e call all such elements red. 

The red elements form a subset of our initial set 1V. Can this sub- 
set be matched to a blue element? No, because evei-y blue element 
is in its matching subset, therefore the 1-ed subset would have to 
include a blue element. Can the red subset be paired with a red ele- 
ment? No, because the red element would then be included in its 
subset and would therefore be blue. Since the red subset cannot be 
matched to either a red or blue element of AT, we have constructed 
a subset of AT that is not paired with any element of N. No set, even 
if infinite, can be put into one-to-one correspondence with its sub- 
sets. If n is a transfinite number, then 2"-by definition it is the 
number of subsets of n-must be a higher order of infinity than n. 

Georg Cantor, the founder of set the013 used the term aleph- 
null for the lowest transfinite number. It is the cardinal number of 
the set of all integers, and for that reason is often called a "count- 
able infinity." Any set that can be matched one-to-one with the 
counting numbers, such as the set of integral fractions, is said to 
be a countable or aleph-null set. Cantor showed that when 2 is 
raised to the power of aleph-null-giving the number of subsets 
of the integers-the result is equal to the cardinal number of the 
set of all real numbers (rational or irrational), called the "power of 
the continuum,'' or c. It is the cardinal number of all points on a 
line. The line may he a segment of any finite length, a ray with a 
beginning but no end, or a line going to infinity in both direc- 
tions. Figure 18 shows three intuitively obvious geonletrical proofs 
that all three kinds of line have the same number of points. The 
slant lines projected from point P indicate how all points on the 
line segment AB can be put into one-to-one correspondence with 
all points on the longer segment, on a ray, and on an endless line. 

The red-blue proof outlined above (Cantor published it in 
1890) of course generates an infinite hierarch) of transfinite 
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Figure 18 

Number of points on a line segment AB is the same as on a 
longer line segment (left), a ray (center) and a line (right) 

numbers. The ladder starts with the set of counting numbers, 
aleph-null, next comes c, then all the subsets of c, then all the 
subsets of all the subsets of c, and so on. The ladder can also 
be expressed like this: 

2 (  
aleph-null, c, 2', 22c,  2' , . . . 

Cantor called c "aleph-one" because he believed that no 
transfinite number existed between aleph-null and c. And he 
called the next number aleph-two, the next aleph-three, and so 
on. For many years he tried unsuccessfully to prove that c was 
the next higher transfinite number after aleph-null, a conjec- 
ture that came to be called the "continuum hypothesis." We 
now know, thanks to proofs by Kurt Godel and Paul Cohen, 
that the conjecture is undecidable within standard set theory, 
even when strengthened by the axiom of choice. We can as- 
sume without contradiction that Cantor's alephs catch all trans- 
finite numbers, or we can assume, also without contradiction, 
a non-Cantorian set theory in which there is an infinity of 
transfinite numbers between any two adjacent entries in Can- 
tor's ladder. (See Chapter 3 of my Mathematzcal Carnival for a 
brief, informal account of this.) 

Cantor also tried to prove that the number of points on a 
square is the next higher transfinite cardinal after c. In 1877 
he astounded himself by finding an ingenious way to match all 
the points of a square to all the points of a line segment. Imag- 
ine a square one mile on a side, and a line segment one inch 
long [see Fzgure 191. On the line segment every point from 0 to 
1 is labeled with an infinite decimal fraction: The point corre- 
sponding to the fractional part of pi is .I4159 . . . , the point 
corresponding to 113 is .33333 . . . and so on. Every point is 
represented by a unique string of aleph-null digits, and every 
possible aleph-null string of digits represents a unique point on 
the line segment. (A slight difficulty arises from the fact that a 
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Figure 19 

Points in square mile and on line segment 

fraction such as .5000 . . . is the same as .4999 . . . , but it is 
easily overcome by dodges we need not go into here.) 

Now consider the square mile. Using a Cartesian coordinate 
system, every point on the square has unique x and y coordi- 
nates, each of which can be represented by an endless decimal 
fraction. The illustration shows a point whose x coordinate is 
the fractional part of pi and whose y coordinate is the frac- 
tional part of the square root of 3, or .73205. . . . Starting with 
the x coordinate, alternate the digits of the two numbers: 
.1243125Q95. . . . The result is an endless decimal labeling a 
unique point on the line segment. Clearly this can be done with 
every point on the square. It is equally obvious that the map- 
ping procedure can be reversed: we can select any point on the 
line segment and, by taking alternate digits of its infinite deci- 
mal, can split it into two endless decimals that as coordinates 
label a unique point on the square. (Here we must recognize 
and overcome the subtle fact that, for example, the following 
three distinct points on the segment-.449999 . . . , .459090 . . . , 
and .540909 . . .-all map the same point [%, ?42] in the square.) 
In this way the points of any square can be put into one-to-one 
correspondence with the points on any line segment; therefore 
the two sets are equivalent and each has the cardinal number c. 

The proof extends easily to a cube (by interlacing three co- 
ordinates), or to a hypercube of n dimensions (by interlacing n 
coordinates). Other proofs show that c also numbers the points 
in an infinite space of any finite number of dimensions, even 
an infinite space of aleph-null dimensions. 

Cantor hoped that his transfinite numbers would distinguish 
the different orders of space but, as we have seen, he himself 
proved that this w7as not the case. Mathematicians later showed 
that it is the topological way the points of space go together 
that distinguishes one space from another. The matchings in 
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the previous paragraphs are not continuous; that is, points 
close together on, for instance, the line are not necessarily close 
together on the square, and vice versa. Put another way, you 
cannot continuously deform a line to make it a square, or a 
square to make it a cube, or a cube to make a hypercube, and 
SO on. 

Is there a set in mathematics that corresponds to 2<? Of 
course we know it is the number of all subsets of the real num- 
bers, but does it apply to any familiar set in mathematics? Yes, 
it is the set of all real functions of x, even the set of all real one- 
valued functions. This is the same as the number of all possible 
permutations of the points on a line. Geometrically it is all the 
curves (including discontinuous ones) that can be drawn on a 
plane or even a small finite portion of a plane the size, say, of 
a postage stamp. As for 2 to the power of 2c,  no one has yet 
found a set, aside from the subsets of 2L, equal to it. Only 
aleph-null, c, and 2' seem to have an application outside the 
higher reaches of set theory. As George Gamow once said, "we 
find ourselves here in a position exactly opposite to that of 
. . . the Hottentot who had many sons but could not count be- 
yond three." There is an endless ladder of transfinite numbers, 
but most mathematicians have only three "sons" to count with 
them. This has not prevented philosophers from trying to find 
metaphysical interpretations for the transfinite numbers. Can- 
tor himself, a deeply religious man, wrote at length on such 
matters. In the United States, Josiah Royce was the philoso- 
pher who made the most extensive use of Cantor's alephs, par- 
ticularly in his work The World and the Individual. 

The fact that there is no highest or final integer is involved 
in a variety of bewildering new paradoxes. Known as super- 
tasks, they have been much debated by philosophers of science 
since they were first suggested by the mathematician Hermann 
Weyl. For instance, imagine a lamp (called the Thomson lamp 
after James F. Thomson, who first wrote about it) that is 
turned off and on by a push-button switch. Starting at zero 
time, the lamp is on for 112 minute, then it is off for 114 min- 
ute, then on for 118 minute and so on. Since the sum of this 
halving series, 112 + 114 + 118 + . . . , is 1, at the end of one min- 
ute the switch will have been moved aleph-null times. Will the 
lamp be on or off? 

Everyone agrees that a Thomson lamp cannot be con- 
structed. Is such a lamp logically conceivable or is it nonsense 
to discuss it in the abstract? One of Zeno's celebrated para- 
doxes concerns a constant-speed runner who goes half of a cer- 
tain distance in 112 minute, a fourth of the distance in the next 
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114 minute, an eighth of the distance in the next 118 minute 
and so on. At the end of one minute he has had no difficulty 
reaching the last point of the distance. Why, then, cannot we 
say that at the end of one minute the switch of the Thomson 
lamp has made its last move? The answer is that the lamp must 
then be on or off and this is the same as saying that there is a 
last integer that is either even or odd. Since the integers have 
no last digit, the lamp's operation seems logically absurd. 

Another supertask concerns an "infinity machine" that cal- 
culates and prints the value of pi. Each digit is printed in half 
the time it takes to print the preceding one. Moreover, the dig- 
its are printed on an idealized tape of finite length, each digit 
having half the width of the one before it. Both the time and 
the width series converge to the same limit, so that in theory 
one might expect the pi machine, in a finite time, to print all 
the digits of pi on a piece of tape. But pi has no final digit to  
print, and so again the supertask seems self-contradictory. 

One final example: Max Black of Cornell University imag- 
ines a machine that transfers a marble from tray A to tray B in 
one minute and then rests for a minute as a second machine 
returns the marble to A. In the next half-minute the first 
machine moves the marble back to B; then it rests for a half- 
minute as the other machine returns it to A. This continues, in 
a halving time series, until the machines' movements become, 
as Black puts it, a "grey blur." At the end of four minutes each 
machine has made aleph-null transfers. Where is the marble? 
Once more, the fact that there is no last integer to be odd or 
even seems to rule out the possibility, even in principle, of such 
a supertask. (The basic articles on supertasks, by Thomson, 
Black and others, are reprinted in Wesley C. Salmon's 1970 pa- 
perback anthology Zeno's Paradoxes.) 

One is tempted to say that the basic difference between su- 
pertasks and Zeno's runner is that the runner moves continu- 
ously whereas the supertasks are performed in discrete steps 
that form an aleph-null set. The situation is more complicated 
than that. Adolph Grunbaum, in Modern Science and ZenoS Par- 
adoxes, argues convincingly that Zeno's runner could also com- 
plete his run by what Grunbaum calls a "staccato" motion of 
aleph-null steps. The staccato runner goes the first half of his 
distance in 114 minute, rests 114 minute, goes half of the re- 
maining distance in 118 minute, rests 118 minute and so on. 
When he is running, he moves twice as fast as his "legato" 
counterpart, but his overall average speed is the same, and it is 
always less than the velocity of light. Since the pauses of the 
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staccato runner converge to zero, at the end of one minute he 
too will have reached his final point just as an ideal bouncing 
ball comes to rest after an infinity of discrete bounces. 
Griinbaum finds no logical objection to the staccato run, even 
though it cannot be carried out in practice. His attitudes to- 
ward the supertasks are complex and controversial. He regards 
infinity machines of certain designs as being logically impossi- 
ble and yet in most cases, with suitable qualifications, he de- 
fends them as logically consistent variants of the staccato run. 

These questions are related to an old argument to the effect 
that Cantor was mistaken in his claim that aleph-null and c are 
different orders of infinity. The proof is displayed in Figure 
20. The left side is an endless list of integers in serial order. 

Figure 20 

INTEGERS DECIMAL FRACTIONS 
1 1 
2 .2 
3 .3 

Fallacious proof concerning two alephs 

Each is matched with a number on the right that is formed by 
reversing the order of the digits and putting a decimal in front 
of them. Since the list on the left can go to infinity, it should 
eventually include every possible sequence of digits. If it does, 
the numbers on the right will also catch every possible se- 
quence and therefore will represent all real numbers between 
0 and 1. The real numbers form a set of size c. Since this set 
can be put in one-to-one correspondence with the integers, an 
aleph-null set, the two sets appear to be equivalent. 
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I would be ashamed to give this proof were it not for the fact 
that every year or so I receive it from a correspondent who has 
rediscovered it and convinced himself that he has demolished 
Cantorian set theory. Readers should have little difficulty 
seeing what is wrong. 

ANSWERS 

The fundamental error in the false proof that the counting 
numbers can be matched one-to-one with the real numbers is 
that, no matter how long the list of integers on the left (and 
their mirror reversals on the right), no number with aleph-null 
digits will ever appear on each side. As a consequence no irra- 
tional decimal fraction will be listed on the right. The mirror 
reversals of the counting numbers, with a decimal point in 
front of each, form no more than a subset of the integral frac- 
tions between 0 and 1. Not even 113 appears in this subset be- 
cause its decimal form requires aleph-null digits. In brief, all 
that is proved is the well-known fact that the counting numbers 
can be matched one-to-one with a subset of integral fractions. 

The false proof reminds me of a quatrain I once perpetrated: 

Pi vs e 
Pi goes on and on and on . . . 
And e is just as cursed. 
I wonder: Which is larger 
When their digits are reversed? 

ADDENDUM 

Among physicists, no one objected more violently to Cantorian 
set theory than Percy W. Bridgman. In Rejections of a Physicist 
(1955) he says he "cannot see an iota of appeal" in Cantor's 
proof that the real numbers form a set of higher infinity than 
the integers. Nor can he find paradox in any of Zeno's argu- 
ments because he is unable to think of a line as a set of points 
(see the Clerihew by Lindon that I used as an epigraph) or a 
time interval as a set of instants. 

"A point is a curious thing," he wrote in The Way Things Are 
(1959), "and I do not believe that its nature is appreciated, 
even by many mathematicians. A line is not composed of points 
in any real sense. . . . We do not construct the line out of 
points, but, given the line, we may construct points on it. 'All 
the points on the line' has the same sort of meaning that the 
'entire line' has. . . . We create the points on a line just as we 
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create the numbers, and we identify the points by the numeri- 
cal values of the coordinates." 

Merwin J. Lyng, in The Mathematics Teacher (April 1968, page 
393), gives an amusing variation of Black's moving-marble su- 
pertask. A box has a hole at each end: Inside the box a rabbit 
sticks his head out of hole A, then a minute later out of hole B,  
then a half-minute later out of hole A, and so on. His students 
concluded that after two minutes the head is sticking out of 
both holes, "but practically the problem is not possible unless 
we split hares." 

For what it is worth, I agree with those who believe that par- 
adoxes such as the staccato run can be stated without contra- 
diction in the language of set theory, but as soon as any ele- 
ment is added to the task that involves a highest integer, you 
add something not permitted, therefore you add only non- 
sense. There is nothing wrong in the abstract about an ideal 
bouncing ball coming to rest, or a staccato moving point reach- 
ing a goal, but nothing meaningful is added if you assume that 
at each bounce the ball changes color, alternating red and blue; 
then ask what color it is when it stops bouncing, or if the stac- 
cato runner opens and shuts his mouth at each step and you 
ask if it is open or closed at the finish. 

A number of readers called my attention to errors in this 
chapter, as I first wrote it as a column, but I wish particularly 
to thank Leonard Gillman, of the University of Texas at Austin 
for reviewing the column and suggesting numerous revisions 
that have greatly simplified and improved the text. 
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NONTRANSITIVE DICE 

AND OTHER PROBABILITY PARADOXES 

Probability theory abounds in paradoxes that wrench common 
sense and trap the unwary. In this chapter we consider a star- 
tling new paradox involving the relation called transitivity and 
a group o f  paradoxes stemming from the careless application 
of what is called the principle of indifference. 

Transitivity is a binary relation such that if it holds bet~veen 
A and B and between B and C, it must also hold between A and 
C. A common example is the relation "heavier than." If' A is 
heavier than B and B is heavier than C, then A is heavier than 
C. The three sets of four dice shown "unfolded" in Figure 21 
Tvere designed by Bradley Efron, a statistician at Stanford Uni- 
versity, to dramatize some recent discoveries about a general 
class of probability paradoxes that violate transitivity. With an)- 
of these sets of dice you can operate a betting game so contrary 
to intuition that experienced gamblers ~vill find it almost im- 
possible to comprehend even after they have completely ana- 
lyzed it. 

The four dice at the top of the illustration are numbered in 
the simplest way that provides the winner with the maximum 
advantage. Allow someone to pick any die from this set. You 
then select a die from the remaining three. Both dice are 
tossed and the person who gets the highest number wins. 
Surely, it seems, if your opponent is allolved the first choice of 
a die before each contest, the game must either be h i r  or favor 
your opponent. If at least two dice have equal and maximum 
probabilities of winning, the game is fair because if he picks 
one such die, you can pick the other; if one die is better than 
the other three, your opponent can always choose that die and 
win more than half of the contests. This reasoning is com- 
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Figure 21 

Nontransitive dice 

pletely wrong. The incredible truth is that regardless of which 
die he picks you can always pick a die that has a 213 probability 
of winning, or two-to-one odds in your favor! 

The paradox (insofar as it violates common sense) arises 
from the mistaken assumption that the relation "more likely to 
win" must be transitive between pairs of dice. This is not the 
case with any of the three sets of dice. In each set the relation 
"more likely to \+,in" is indicated by an arrow that points to the 
losing die. Die A beats B, B beats C, C beats D-and D beats A! 
In the first set the probability of winning with the indicated die 
of each pair is 213. This is easily verified by listing the 36 pos- 
sible throws of each pair, then checking the 24 cases in which 
one die bears the highest number. 

The other two sets of' f u r  dice, also designed by Efron, have 
the same nontransitive property but fewer numbers are re- 
peated in order to make an analysis of the dice more difficult. 
In the second set the probability of winning with the indicated 
die is also 213. Because ties are possible with the third set it 
must be agreed that ties will be broken by rolling again. With 
this procedure the winning probability for each of the four 
pairings in the third set is 11117, or .647. 

It has been proved, Efron writes, that 213 is the greatest pos- 
sible advantage that can be achieved with four dice. For three 
sets of numbers the maximum advantage is .618, but this can- 
not be obtained with dice because the sets must have more than 
six numbers. If more than four sets are used (numbers to be 
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randomly selected within each set), the possible advantage ap- 
proaches a limit of 314 as the number of sets increases. 

A fundamental principle in calculating probabilities such as 
dice throws is one that goes back to the beginnings of classical 
probability theory in the 18th century. It was formerly called 
"the principle of insufficient reason" but is now known as "the 
principle of indifference," a crisper phrase coined by John 
Maynard Keynes in A Treatise on Probability. (Keynes is best 
known as an economist, but his book on probability has become 
a classic. It had a major influence on the inductive logic of Ru- 
dolf Carnap.) The principle is usually stated as follows: If you 
have no grounds whatever for believing that any one of n mu- 
tually exclusive events is more likely to occur than any other, a 
probability of l ln  is assigned to each. 

For example, you examine a die carefully and find nothing 
that favors one side over another, such as concealed loads, 
noncubical shape, beveling of certain edges, stickiness of cer- 
tain sides and so on. You assume that there are six equally 
probable ways the cube can fall; therefore you assign a proba- 
bility of 116 to each. If you toss a penny, or play the Mexican 
game of betting on which of ttvo sugar cubes a fly will alight on 
first, your ignorance of any possible bias prompts you to assign 
a probability of 112 to each of the two outcomes. In none of 
these samples do you feel obligated to make statistical, empiri- 
cal tests. The probabilities are assigned a priori. They are 
based on symmetrical features in the structures and forces in- 
volved. The die is a regular solid, the probability of the penny's 
balancing on its edge is virtually zero, there is no reason for a 
fly to prefer one sugar cube to another and so on. Ultimately, 
of course, your analysis rests on empirical grounds, since only 
experience tells you, say, that a weighted die face would affect 
the odds, whereas a face colored red (with the others blue) 
would not. 

Some form of the principle of indifference is indispensable 
in probability theory, but it must be carefully qualified and ap- 
plied with extreme caution to avoid pitfalls. In many cases the 
traps spring from a difficulty in deciding on what are the 
equally probable cases. Suppose, for instance, you shuffle a 
packet of four cards-two red, two black-and deal them face 
down in a row. Two cards are picked at random, say by placing 
a penny on each. MThat is the probability that those two cards 
are the same color; 

One person reasons: "There are three equally probable 
cases. Either both cards are black, both are red or they are dif- 
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ferent colors. In two cases the cards match, therefore the 
matching probability is 213." 

"No," another person counters, "there are four equally prob- 
able cases. Either both cards are black, both are red, card x is 
black and y is red or x is red and y is black. More simply, the 
cards either match or they do not. In each way of putting it the 
matching probability clearly is 112." 

The fact is that both people are wrong. (The correct proba- 
bility will be given in the Answer Section. Can the reader cal- 
culate it?) Here the errors arise from a failure to identify cor- 
rectly the equally probable cases. There are, however, more 
confusing paradoxes-actually fallacies-in which the principle 
of indifference seems intuitively to be applicable, whereas it ac- 
tually leads straight to a logical contradiction. Cases such as 
these result when there are no positive reasons for believing n 
events to be equally probable and the assumption of equiprob- 
ability is therefore based entirely, or almost entirely, on 
ignorance. 

For example, someone tells you: "There is a cube in the next 
room whose size has been selected by a randomizing device. 
The cube's edge is not less than one foot or more than three 
feet." How would you estimate the probability that the cube's 
edge is between one and two feet as compared with the prob- 
ability that it is between two and three feet? In your total ig- 
norance of additional information, is it not reasonable to in- 
voke the principle of indifference and regard each probability 
as 112? 

It is not. If the cube's edge ranges between one and two feet, 
its volume ranges between 13 ,  or one, cubic foot and 2" or 
eight, cubic feet. But in the range of edges from two to three 
feet, the volume ranges between 29 (eight) and 3 v 2 7 )  cubic 
feet-a range almost three times the other range. If the prin- 
ciple of indifference applies to the two ranges of edges, it is 
violated by the equivalent ranges of volume. You were not told 
how the cube's "size" was randomized, and since "size" is am- 
biguous (it cpuld mean either the cube's edge or its volume) 
you have no clues to guide your guessing. If the cube's edge 
was picked at random, the principle of indifference does in- 
deed apply. It is also applicable if you are told that the cube's 
volume was picked at random, but of course you then have to 
assign a probability of 112 to each of the two ranges from one 
to 14 and from 14 to 27 cubic feet, and to the corresponding 
ranges for the cube's edge. If the principle applies to the edge, 
it cannot apply to the volume without contradiction, and vice 
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versa. Since you do not know how the size was selected, any ap- 
plication of the principle is meaningless. 

Carnap, in attacking an uncritical use of the principle in 
Harold Jeffreys' The09 of Probabilzty, gives the following exam- 
ple of its misuse. You know that every ball in an urn is blue, 
red or yellow, but you know nothing about how many balls of 
each color are in the urn. What is the probability that the first 
ball taken from the urn will be blue? Applying the principle of 
indifference, you say it is 112. The probability that it is not blue 
must also be 112. If it is not blue, it must be red or yellow, and 
because you know nothing about the number of red or yellow 
balls, those colors are equally probable. Therefore you assign 
to red a probability of 114. On the other hand, if you begin by 
asking for the probability that the first ball will be red, you 
must give red a probability of 112 and blue a probability of 114, 
which contradicts your previous estimates. 

It is easy to prove along similar lines that there is life on 
Mars. What is the probability that there is simple plant life on 
Mars? Since arguments on both sides are about equally cogent, 
we answer 112. What is the probability that there is simple an- 
imal life on Mars? Again, 112. Now we are forced to assert that 
the probability of there being "either plant or animal life" on 
Mars is 112 + 112 = 1, or certainty, which is absurd. The philos- 
opher Charles Sanders Peirce gave a similar argument that 
seems to show that the hair of inhabitants on Saturn had to be 
either of two different colors. Many variants of this fallacy can 
be found in Chapter 4 of Keynes's book. It is easy to invent 
others. 

In the history of metaphysics the most notorious misuse of 
the principle surely was by Blaise Pascal, who did pioneer work 
on probability theory, in a famous argument that became 
known as "Pascal's wager." A few passages from the original 
and somewhat lengthy argument (in Pascal's PensPes, Thought 
233) are worth quoting: 

"God is, or he is not." T o  which side shall we incline? Reason 
can determine nothing about it. There is an infinite gulf 
fixed between us. A game is playing at the extremity of this 
infinite distance in which heads or tails may turn up. What 
will you wager? There is no reason for backing either one or 
the other, you cannot reasonably argue in favor of either. . . . 

Yes, but you must wager.. . . Which will you choose? . . . 
Let us weigh the gain and the loss in choosing "heads" that 
God is. . . . If you gain, you gain all. If you lose, you lose 
nothing. Wager, then, unhesitatingly that he is. 
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Lord Byron, in a letter, rephrased Pascal's argument effec- 
tively: "Indisputably, the firm believers in the Gospel have a 
great advantage over all others, for this simple reason-that, if 
true, they will have their reward hereafter; and if there be no 
hereafter, they can be but with the infidel in his eternal sleep, 
having had the assistance of an exalted hope through life, 
without subsequent disappointment, since (at the worst for 
them) out of nothing nothing can arise, not even sorrow." Sim- 
ilar passages can be found in many contemporary books of re- 
ligious apologetics. 

Pascal was not the first to insist in this fashion that faith in 
Christian orthodoxy was the best bet. The argument was 
clearly stated by the fourth-century African priest Arnobius 
the Elder, and non-Christian forms of it go back to Plato. This 
is not the place, however, to go into the curious history of de- 
fenses and criticisms of the wager. 1 content myself with men- 
tioning Denis Diderot's observation that the wager applies with 
equal force to other major faiths such as Islam. The mathe- 
matically interesting aspect of all of this is that Pascal likens the 
outcome of his bet to the toss of a coin. In other words, he ex- 
plicitly invokes the principle of indifference to a situation in 
which its application is mathematically senseless. 

The most subtle modern reformulation of Pascal's wager is 
by William James, in his famous essay The Will to Believe, in 
which he argues that philosophical theism is a better gamble 
than atheism. In a still more watered-down form it is even used 
occasionally by humanists to defend optimism against pessi- 
mism at a time when the extinction of the human race seems 
as likely in the near future as its survival. 

"While there is a chance of the world getting through its 
troubles," says the narrator of H. G. Wells's little read novel 
Apropos of Dolores, "I hold that a reasonable man has to behave 
as though he was sure of it. If at the end your cheerfulness is 
not justified, at any rate you will have been cheerful." 

ANSWERS 

The probability that two randomly selected cards, from a set of 
two red and two black cards, are the same color is 113. If you 
list the 24 equally probable permutations of the four cards, 
then pick any two positions (for example second and fourth 
cards), you will find eight cases in which the two cards match 
in color. One way to see that this probability of 8/24 or 113 is 
correct is to consider one of the two chosen cards. Assume that 
it is red. Of the remaining three cards only one is red, and so 
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the probability that the second chosen card will be red is 113. 
Of course, the same argument applies if the first card is black. 
Most people guess that the odds are even, when actually they 
are two to one in favor of the cards' having different colors. 

ADDENDUM 

The following letter, from S. D. Turner, contains some sur- 
prising information: 

Your bit about the two black and two red cards reminds me 
of an exercise I did years ago, which might be called h7-Card 
Monte. A few cards, half red, half black, or nearly so, are 
shown face up by the pitchman, then shuffled and dealt f'ace 
down. The sucker is induced to bet he can pick two of the 
same color. 

The odds will always be against him. But because the 
sucker will make erroneous calculations (like the 213 and 112 
in your 2:2 example), or for other reasons, he will bet. The 
pitchman can make a plausible spiel to aid this: "NOM,, folks, 
you don't need to pick two blacks, and you don't need to pick 
two reds. If you draw either pair you win!" 

The probability of getting two of the same color, where 
there are R reds and B blacks, is: 

This yields the figures in the table [see Figure 221, one in 
lowest-terms fractions, the other in decimal. Only below and 
to the left of the stairstep line does the sucker get an even 
break or better. But no pitchman would bother with odds 
more favorable to the sucker than the 113 probability for 2:2, 
or possibly the 215 for 3:3. 

Surprisingly, the two top diagonal lines are identical. That 
is, if you are using equal reds and blacks, odds are not 
changed if a card is removed before the two are selected! I11 
your example of 2:2, the probability is 113 and it is also 113 
when starting with 2: 1 (as is evident because the one card not 
selected can be any one of the three). The generality of this 
can be shown thus: If B = R and B = R-1 are substituted into 
( I ) ,  the result in each case is R-11 2R-1. 

Some readers sent detailed explanations of why the argu- 
ments behind the f'allacies that I described were wrong, appar- 
ently not realizing that these fallacies were intended to be 
howlers based on the misuse of the principle of indifference. 
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Figure 22 

Red Cards 

1 2 3 4 5 6 7 8  13 26 ---- 

Probability of drawing two cards of the same color 

Several readers correctly pointed out that although Pascal did 
invoke the principle of indifference by referring to a coin flip 
in his fanlous wager, the principle is not essential to his argu- 
ment. Pascal posits an infinite gain for winning a bet in which 
the loss (granting his assumptions) would always be finite re- 
gardless of the odds. 

Efron's nontransiti~~e dice aroused almost as much interest 
among magicians as among mathematicians. It was quickly per- 
ceived that the basic idea generalized to k sets of n-sided dice, 
such as dice in the shapes of regular octahedrons, dodecahe- 
drons, icosahedrons, or cylinders with n flat sides. The game 
also can be modeled by k sets of n-sided tops, spinners with n 
numbers on each dial, and packets of n playing cards. 

Karl Fulves, in his magic magazine The Pallbearers R e z ~ i ~ w  
(January 1971) proposed using playing cards to model Efron's 
dice. He suggested the following four packets: 2, 3, 4, 10, J ,  Q; 
1 , 2 ,  8 , 9 , 9 ,  10; 6 , 6 ,  7, 7, 8 , 8 ;  a n d 4 , 5 , 5 , 6 , Q ,  K.Suitsare 
irrelevant. First player selects a packet, shuffles it, and draws a 
card. Second player does the same with another packet. If the 
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chosen cards have the same value, they are replaced and two 
more cards drawn. Ace is lor+,, and high card wins. This is 
based on Efron's third set of dice where the winning probabil- 
ity, if the second player chooses properly, is 11/17. T o  avoid 
giving away the cyclic sequence of packets, each could be 
placed in a container (box, cup, tray, etc.) with the containers 
secretly marked. Before each play, the containers would be 
randomly mixed by the first player while the second player 
turned his back. Containers with numbered balls or  counters 
could of course be substituted for cards. 

In the same issue of The Pnllb~arers Rez~iew cited above, Co- 
lumbia University physicist Shirley Quitnby proposed a set of 
four dice with the following faces: 

Note that numbers 1 through 24 are used just once each in 
this elegant arrangement. 'I'he dice give the second player a 
winning probabilit) of 213. If modeled with 24 numbered 
cards, the first plajer would select one of the four packets, 
shuffle, then drat+ a card. The second player ~ o u l d  do like- 
wise, and high card wins. 

R. C. H. Cheng, ~lr i t ing from Bath Unilersit), England, pro- 
posed a novel lariation using a single die. On each face are 
numbers 1 through 6, each numeral a different color. Assume 
that the colors are the rainbow colors red, orange, yello~v, 
green, blue, and purple. The chart below shows how the nu- 
merals are colored on each face. 

Face Red Orange Yellow Green Blue Purple 

The game is played as follo\vs: The first player selects a 
color, then the second player selects another color. The die is 
rolled and the person whose color has the highest value wins. 
It is easy to see from the chart that if the second player picks 
the adjacent color on the right-the sequence is cyclic, with red 
to the "right" of purple-the second player wins five out of six 
times. In other words, the odds are 5 to 1 in his favor! 
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T o  avoid giving away the sequence of colors, the second 
player should occasionally choose the second color to the right, 
where his winning odds are 4 to 2, or the color third to the 
right where the odds are even. Perhaps he should even, on 
rare occasions, take the fourth or fifth color to the right where 
odds against him are 4 to 2 and 5 to 1 respectively. Me1 Stover 
has suggested putting the numbers and colors on a 6-sided log 
instead of a cube. 

This, too, models nicely with 36 cards, formed in six piles, 
each bearing a colored numeral. The chart's pattern is obvious, 
and easily applied to n2 cards, each with numbers 1 through n, 
and using n different colors. In presenting it as a betting game 
you should freely display the faces of each packet to show that 
all six numbers and all six colors are represented. Each packet 
is shuffled and placed face down. The first player is "gener- 
ously" allowed first choice of a color, and to select any packet. 
The color with the highest value in that packet is the winner. 
In the general case, as Cheng pointed out in his 1971 letter, 
the second player can always choose a pile that gives him a 
probability of winning equal to (n- 1)In. 

A simpler version of this game uses 16 playing cards. The 
four packets are: 

AS, JH, Qc, KD 
KS, AH, JC, QD 
Qs, KH, AC, JD 

Ace here is high, and the cyclic sequence of suits is spades, 
hearts, clubs, diamonds. The second player wins with 3 to 1 
odds by choosing the next adjacent suit, and even odds if he 
goes to the next suit but one. 

These betting games are all variants of nontransitive voting 
paradoxes, about which there is extensive literature. 
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GEOMETRICAL FALLACIES 

"Holmes," I cried, "this is impossible." 
"Admirable!" he said. "A most illuminating 

remark. It 2s impossible as I state it, and 
therefore I must in some respect have stated 
it wrong. . . ." 

-SIR A R ~ H U R  CONAN DOYLE, 
The Aduentzrre of the Przor) School 

It is colnmonly supposed that Euclid, the ancient Greek geo- 
meter, wrote only one book, his classic Elements of Geometry. Ac- 
tually he wrote at least a dozen, including treatises on music 
and branches of physics, but only five of his works survived. 
One of his lost books was a collection of geometric fallacies 
called Pseudaria. Alas, there are no records of what it con- 
tained. It probably discussed illicit proofs that led to absurd 
theorems but in which the errors were not immediately 
apparent. 

Since Euclid's time hundreds of amusing examples of geo- 
metric fallacies have bee11 published, some of them genuine 
mistakes and some deliberately contrived. This month we con- 
sider five of the best. All are theorems that could have been in 
Euclid's Pseudaria, since none requires more than a knowledge 
of elementary plane geometry to follow their steps do~vn the 
garden path to the false conclusion. (Q.E.D.: Quite Entertain- 
ingly Deceptive.) The reader is urged to examine each proof 
carefully, step by step, to see if he can discern exactly where 
the proof goes rvrong before the errors are revealed in the An- 
swer Section. 
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Figure 23 

Obtuse angle equals right angle 
All triangles are isoceles 
ABCD is a parallelogram 

TIIEOKEM 1: Ari OBTUSE ANGLE IS SOMETIMES EQUAL TO A RIGHT 

ANGLE. This \\-as one of Lewis Carroll's favorites. Figure 23, 
left, reproduces Carroll's diagram and labeling. I know of no 
better way for a high school geometry teacher to convey the 
importance of deductive rigor than to chalk this diagram on 
the blackboard and challenge a class to find where the fallacy 
lies. T h e  construction and proof are described by Carroll as 
follows (I quote from The Lezuis Carroll Picture Book, edited by 
Stuart Dodgson Collingwood, London, 1899; reprinted in the 
Dover paperback Diuersio71~ and Digre~~ions of Leulis Carroll, 
1961): 

Let ABCD be a square. Bisect i lB  at E ,  and through E draw 
EF at right angles to AB, and cutting DC at F. Then DF = FC. 

From C draw CG = CB.  Join AG,  and bisect it at H ,  and from 
H draw H K  at right angles to AG. 

Since i iB ,  AG are not parallel, EF, H K  are not parallel. 
Therefore they tvill meet, if produced. Produce EF, and let 
them meet at K.  Join KD, KA,  KG, and KC. 

The  triangles K A H ,  KGH are equal, because 4 N =  HG,  H K  is 
common, and the angles at H are right. Therefore K A  = K G .  

The  triangles KDF, KCF are equal, because DF =FC, FK is 
common, and the angles at F are right. Therefore KD = KC, 
and angle KDC = angle KCD. 

Also D A  = CB = CG. 
Hence the triangles KDA, KCG have all their sides equal. 

Therefore the angles KDA, KCG are equal. From these equals 
take the equal angles KDC, KCD. Therefore the remainders are 
equal: i.e., the angle GCD = the angle ADC. But GCD is an ob- 
tuse angle, and ADC is a right angle. 

Therefore an obtuse angle sometinles = a right angle. 
Q.E.D. 
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THEOREM 2: EVERY TRIANGLE IS ISOSCELES. This marvelous 
absurdity is also in The Lewis Carroll Picture Book. Carroll prob- 
ably came on both proofs in the first (1892) edition of W. W. 
Rouse Ball's ~Uathematical Recreations and Essajs, where they ap- 
peared for the first time. Carroll has explained it so well that 
again I give his diagram [see Figure 23, middle] and quote his 
wording: 

Let ABC be any triangle. Bisect BC at D, and from D draw 
DE at right angles to BC. Bisect the angle BAC. 

(1) If the bisector does not meet DE, they are parallel. 
Therefore the bisector is at right angles to BC. Therefore AB = 

AC, i.e., ABC is isosceles. 
(2) If the bisector meets DE, let them meet at F. Join FB, FC, 

and from F draw FG, FH,  at right angels to AC, AB. 
Then the triangles AFC, AFH are equal, because they have 

the side AF common, and the angles FAG, AGF equal to the an- 
gles FAH,  AHF. Therefore AH =AG,  and FH = FG. 

Again, the triangles BDF, CDF are equal, because BD = DC, 
DF is common, and the angles at D are equal. Therefore FB = 
FC. 

Again, the triangles FHB,  FGC are right-angled. Therefore 
the square on FB = the squares on FH,  H B ;  and the square on 
FC = the squares on FG, GC. But FB = FC, and FH = FG. There- 
fore the square on H B  = the square on GC. Therefore HB = 
GC. Also, AH has been proved = to AG. Therefore AB =AC;  i.e., 
ABC is isosceles. 

Therefore the triangle ABC is always isosceles. 
Q.E.D. 

THEOREM 3: IF A QUADRILATERAL ABCD HAS ANGLE A EQUAL TO 

ANGLE C, AND AB EQUALS CD, THE QUADRILATERAL IS A PARAL- 

LELOGRAM. P. Halsey of London contributed this subtle fal- 
lacy to The  vath he ma tical Gazette, October, 1959, pages 204-205. 
On the quadrilateral shown in Figure 23 right, draw BX per- 
pendicular to AD, and DY perpendicular to BC. Join BD. Tri- 
angles ABX and CYD are congruent, therefore BX equals DY 
and AX equals CY. It follo~vs that triangles BXD and DYB are 
congruent, consequently XD equals YB.  Since AB equals CD 
and AD equals BC, the quadrilateral ABCD must be a parallel- 
ogram. The  proof is strongly convincing, yet the theorem is 
false. Can the reader provide a counterexample? 

THEOREM 4: PI EQUALS 2. Figure 24 is based on the familiar 
yin-yang symbol of the Orient. Let diameter AB equal 2. Since 
a circle's circumference is its diameter times pi, the largest 
semicircle, from A to B ,  has a length of 21~12 = IT. The two next- 
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Figure 24 

Pi equals 2 

smallest semicircles, which form the wavy line that divides the 
yin from the yang, are each equal to 1~12 and so their total 
length is pi. In similar fashion the sum of the four next-small- 
est semicircles (each 1~14) also is pi, and the sum of the eight 
next-smallest semicircles (each 1~18)  also is pi. This can be con- 
tinued endlessly. The semicircles grow smaller and more nu- 
merous, but they always add to pi. Clearly the wavy line ap- 
proaches diameter AB as a limit. Assume that the construction 
is carried out an infinite number of times. The wavy line must 
always retain a length of pi, yet when the radii of the semicir- 
cles reach their limit of zero, they coincide with diameter AB, 
which has a length of 2. Consequently pi equals 2. 

THEOREM 5 :  EUCLID'S PARALLEL POSTULATE CAN BE PROVED BY 

EUCLID'S OTHER AXIOMS. First, some historical background. 
Among Euclid's 10 axioms, his fifth postulate states that if a 
line A crosses two other lines, making the sum of the interior 
angles on the same side of A less than 180 degrees, the two 
lines will intersect on that side of A. A variety of seemingly un- 
related theorems can be substituted for this axiom since they 
require it for their proof: The theorem that the interior angles 
of every triangle add to 180 degrees, or that a rectangle exists, 
or that similar noncongruent triangles exist, or that through 
three points not in a straight line only one circle can be drawn, 
and many others. 

Hundreds of attempts have been made since Euclid's time to 
replace his cumbersome fifth postulate with one that is simpler 
and more intuitively obvious. The most famous became known 
as "Playfair's postulate" after the Scottish mathematician and 
physicist John Playfair. In his popular 1795 edition of Euclid's 
Elements he substituted for the fifth postulate the equivalent 
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but more succinct statement, "Through a given point can be 
drawn only one line parallel to a given line." Actually this form 
of the fifth postulate was suggested by Proclus, in a fifth-cen- 
tury Greek commentary on Euclid, as well as by later mathe- 
maticians who preceded Playfair, but the parallel postulate still 
bears Playfair's name. 

Whatever form the fifth axiom was given, it always seemed 
less self-evident than Euclid's other axioms, and some of the 
greatest mathematicians labored to eliminate it entirely by 
proving it on the basis of the other nine. (For a good account 
of this history see W. B. Frankland, Theories of Parallelism, an 
Historical Critique, Cambridge University Press, 19 10.) The 
18th-century French geometer Joseph Louis Lagrange was 
convinced that he had produced such a proof by showing (with- 
out assuming Euclid's fifth postulate) that the angles of any tri- 
angle add to a straight angle. In the middle of the first para- 
graph of a lecture to the French Academy on his discovery, 
however, he suddenly said, "I1 faut que j'y songe encore" ("I 
shall have to think it over again"), put his papers in his pocket 
and abruptly left the hall. 

More than a century ago it was established that it is as im- 
possible to prove the fifth postulate as it is to trisect the angle, 
square the circle or duplicate the cube, yet even in this century 
"proofs" of the parallel axiom continue to be published. A 
splendid example is the heart of a 310-page book, Euclid or 
Einstein, privately printed in 1931 by Very Rev. Jeremiah Jo- 
seph Callahan, then president of Duquesne University. Since 
the general theory of relativity assumes the consistency of a 
non-Euclidean geometry, a simple way to demolish Einstein is 
to show that non-Euclidean geometry is contradictory. This Fa- 
ther Callahan proceeds to do .by a lengthy, ingenious proof of 
the parallel postulate. It is a pleasant exercise to retrace Father 
Callahan's reasoning in an effort to find exactly where it goes 
astray. (For those who give up, the error is exposed by D. R. 
Ward's "A New Attempt to Prove the Parallel Postulate" in The 
Mathematical Gazette, Vol. 17, pages 101-104, May, 1933.) 

A simple proof of the parallel postulate uses the diagram 
shown in Figure 25. AB is the given line and C the outside 
point. From C drop a perpendicular to AB. It can be shown, 
without invoking the parallel postulate, that only one such per- 
pendicular can be drawn. Through C draw EF perpendicular 
to CD. Again, the parallel postulate is not needed to prove that 
this too is a unique line. Lines EF and AB are parallel. Once 
more, the theorem that two lines, each perpendicular to the 
same line, are parallel is a theorem that can be established 
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A proof of the parallel postulate 

Figure 25 

without the parallel postulate, although the proof does require 
other Euclidean assumptions (such as the one that straight 
lines are infinite in length) that do not hold in elliptic non-Eu- 
clidean geometry. Elliptic geometry does not contain parallel 
lines, but given Euclid's other assumptions one can assume that 
parallel lines do exist. 

We have apparently now proved the parallel postulate. Or 
have we? 

This and hundreds of other false proofs of Euclid's fifth 
axiom, or axioms equivalent to it, show how easily intuition can 
be deceived. It helps one to understand why it took so long for 
geometers to realize that the parallel postulate was independ- 
ent of the others, that one may assume either that no parallel 
line can be drawn through the outside point, or that at least 
two can. (It turns out that if two can, an infinite number can.) 
In each case a consistent non-Euclidean geometry is constructible. 

Even after non-Euclidean geometries were found to be as 
free of logical contradiction as Euclidean geometry, many em- 
inent mathematicians and scientists could not believe that non- 
Euclidean geometry would ever have a useful application to 
the actual space of the universe. It is well known that Henri 
Poincare argued in 1903 that if physicists ever found empirical 
evidence suggesting that space was non-Euclidean, it would be 
better to kep;~ Euclidean geometry and change the physical 
laws. "Euclidean geometry, therefore," he concluded, "has 
nothing to fear from fresh experiments." Not so well known is 
the fact that Bertrand Russell and Alfred North Whitehead 
once voiced the same view. In 1910, in the famous 1 l th  edition 
of The Encjclopaedza Brztannzca, the article on "Geometry, Non- 
Euclidean" is by Russell and Whitehead. If scientific observa- 
tion were ever to conflict with Euclidean geometry, they assert, 
the simplicity of Euclidean geometry is so overwhelming that it 
would be preferable "to ascribe this anomaly, not to the falsity 
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of Euclidean geometry (as applied to space), but to the falsity 
of the laws in question. This applies especially to astronomy." 

Six years later Einstein's general theory of relativity made 
this statement, along with Poincare's, hopelessly nai've. Not 
only does non-Euclidean geometry provide a simpler descrip- 
tion of the space-time of general relativity; it is even possible 
that space may close on itself (as it does in Einstein's early 
model of the universe) to introduce topological properties that 
are in principle capable of being tested, and that could make 
the choice of non-Euclidean geometry as the best description 
of space more than a trivial matter of convention. 

Russell was quick to alter the opinion expressed in the B1-i- 
tannica article but Whitehead was slow to get the point. In 1922 
he wrote an embarrassing book, The Principle of Relativity, that 
attacked Einstein's use of a generalized non-Euclidean geome- 
try (in which curvature varies from spot to spot) by arguing 
that simplicity demands that the geometry applied to space 
must be either Euclidean (Whitehead's preference) or, if the 
evidence warrants it, a non-Euclidean geometry in which the 
curvature is everywhere constant. 

What is the moral of all this? Intuition is a powerful tool in 
mathematics and science but it cannot always be trusted. The 
structure of the universe, like pure mathematics itself, has a 
way of being much stranger than even the greatest mathema- 
ticians and physicists suspect. 

ANSWERS 

The errors in the fallacious geometric proofs are briefly ex- 
plained as follows: 

THEOREM 1. AN OBTUSE ANGLE IS SO~LIETIMES EQUAL TO A RIGHT 

ANGLE. The mistake lies in the location of point K. When the 
figure is accurately drawn, K is so far below line DC that, when 
G and K are joined, the line falls entirely outside the original 
square ABCD. This renders the proof totally inapplicable. 

THEOREM 2. EVERY TRIANGLE IS ISOSCELES. Again the error is 
one of construction. F is always outside the triangle and at a 
point such that, when perpendiculars are drawn from F to 
sides AB and AC, one perpendicular will intersect one side of 
the triangle but the other will intersect an extension of the 
other side. A detailed analysis of this fallacy can be found in 
Eugene P. Korthrop's Riddles in Mathematics (1944), Chapter 6 .  
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THEOREM 3. IF A QUADRILATERAL ABCD HAS ANGLE A EQUAL TO 

ANGLE C, A N D  AB EQUALS CD, T H E  QUADRILATERAL IS A PARAL- 

LELOGRAM. The proof is correct if X and Y are each on a side 
of the quadrilateral or if both X and Y are on projections of the 
sides. It fails if one is on a side and the other is on an extension 
of a side, as shown in Figure 26. This figure meets the theo- 
rem's conditions but obviously is not a parallelogram. 

Figure 26 

Quadrilateral-theorem counterexample 

THEOREM 4. PI EQUALS 2. It is true that as the semicircles are 
made smaller their radii approach zero as a limit and therefore 
the wavy line can be made as close to the diameter of the large 
circle as one pleases. At no step, however, do the semicircles 
alter their shape. Since they always remain semicircles, no mat- 
ter how small, their total length always remains pi. The fallacy 
is an excellent example of the fact that the elements of a con- 
verging infinite series may retain properties quite distinct from 
those of the limit itself. 

THEOREM 5. EUCLID'S PAKALLEL POSTCLATE CAN BE PROVED B Y  

EUCLID'S OTHER AXIOMS. The proof is valid in showing that 
one line can be constructed through C that is parallel to AB, 
but it fails to prove that there is only one such parallel. There 
are many other methods of constructing a parallel line through 
C; the proof does not guarantee that all these parallels are the 
same line. Indeed, in hyperbolic non-Euclidean geometry an in- 
finity of such parallels can be drawn through C,  a possibility 
that can be excluded only by adopting Euclid's fifth postulate 
or one equivalent to it. Elliptic non-Euclidean geometry, in 
which no parallel can be drawn through C,  is made possible by 
discarding, along with the fifth postulate, certain other Euclid- 
ean assumptions. 
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THE COMBINATORICS 

OF PAPER FOLDING 

The easiest way to refold a road map is 
differently. 

-JOKES'S, Rule of the Road 

One of the most unusual and frustrating unsolved problems in 
modern combinatorial theory, proposed many years ago by 
Stanislaw M. Ulam, is the problem of determining the number 
of different ways to fold a rectangular "map." The map is pre- 
creased along vertical and horizontal lines to form a matrix of 
identical rectangles. The folds are confined to the creases, and 
the final result must be a packet with any rectangle on top and 
all the others under it. Since there are various ways to define 
what is meant by a "different" fold, we make the definition 
precise by assuming that the cells of the unfolded map are 
numbered consecuti\~ely, left to right and top to bottom. We 
wish to know how many permutations of these n cells, reading 
from the top of the packet down, can be achie~ed by folding. 
Cells are numbered the same on both sides, so that it does not 
matter which side of a cell is "up" in the final packet. Either 
end of the packet can be its "top," and as a result elery fold 
mill produce t\vo permutations, one the re1erse of the other. 
The shape of each rectangle is irrelevant because no fold can 
rotate a cell 90 degrees. We can therefore assume without al- 
tering the problem that all the cells are identical squares. 

The simplest case is the 1-by-n rectangle, or a single strip of 
n squares. It is often referred to as the problem of folding a 
strip of stamps along their perforated edges until all the 
stamps are under one stamp. Even this special case is still un- 
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solved in the sense that no nonrecursive formula has been 
found for the number of possible permutations of n stamps. 
Recursive procedures (procedures that allow calculating the 
number of folds for n stamps provided that the number for 
n-1 stamps is known) are nonetheless known. The total num- 
ber of pern~utations of n objects is n! [that is, factorial n ,  or n x 
(n - 1 )  x ( n  - 2) . . . x 11. All n! permutations can be folded with 
a strip of two or three stamps, but for four stamps only 16 of 
the 4! = 24 permutations are obtainable [see Figure 271. For five 
stamps the number of folds jumps to 50 and for six stamps it 
is 144. John E. Koehler wrote a computer program, reported 
in a 1968 paper, with which he went as high as n= 16, for 
which 16,861,984 folds are possible. W. F. Lunnon, in another 
1968 paper, carried his results to n= 24, and in a later paper, 
to n = 28. Koehler showed in his article that the number of pos- 
sible stamp folds is the same as the number of ways of joining 
n dots on a circle by chords of two alternating colors in such a 
way that no chords of the same color intersect. 

The simplest rectangle that is not a strip is the trivial 2-by-2 
square. It is easy to find that only eight of the 4! = 24 permu- 
tations can be folded, half of which (as explained above) are 

Figure 27 

The 16 ways to fold a four-stamp strip 
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reversals of the other half. The 2-by-3 rectangle is no longer 
trivial, because nowT it becomes possible to tuck one or more 
cells into open pockets. This greatly confuses matters. As far as 
I know, nothing has been published on the nonstrip rectangles. 
I was able to fold 60 of the 6! = 720 permutations (10 folds for 
each cell on top), but it is possible I missed a few. 

An amusing pastime is to find six-letter words that can be 
put on the 2-by-3 map (lettering from left to right and from 
the top down) so that the map can be folded into a packet that 
spells, from the top down, an anagram of the original word. 
Each cell should be labeled the same on both sides to make it 
easier to identify in the packet. For example, it is not hard to 
fold ILL-FED to spell FILLED and SQUIRE to spell RISQUE. On the 
other hand, OSBERG (an anagram for the last name of the Ar- 
gentine writer Jorge Luis Borges that appears on page 361 of 
Vladimir Nabokov's novel Ada) cannot be folded to BORGES, 
nor can BORGES be folded to OSBERG. Can the reader give a 
simple proof of both impossibilities? 

The 2-by-4 rectangle is the basis of two map-fold puzzles by 
Henry Ernest Dudeney (see page 130 of his 536 Puzzles 3 Cu- 
rious Problems. Scribner's, 1967). Dudeney asserts there are 40 
ways to fold this rectangle into a packet with cell KO. 1 on top, 
and although he speaks tantalizingly of a "little law" he discov- 
ered for identifying certain possible folds, he offers no hint as 
to its nature. I have no notion how many of the 8! =40,320 
permutations can be fblded. 

When one considers the 3-by-3, the smallest nontrivial 
square, the problem becomes fantastically complex. As far as I 
know, the number of possible folds (of the 9! = 362,880 per- 
mutations) has not been calculated, although many paperfold 
puzzles have exploited this square. One w7as an advertising pre- 
mium, printed in 1942 by a company in hlt. Vernon, N.Y., that 
is diagrammed in Figure 28. On one side of the paper there 
are the faces of Mussolini and Hitler. On the back of the re- 
maining cell of the same row is the face of Tojo, the wartime 
prime minister of Japan. Above this cell is a prison window 
with open spaces die-cut between two bars; below the Tojo cell 
a similar window appears on the back of the cell, as indicated 
by the dotted lines. The problem is to fold the square into a 
packet so that at each end two of the faces appear behind the 
bars; that is, so that on each side of the packet the top cell 
bears a picture of a window and directly under it a face shows 
through the open slots between the bars. The fold is not diffi- 
cult, but it does require a final tuck. 
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Figure 28 

A map-fold problem from World War I1 

A much tougher puzzle using a square of the same size is the 
creation of Robert Edward Neale, a Protestant minister, pro- 
fessor of psychiatry and religion at the Union Theological 
Seminary and the author of the influential book I n  Praise of 
Play (Harper & Row, 1969). Neale is a man of many avocations. 
One of them is origami, the Oriental art of paper folding, a 
field in which he is recognized as one of the country's most cre- 
ative experts. Magic is another of Neale's side interests; his fa- 
mous trick of the bunny in the top hat, done with a folded dol- 
lar bill, is a favorite among magicians. The hat is held upside 
down. When its sides are squeezed, a rabbit's head pops up. 
(The interested reader can obtain Bunny Bill, a manuscript de- 
scribing the fold, from Magic, Inc., 5082 North Lincoln Ave- 
nue, Chicago, Ill. 60625. The fold is far from simple, by the 
way.) 

Figure 29 shows Neale's hitherto unpublished Beelzebub 
puzzle. Start by cutting a square from a sheet of paper or thin 
cardboard, crease it to make nine cells, then letter the cells (the 
same letter on opposite sides of each cell) as indicated. First try 
to fold the square into a packet that spells (from the top down) 
these eight pseudonyms of the fallen angel who, in Milton's 
Paradise Lost, is second in rank to Satan himself: Be1 Zeebub, 
Bub Blezee, Ube Blezbe, Bub Zelbee, Bub Beelze, Zee Bubble, 
Buz Lebeeb, Zel Beebub. If you can master these names, you 
are ready to tackle the really fiendish one: Beelzebub, the true 
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Figure 29 

Robert Edward Neale's Beelzebub puzzle 

name of "the prince of the devils" (Matthew 12:24). Its ex- 
tremely difficult fold will be explained in the Answer Section. 
No one who succeeds in folding all nine names will wonder 
why the general map-folding problem is still unsolved. 

Neale has invented a variety of remarkable paper-fold puz- 
zles, but there is space for only two more. One is in effect a 
nonrectangular "map" with a crosscut at the center [see Figure 
301. The numbers may represent six colors: all the 1-cells are 
one color, the 2-cells a second color and so on. Here opposite 
sides of each cell are different. After numbering or coloring as 
shown at the top in the illustration, turn the sheet over (turn it 
sideways, exchanging left and right sides) and then number or 
color the back as shown at the bottom. The sheet must now be 
folded to form a curious species of tetraflexagon. (Tetraflexa- 
gons were the topic of an earlier column that is reprinted in 
The 2nd Scientzjic American Book of Mathematical Puzzles & 
Diversions.) 

To fold the tetraflexagon, position the sheet as shown at the 
top in the illustration. (It helps if you first press the creases so 
that the solid lines are what origamians call "mountain folds" 
and the dotted lines are "valley folds.") Reach underneath and 
seize from below the two free corners of the 1-cells, holding 
the corner of the upper cell between the tip of your left thumb 
and index finger and the corner of the lower cell between the 
tip of your right thumb and finger. A beautiful maneuver can 
now be executed, one that is easy to do when you get the knack 
even though it is difficult to describe. Pull the corners simul- 
taneously down and away from each other, turning each 1-cell 
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Figure 30 

Front (top) and back (bottom) of the unfolded tetraflexagon 

over so that it becomes a 5-cell as you look down at the sheet. 
The remaining cells will come together to form two opentop 
boxes with a 6-cell at the bottom of each box [see Figure 311. 

Shift your grip to the two inside corners of the 5-cells-<or- 
ners diagonally opposite the corners you were holding. Push 
down on these corners, at the same time pulling them apart. 
The boxes will collapse so that the sheet becomes a flat 2-by-2 
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Figure 31 

First step in folding the tetraflexagon 

tetraflexagon with four 1-cells on top and four 2-cells on the 
underside [see Figure 321. If the collapsing is not properly 
done, you will find a 4-cell in place of a 1-cell, and/or a 3-cell 
in place of a 2-cell. In either case simply tuck the wrong square 
out of sight, replacing it with the correct one. 

Figure 32 

Final step in folding the tetraflexagon 

The tetraflexagon is flexed by folding it in half (the two sides 
going back), then opening it at the center crease to discover a 
new "face," all of whose cells have the same number (or color). 
It is easy to flex and find faces 1, 2, 3 and 4. It is not so easy to 
find faces 5 and 6. 

One of Neale's most elegant puzzles is his "Sheep and 
Goats," which begins with a strip of four squares and a tab for 
later gluing [see Fzgure 33.1 Precrease the sheet (folding it both 
ways) along all dotted lines. Then color half of each square 
[dark grey in illustration] black-on both sides, as if the ink had 
soaked right through the paper. 

The strip is folded as shown in steps a, b, c and d. The first 
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Figure 33 

Neale's "Sheep and Goats" problem 

fold is back and down. The next three folds are valley folds, 
first to the right, then.up, then left. After the last fold slide the 
tab under the double-leaved black triangle at the top left of the 
square. Glue the tab to the bottom leaf of the triangle. You 
should now have a square with four black and four white tri- 
angles on each side. These are the sheep and goats. 

The  problem is: By folding only along precreased lines, 
change the paper to a square of the same size that is all white 
on one side and all black on the other. In other words, separate 
the sheep from the goats. It is not easy, but it is a delight to 
make the moves rapidly once you master the steps-which I 
shall diagram in the Answer Section, along with the answer to 
the tetraflexagon puzzle. (To make the manipulations smoother, 
it is a good plan to trim a tiny sliver from all single edges after 
the square has been folded and glued.) 

Anyone interested in learning some of Neale's more tradi- 
tional origami figures will find six of his best (including his 
Thurber dog) in Samuel Randlett's The Best of Origami ( E .  P. 
Dutton, 1963). Some of his dollar-bill folds (including the 
jumping frog) are in Folding Money: Volume IZ, edited by Rand- 
lett (Magic, Inc., 1968). 

ANSWERS 

A simple proof that on the two-by-three rectangle OSBERG can- 
not be folded to spell BORGES (or vice.versa) is to note that in 
each case the fold requires that two pairs of cells touching only 
at their corners would have to be brought together in the final 
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packet. It is evident that no fold can put a pair of such cells 
together. 

The square puzzle with the faces and prison windows is 
solved from the starting position shown. Fold the top row7 back 
and down, the left column toward you and right, the bottom 
row back and up. Fold the right packet of three cells back and 
tuck it into the pocket. A face is now behind bars on each side 
of the final packet. The central face of the square cannot be 
put behind bars because its cell is diagonally adjacent to each 
of the window cells. 

Space prevents my giving solutions for the eight pseudonyms 
of Beelzebub, but Beelzebub itself can be obtained as follows. 
Starting with the layout shown, fold the bottom row toward 
you and up to cover BBE. Fold the left column toward you and 
right to cover Z U .  Fold the top row toward you and down, but 
reverse the crease between L and Z so that LZ goes between B 
and B on the left and the upper E goes on top of the lower E. 
You now have a rectangle of two squares. On the left, from the 
top down, the cells are BLZBUB, on the right EEE. The final 
move is difficult. Fold the right panel (EEE) toward you and 
left. The three E's are tucked so that the middle E goes be- 
tween Z and B ,  and the other two E's together go between B 
and L. Once you grasp what is required it is easier to combine 
this awkward move with the previous one. The result is a 
tightly locked packet that spells Beelzebub. The solution is 
unique. If the cells of the original "map" are numbered 1 
through 9, the final packet is 463129785. 

T o  find the 5-face of the tetraflexagon, start with face 1 on 
the top and 2 on the bottom. Mountain-fold in half vertically, 
left and right panels going back, so that if you were to open 
the flexagon at the center crease you w~ould see the 4-face. In- 
stead of opening it, however, move left the lower inside square 
packet (with 4 and 3 on its outsides) and move right the upper 
square packet (also with 4 and 3 on its outsides). Insert your 
fingers and open the flexagon into a cubical tube open at the 
top and bottom. Collapse the tube the other way. This creates 
a new tetraflexagon structure that can be flexed to show faces 
1, 3 and 5. 

A similar maneuver creates a structure that shows faces 2, 4 
and 6. Go back to the original structure that shows faces 1, 2, 
3 and 4 and repeat the same moves as before except that you 
begin with the 2-face uppermost and the 1-face on the 
underside. 

Figure 34 shows how to separate the sheep from the goats: 
(1) Start with the two-color square folded as shown. 
(2) Fold in half along the horizontal diagonal by folding the 



THE COMBINATORICS OF PAPER FOLDING 

Figure 34 

Solution to the "Sheep and Goats" problem 

bottom corner up to make a "hat" with a white triangle at the 
lower left-hand corner. 

(3) Open the hat's base and continue opening until you can 
flatten the hat to make the small square shown. 

(4) Insert a left finger into the pocket on the right of the up- 
per face of drawing No. 3. Pull upward and flatten as shown. 

(5) Turn the paper over sideways and repeat the previous 
move on the other side. The result is a rectangle with a white 
triangle in the upper right-hand corner. 

(6) Open the rectangle into a cubical tube open at the top 
and bottom. Collapse the tube the other way to make a rectan- 
gle again, except that now it is colored as shown. 

(7) Insert your right thumb into the pocket on the left of 
drawing No. 6, lift up the flap and flatten it as shown. 

(8) Turn the paper over sideways and do the same on the 
other side. You should now have, a small square, black on both 
sides. 

(9) Reach into the square from above, open it and flatten to 
make an inverted hat, black on both sides. 

(10) Open the hat by separating its bottom points and flat- 
ten the large square that results. It will be the same size as the 
square you started with, but now it is all white on one side and 
all black on the other-all sheep and all goats. 

Repeating the same sequence of moves will mix the sheep 
and the goats again. With practice the folds can be done so 
rapidly that you can hold the square out of sight under a table 
for just a few moments and produce the change almost as if by 
magic. 
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ADDENDUM 
The "little law" that Henry Ernest Dudeney hinted about in 
connection with his map-fold problem has probably been redis- 
covered. Mark B. Wells of the Los Alamos Scientific Labora- 
tory used a computer to confirm that the 2 x 3  map has 10 
folds for each cell on top. The program also found that the 
order-3 square has 152 folds for each cell on top. In his 1971 
paper Lunnon proved that for any rectangular map every 
cyclic permutation of every possible fold is also a possible fold. 
Thus it is necessary to determine only the folds for one cell on 
top because the cyclic permutations of these folds give all the 
other folds. For example, since 123654789 is a possible fold, so 
also are 236547891, 365478912 and so on. It is a strange law 
because the folds for cyclic permutations differ wildly. It is not 
yet known whether the law applies to all polyomino-shaped 
maps or to maps with equilateral triangles as cells. 

In his 1971 paper Lunnon used an ingenious diagram based 
on two perpendicular slices through the center of the final 
packet. He was able to write a simple backtrack program for 
x-by-y maps, extend the problem to higher dimensions and dis- 
cover several remarkable theorems. For example, the edges of 
one cross section always diagram x linear maps of y cells each, 
and the edges of the other cross section diagram y linear maps 
of x cells each. 

The 2 x 3, 2 x 4, 2 x 5, 2 x 6, and 3 x 4 maps have respectively 
60, 320, 1980, 10512, and 15552 folds. The order-3 square 
has 1368 folds, the order-4 has 300608, the order-5 has 
186086600. In all cases the number of folds is the same for 
each cell on top, as required by cyclic law. The order-2 cube, 
folded through the fourth dimension, has 96 folds. The order-3 
cube has 85109616. Many other results are tabulated by Lun- 
non in his 1971 paper, but a nonrecursive formula for even 
planar maps remains elusive. 

The linear map-fold function, as Lunnon calls it, is the limit 
approached by the ratio between adjacent values of the num- 
ber of possible folds for a 1 x n strip. It is very close to 3.5. In 
his unpublished 1981 paper Lunnon narrows the upper and 
lower bounds to 3.3868 and 3.9821. 

In 1981 Harmony Books in the United States, and Pan 
Books in England brought out a large paperback book called 
Folding Frenzy. It contains six 3 x 3 squares, with red and green 
patterns on both sides, and five pages partially die-cut. Without 
removing any pages, there are nine puzzles to solve by folding 
the squares. The puzzles are credited to Jeremy Cox. 

In describing one of his map-fold puzzles (Modern  Puzzles, 
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No. 214) Dudeney mentioned a curious property of map folds 
that is not at all obvious until you think about it carefully. It 
applies not only to rectangular maps, but also to maps in the 
shape of any polyomino; that is, a shape formed by joining 
unit squares at their edges. Assume that any such map is red 
on one side, white on the other. No matter how it is folded into 
a 1 x 1 packet, the colors on the tops of each cell will alternate 
regardless of which side of the packet is up. If the cells of the 
map are colored like a checkerboard, with each cell the same 
color on both sides, the final packet (after any sort of folding) 
will have leaves that alternate colors. If the checkerboard col- 
oring is such that each cell is red on one side, white on the 
other, all cells in the folded packet will have their red sides fac- 
ing one way, their white sides facing the other way. 

It occurred to me in 1971 that the parity principles involved 
here could be the basis for a variety of magic tricks. One ap- 
peared under the title "Paradox Papers" in Karl Fulves' magic 
periodical, The Pallbearers Review. It goes like this: Fold a sheet 
of paper twice in each direction so that the creases make 16 
cells. It is a good plan to fold the paper each way along every 
crease to make refolding easier later on. 

Assume in your mind that the cells are checkerboard colored 
black and red, with red at the top left corner. Five red playing 
cards are taken from a deck and someone selects one of them. 
With a red pencil jot the names of the five cards in five cells, 
using abbreviations such as 4D and QH. Tell your audience 
that you are taking cells at random, but actually you must put 
the name of the chosen card on one of the "black" cells, and 
the other four names on "red" cells. 

Have another card chosen, this time from a set of five black 
cards. Turn the sheet over, side for side, and jot the names of 
the five black cards on cells, again apparently at random. Use 
a black pencil. Put the chosen card on a "red" cell, the others 
on "black" cells. 

Ask someone to fold the sheet any way he likes to make a 
1 x 1 packet. With a pair of shears, trim around the four sides 
of the packet. Deal the 16 pieces on the table. Five names will 
be seen, all the same color except for one-the chosen card of 
the other color. Turn over the 16 pieces. The same will be true 
of the other sides. 

Gene Nielsen, in the May 1972 issue of the same journal, 
suggested the following variant. Pencil X's and 0's on all the 
cells, alternating them checkerboard fashion. Turn over the 
sheet horizontally, and put exactly the same pattern on 
the other side. Spectators will not realize that each cell has an 
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X on one side, a 0 on the other. Someone folds the sheet ran- 
domly into a packet. Pretend you are using PK to influence the 
folding so that it will produce a startling result. Trim the sides 
of the packet and spread the pieces on the table. All X's face 
one way, all 0's face the other way. 
Swami, a magic periodical published in Calcutta by Sam 

Dalal, printed my "Paper Fold Prediction" in its July 1973 is- 
sue. Start by numbering the cells of a 3 x 3 sheet from 1 
through 9, taking the cells in the usual way from left to right 
and top down. Put the digits on one side of the paper only. 
After someone folds the sheet randomly, trim the sides of the 
packet and spread the pieces. Add all the numbers showing. 
Reverse the pieces and add the digits on the other sides. The 
two sums will be different. Explain that by randomly folding 
the sheet, the nine digits are randomly split into two sets. 
Clearly there is no way to know in advance what either sum 
will be when the pieces are spread. 

Repeat the same procedure, but this time use a 4 X 4 square 
with cells numbered 1 through 16. The sheet is randomly 
folded and the edges trimmed. Before spreading the pieces, 
hold them to your forehead and announce that the sum will be 
68. Put down the packet, either side uppermost, and spread 
the pieces. 'I'he numbers showing will total 68. Discard the 
pieces before anyone discovers that the sum on the reverse 
sides also is 68. 

The trick works because if the original square has an odd 
number of cells, the sums on the two sides will not be equal. 
(On the 3 x 3 they will be 20 and 25.) However, if the square 
has an even number of cells, the sum is a constant equal to 
(n2+ ~ ) / 4  where n is the highest number. You can now repeat 
the trick with a 5 x 5 square, but instead of predicting a sum, 
predict that the difference between the sums on the two sides of 
the pieces will be 13. 

The principle applies to cells numbered with other se- 
quences. For example, hand a wall calendar to someone and 
ask him to tear out the page for the month of his birth. He 
then cuts from the page any 4 x 4 square of numbers. The 
sheet is folded, the packet trimmed, the pieces spread, and the 
visible numbers added. The sum will be equal to four times 
the sum of the sheet's lowest and highest numbers. You can 
predict this as soon as you see the square that has been cut, or 
you can divine the number later by ESP. 

Some other suggestions. Allow a spectator to write any digit 
he likes in each cell of a sheet of any size, writing left to right 
and top down. As he writes, keep a running total in your head 
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by subtracting the second number from the first, adding the 
third, subtracting the fourth, and so on. The  running total is 
likely to fluctuate bet~veen plus and minus. The  number you 
end ~vith, whether plus or  minus, will be the difference be- 
tween the two sums after the sheet is folded, trimmed, and the 
pieces spread. 

Magic squares lend themselves to prediction tricks of a simi- 
lar nature. For example, suppose a 4 x 4 map bears the num- 
bers of a magic square. After folding, trim only on two oppo- 
site sides of the packet. This will produce four strips. Have 
someone select one of the four. The  other three are destroyed. 
You can predict the sum of the numbers on the selected strip 
because it will be the magic square's constant. Of course you do 
not tell the audience that the numbers form a magic square. 

Many of these tricks adapt easily to nonsquare sheets, such 
as a 3 x 4. The  underlying principles deserve further explora- 
tion by mathematical magic buffs. 
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A SET OF QUICKIES 

The following problems are of the "quickie" type in the sense 
that the): are quickly stated and, at least so I believed ~vhen I 
first gave them, not hard to solve if properly approached. 
Some are joke questions, and others contain booby traps to 
catch the unwary. 

Problem 1: You want to construct a rigid wire skeleton of a 
one-inch cube bj using 12 one-inch wire segments for the 
cube's 12 edges. These yo11 intend to solder together at the 
cube's eight corners. 

"Why not cut down the number of soldering points," a 
friend suggests, "b) using one or more longer rvires thdt you 
can bend at sharp right angles at karious corners?" 

Adopting your friend's suggestion, what is the smallest num- 
ber of corners where soldering  ill be necessary to make the 
cube's skeleton rigid? (Philip G. Smith, Jr.) 

Problem 2: An intelligent horse learns arithmetic, algebra, 
geometry and trigonometry but is unable to understand the 
Cartesian coordinates of analytic geometry. What proverb does 
this suggest? (Howard M'. EL es, in LMathentc~t2cul Czrr l~s ,  Vol. 1 .) 

Problem 3: Your king is on a corner cell of a chessboard and 
your opponent's knight is on the corner cell diagonall) oppo- 
site. Ko other pieces are on the board. The knight moves first. 
For how many mo\es can you avoid being checked? (From 
David L. Silverman's collection of game problems, Your  ~Mo-i~e.) 



A SET OF QUICKIES 

Problem 4: Nine heart cards from an ordi~lar) deck are ar- 
ranged [see Fzgure 351 to form a magic square so that each rolv, 
column and main diagonal has the largest possible constant 
sum, 27. (Jacks count 11, queens 12, kings 13.) Drop the re- 
quirement that each value must be different. Allowing dupli- 
cate values, what is the largest constant sum for an order-3 
magic square that can be formed with nine cards taken from a 
deck? (h2. G.) 

Figure 35 

A magic square with nine hearts 

Problem 5: Make a statenlent about n that is true for, and 
only true for, all values of n less than one million. (Leo Moser.) 

Problem 6: Why would a barber in Geneva rather cut the 
hair of two Frenchmen than of one German? 

Problem 7: With a black pencil draw a closed curve of any 
shape you please. With a red pencil draw d second cur\e of the 
same kind on top of the first one, never passing through a pre- 
\iously created intersection. Circle all points uhere one curve 
crosses the other [see Fzgure 361. Prove that the number of such 
points is even. (M. G.) 

Problem 8: Place a familiar mathematical syrnbol between 2 
and 3 to express a number greater than 2 and less than 3. 
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Figure 36 

A topological theorem 

Problem 9: A six-story house (not counting the basement) 
has stairs of the same length from floor to floor. How many 
times as high is a climb from the first to the sixth floor as a 
climb from the first to the third floor? 

Problem 10: Each of the two equal sides of an isosceles tri- 
angle is one unit long. Without using calculus, find the length 
of the third side that maximizes the triangle's area. 

Problem 11: What three positive integers have a sum equal 
to their product? 

Problem 12: A string, lying on the floor in the pattern shown 
in Figure 37, is too far away for you to see how it crosses itself 
at points A, B and C.  What is the probability that the string is 
knotted? (L. H. Longley-Cook, Fun with Brain Puzzlers.) 

Problem 13: If AB, BC, CD and DE are common English 
words, what familiar word is DCABE? (David L. Silverman, Word 
Ways, August 1969.) 

Problem 14: Time, March 7, 1938, reported that one Samuel 
Isaac Krieger claimed to have found a counterexample to Fer- 
mat's unproved last theorem. Krieger announced that it was 
1,324" + 731" = 1,961n, where n is a certain positive integer 
greater than 2, and which Krieger refused to disclose. A re- 
porter on The New York Times, said Time, easily proved that 
Krieger was mistaken. How? 
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Figure 37 

Is the string probably knotted? 

Problem 15: What familiar English word begins and ends 
with und? 

Problem 16: A man arrives at a random spot several miles 
from the Pentagon. He looks at the building through binocu- 
lars. What is the probability that he will see three of its sides? 
(F. T. Leahy, Jr.) 

Problem 17: Change 11030 to a person by adding two 
straight line segments. 

Problem 18: A boy and a girl are sitting on the front steps of 
their commune. 

"I'm a boy," said the one with black hair. 
"I'm a girl," said the one with red hair. 
If at least one of them is lying, who is which? (Adapted from 

a problem by Martin Hollis, in Tantalizers.) 

Problem 19: A "superqueen" is a chess queen that also moves 
like a knight. Place four superqueens on a five-by-five board so 
that no piece attacks another. If you solve this, try arranging 
10 superqueens on a 10-by-10 board so that no piece attacks 
another. Both solutions are unique if rotations and reflections 
are ignored. (Hilario Fernandez Long.) 

Problem 20: 

A B C D  
D C B A  . . . . 
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ABCD are four consecutive digits in increasing order. DCBA 
are the same four in decreasing order. The four dots represent 
the same four digits in an unknown order. If the sum is 
12,300, what number is represented by the four dots? (W. T. 
Williams and G. H. Savage, The Strand Problems Book.) 

Problem 21: A "primeval snake" is formed by writing the 
positive integers consecutively along a snaky path [see Figure 
381. If continued upward to infinity, every prime number will 
fall on the same diagonal line. Explain. (M. G.) 

Figure 38 

The primeval snake 

Problem 22: Find two positive integers, x and y, such that the 
product of their greatest common divisor and their lowest com- 
mon multiple is xy. 

Problem 23: "Feemster owns more than a thousand books," 
said Albert. 

"He does not," said George. "He owns fewer than that." 
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"Surely he owns at least one book," said Henrietta. 
If only one statement is true, how many books does Feemster 

own? 

Problem 24: In this country a date such as July 4, 1971, is 
often written 7/4/71, but in other countries the month is given 
second and the same date is written 4/7/71. If you do not know 
which system is being used, how many dates in a year are am- 
biguous in this two-slash notation? (David L. Silverman.) 

Problem 25: Why are manhole covers circular instead of 
square? 

Problem 26: How many different 10-digit numbers, such as 
7,829,034,651, can be written by using all 10 digits? Numbers 
starting with zero are excluded. 

Problem 27: Many years ago, on a sultry July night in 
Omaha, it was raining heavily at midnight. Is it possible that 72 
hours later the weather in Omaha was sunny? 

Problem 28: What well-known quotation is expressed by this 
statement in symbolic logic? 

Problem 29: Regular hexagons are inscribed in and circum- 
scribed outside a circle [see F i g w e  391. If the smaller hexagon 
has an area of three square units, what is the area of the larger 
hexagon? (Charles W. Trigg, Mathematical Quickies.) 

Figure 39 

Hexagon problem 
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Problem 30: "I was n years old in the year n2," said Smith in 
197 1. When was he born? 

Problem 31: If you think of any base greater than 2 for a 
number system, I can immediately write down the base without 
asking you a question. How can I do this? (Fred Schuh, The 
Master Book of Mathematical Recreation.) 

Problem 32: What was the name of the Secretary General of 
the United Nations 35 years ago? 

Problem 33: You have one red cube and a supply of white 
cubes all the same size as the red one. What is the largest num- 
ber of white cubes that can be placed so that they all abut the 
red cube, that is, a positive-area portion of a face of each white 
cube is pressed flat against a positive-area portion of a face of 
the red cube. Touching at corner points or along edges does 
not count. (M. G.) 

Problem 34: What four consecutive letters of the alphabet 
can be arranged to spell a familiar four-letter word? (Murray 
R. Pearce, Word Ways, February 197 1 .) 

Problem 35: Figure 40 is a diagram of a deep circular lake, 
300 yards in diameter, with a small island at the center. The 
two black spots are trees. A man who cannot swim has a rope 
a few yards longer than 300 yards. How does he use it as a 
means of getting to the island? 

Figure 40 

Lake, island, and trees 

Problem 36: A boy, a girl and a dog are at the same spot on 
a straight road. The boy and the girl walk forward-the boy at 
four miles per hour, the girl at three miles per hour. As they 
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proceed the dog trots back and forth between them at 10 miles 
per hour. Assume that each reversal of its direction is instan- 
taneous. An hour later, where is the dog and which way is it 
facing? (A. K. Austin.) 

ANSWERS 

1. The smallest number of soldering points remains eight no 
matter how wires are bent. Because an odd number of edges 
meet at each corner of a cube, every point requires soldering. 

2. Do not put Descartes before the horse. 
3. You can evade check forever. Head toward the board's 

center, always moving your king to a color opposite to that of 
the knight. Since a knight changes the color of its cell at every 
move, whenever the king is on a color different from the 
knight's, no knight move can check the king. Your only danger 
lies in being trapped in a corner where you can be forced to 
move diagonally and be checked by the knight's next move. 

4. The highest constant is 36 [see Figure 411. 
5. One answer: "The value of n is less than one million." 
6. He makes twice as much money. 

Figure 41 

Answer to the card problem 
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7. The black curve divides the plane into a number of re- 
gions. Trace a round trip along the red curve and it is obvious 
that every region you enter you must also leave or you will 
never get back to where you started. Since each entrance and 
exit is a pair of crossing points, the total number of such spots 
must be even. 

Figure 42 

Answer to the triangle problem 

8. 2.3. 
9. T w o  and a half times as high. 
10. With one unit side as base and the other unit side free to 

rotate [see Figure 421, the triangle's area is greatest when the al- 
titude is maximum. The third side will then be the square root 
of 2. 

1 1 . 1 + 2 + 3 = 1 ~ 2 ~ 3 .  
12. Only two of the eight possible con~binations of crossings 

create a knot, making the probability of a knot 218 = 114. 
13. House. 
14. The first number, 1,324, raised to any polver must end 

in 6 or 4. The other two numbers, 731 and 1,961, raised to any 
power must end in 1. Since no number ending in 6 or 4, added 
to a number ending in 1 ,  can produce a number ending in 1, 
the equation has no solution. 

15. Underground. 
16. One proof that the probability is 112: Suppose the man 

has a Doppelgunger directly opposite him on the other side of 
the Pentagon's center and the same distance away. If either 
man sees three sides, his double must see only two. Since there 
is an equal probability that either man is at either spot, the 
probability is 112 that he will see three sides. 

17. HOBO. 
18. The  four possible true-false con~binations for the two 

statements are TT, TF, FT and FF.  The first is eliminated be- 
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cause we were told that one statement is false. The second and 
third are eliminated because in each case, if' one person lied, 
the other cannot have spoken truly. Therefore both lied. The 
boy has red hair, the girl black hair. 

19. Figure 43 shows the two solutions. 

Figure 43 

Superqueen solutions 

20. If ABCD = 1,234, it is inlpossible to obtain a surn as large 
as 12,300. If ABCD = 3,456, it is impossible to obtain a sum as 
small as 12,300. Therefore ABCD = 2,345, from which it is easy 
to determine that the four dots stand for 4,523. 

21. It is well known that every prime greater than 3 is one 
more or one less than a multiple of 6 .  It is easy to see that 
every number of the form 6n  + 1 must fall on the same diag- 
onal, therefore the diagonal is certain to catch every prime. 

22. Any two positive integers. 
23. There are three permissible combinations of true and 

false for the three statements: TFF, FTF and ?FT. The only 
noncontradictory combination is FTF, which means that 
Feemster owns no books at all. 

24. Each month has 1 1  ambiguous dates (a date such as 
818171 is not ambiguous), making 132 in all. 

25. A square manhole cover, turned on edge, could slip 
through its hole and fall into the sewer. 

26. Ten digits can be permuted in 10! = 3,628,800 different 
ways. A 10-digit number cannot start with zero, so that we 
must subtract 3,628,800110 = 362,880 to obtain the answer: 
3,265,920. 

27. No, because after 72 hours it ~vould haye been midnight 
again. 

28. '"To be or not to be, that is the question." 
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Figure 44 

Calculating hexagon areas 

29. Instead of inscribing the hexagon as shown, turn it to the 
position shown in Figure 44. The grey lines divide the larger 
hexagon into 24 congruent triangles, 18 of which form the 
smaller hexagon. The ratio of areas is 18 : 24 = 3 : 4, and so if 
the smaller hexagon has an area of three, the larger one has 
an area of four. 

30. Smith was born in 1892. He was 44 in 44? = 1936. 
31. I write "10." This is any base written in that base system's 

notation. 
32. The same as it is now. 
33. Twenty white cubes can abut the grey cube. Arrange 

seven white cubes as shown in Figure 45. The grey cube goes 
on top as indicated. Seven more white cubes, in the same pat- 
tern and position as the first layer, form layer No. 3. In be- 
tween layer No. 1 and layer No. 3 six more white cubes can be 
placed: two on each of two opposite sides of the grey cube and 
single cubes on the remaining two sides. 

Figure 45 

Arrangement of the cubes 
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34. l 'he consecutive letters KSTU will spell "rust" or "ruts." 
35. He ties one end of the rope to the tree at the edge of the 

lake, walks around the lake holding the other end of the rope 
and ties that end to the same tree. The doubled rope is now 
firmly stretched between the two trees, making it easy for the 
man to pull himself through the water, by means of the rope, 
to the island. 

36. 'I'he dog can be at any point between the boy and the 
girl, facing either way. Proof: At the end of one hour, place 
the dog anywhere between the boy and the girl, facing in 
either direction. Time-reverse all motions and the three will re- 
turn at the same instant to the starting point. 

ADDENDUM 

The answers to the 36 "quickie" type problems brought more 
surprises by mail than any previous collectiorl of short prob- 
lems. Readers caught ambiguous phrasings, indulged in arnus- 
ing quibbles, found alternate and sometimes better answers, 
spotted some errors, and argued that the last problem is mean- 
ingless. I shall comment on this correspondence, taking the 
problems in numerical order, and add some further observa- 
tions of my own. 

(4) C. C. Cousins, Charles W. Bostick, and others rloticed 
that four of the court cards in the illustration for the answer to 
this problem are incorrectly drawn. The Jack of Diamonds and 
the Jack of Clubs should be one-eyed, and the King of Spades 
and King of Hearts should face the other way. Some readers 
thought the Queen of' Diamonds should face the other way. 
Hut Bostick took the trouble to examine 30 different decks 
made in the United States and found that in 18 of them the 
Queen of Diamonds faced right, and in 12 cases she faced left, 
so this card cannot be considered wrong. 

( 5 )  This theorem is related to a paradox of induction that 1 
came across in Karl Popper's Conjectures and Refutations where 
he attributes it to J. Agassi. "All events occur before the year 
3000." Since this statenlent has so far been confirmed by every 
event in the history of the universe, some theories of induction 
are forced to regard it as strongly confirmed, thus suggesting 
that it is highly probable the world will end before 3000. 

(8) Larry S. Liebovitch, instead of using a decimal point, 
solved this problem by using "ln," the symbol of "natural log 
of'." Thus 21n3 = 2.19-t. 
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(1 1) Problem E 2262, in The American ~Vlathematical Monthly 
(November 197 1, pages 102 1 - 1022), by G. J. Simmons and D. E. 
Rawlinson, generalized this question by asking for all other sets of 
k positive integers of which the same statement could be made. It 
turns out it can be made for all positive integers, but only a very 
small set have unique answers. When k = 2, the only answer is 
2 + 2 = 2 X 2. Our problem provided the only answer for k = 3. 
F o r k = 4 i t i s 2 + 4 + 1 + 1 = 2 X 4 X l X l .  

Readers of the periodical showed that for all values of k not 
exceeding 1,000, the only values with unique solutions are 2, 3, 
4, 6, 24, 114, 174, and 444. It is possible, the editor comments, 
that no other values have unique answers other than the eight 
listed. 

(12) James A. Ulrich was the first to argue that the proba- 
bility of the string's being knotted is 1 because there is no way 
a closed loop of string can exist without its ends being tied. 

(13) "House" remains the best answer, but less familiar 
words such as "ye" and "el" allow other solutions. George A. 
Miller sent a computer printout of 269 alphabetized answers, 
and all the words (from "abhor" to "wavey") are found in 
standard dictionaries. 

(14) Martin Kruskal provided a photocopy of the New York 
Times account (February 22, 1938) of Samuel Isaac Krieger's 
preposterous claim to have disproved Fermat's last theorem. 
He had saved the clipping since he had seen it as a small boy. 

(15) Solomon W. Golomb proposed "underfund" and "un- 
derwound" as alternate answers. 

(16) The probability of 112 that a distant viewer will see 
three sides of the Pentagon is correct only as a limit as the 
viewer's distance from the Pentagon building approaches infin- 
ity. My solution ignored the fact that there are five infinitely 
long strips, each crossing the building, inside of which both the 
viewer and his Doppelganger can see only two sides (and if very 
close to the Pentagon, only one side). This was pointed out by 
readers too numerous to list. 

The probability is zero, commented P. H. Lyons, "if the 
smog in Washington is anything like what it is here in 
Toronto." 

(17) Walter C. Eberlin and David Dunlap independently 
added two strokes to 11030 so that when it is viewed in a mir- 
ror it spells "peon," a word closely related to "hobo" in 
meaning. 

Richard Ellingson took advantage of the fact that I did not 
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specify that the lines of 11030 could not be rearranged. His so- 
lution was: 

(20) Hans Marbet, ot Swit~erland, pointed out that if'ARC1) 
are replaced by any four consecutive digits, and the four dots 
replaced by the same digits in the order CDAB, there is a valid 
solution for a number system with the base A + B + D. For ex- 
ample, in base 16: 

(21) A. P. Evans, William B. Friedman, and others wrote to 
say that you don't need to know that all primes greater than 3 
have the form of 6n plus or  minus 1. Only four parallel diag- 
onals can be drawn through the snake. Call them, top to bot- 
tom, A,B,C,L). All numbers on A are divisible by 3 and there- 
fore cannot be prime. All on B and D are divisible by 2, and 
hence cannot be prime. Therefore all the prinies niust fall on 
C. "I don't suppose it would be sporting," Evans adds, "to ask 
readers to come up  with a diagram on which a straight line car1 
be drawn that contacts all prinie nunibers and only prime 
numbers." 

(23) When George said that Feerrister "owns fewer than 
that," I meant him to mean fewer than the amount specified by 
Albert. If' "that" is taken to refer to "a thousand" instead of 
"more than a thousand," however (as many readers pointed 
out), Feemster could own exactly 1,000 books as well as none. 

(24) Howard J.  Frohlich passed along a friend's view that a 
date such as 8/8/71 could also be called "ambiguous" because 
you do not know whether the first 8 refers to the day or  the 
month. 

(25) Sirice 1 tailed to ask why manhole covers and  ho1e.s are 
round instead of square, scores of' readers sensibly replied that 
the covers are round to fit the holes. John W. Stack cited as his 
authority for this answer M. A. hihole's Compr~hmnsi-o~ R(>vic?w qf 
Equilateral Rrctangular B~arns and  Circular Receptacles, pages 3 1- 
4207, published in 1872 by the Sewer and Street Company, 
Inc. P. H. Lyons had another- answer: T o  reduce the decisions 
a sewer worker has to tnake in replacing the cover. 
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Some covers and holes are square, according to John Bush, 
who told of a recent explosion near his home in Brooklyn that 
blew off a Consolidated Edison square manhole cover. After 
the smoke cleared the cover was found at the bottom of the 
manhole. "Geometria invincibilis est," Bush concluded. 

(28) The Hamlet rebus, "To be or not to be," was invented 
by Golomb, a fact I did not know when I gave it. 

Jim Levy wrote to say that strictly speaking the symbol for 
"or" should be one that represented exclusive disjunction 
(either but not both) rather than inclusive disjunction (either 
or both), otherwise the statement implies that a person can be 
and not be simultaneously. 

(32) "Can you answer this?" Golomb wrote in 1971. "No, U 
Thant!" 

(33) The problem of the touching cubes was one I thought 
of several years ago and had answered with 20 cubes. I was 
staggered to receive two different solutions, each with 22 
cubes. Figure 46 shows how five white cubes can abut the top 
side of the grey cube. Since none extends beyond line AB, this 
formation can go on four sides of the grey cube [see Figure 473. 

Figure 46 

Five cubes abut one side of the shaded cube 

Two more cubes plug up the holes on face A and its opposite 
side. This solution was first received from Kenneth J. Fawcett, 
Jr., and later from Rudolf K. M. Bergan, Michael J. and Alice 
E. Fischer, Leigh Janes, K. B. Mallory, Allen J. Schwenk and 
George Starbuck. 
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Figure 47 

Arrangement for 22-cube solution 

The other solution, found independently by Bergan, Ru- 
dolph A. Krutar and Robert S. Holmes, is shown as drawn by 
Holmes [Figure 481. Eight cubes go on two opposite faces of the 
grey cube, and six abut the grey cube in the middle layer. Even 
the fact that as many as eight nonintersecting unit squares can 
overlap one unit square is, as far as I know, a previously un- 
known result. 

Stanley Ogilvy later pointed out that because the bottom cor- 
ners of the three lowest squares in Figure 46 are not on a hor- 
izontal line, there is just enough room below them to permit 
three more squares, joined face to face, to go beneath the other 
five squares. This provides another way for eight cubes to abut 
one face, and leads to another solution with 22 cubes. 

While I was still recovering from the 22-cube solution, 
Holmes (who is working for his doctorate in particle physics at 
the University of Rochester) delivered the knockout punch: a 
24-cube solution! Later Janes, in collaboration with Michael 
Bradley, reported a 23-cube solution. 

It is hard to believe, but as far as I know no one has seriously 
considered before the simple question of how many unit cubes 
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Figure 48 

Another 22-cube solution 

can share a positive surface area with a given unit cube. My in- 
nocent answer of 20 is indeed the best if one adds the condi- 
tion that the surface of the given unit cube (we shall distin- 
guish it from the others by making it grey and leaving 
the other cubes white) be completely covered by the touch- 
ing cubes. This proviso, however, was not part of the original 
problem. 

Holmes's technique begins with placing seven white cubes 
on one grey face [see Figure 491. Three pairs of cubes (think of 
each pair as being glued together) are placed around a face of 
the grey cube so that the midpoint of each pair touches a cor- 
ner of the grey face. A seventh white cube (P, drawn with bro- 
ken lines) overlaps the grey face as indicated, the two faces 
having an axis of symmetry shown as a diagonal line. By rotat- 
ing the white cubes clockwise, keeping corner A on the left 
edge of the fixed grey face and preserving the bilateral sym- 
metry, the pattern shown in Figure 50 is reached. If the bro- 
ken-line cube P is now moved up a trifle, the two meeting cor- 
ners of each pair of glued cubes can have a tiny positive-area 
overlap with a corner of the grey face. These three overlaps 
can be made arbitrarily small without allowing the white cubes 
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Figure 49 

Beginning arrangement for Holmes's 24-cube solution 

Figure 50 

Step 2 in the 24-cube arrangement 
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P and Q to project to the left beyond the vertical line CD. As a 
result angle e and distance d can also be made arbitrarily small. 

This pattern of seven cubes goes on the front and rear faces 
of the grey cube. Then one cube goes exactly on top of the 
grey cube, another goes flush against the grey cube's base and 
two more cubes abut the right face of the grey cube. Although 
18 cubes now abut five faces of the grey one, its sixth face (on 
the left) remains completely exposed. Figure 51 shows the grey 
cube with the exposed face toward you. On both its left and 
right sides are seven cubes; they are not shown in the drawing. 
(Also not shown are the single cubes above and below and the 
two cubes that abut the grey cube's back face.) Cube K is placed 
so that it overlaps the top of the grey face along a thin horizon- 
tal strip of height d that can be arbitrarily small. This allows 
five more cubes to abut the face, below cube K, as shown, 
bringing the total number of touching cubes to 24 (7 + 7 + 1 + 
1 + 2 + 1 + 5 ) .  

Figure 51 

Final step in 24-cube solution covers remaining exposed face 

A full proof of this construction would be long and tedious, 
but interested readers should have no difficulty convincing 
themselves that it can be done in spite of the extremely minute 
overlaps that are involved. The 24-cube solution is probably 
maximum, although proving it appears to be formidable. Until 
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that is done there will remain the gnawing suspicion that one 
or more additional white cubes can somehow be squeezed in. 

Theodore Katsanis posed an interesting related problem. 
What is the minimun~ number of unit cubes that can touch an- 
other unit cube in such a way that no other cube can be added? 
If "touch" is defined as in the original problem, the answer is 
obviously six. Suppose, however, we enlarge the meaning of 
touch to include contact along edges and corners. The maxi- 
mum problem is again trivial, answered by 26 cubes, but the 
minimum problem is not. The lowest Katsanis could get is 
nine, but perhaps some reader can do better. 

(34) Commented P. H. Lyons: "I hope some readers tried 
other languages, such as Hawaiian. If the letters of the alpha- 
bet need not be in alphabetical order, I have a fair-sized list of 
other answers in English." 

(35) William B. Friedman proposed placing the rope so that 
half of it is high above the water and the other half still higher. 
The man could then walk along the lower rope, holding on to 
the upper one, and not even get wet. If the rope is hemp, 
wrote P. H. Lyons, the man could smoke it and fly to the 
island. 

(36) This question (about the boy, the girl and the dog) 
stirred up a hornet's nest. Some mathematicians defended the 
answer as being valid, others insisted the problem has no an- 
swer because it is logically contradictory. There is no way the 
three can start moving, it was argued, because the instant they 
do the dog will no longer be between the boy and the girl. This 
plunges us into deep lvaters off the coast of Zeno. The issue is 
discussed in detail in Chapter 13. 



TICKTACKTOE GAMES 

"It's as simple as tit-tat-toe, three-in-a-row, 
and as easy as playing hooky. I should 
hope we can find a way that's a little more 
complicated than that, Huck Finn." 

-MARK TWAIN. 
The Adventurec of Hucklebeny Fznn 

Ticktacktoe (the spelling varies widely) is not nearly so simple 
as Tom Sawyer thought. When Charles Sanders Peirce wrote 
his Elements of iViathematics, a textbook that was not published 
until 1976, he included a 17-page analysis of only the side 
opening of this ancient game. It was one of Peirce's many an- 
ticipations of "modern math." Today's progressive teachers 
frequently use ticktaktoe to introduce their pupils to such con- 
cepts as the intersection of sets, rotational and mirror-reflec- 
tion symmetry, and higher Euclidean space. In this chapter we 
consider some unusual aspects of the game not covered in two 
earlier columns reprinted in The Scient$c American Book oJ 
iZlathematica1 Puzzles t5 Diz~ersions (Chapter 4 ) ,  and 12lathematical 
Carnival (Chapter 16). 

The traditional game, as most readers surely know, is a draw 
if both players do their best. From time to time pictures of a 
ticktacktoe game appear in advertisements and cartoons, and 
sometimes they provide pleasant little puzzles. For example, on 
May 13, 1956, in the New York Herald Tribune, there was an 
I B ~  advertisement with the unfinished game at the left in Fig- 
ure 52. Which player went first, assuming that the players were 
not stupid? It takes only a moment to realize that 0 could not 
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Figure 52 

Three easy ticktacktoe puzzles 

have gone first or  X would have played the top left corner on 
his second move. 'The other two patterns are almost as trivial. 
Does the center one, from a Little Lulu cartoon in The Saturday 
Evening Post (January 16, 1937), depict a possible game? At the 
right is a pattern from an advertisement by publisher Lyle 
Stuart in The New York Times (June 1, 1971). In which cell must 
the last move have beer* made? 

If the first player, say X, opens in the center cell, he can 
force a draw that always ends with the same basic pattern. This 
underlies several prediction tricks. For example, the magician 
draws the finish of a game, with all cells filled, on a square 
sheet of paper that he turns face down without letting anyone 
see it. H e  then plays a ticktacktoe game with someone, writing 
on another square sheet. After the game ends in a draw he 
turns over his "prediction." T h e  two patterns match cell for 
cell. 

'The technique is explained in Figure 5 3 .  X plays the center 
opening. If 0 marks any corner cell, X forces the draw shown 
at the left in the illustration (moves are numbered in order of 
play). It is only necessary for X to remember where to make his 
second move, since all moves are forced from then on; a simple 
rule for the second move is to consider the corner opposite 0 ' s  
first move and then play adjacent to it on the clockwise side. If 
0 responds to the opening with a side cell, X forces the draw 
shown at the right. In this situation only 0's moves are forced 

Figure 53 

A ticktacktoe prediction trick 
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and X must remember how to play his next four moves. T h e  
following simple rule was proposed by a magician who signed 
himself "Thorson" when he described this trick in the Septem- 
ber 1960 issue of M.U.M., official organ of the Society of 
American Magicians: X makes his second, third and fourth 
moves adjacent and clockwise to 0's previous moves, and his 
fifth move in the only remaining empty cell. 

Note that the two final results are identical. Of course, each 
game can be played in any of four different orientations. T h e  
magician, recalling which corner of his inverted prediction has 
the 0 surrounded by three X's, casually turns over the square 
sheet along the proper axis-orthogonal or  diagonal-so that 
his predicted pattern matches the orientation of the game just 
completed. 

T h e  trick can even be repeated. This time X substitutes 
counterclockwise fbr clockwise in the rules, having drawn a 
prediction that is a mirror image of the preceding one. T h e  
two predictions will not match in any orientation and few peo- 
ple will realize that they are mirror reflections of each other. 

Dozens of variations of planar ticktacktoe have been ana- 
lyzed. Standard games on squares of higher order than 3, 
when the goal on an order-n board is to get n in a row, are 
uninteresting because the second player can easily force a 
draw. My first column on ticktacktoe discussed games in which 
counters are moved over the board (one such version goes back 
to ancient Greece), and toetacktick, in which the first to get 
three in a row loses. 

A. K. Austin's "wild ticktacktoe," in which players may use 
either X o r  0 on every move, was shown to be a first-player win 
in my Sixth Book ofiMathematicn1 Games, Chapter 12,  Problem 3. 
What about "wild toetacktick," in which players can choose 
either mark on each move and the first three-in-a-row loses? In 
1964 Solomon W. Golomb and Robert Abbott independently 
found that the simple symmetry strategy by which the first 
player can force at least a draw in standard toetacktick also ap- 
plies to the wild version. A center opening is followed by play- 
ing directly opposite the other player's moves, allvays choosing 
X if he plaled 0 and 0 if he played X. The  question remains: 
Does the first player have a winning strategy in wild toetacktick? 
Abbott made an exhaustive tree diagram of all possible plays 
and proved that the second player too can force a draiv. Tame 
toetacktick also is a draw if both sides play rationally. 

An amusing variation appears in David L. Silverman's book 
of game puzzles, Your Move. The  rules are the same as in 
standard ticktacktoe except that one player tries to achieve a 
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draw and the other player wins if either of them gets three in 
a row. Can the reader show that no matter who plays first the 
player trying to force a row of three can always do so? Silver- 
man does not answer this in his book, but I shall give his solu- 
tion in the Answer Section. 

It is impossible to describe all the other planar variants that 
have been proposed, such as using numbers or letters as marks 
for the goal of forming a certain sum or spelling a certain 
word; playing on the vertexes of curious nine-point graphs (for 
a game on one such graph see my Mathematical Magic Show, 
Chapter 5, Problem 5); using counters with X on one side and 
0 on the other, with the counters turned over according to 
specified rules. Games have been marketed in which flip-overs 
are randomized by concealed magnets that may or may not re- 
verse a counter or by tossing beanbags at a board to cause cu- 
bical cells to alter their top symbols by rotating. 

If ticktacktoe is played on an unlimited checkerboard, it is a 
trivial win for the first player if the goal is to get four or any 
smaller number of one's marks in an orthogonal or diagonal 
row. When the goal is five in a row, this game is far from triv- 
ial. I t  is the ancient Oriental game known as go-moku (five 
stones) in Japan, where it is played on the intersections of a go 
board. (The game is sold in the U.S. by Parker Brothers under 
the name of Pegity.) Although it is widely believed that a first- 
player winning strategy exists, this has not yet, to my knowl- 
edge, been proved. 

There is no doubt about the first player's strong advantage 
in unrestricted go-moku. Indeed, it is so overwhelming that in 
Japan the standard practice is to weaken the first player by not 
allowing the following moves: 

(1) A move that simultaneously creates a "fork" of two or 
more intersecting rows of open threes. By "open three" is 
meant any pattern in which a play will form a row of four ad- 
jacent stones that is open at both ends. There is one exception. 
A fork move is permitted if it is the only way to block an op- 
ponent from completing a row of five. 

(2) A move that forms a row of more than five. In other 
words, the winning move must be exactlj five. 

In master play, both rules are usually applied only to the 
first player. Under these rules, the game is commonly called 
"renju" in Japan. 

It has been conjectured that if there is a winning strategy for 
the first player in unrestricted go-moku, on a large enough 
board, there will be a winning strategy on a sufficiently large 
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board even if the prohibitions are observed, but this is far from 
established. Even if a winning strategy is found for unre- 
stricted go-moku, difficult questions will remain. What is the 
smallest board on which the first player can win? What is the 
shortest way to win? The two questions may or may not be an- 
swered by the same line of play. 

It is not possible that the second player has a winning strat- 
egy in unrestricted go-moku or similar games in any dimen- 
sion. The bare bones of the simple reductio ad absurdurn proof, 
first formulated by John Nash for the game of hex, are as fol- 
lows. ,4ssume that a second-player winning strategy exists. If it 
does, the first player can make an irrelevant, random first 
play-a play that can only be an asset-and then, since he is 
now in effect the second player, win by appropriating the sec- 
ond player's strategy. Because this contradicts the assumption, 
it follows that no second-player winning strategy exists. The 
first player can either win or at least force a draw if the game 
allows draws. 

Go-moku is a stimulating game. To  catch its special flavor 
the reader is urged to study a position from Silverman's book 
[see Figure 541 and determine how 0 can play and win in five 
moves. Note that X has an open-end diagonal of three, which 
he threatens to lengthen to an open-end row of four. 

Figure 54 

Go-moku problem: 0 to play and win 

IYhen ticktacktoe is extended to three dimensions, the first 
player wins easily on an order-3 cube by first taking the center 
cell. As Silverman points out, if the first player fails to open 
with the center cell, the second player can win by taking it; if 
the center is permanently prohibited to both players, the first 
player has an easy win. Three-dimensional toetacktick (the first 
row of three loses) is also a win for the first player. He plays 
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the same strategy used for forcing a draw in planar toetacktick: 
He first takes the center and then always plays symmetrically 
opposite his opponent. Since drawn positions are impossible on 
the order-3 cube, this technique forces the second player even- 
tually to form a row of three. Daniel I. A. Cohen, in a paper 
listed in the bibliography, proves that, as in the case of planar 
toetacktick, this is a unique winning strategy. The first player 
loses if he does not open by taking the central cell, and also 
loses if, after making this first move, he does not follow anti- 
podal play. 

Draw games are possible on the order-4 cube, but whether 
the first player can force a win is not, as far as I know, posi- 
tively established. (There cannot, of course, be a second-player 
win because of Nash's proof.) As with go-moku, the first player 
has a strong advantage and a winning strategy is believed to 
exist. Many computer programs for this game have been writ- 
ten, but the complexity of play is so enormous that I do not 
think a first-player win has yet been rigorously demonstrated. 
About a dozen readers have sent me what they consider win- 
ning strategies, but detailed formal proofs are still unverified. 
Most of the strategies involve first taking four of the eight cen- 
tral cells and then proceeding to a forced win. Virtually noth- 
ing is known about three-dimensional games where counters 
are allowed to move from cell to cell. 

Another unexplored type of 3-space game is one in which 
two players alternately draw from a limited supply of unit 
cubes of two or more colors to build a larger cube with some 
winning objective in view, for example, using cubes of n colors 
and trying to get a row, on an order-n cube, in which all n 
colors appear. For such games gravity imposes restraints, since 
cubes cannot be suspended in midair. 

Because drawn games of standard ticktacktoe are possible in 
2-space on an order-3 board, and in 3-space on an order-4 
board, it was once conjectured that in a space of n dimensions 
the smallest board allowing a draw was one with n + l cells on 
a side. It turned out, however, that although in n-space a board 
of order n +  1 or higher always allows a draw, it is sometimes 
possible for an n-space board of fewer than n + 1 cells on a side 
to allow a draw. This was first established about 1960 by Alfred 
Mi. Hales, when he constructed a draw on the order-4 hyper- 
cube, or fourth-dimension cube. 

Several readers have sent informal but probably valid proofs 
that the first player can always win on the order-4 hypercube. 
Whether or not he can force a win on the order-5 hypercube 
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is yet another of the many unanswered questions about exten- 
sions and variants of what most people, like Tom Sawyer, re- 
gard as a "simple" game. 

ANSWERS 

The second game in Figure 52 is not possible. Zero must have 
played first and last, but X had a win before the final move, so 
the last move would not have been made. In the third game, X 
could have completed a win if his first two moves had been on 
either side, therefore the first two moves must have been di- 
agonally opposite, and his final move in the top right corner. 

These two problen~s are so easily solved that I will add here 
a difficult one that involves what chess players call retrograde 
analysis. Figure 35 shows the pattern after two perfect players 
have agreed to a draw. Your task is to determine the first and 
last moves. If you can't solve it ,  you will find the solution in the 
Journal of Recreational Mathematzcs, Vol. 1 1, No. 1, 1978, page 
70. The problem had been earlier posed in the same journal 
by Les Marvin. 

Figure 55 

What were the first and last moves? 

In Silverman's first problem, X can always win, regardless of 
whether he plays first or second. Assume that the cells are 
numbered (left to right, top to bottom) from 1 to 9. Here is 
Silverman's proof: 

If X begins, he takes 1. 0 must take 5, otherwise X can get 
three of his marks in a row by standard ticktacktoe strategy. X2 
forces 03,  then X4 forces 07,  which completes three 0's in a 
line, giving X the win. 

If 0 starts the game, he has a choice of corner, side or center 
opening. If he opens at the center ( 5 ) ,  X responds with 1. If 
the move is 02,  X7 forces 04,  then X9 forces 08,  which loses. 
If 0 's  second move is 3, X4 forces 07,  which also loses. If 0's 
second move is 6, X7 forces 0 to lose at 4. If 0's second move 
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is 9, X2 forces 03,  then X4 forces 0 to lose at 7. All other lines 
of play are symmetrically equivalent. 

If 0 opens at the side, say at 4, X5 will win. As before, there 
are four basically different continuing lines of play: (1) 0 1, X3, 
0 7  (loses), (2) 02,  X3, 07,  X9, 0 1  (loses), (3) 03,  X9, 01,  X8, 0 2  
(loses), (4) 06,  X3, 07,  X9, 0 1  (loses). 

A corner opening by 0, say at 1, is met with X5, which leads 
again to four basically different continuations: (1) 02,  X7, 0 3  
(loses), (2) 03,  X 8 ,  0 2  (loses), (3) 06,  X8, 02,  X7, 0 3  (loses), (4) 
09 ,  X2, 08,  X3, 0 7  (loses). 

When this game is played on a four-by-four field (X winning 
if there are four of either mark in a row7, 0 winning if the final 
position is drawn), the play is so enormously more complex, 
Silverman informs me, that it has not yet been fully analyzed. 

0 wins Silverman's go-moku problem by playing 0 1  [see Fig- 
ure 561. X2 is forced, 0 3  forces X4, 0 5  forces X6, then 0 7  cre- 
ates an open-end diagonal row of four O's, which X cannot 
block. If X plays at either end, 0 wins by playing at the opposite 
end. As Silverman points out in his book, 0 wins only by coun- 
terattacking. He loses quickly if he plays defensively by trying 
to block X's open-end diagonal row of three. 

Figure 56 

Solution to the go-moku problem 

Note that when X plays on the cell marked 2 it creates a fork. 
This is permitted, however, because the move is forced. It is 
the only way to prevent 0 from winning on the next move. 
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ADDENDUM 

John Selfridge reports that a solution has been found for his "4 
x infinity" ticktacktoe. This is played on a strip that is four cells 
high and infinitelv wide, the winner being the first to get four of 
his marks in an orthogonal or diagonal row. Carlyle 
Lustenberger, in his master's thesis in conlputer science at 
Pennsylvania State University, developed a computer program 
with a winning strategy for the first player on a four-by-30 board. 
The actual lower bound for the width is a few cells shorter, but I 
have not obtained the details. 

The three-by-infinity board is a trivial win for the first player 
on his third move; indeed, the same win can be achieved if only 
one cell is added to the side 01- corner cell of the traditional 
order-3 ticktacktoe field. The five-bv-infinitv board remains 
unsolved. If a win for the first player could be found on this 
board, it would, of course, solve the go-moku game when it is 
played on an arbitrarily large square, with no restrictive rules. 

Oren Patashnik, of Bell Laboratories, was the first to write a 
computer program that establishes a first-player win in 4 x 4 x 4 
ticktacktoe. I had the honor of announcing the verification of his 
1977 program in my SczentzJic Anzerican column of January 1979. 
It required 1,500 hours of computing time, and has been likened 
to the computer proof of the four-color map theorem in its 
length and complexity. I will say no more about it here because 
Patashnik has so thoroughly and amusingly reported on it in his 
paper listed in the bibliography. The program's set of 2,929 
strategic moves for winning is probably far from minimal, but I 
know of no program that has reduced them. 

In 1973 the Netherlands issued a 30+ 10 cents stamp depict- 
ing a drawn pattern in a ticktacktoe game. 

Shein Tl'ang, a computer scientist at the University of Guelph, 
Guelph, Ontario, Canada, has been publishing a monthly 
Gomoku Newsletter since 1979, and the university has, since 1975, 
been sponsoring a North American computer go-moku tourna- 
ment. The programs have been steadily improving. 

A popular variation of go-moku is on sale in the United States 
under the trade name Pente. Invented by Gasy Gabel, it com- 
bines go-moku with elements of go. (See i\Tewsweek, May 10, 
1982, page 78.) 

Several readers wrote to emphasize that Kash's proof applies 
only to unrestricted go-moku. The proof rests on the irrele- 
vance of an extra stone, but in restricted go-moku the rules 
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permit situations in which an extra stone can damage the 
player who owns it. 

Henry Pollak and Claude Shannon apparently were the first 
to prove that the second player can force a draw in unre- 
stricted n-in-a-row ticktacktoe on a large enough board when 
n = 9 or more. Their 1955 proof has not been published. It is 
given by T. G. L. Zetters in his answer to a problem, American 
Matlzematzcal i~lont/zly, Vol. 87, August-September 1980, pages 
575-576. Zetters goes on to show how the proof can be ex- 
tended to n = 8 or more. So far as I know, the question is still 
open for n = 3, 6 and 7. 

W. F. Lunnon, writing in 1971 from University College, in 
Cardiff, gave a simple pairing strategy of unknown origin that 
guarantees a draw for the second player in 5 x 5  ticktacktoe. 
Number the cells as shown in Figure 57. Whenever the first 
player occupies a numbered cell, the second player takes the 
other cell of the same number. Since every line of' five has a 
pair of like-numbered cells, the first player cannot occupy all 
five. If the first player takes the unlabeled center, the second 
player may take any cell, and if the cell he is required to take 
by the pairing strategy is occupied, he may play anywhere. 

Lunnon also reported that he and Neil Sloane, of Bell Labs, 
had together found a remarkable second-player drawing strat- 
egy, based on cell pairing, for the 6 x 6 board. So t  only does it 

Figure 57 

W. F. Lunnon's pairing strategy 
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block ivins on any row, colu~mn or main diagonal, it also blocks 
a win on any broken diagonal! The  cells are numbered as 
sho~vn in Figure 58.  As before, the strategy is to take the cell 
with the same number as the cell just taken. 

Figure 58 

Lunnon-Sloane second-player drawing strategy 

There is more. The  Lunnon-Sloane numbering leads to an 
elegant proof that 9-in-a-row unrestricted go-moku is a draw. 
Cover the infinite board with copies of the 6 x 6  matrix. The  
second player can force a draw by altvays taking the nearest 
cell with the same number as that of the previous play. It is 
easy to see that the first player can obtain no line longer than 8. 

For n x 72 boards, TI equal to 6 or higher, it is trivially easy to 
put a unique pair of numbers in each row of ~z cells and so pro- 
vide a drawing strategy for the second player. For n equal to 3 
or 4, no such labeling is possible, and the draw has to be estab- 
lished in uglier ways. 
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PLAITING POLYHEDRONS 

In Plato's dialogue Phaedo, Socrates tells a story in \\.hich the 
earth, viewed from outer space, appears "many-colored like 
the balls that are made of 12 pieces of leather." Historians take 
this to mean that the Greeks made balls by stitching together 
12 leather pentagons stained with different colors and stuffing 
the interior to make the surface spherical. Rigid pentagons that 
are regular and identical urould of course make a regular do- 
decahedron, one of the five Platonic solids. 

There are all kinds of methods for constructing the five reg- 
ular convex solids out of flat pieces of heavy paper or  card- 
board, and many problems have been proposed about \\rays of 
coloring their faces. T h e  idea of weaving or  braiding a regular 
solid from strips of paper seems to have been explored first by 
an English physician, John Gorham, who published in London 
in 1888 a now rare book about it: A System for the Construction of 
Plaited Ctystal Models on the Tjpe of the Ordinaq Plait. His tech- 
niques were improved by A. R. Pargeter and by James Brunton 
in papers listed in the Bibliography. This year Jean J. Peder- 
sen, a mathematics teacher at the University of Santa Clara, hit 
on an ingenious variation of' the plaiting technique. It applies 
not only to the Platonic solids but also to many other polyhe- 
drons, providing models of stunning multicolored symmetry 
and suggesting fascinating combinatorial theorems and puzzles. 

Unlike Mrs. Pedersen's predecessors, who used crooked and 
asymmetrica! basic patterns, she weaves each Platonic solid 
from 12 congruent straight strips. Assume that each strip is a 
different color and that each model has the following properties: 

(1) Every edge is crossed at least once by a strip; that is, no 
edge is an open slot. 



PLAITING POLYHEDRONS 107 

(2) Every color has an equal area exposed on the model's 
surface. (An equal number of faces will be the same color on 
all Platonic solids except the dodecahedron, which has bico- 
lored faces when braided by this technique.) 

Mrs. Pedersen has proved that if the above two properties 
are met, the number of necessary and sufficient bands for the 
tetrahedron, the cube, the octahedron, the icosahedron and 
the dodecahedron are respectively two, three, four, five and 
six. 

Let us see how this works for the tetrahedron. Although the 
model can be plaited with one straight band, it will have some 
open edges. Therefore at least two bands are necessary. As 
shown in Figure 59, valley-crease each strip along the broken 
lines. (Scoring the lines with a hard pencil will facilitate clean 
folding.) Overlap two triangles as shown and fold the under- 
neath strip into a tetrahedron. Wrap the other strip around 
two faces of this tetrahedron, then tuck the end triangle into 
the open slot. If you use construction paper of good quality 
and strips of different colors, the result is a rigid tetrahedron 
with two adjacent faces (of course, any two of its faces must be 
adjacent) of one color and two of the other color. 

Figure 59 

Plaiting a tetrahedron 

To construct the cube three strips, each a different color, will 
do the trick [see Figure 601. Valley-fold each along the broken 
lines. The reader can have the pleasure of weaving the three 
strips-it is quite easy-into a rigid cube. He will find that 
there are two essentially different ways to make a model with 
two faces of each color. 

One method makes a cube that has adjacent pairs of faces 
with like colors. If you think of each band as being glued to- 
gether where its end squares overlap, this model consists of 
three closed bands, each pair of which is linked. Imagine that 
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Figure 60 

Plaited three-strip cube 

the surface is flexible and that the cube is stuffed, like the 
leather dodecahedron mentioned by Plato, until it is spherical. 
The coloring, as Piet Hein has suggested, is a striking three- 
dimensional analogue of the familiar yin-yang symbol of the 
Orient. Like the yin-yang, it is asymmetrical (has either left or 
right handedness). Piet Hein proposes calling the three regions 
yin, yang and lee, the last two terms honoring C. N. Yang and 
T. D. Lee, the two Chinese-American physicists who shared a 
Nobel prize in 1957 for their role in overthrowing the sym- 
metry law of parity. 

The other way of plaiting the three strips produces a cube 
with opposite faces of like color. Again regard the three bands 
as being joined at their ends. Inspection reveals an unexpected 
structure. As Mrs. Pedersen has noted, the bands are topolog- 
ically equivalent to the Borromean rings that are used as a 
trademark for Ballantine beer. Although the three bands can- 
not be separated, no pair is interlocked. If any one band is re- 
moved, the other two will slide apart. 

The octahedron requires four valley-creased strips, each like 
the strip shown in Figure 61. These cannot be woven to make 
a model with opposite faces of the same color. (Can you prove 
it?) A model is possible, however, with like colors on pairs of 
adjacent faces, the four colors meeting at one corner and the 
same four, in reverse cyclic order, meeting at the diametrically 
opposite corner. A good procedure is to start with the two 
pairs of overlapping strips held together by a paper clip as 
shown in the illustration. Fold one pair into an octahedron, 
then weave the other pair around it, with both of the free ends 
tucked in slots, to achieve the desired color pattern. After the 
model is completed you can reach into the interior and remove 
the paper clips. 

The octahedron is more difficult to make than the cube, but 
if the reader will set himself the task, he will find, as with all 
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Figure 61 

How strips are clipped together to weave an octahedron 

such models, that there is an aesthetic delight in feeling the 
solid acquire permanent rigidity when the final tuck is made. 
Mrs. Pedersen has found that handsome models of this solid 
and the other four solids can be made by using colored cloth 
tape glued to construction paper for rigidity. 

The icosahedron is woven with five valley-creased strips [see 
Figure 621. A charming model can be constructed with each 
color on two pairs of adjacent faces, the pairs diametrically op- 
posite each other. All five colors go in one direction around 
one corner and in the opposite direction, in the same order, 
around the diametrically opposite corner. Each band circles an 
"equator" of the icosahedron, .its two end triangles closing the 
band by overlapping. In making the model, when the five over- 
lapping pairs of ends surround a corner, all except the last pair 
can be pasted together or held with paper clips, which are re- 

Figure 62 

The five-banded icosahedron 
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moved later. The last overlapping end then slides into the 
proper slot. An expert will soon dispense with the use of paste 
or paper clips for this model. 

Only the dodecahedron cannot be plaited with straight-sided 
strips so that each face is a solid color. Mrs. Pedersen discov- 
ered, however, that by using six strips the dodecahedron 
shown in Figure 63 can be woven. The obtuse angles made by 
the valley folds [broken lines] with the strip's sides are each 108 
degrees, the interior angle of the regular pentagon. The bro- 
ken lines must equal the shorter line segments on the sides, 
making each section of the strip a truncated pentagon. 

Figure 63 

The six-banded dodecahedron 

T o  construct the dodecahedron, the most difficult of the Pla- 
tonic solids, Mrs. Pedersen suggests starting with three pairs of 
strips, each overlapped and glued together to make the curved, 
bracelet-like structure shown in Figure 64. Using two bracelets, 
overlap and glue together the pairs of ends to make a pair of 
braided closed bands. Slip one bracelet inside the other so that 
each circles a different equator of the dodecahedron. The 
third bracelet then is woven around a third equator, and its 
four free ends are tucked into slots on opposite sides of a pair 
of adjacent pentagonal faces. The technique is similar to the 
one used for making the cube with opposite faces of like color. 
Once the construction is mastered it is possible to use only pa- 
per clips to keep each bracelet together. The paper clips can be 
removed after the model is completed. 

Note that every face of the finished dodecahedron has two 
colors. The same two colors are on the diametrically opposite 
face but are reversed in their arrangement. All diametrically 
opposite corners are mirror images in the order of the three or 
four colors that surround them. The model in the illustration, 
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Figure 64 

How pairs of strips are clipped together to weave 
a dodecahedron 

on which like colors are indicated by the same shade, appears 
asymmetrical, but when the actual model is turned in one's 
hands, its curious symmetry becomes apparent. The eight cor- 
ners that are surrounded by exactly three colors mark the ver- 
texes of an inscribed cube. The four corners surrounded by 
three triangles mark the vertexes of an inscribed tetrahedron. 

It is difficult to explain the exact procedure for plaiting the 
last two models, so that I shall leave their construction as ad- 
ditional exercises for the patient and intrigued reader. It may 
help to construct each solid first by conventional means, then 
weave the required strips around it. I can only promise to re- 
port later if and where Mrs. Pedersen publishes instructions 
for the Platonic solids as well as for more elaborate and less 
regular polyhedrons that can also be formed by weaving con- 
gruent strips. 

Mrs. Pedersen has devised a technique, involving the use of 
gummed tape or  adding-machine tape, for folding the strips 
for all five models without drawing any fold lines. This tech- 
nique, along with instructions for making what she calls a 
golden dodecahedron (each face has a pentagonal hole sur- 
rounded by five triangles of different colors), are given in her 
Fibonacci Quarterly article listed in the bibliography. 

For years I was puzzled by the fact that Plato, repeating the 
earlier views of Pythagoras and his followers, identified the 
universe with the dodecahedron rather than the icosahedron, 
which I took for granted to be more nearly spherical. I found 
the answer recently in Volume I of Howard Eves's entertaining 
work I n  Mathematical Circles. Contrary to almost everyone's in- 
tuition, it is the dodecahedron that is most like a sphere. If the 
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two solids are inscribed in the same unit sphere (a sphere with 
a radius of l) ,  the 20-faced icosahedron has a volume of 2.336 + , 
whereas the 12-faced dodecahedron has a larger volume of 
2.785 +. Their surface areas are in the same ratio as their vol- 
umes: 9.574+ for the icosahedron, 10.514+ for the dodeca- 
hedron. The ancient Greeks had good reason to use the do- 
decahedron for their leather spheres. 

If a cube and an octahedron are inscribed in a unit sphere, 
the cube has the greater volume and greater surface, and again 
their surface areas are in the same ratio as their volumes. The 
octahedron's volume and area are respectively 1.333+ and 
6.928 + ; the cube's volume and area, 1.539+ and 8. An inter- 
esting mechanical question, difficult to formulate precisely and 
perhaps even more difficult to answer, is which solid of each 
pair--cube or octahedron, icosahedron or dodecahedron- 
rolls more easily when used as a gaming device? 

If a cube and an octahedron are inscribed in the same 
sphere, which solid surrounds the larger inscribed sphere? 
The surprising answer, as Eves explains, is that the two inner 
spheres are the same. This is also true of the inscribed spheres 
of a dodecahedron and an icosahedron that are inscribed in 
the same outer sphere. 

Here are three polyhedron problems: 
(1) What is the simplest nonconzlex polyhedron that, like the 

cube, has a surface of n faces, each a unit square? 
(2) If each face of a regular tetrahedron is a different color, 

how many different tetrahedrons can you make by using the 
same four colors? Rotations, of course, are not counted as dif- 
ferent. Can you devise a simple formula that applies to all the 
Platonic solids, giving the number of different colorings possi- 
ble when each of the n faces has a different color and the same 
n colors are used? 

(3) If three colors are applied to a cube, each color going on 
two faces as in Mrs. Pedersen's plaited model, how many dif- 
ferent colorings are possible? Again, as customary, rotations 
are not considered different. How many such cubes can be 
woven with Mrs. Pedersen's three bands, assuming there are 
no loose end squares that are not tucked in? 

ANSWERS 

1. The simplest nonconvex polyhedron with unit-square 
faces is the 30-face solid formed by attaching a unit cube to 
each face of a unit cube. Mrs. Pedersen found a way to braid 
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this solid with three strips. An infinite family of nonconvex poly- 
hedrons with congruent square faces is obtained by joining 
any number of these crosses to form a chain. The solid is a space 
tiler. 
2. A regular tetrahedron can be colored with four colors 

only in two ways, each a mirror reflection of the other. The 
simple formula that applies to all five Platonic solids is to divide 
the factorial of the number of faces by twice the number of 
edges. For example, the cube can be colored with six colors in 
6!/24 = 30 ways, the octahedron with eight colors in 8!124 = 

168 ways, and so on. 
3. A cube can be colored with three colors, each color going 

on two faces, in six ways: One with all pairs of opposite faces 
alike, two ways that are mirror images with all like colors on 
adjacent pairs of faces, and three ways with just one pair of op- 
posite faces alike. Only the first three ways can be plaited with 
three five-square straight strips in the manner explained. 

ADDENDUM 

I was all wet in my argument that the dodecahedron is more 
spherelike than the icosahedron. Physicist F. C. Frank was the 
first to inform me that although the dodecahedron is closer in 
both volume and surface area to a sphere in which both are 
inscribed, the icosahedron is closer in both volume and area to 
a sphere that the two Platonic solids circumscribe. If you stuff 
each solid until it expands to make a sphere, you need less 
stuffing (in proportion to volume) to make the dodecahedron 
spherical. But if you carve away portions of each solid until 
you have a sphere, you carve away a smaller proportion of the 
volume of the icosahedron. Thus with respect to the insphere 
and circumsphere there is a standoff concerning which is the 
most spherical. 

However, as Frank, Gary Goodman, Tom McCormick, Rob- 
ert Dewar, and others pointed out, the sphere is well known 
for its property of having the greatest volume per surface area 
of any other solid. If this property is taken as the essence of 
sphericity, the icosahedron comes out ahead. There is nothing 
deceptive about our intuition when we observe the five Platonic 
solids and conclude that the tetrahedron looks the least like a 
sphere and the icosahedron looks the most like a sphere. 

A definitive paper on the question, "Platonic Sphericity," by 
Norman T. Gridgeman, of Ottawa, was published in the Jour- 
nal  of Recreational Mathematics in 1973. Gridgeman upholds the 
commonsense view that the icosahedron is the most spherical, 
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then goes on to discuss less obvious ways to measure "spheric- 
ity." He thinks Plato could have been influenced by knowing 
that the dodecahedron is closer to the circumsphere, and that 
this may have been augmented by the fact that the dodecahe- 
dron's pentagonal faces are closer to circles than the triangular 
faces of the icosahedron. Perhaps Plato was also influenced, 
Gridgeman speculates, by the correspondence between the do- 
decahedron's 12 sides and the 12 signs of the zodiac. 
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THE GAME OF HALMA 

"An admirable place for  playing halma," said 
Chel i fer ,  as they  entered the  Tea t ro  
Metastasio. 

--ALDOUS HUXLEY, Those Barren Leaves 

Two new families of puzzles based on a long-neglected 
counter-moving game have recently come to light. Each family 
offers a series of unsolved problems and the opportunity to de- 
vise ingenious proofs that some solutions are impossible. The 
puzzles stem from Dialogue on Puzzles, a splendid collection of 
unusual problems by Kobon Fujimura and Michio Matsuda 
published in 1971 in Japan. (Unfortunately the book is not 
available in English.) Fujimura has translated the puzzle books 
of Sam Loyd and Henry Ernest Dudeney into Japanese and is 
the author of several delightful books that contain his 0w.n 
original puzzles. The two new counter-moving puzzles are de- 
rived from one problem created by Matsuda. 

Matsuda's problem exploits the simple rules of a popular 
late-19th-century British proprietary game called Halma, after 
the Greek word for leap. The game was invented in 1883 by 
George Howard Monks, a 30-year-old Harvard Medical School 
graduate who was then pursuing advanced studies in London. 
He later became a prominent Boston surgeon. Halma is still 
played in Britain but, although it was issued here in 1938 by 
Parker Brothers, it has never caught on in this country. 

The traditional Halma board has 16 cells on a side [see Figure 
651. If two players are competing, each begins by placing his 
19 counters in a section called a "yard." There are two yards, 
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Figure 65 

The Halma board 

one at the top left corner of the board and the other at the bot- 
tom right corner. The counters are identical except that the 
two sets are of contrasting colors. The goal is to occupy the op- 
posing player's yard, and the first player to move all his 
counters into the opposite yard is the winner. Two kinds of 
moves are allowed: 

( 1 )  A "step." This is a move, like the move of a chess king, to 
any one of the eight adjoining cells. 

(2) A "hop." This is a leap over another counter, as in check- 
ers, except that the leap may be made in any direction, orthog- 
onal or diagonal. The jumped piece is not removed. 

A connected chain of hops counts as a single move. It is not 
compulsory to make a hop. A player may continue a chain of 
jumps as long as possible or stop wherever he pleases. The 
color of a jumped piece does not matter; a chain of jumps may 
be a mixture of friendly and enemy counters. Steps and hops 
may not, however, be combined in the same move. Players al- 
ternate turns, moving one counter at a time. 

Halma can also be played by four people, with each player 
having 13 counters. The yards are at the four corners of the 
board behind the boundaries indicated by the broken lines in 
the illustration. The four-player game can be each man for 
himself, with each seeking to reach the diagonally opposite 
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yard, or pairs of opposite (or adjacent) players can be partners 
who help each other, and the first pair to yard all 26 of their 
counters is the winner. Halma strategy is so complex, however, 
that the game is best when only two people play. 

Of many later games based on Halma the two most popular 
in the United States have been Camelot and Chinese checkers, 
both of which appeared on the market in the 1930's. Camelot 
was a revival (with minor changes) by Parker Brothers of a late- 
19th-century Parker game called Chivalry. Chinese checkers, 
which has no connection whatever with China, is played on a 
hexagonal-cell board that is usually shaped like a six-pointed 
star. The hexagonal tessellation allows steps and hops in only 
six directions. A French version of Halma, known as Grasshop- 
per, can be played on a standard checkerboard [see Figure 661. 
It is an excellent game. 

Figure 66 

Grasshopper 

To prevent a stubborn player in games of the Halma type 
from forcing a draw by keeping a man permanently in his own 
yard it is wise to add extra rules. Sidney Sackson, the New 
York City game inventor and game collector, suggests the 
following. If a counter can leave its own yard by jumping an 
enemy counter, or by a chain of jumps that starts with a leap 
over an enemy counter, it must do so, although once out of the 
yard it may stop jumping at any desired spot. After a counter 
has left its yard it may not rest in the yard again, although it 
may hop across it. 

The Halma problem devised by Matsuda for the Japanese 
chessboard, which has nine cells on a side, begins with nine 
counters in a square array at the board's lower left corner. 
How few moves of the Halma type, Matsuda asked himself, are 
needed to transfer the nine cout~ers to the same formation at 
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the upper right corner? He found a solution in 17 moves, but 
this was reduced to 16 moves [see Fzgure 671 by H. Ajisawa and 
T. Maruyama. The 16-move solution is believed to be minimum. 

Figure 67 

Solution to Matsuda's problem on the Japanese chessboard 

When I saw this elegant solution, I at once began tackling 
the same problem on the Western chessboard with eight cells 
on a side and on smaller square boards with seven and six cells 
on a side. In each case, a square of 3 x 3 counters is diagonally 
shifted to the opposite corner. Using the technique of first es- 
tablishing a diagonal ladder-a basic strategy, by the way, of all 
games of the Halma type-the best I could achieve was 15 for 
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the chessboard, 13 for the order-7 and 12 for the order-6. I 
have been unable to prove that any of these are minimum so- 
lutions. It is not hard to show that at least 12 moves are nec- 
essary for the order-8 square, 10 for the order-7 and 11 for the 
order-6. 

Next I experimented with a similar transfer of the nine- 
counter square, on the same three boards, to the lower right 
corner instead of the corner diagonally opposite. The order-6 
board has many solutions in nine moves, one of which is shown 
in Figure 68. Nine is obviously minimal because each counter 
must move once. (It is necessary that at least one counter hop 
to and from the fourth row on its way to the other yard, con- 
sequently nine-move solutions cannot be achieved on a three- 
by-six board.) On the order-7 board 10 moves will do it. This 
too is readily seen to be minimal since the first piece to move 
must move at least once again to reach the adjacent yard. 

Figure 68 

Orthogonal transfer on an order-6 board 

Thirteen moves will solve the problem on the order-8 board. 
That 12 are necessary is evident from a simple parity check. 
The six counters in column 1 and column 3 can hop only to 
column 7, therefore three of the six must each make at least 
one step move. I tried vainly for weeks to find a 12-mote so- 
lution until Donald E. Knuth, a mathematician at Stanford 
University, came to my rescue by devising a proof of impossi- 
bility in 12 moves. It is too involved to give here, but it is based 
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on the necessity for one of the original four corner counters to 
step to a different color, the fact that the reverse of a solution 
is another solution and other considerations. Readers may en- 
joy searching for minimum solutions to the six transfer 
problems. 

The second family of puzzles suggested by Matsuda's prob- 
lem is based on removing every jumped counter from the 
board. The goal is to remove all counters but one, the last 
counter reaching a specified cell, and do it in a minimum num- 
ber of Halma moves. Such problems are similar to those of the 
classic peg-solitaire game discussed in an earlier column (re- 
printed in my book Unexpected Hanging and Other Mathematical 
Diz~ersions) except that the greater freedom of movement allows 
for much shorter solutions, and proofs of minimum solutions 
are usually much more difficult. 

Consider, for example, the puzzle on a five-square board 
that was first issued in 1908 by Sam Loyd [see Figure 69, A ~ O .  I ] .  
He labeled each counter with the name of a hopeful in that 
year's presidential election. The idea was to eliminate eight 
men, leaving one's favorite on the center cell. Loyd allo~.ed 
Halma moves but did not count a chain of jumps as being one 
move. Eight jumps are clearly minimal and there are many 
such solutions for each counter. Henry Ernest Dudeney, in his 
Amusements i n  Mathematics (Problem 229), improved the puzzle 
by disallowing step moves, counting jump chains as single 
moves and allowing any counter to end at the center. He gave 
a four-move solution that is surely minimal, although I know 
of no proof. Counter 5 jumps 8, 9, 3, 1; counter 7 jumps 4; 6 
jumps 2 and 7; then 5 returns to its original cell by leaping 6. 

Figure 69 

Six Halma solitaire problems 
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Let us combine the rules of the two rival puzzlists by allowing 
both steps and hops, as in Halma, and counting a chain of hops 
as one move. Each hopped counter is of course removed. Can 
the reader find one of the many three-move solutions that 
leave the last counter on the center cell? The solution is an el- 
egant one that begins with two step moves and ends with an 
eight-jump chain. 

Similar problems are shown in the same illustration, num- 
bered 2 through 6. The second is to be solved in three Halma 
moves, the surviving counter on the cell initially occupied by 
the counter at the top of the triangle. The third problem is to 
be solved in three moves, last counter on the board's center 
cell. The fourth problem is to be solved in a minimum number 
of moves, last counter on the cell initially occupied by counter 
6, the triangle's center. The fifth problem is to be solved in 
three moves, surviving counter at the board's center. The last 
problem, the most difficult of the six, calls for three moves that 
end with the lone counter on one of the board's four center 
cells. 

The field of Halma puzzles is so unexplored that it is a chal- 
lenge to devise and solve new puzzles, then see if one can 
prove by simple arguments that the solution actually is mini- 
mal. I have not the slightest notion, for example, how few 
moves are required on an order-7 board with 25 counters in a 
square array in the center to leave the last counter on the ten- 

ter cell. I have avoided trying this problem for fear of accom- 
plishing no other work for the next month or so. 

ANSWERS 

The six Halma problems can be solved as follows. None of the 
solutions is unique: 

1. Counter 6 steps diagonally up and right, 8 (or 4) steps di- 
agonally down and left, 5 jumps all counters to end at the 
center. 

It is possible in three all-jump moves (no steps) to end on 
either a corner cell or a side cell of the original pattern, but 
when steps are not allowed, four moves are necessary (they 
were given earlier) to reach the center. Two moves suffice to 
remove eight counters but the survivor will be outside the orig- 
inal pattern. 

2. Counter 4 steps up, 3 jumps 8, 9, 4, 1, 2, 5, 6, then 7 
jumps counter 3. A three-move solution that puts the last 
counter on the board's center cell is: 4 steps up, 6 steps down, 
and 3 jumps the remaining eight counters. A neat symmetrical 
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solution: 1 steps up and 7 jumps 3 (or 7 steps down and 1 
jumps 3), then 1 jumps the rest. 

3. Counter 6 steps up, 8 (or 4) steps down, 5 jumps all 
counters to rest on the center cell. This pattern and its solution 
are equivalent to the first problem, with each diagonal move 
changed to vertical and each vertical move to diagonal, all hor- 
izontal moves remaining the same. There are similarly equiva- 
lent patterns and solutions on the checkerboard and the 
Chinese checkers board. 

4. Counter 6 can jump all counters in one move, returning 
to its original cell at the center. The problem is equivalent to a 
10-counter equilateral triangle on the Chinese checkers board. 

5. Counter 11 hops diagonally up and right (eliminating 
counter 8), 6 jumps 10 counters and returns to its former cell, 
then 5 removes 6 as it leaps to the center. 

6. Counter 8 steps diagonally up and right, 14 jumps 9. 1, 3, 
11 and returns to its former spot, then 8 jumps 11 counters to 
end on the cell originally occupied by 1 1. 

Another problem, a three-by-four rectangle on a five-by-six 
field, can be solved in three all-jump moves, the final counter 
resting on any of the 12 cells of the original pattern. In two 
moves the board can be cleared but the last counter will be out- 
side the original pattern. 

ADDENDUM 

Five readers (Katsumi Takemura, Seiichi Fusamura, hlitsu- 
nobu Matsuyama, James Stuart, and Y. Dvir) lowered to 12 the 
moves required to transfer the 3 x 3 square of counters diago- 
nally from corner to corner on the order-7 board. 

The three-move solution given for the Halma solitaire prob- 
lem involving the order-4 array on an order-6 board appar- 
ently not only is fundamentally unique for ending on one of 
the central cells but also seems to be the only three-move solu- 
tion that eliminates all but one counter when this last counter 
can end anywhere on the board. When the order-4 square is at 
the center of a standard eight-by-eight chessboard, a pretty 
four-move solution puts the last counter on a corner of the 
board. And I found a four-move solution that leaves four 
counters at the corners of the order-4 square when it is cen- 
tered on the order-6 field. 

Here are some more of my results: The order-5 array (on 
the order-7 board) has four-move solutions that end on any 
cell originally occupied; the order-6 formation (on the order-8 
board) has six-move solutions to any cell formerly occupied, 
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and a five-move solution to the board's corner, and there are 
two-move solutions for the order-3 array that place the last 
counter on any cell of the order-5 board's border. 

John \V. Harris was the only reader to send results for the 
order-7 array on the order-9 Japanese chessboard. He found 
a solution, to the center cell, in seven moves. 

If a square array of nine counters are placed at a corner of 
a 4 x 6 board, it is a pleasant task to shift them to the diagonally 
opposite corner in ten moves. The small size of the board 
makes it an attractive puzzle to market. I offer it fi-ee to any 
firm that cares to manufacture it, either with marbles, counters, 
or pegs in holes. I found a solution in ten moves and proved it 
to be minimal. 

BIBLIOGRAPHY 

The Handbook of Rex~ersz, also Fanorona, Inilaslon, Halma. London: F .  H .  
A ~ r e s ,  1889. 

The Book of Table Games. Edited by "Professor Hoffmann" (Xngelo 
Lewis). London: George Routledge and Sons, 1894. 

"The Computer Analysis of Human Problem-Solving Behavior." Alick 
Elithorn and Roger Tagoe, in Proceedings of the Nato Symposium on the 
Computer Simulation ofHuman Behavior (Paris, 1969). 

"Game and Problem Structure in Relation to the Study of Human and 
Artificial Intelligence." Alick Elithorn and Alex Telford, in ,\:ature, 
Vol. 227, September 19, 1970, pages 1205- 1210. 

"Design Considerations in Relation to Computer Based Problems." Alick 
Elithorn and Alex Telford, in Artzficial Intelligence and Human Behavior 
(Elsevier, 1973). 



ADVERTISING PREMIUMS 

Inexpensive advertising premiums are popular in all countries 
where businesses compete for consumer attention, and fre- 
quently such premiums are based on mathematical puzzles. 
Many premiums of this kind have been discussed in columns 
that are reprinted in my earlier book collections, and one in- 
volving a "map fold" will be found in this book in the chapter 
on paper folding. Now I shall consider some classic puzzle pre- 
miums that I have not previously discussed. 

One of the oldest and best is the T-puzzle shown in Figure 
70. The reader is urged to trace or photocopy the four pieces, 
paste them on cardboard, cut them out and try to fit them to- 
gether to make a capital T. I know of no polygon-dissection 
puzzle with as few pieces that is so intractable. The number of 
giveaway premiums based on this puzzle, particularly in the 
early decades of the century, runs into the hundreds. 

Figure 70 

The classic T-puzzle 
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Less well known, although equally ancient and charming, is 
the square puzzle shown in Figure 71. It is best shown to a 
friend by first giving him only the four nonsquare pieces and 
asking him to make a square. After he succeeds, hand him the 
square piece and see how, much longer it takes him to make a 
square that uses all five pieces. 

Figure 71 

The Pythagorean-square puzzle 

I have not seen this as a die-cut premium in recent years, but 
at least two plastic versions are currently on sale in the United 
States. Milton Bradley's One Way was designed by Henry Ad- 
ams, and another version, designed by Frank Armbruster, is 
called Madagascar Madness. Armbruster's instructions point 
out how the puzzle illustrates the Pythagorean theorem. If the 
big and little squares shown in the illustration are on the sides 
of a right triangle, the square formed by all five pieces will, of 
course, be the square on the hypotenuse. 

In this country the most prolific creator of mathematical pre- 
miums unquestionably was Sam Lloyd (1 841-191 l) ,  the fa- 
mous Philadelphia-born puzzlist and chess-problem inventor. 
In his cluttered, musty office in a decaying Manhattan building 
occupied by The Evening Globe, Loyd concocted hundreds of 
puzzles of fantastic variety and ingenuity. As described in a 
191 1 magazine article, his small office "would be dark even if 
the one window were washed, a cataclysm of which there seems 
no immediate prospect. There are two desks, a typewriter and 
a printing-press in it, and countless shelves loaded with papers, 
pictures, magazines, stereotype plates and one thousand other 
things which have spilled out upon the floor and risen like 
strange, dirty snowdrifts breast high in the corners. Sam Loyd 
says he does all his business on a cash basis and keeps no 
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books. The reason probably is that he couldn't find the books. 
That would be too much of a puzzle even for him." 

Loyd's first big success with a premium came with his inven- 
tion, at the age of 17, of the Trick Donkeys. The task is to ar- 
range three cardboard rectangles so that two riders are astride 
two donkeys. The puzzle is still widely used as a giveaway item 
throughout the world. Loyd's original version, which P. T. 
Barnum distributed by the millions to publicize his circus, is re- 
produced in the chapter on Loyd in The Scienti$c American Book 
of Mathematical Puzzles &3 Diversions. Modernized versions can 
be found in the article "Problem-solving" in Scienti$c American 
for April 1963; on page 124 of The Mind ( a  Life Science Li- 
brary book), and in an American Can Company advertisement 
in Time for March 22, 1968. Loyd once related in an interview 
that Barnum used to make periodic treks to his office saying, 
"Hang it all, Sam, show me how to do my puzzle. I've forgotten 
again." 

Another of Loyd's early premium hits, even more widely 
used today than then, is nothing more than a pencil with a 
short loop of string on its eraser end. Loyd designed the trick 
for agents of the New York Life Insurance Company, who 
would attach the pencil to prospective customers' coats with the 
promise to remove it if a sale was consummated. The loop is 
placed around a lapel buttonhole, then the cloth is pulled for- 
ward through the loop until the pencil goes back far enough 
for its point to enter the buttonhole from behind. When the 
pencil is pulled foward through the hole, it is fastened in such 
a way that it seems impossible to remove the pencil without cut- 
ting the string. 

Loyd produced numerous geometric puzzles, but none with 
a more unexpected solution than his Pony Puzzle, shown in 
Figure 72 exactly as he himself originally drew it. The problem 
is to rearrange the six pieces to make the best possible picture 
of a trotting horse. In his Cyclopedia of Puzzles Loyd claimed 
that over one billion copies of the Pony Puzzle had been sold. 

The most spectacular of all Loyd premiums, by all odds, was 
his mind-bending "Get off the Earth" paradox. He patented 
the device in 1896 and first sold it as a premium to advertise 
Bergen Beach, a resort that had just opened in New Jersey. 
Copies of the original are now rare collector's items. The art, 
based on Loyd's sketches, was done by Anthony Fiala, then a 
cartoonist on The Brooklyn Daily Eagle. (Later Fiala was com- 
mander of the Ziegler Polar Expedition of 1903-1905 and 
wrote a book about it, Fighting the Polar Ice.) The puzzle con- 
sisted of a cardboard disk fastened by a central rivet to a card- 
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Figure 72 

Sam Loyd's Pony Puzzle 

board rectangle. A tab attached to the disk projected through 
a curved slot in the backing so that by moving the tab up or 
down thk disk could be rotated to two positions [see Fzgures 73, 
741. In one of the positions you can count 13 Chinese warriors. 
When the disk is turned to the other position, there are only 
12 warriors. M'hich man vanishes, the premium asked, and 
where does he go? 

For more than a year Loyd filled his weekly puzzle column 
in The Brooklyn Dailj Eagle with letters from readers attempting 
to explain this astonishing phenomenon. In Loyd's own 
lengthy, mock-serious explanation (January 3, 1897, page 22) 
he called attention to a curious feature easily overlooked by a 
person unless he has tried the difficult task of drawing human 
figures properly around the rim of a disk. "The grotesqueness 
of the figures and a necessary legerdemain feat of changing a 
right leg for a left one between the fourth and fifth men does 
the trick. If it were not for that particular acrobatic feat, all of 
the men on the left side would come down head end first. 
Some pirates, who brought out the puzzle in different parts of 
Europe, with different figures, found it absolutely necessary to 
retain that flop over of the legs." 

At that time Americans were aroused over the "yellow peril," 
a fact that explains the premium's unpleasant racist connota- 
tions. As if not to be partial to either China or Japan (the two 
nations had been at war in 1894), Loyd provided the Metro- 
politan Life Insurance Company in 1897 with a more elaborate 
Japanese version of his paradox. Nine Japanese men alternate 
around the circle with eight lanterns. When the disk is turned, 
one man vanishes and a ninth lantern appears, giving the 
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Loyd's greatest puzzle starts with 13 Chinese warriors 

Figure 74 

Now there are only 12 warriors. Which one disappears? 
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impression that a man has turned into a lantern. The premium 
announced a contest with 20 prizes, from $5 to $100, for the 
best explanation. Although the names of the winners were 
printed, none of the prize-winning letters were published. Per- 
haps the reason is to be found in a typical "explanation" that 
was quoted: "When the handle is down I find nine Japanese, 
but when the handle is up there are only eight, as one has dis- 
appeared." In 1909 Loyd issued a third version of the paradox 
called Teddy (Roosevelt) and the Lions, in which an African 
native seems to turn into a lion. It too is reproduced in the 
chapter on Loyd in The ScientGc American Book of Mathematical 
Puzzles C3 Diversions. 

The basic principle behind Loyd's three versions was not 
original with him. He simply took earlier linear forms of the 
paradox and bent them into circular shape. I have seen in a 
private collection of advertising cards an 1880 premium, 
copyrighted by Wemple and Company of New York, called 
"The Magical Eggs." A rectangular card is cut into four smaller 
rectangles. Different arrangements of the pieces produce 
eight, nine or 10 eggs. Scores of variations on this paradox 
have since been used in the United States and abroad. The lat- 
est and funniest version, in three pieces, is "The Vanishing Le- 
prechaun," skillfully drawn by Pat Patterson, a Toronto 
graphic designer, and issued in Canada by William Elliott, a 
producer of puzzles and magic tricks. The paradox is repro- 

Figure 75 

Which leprechaun vanishes? 
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duced iri Figure 75. An eight-by-19-inch two-color print on pa- 
perboard can be obtained f r o ~ n  W. A. Elliott Company, 212 
Adelaide Street IVest, Toronto 1, Canada. 

From hundreds of other mathematical premiums I select as 
a final specimen a card that advertises a brand of Scotch whisky 
[ s e ~  Figure 761. This seemingly trivial addition problem trips 
niost people whether they have had a drink or not. To obtain 
the correct sum the use of a pocket or desk calculator is 
advised. 

Figure 76 

Can you add this column of fig- 
ures? Place your hand over all 
but the top number and move it 
down the column, revealing one 
number at a time. Add all the 
numbers, as you go along. When 
you get the total, turn over for 
correct answer. 

An advertising giveaway card 

ANSWERS 

Solutions to the two dissection puzzles, and Sam Loyd's pony 
puzzle, are shown in Figures 77, 78, and 79. I leave it to the 
reader to decide which leprechaun vanishes and where the lit- 
tle fellow hides. 
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Figure 77 

Solution to the T-puzzle 

Figure 78 

Solution to the square puzzle 

Figure 79 

Solution to Sam Loyd's Pony Puzzle 

ADDENDUM 

Manuel R. Pablo, of the Naval Research Laboratory, Washing- 
ton, D.C., surprised me by finding another solution to the old 
T puzzle. By turning one piece over he produced the fat T 
shown in Figure 80. Other readers, keeping the five-sided 
piece in its standard orientation, produced Ts with arms of dif- 
ferent lengths. 
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Figure 80 

Pablo's solution to the T-puzzle 

Note that if one piece is turned over, the four pieces fit 
neatly together to form the isosceles trapezoid shown in Figure 
81. The T puzzle, packed in this trapezoidal form, was on sale 
in 1975 as the "Teezer" puzzle, made by Hoi Polloi, New York 
City. 

Figure 81 

The "Teezer" puzzle 

The T puzzle has been made with the T in many different 
shapes, but the puzzle is difficult only if the five-sided piece has 
the same width as the others. The mind has a strong tendency 
to assume that this piece must go either vertically or horizon- 
tally, an assumption that of course makes the solution impossible. 

David Frost was so intrigued by the leprechaun paradox that 
he arranged for Pat Patterson to provide an enlargement that 
he could display on the T V  talk show he was then hosting. 
After demonstrating the paradox, Frost asked if anyone in the 
audience could explain it. Nobody could. Finally a lady stood 
up to say that her husband understood how it worked. Frost 
turned to the husband. His explanation was identical with the 
one I quoted for Loyd's vanishing Chinese warrior. When the 
rectangles are arranged one way, the man said, there are 15 
leprechauns. But when you arrange them the other way, there 
are only 14. 
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In showing the paradox to friends, an amusing bit of busi- 
ness is to ask which leprechaun vanishes. If they pick one, put 
a penny on the upper half and another penny on the lower 
half. After shifting the pieces, the pennies of course mark por- 
tions of leprechauns that are still there. Let them try again. 
The number of pennies on the figures increase, but without 
casting much light on the mystery. 

Many readers wrote to say that if the lower half of the pic- 
ture is cut in two parts by a vertical cut between the ninth and 
tenth leprechauns, you can arrange the four pieces to make 13 
leprechauns. Other permutations produced by other cuts will 
give 16 and 17 figures, though they get distorted as they in- 
crease. Of course you can produce similar changes by rotating 
Loyd's disk. 

Dozens of imitations and variations of the leprechauns have 
been printed since the item was first marketed, some of them 
pornographic. You will find an early discussion of how they all 
work, with many examples, in my Mathematics, Magzc and Mys- 
tery, and in Me1 Stover's cover article, "The Disappearing Man 
and Other Vanishing Paradoxes," listed in the bibliography. 
Stover owns the largest collection of such things, mine running 
a close second. 

BIBLIOGRAPHY 

On Sam Loyd: 

"The Prince of Puzzle Makers." George Grantham Bain. The Strand 
Magazzne, Vol. 34, December 1907, pages 771-777. 

"My Fifty Years in Puzzleland: Sam Loyd and His Ten Thousand 
Brain-Teasers." Walter Prichard Eaton. The Dellneator, April 191 1, 
page 274. 

The Mathematical Puzzles of Sam Loyd. Edited by Martin Gardner. Vol. 
1, Dover, 1959; Vol. 2, Dover, 1960. 

On vanishing figures: 

Mathematics, Magic and Mystery. Martin Gardner. Dover, 1956. 
"The Disappearing Man and..Other Vanishing Paradoxes." Me1 

Stover. Games, November-December 1980, pages 14-18. 



SALMON ON AUSTIN'S DOG 

In Chapter 8 one of the short problems, posed by A. K. Austin 
of the University of Sheffield, England, aroused considerable 
controversy among readers. Indeed, the problem proved to be 
an amusing new variant of Zeno's famous paradox of Achilles 
and the Tortoise, and one that, so far as I know, had never 
been formulated before. Here is how I phrased the problem 
and its answer: 

"A boy, a girl and a dog are at the same spot on a straight 
road. The boy and the girl walk forward-the boy at four 
miles per hour, the girl at three miles per hour. As they pro- 
ceed, the dog trots back and forth between them at 10 miles 
per hour. Assume that each reversal of its direction is instan- 
taneous. An hour later, where is the dog and which way is it 
facing?" 

Answer: "The dog can be at any point between the boy and 
the girl, facing either way. Proof: At the end of one hour, 
place the dog anywhere between the boy and the girl, facing 
in either direction. Time-reverse all motions and the three 
will return at the same instant to the starting point." 

Even before this answer appeared I began receiving letters 
from readers protesting that the problem is meaningless be- 
cause its initial conditions are logically contradictory. No mat- 
ter how small we make the starting interval, many wrote, the 
dog will have to make an infinity of reversals that would drive 
it crazy. Others contended that the three "points" (as in all such 
problems, the boy, the girl and the dog symbolize ideal points) 
could never get started because the "instant" they did so the 
dog would either leap ahead of both boy and girl or run the 
opposite way, thereby ceasing to be between the boy and girl. 
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As Wesley C. Salmon, a noted philosopher of science, im- 
mediately recognized, Austin's paradox has innumerable other 
forms, one of the simplest of which is a time reversal of the 
familiar puzzle about two locomotives and a bird. The loco- 
motives, starting at A and B, 30 miles apart, move toward each 
other on the same track at, say, 15 miles per hour until they 
collide at C. A bird, starting at A, flies back and forth at 60 
miles per hour between the locomotives until they collide. How 
long is the bird's path? There is no need to sum an infinite se- 
ries. Since the bird flies for one hour, the path must be 60 
miles. If we time-reverse the event, specifying that the bird end 
at A, a unique zigzag path is defined that the bird can travel in 
either direction. 

Suppose, however, we do not state where the bird must be 
after the locomotives have moved backward to points A and B. 
Without this information a unique path for the bird cannot be 
defined. Because the bird can now take an infinity of possible 
paths, the most we can say is that the backward-flying bird 
must end somewhere between A and B. 

But is it really permissible to say this? No, many mathemati- 
cians contend, because a singularity arises in the time-reversed 
version that creates contradictory initial conditions. "There is 
no general justification in analysis," one mathematician put it, 
"for inverting the limit operator." When the locomotives move 
toward each other, it is only the bird's position that converges. 
"The velocity vector diverges, so that there is the same diffi- 
culty (as in Austin's problem) in finding a unique inverse to the 
limit process. The accepted rules of differential calculus have 
evolved because if followed properly they avoid contradictions." 

It is helpful to plot a space-time graph of the bird's path 
from A to C' [see Figure 821. Of course, we cannot finish draw- 
ing the bird's path to C' because the zigzags are infinite, but 
we certainly can assume that the ideal line exists. Surely if this 
line can go down from A to C', there is no logical objection to 
saying that it can go up from C' to A. If the final destination 
of the bird is not specified, an uncountable infinity of such 
graphs can start at C' and end anywhere on the track between 
A and B. It is true that calculus cannot solve Austin's similar 
problem if "solve" means to pinpoint the dog's final position, 
but Austin's "solution" is precisely one that shows this to be im- 
possible. Since the dog is not told how to start, it can start in 
any way it pleases provided it always stays between the boy and 
the girl. Consequently its path can end anywhere between boy 
and girl. 

Salmon has commented on Austin's problem as follows: 
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Figure 82 

Space-time graph of bird's path between moving locomotives 

"Almost everyone has heard the old chestnut about the bird 
that flies back and forth between two approaching locomotives 
. . . [as given above]. Or, to achieve historical perspective, sup- 
pose Achilles is pursuing the tortoise and a Trojan fly buzzes 
back and forth between them. Given a set of velocities and dis- 
tances, and our latter-day assurance that Achilles will overtake 
the tortoise at a determinate time and place (see my book Zeno's 
Paradoxes), we can easily figure out how far the fly will travel. 
Up to this point we have no new Zenonian paradoxes. . . . We 
see that Austin's problem is just the time-reversal of the bird- 
and-train problem. 

"In order to retain historical perspectibe, let us go back to 
Achilles and the tortoise. In spite of the initial handicap tradi- 
tionally imposed on Achilles, he catches the tortoise, and to re- 
dress the grievance he has long held against Zeno he keeps on 
running, steadily increasing his lead over the fortunate tor- 
toise. [I consider the tortoise fortunate in this version of the 
tale, at least in comparison with Lewis Carroll's account "What 
the Tortoise Said to Achilles," in which Achilles stops and seats 
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himself on the back of the tortoise, much to the tortoise's dis- 
comfort.] Now consider the Trojan fly, which attempts to con- 
tinue flying back and forth between the two runners even after 
the faster overtakes the slower. When Achilles and the tortoise 
are just even, the fly finds itself precisely in the position of 
Austin's dog. 

"For the sake of definiteness, say that the tortoise travels at 
one mile per hour, Achilles at five miles per hour (he has been 
running since 500 B . G . ,  so that he is not as fleet as he once was) 
and the fly at 10 miles per hour. They all arrive at the common 
meeting point without difficulty. How can they go on? If the 
three start simultaneously from the common point, the fly im- 
mediately either advances ahead of both or moves behind both, 
each of which violates the condition that the fly be always in 
the interval between the two (end points included). It would 
seem we could argue that in any time interval e > 0, however 
small, the tortoise travels a distance of l e ,  Achilles runs a dis- 
tance of 5e  and the fly goes 10e. Hence in an arbitrarily small 
time after the meeting the fly leaves the interval between the 
tortoise and Achilles. Even if we have shown how Achilles can 
perform the 'supertask' of catching the tortoise, and how the 
tortoise can perform the 'supertask' of initiating its motion, it 
appears that the fly now faces the new 'supertask' of continuing 
to fly back and forth between Achilles and the tortoise after the 
tortoise has been overtaken. In other words, the fly now faces 
the supertask of not passing Achilles! 

"The apparent difficulty seems to me analogous to the prob- 
lem pointed out by Zeno in his regressive dichotomy paradox. 
There is no doubt that the fly will outdistance both Achilles 
and the tortoise if it jflies steadily i n  one direction without turning 
around, even in the arbitrarily small period of duration e. This 
fact does not render the fly's motion impossible, however, since 
no matter how small a time interval we choose the fly has al- 
ready reversed its direction during that interval (infinitely 
many times, so that it is really quite dizzy). This simply means 
that there is no initial nonzero interval during which it flies 
straight without reversing its direction; thus it does not follow 
that the fly immediately leaves the interval between the tortoise 
and Achilles. In fact, we can see precisely how the fly's rapid 
reversals enable it to stay between Achilles and the tortoise 
after the meeting by examining the time reversal of this motion 
in the fly's approach to the point of meeting from the earlier 
side. The fact that the fly does not traverse an initial nonzero 
straight path is analogous to the fact that the tortoise, in leav- 



138 CHAPTER 13 

ing its starting point, does not traverse any initial nonzero seg- 
ment of its path. The lack of a suitable initial segment is not a 
serious obstacle to either of them. 

"The recent literature on Zeno's paradoxes has contained a 
good deal of discussion of 'infinity machines.' These are ideal- 
ized devices that purportedly perform an infinite sequence of 
tasks; they have been introduced into the discussion because of 
difficulties they seem to encounter in completing the infinite 
sequence of tasks (a 'supertask'). The resolution of the prob- 
lems surrounding the infinity machines is strongly analogous to 
the resolution of the progressive form of Zeno's dichotomy 
paradox. The motion of the Trojan fly up to and including the 
moment Achilles overtakes the tortoise involves exactly the 
same considerations. I am not aware that anyone has explicitly 
introduced the kind of infinity machine that would be analo- 
gous to the regressive form of Zeno's dichotomy paradox, a 
machine whose difficulty lies in getting started with its series of 
tasks, in contrast with the usual infinity machine whose diffi- 
culty lies in finishing its series of tasks. As it turns out, our Tro- 
jan fly, in its motion from the point of meeting of Achilles and 
the tortoise through the subsequent part of the run in which 
Achilles is ahead of the tortoise, constitutes just such an infinity 
machine (as does Austin's dog)-a regressive infinity machine, 
we might say. Just as the treatment of the standard infinity ma- 
chine closely parallels the resolution of the progressive dichot- 
omy paradox, so does the treatment of the Trojan fly in the 
latter part of its flight closely parallel the resolution of the re- 
gressive dichotomy paradox. 

"One further problem about the motion of the fly deserves 
explicit attention, namely what is the state of motion of the fly 
at the precise instant of meeting? The fly's position is well de- 
termined; it coincides with the position of Achilles and the tor- 
toise. The mathematical function that describes the fly's posi- 
tion is a continuous function of time that passes through the 
meeting point at the appropriate instant. The fly's velocity 
function, on the other hand, is discontinuous. Its value is + 10 
when the fly is moving forward, - 10 when it is moving back- 
ward and (we might as well say) zero when the fly meets either 
Achilles or the tortoise (or both). Thus we can appropriately 
assign the value zero to the fly's velocity at the instant when all 
three meet. Obviously the velocity function has infinitely many 
discontinuities on each side in the neighborhood of the point 
of common meeting. Each finite discontinuity in the velocity 
function corresponds to an infinite discontinuity in the acceler- 
ation, since it requires an infinite acceleration for the fly to 
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change velocity instantaneously from + 10 to - 10 and vice 
versa. Moreover, as Austin's problem and its solution show, the 
state of motion of the fly (or dog) at the point of meeting does 
not uniquely determine how the motion is to continue beyond 
that point. In other words, although we have shown how (in 
some sense of 'possible') it is possible for the fly to continue its 
motion through the meeting point and beyond, the motion be- 
yond the meeting point can be executed in infinitely many dis- 
tinct ways, all of which are consistent with the conditions im- 
posed by the problem. To  say that there are alternative ways of 
performing a task does not, however, prove that the task is irn- 
possible to execute. 

"In the customary formulations Zeno's Achilles and dichot- 
omy paradoxes invdlve a finite number of discontinuities of the 
type just mentioned: Achilles and the tortoise are assumed to 
accelerate instantaneously at their starting points to their re- 
spective average velocities, and to decelerate instantaneously to 
zero at the finish. Similarly, most of the 'infinity machines' (for 
example Black's transferring machines and the Thomson 
lamp) involve infinitely many such discontinuities clustering 
around some moment of termination (see Zeno's Paradoxes, 
pages 204-244). Using a mathematical function supplied by 
Richard Friedberg, Adolf Griinbaum has shown how such mo- 
tions can be modified so as to eliminate all the discontinuities 
and still achieve the desired total outcome. It seems reasonable 
to conjecture that a similar approach could be applied to the 
problem of the Trojan fly (or Austin's boy-girl-dog) in order to 
achieve a totally unobjectionable description of the motion." 

ADDENDUM 

I had expected Professor Salmon's analysis of Austin's paradox 
to produce many letters of disagreement, but evidently Salmon 
argued his case skillfully because I received not a single one. 
Of course the debate is largely verbal, a question of what sort 
of language to use in making the problem and its solution 
precise. 

Many other problems are analogous to Austin's dog in the 
sense that there is a precise answer in forward time, but hope- 
less ambiguity when the event is time reversed. Consider for 
instance a point starting at the earth's equator and moving due 
north with uniform speed along a loxodrome. It will circle the 
north pole a countable infinity of times, reaching the pole at a 
precise instant. But time-reverse the event and the point can 
cross the equator at any spot. Because there is no "last" revo- 
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lution around the pole, there is no precise beginning of the 
time-reversed event that will determine a unique spiral path. 

Mathematics Magazine, which originally published Austin's 
paradox as problem Q503 (January 1971), returned to the par- 
adox in its September issue by publishing comments by four 
mathematicians, all of whom considered the problem self-con- 
tradictory. The magazine did not publish Salmon's reply to one 
comment. I reproduce it below: 

In the September-October number, Lyle E. Purse11 com- 
ments on Quickie 4503 (Austin's boy-girl-dog problem) as 
follows: 

The author's solution to the problem looks like a proposal to 
sum an infinite series by starting at the "last" term! Since, if 
the latter three reverse their motions as the author suggests 
in his solution, then the dog must reverse his direction infi- 
nitely many times before the boy and the girl get back to the 
starting point. 

While no original texts have survived to the press date, it 
seems plausible to suppose that Zeno of Elea (circa 500 B.c.)  

might have made a similar comment about Achilles: 

Since Achilles must run half of the racecourse before he can 
run the whole, and he must run a quarter before he can com- 
plete the half, etc., it is evident that Achilles must run infi- 
nitely many distances before he can have reached any point, 
however near, beyond his starting point. T o  say that Achilles 
has run any finite (i.e., nonzero) distance looks like a pro- 
posal to sum an infinite series starting at the "last" term! 

Although Austin's dog must reverse his direction between 
segments whereas Zeno's Achilles keeps going in the same di- 
rection, does this difference really have any bearing upon the 
absurdity involved in the "proposal to sum an infinite series by 
starting at the 'last' term!"? It appears that Austin's dog ex- 
humes Zeno's old regressive dichotomy paradox. If Achilles 
can run a racecourse, why cannot Austin's dog do what is re- 
quired of him? 
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NIM AND HACKENBUSH 

"The good humour is to steal. . . ." 

-WILLIAM SHAKESPEARE, Corporal Nym in 
T h e  ,2lern; Wzves of W i n d ~ o r  

In recent decades a great deal of significant theoretical work 
has been done on a type of two-person game that so far has no 
agreed-on name. Sometimes these games are called "nim-like 
games," "take-away games" or "disjunctive games." All begin 
with a finite set of elements that can be almost anything: 
counters, pebbles, empty cells of a board, lines on a graph, and 
so on. Players alternately remove a positive number of these 
elements in accordance with the game's rules. Since the ele- 
ments diminish in number with each move, the game must 
eventually end. None of the moves is dictated by chance; there 
is "complete information" in that each player knows what his 
opponent does. Usually the last player to move wins. 

The game must also be "impartial." This means that permis- 
sible moves depend solely on the pattern of elements prior to 
the move and not on who plays or on what the preceding 
moves were. A game in which each player has his own subset 
of the elements is not impartial. Chess, for example, is partial 
because a player is not allowed to move an opponent's piece. It 
follows from the above conditions that every pattern of ele- 
ments is a certain win for either the first or the second player 
if the game is played rationally. A pattern is called "safe" (or 
some equivalent term) if' the person who plays next is the loser 
and "unsafe" if the person who plays next is the winner. Every 
unsafe pattern can be made safe by at least one move, and 
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every safe pattern becomes unsafe through any move. Other- 
wise it is easy to prove the contradictory result that both play- 
ers could force a win. The winner's strategy is playing so that 
every unsafe position left by the loser becomes a safe one. 

The best-known example of such a game is nim. The word 
was coined by the Harvard mathematician Charles L. Bouton 
when he published the first analysis of the game in 1901. He 
did not explain why he chose the name, so we can only guess 
at its origin. Did he have in mind the German nimm (the im- 
perative of nehmen, "to take") or the archaic English "nim" 
("take"), which became a slang word for "steal"? A letter to The 
New Scientist pointed out that John Gay's Beggar's Opera of 1727 
speaks of a snuffbox "nimm'd by Filch," and that Shakespeare 
probably had "nirn" in mind when he named one of Falstaffs 
thieving attendants Corporal Nym. Others have noticed that 
NIM becomes WIN when it is inverted. 

Nim begins with any number of piles (or rows) of objects 
with an arbitrary number in each pile. A move consists in tak- 
ing away as many objects as one wishes, but only from one pile. 
At least one object must be taken, and it is permissible to take 
the entire pile. The player who takes the last object wins. Bou- 
ton's method of determining whether a nim position is safe or 
unsafe is to express the pile numbers in binary notation, then 
add them without carrying. If and only if each column adds to 
an even number (zero is even) is the pattern safe. An equiva- 
lent but much easier way to identify the pattern (with practice 
one can do it in one's head) is to express each pile number as 
a sum of distinct powers of 2, eliminate all pairs of like powers 
and add the powers that remain. The final sum is the nim sum 
of the pattern. In current parlance this is called the "Grundy 
number" or "Sprague-Grundy" number of the pattern, after 
Roland Sprague and P. M. Grundy, who independently 
worked out a general theory of take-away games based on as- 
signing (by techniques that vary with different games) single 
numbers to each state of the game. 

For example, assume that a game of nirn begins with three 
piles of three, five and seven counters. 

3=2+I 
5=4+I 
7=4+2+1 

Pairs of 4's, 2's and 1's are crossed out as shown. The sum of 
what remains is 1. This is the nim sum of the pattern. If and 
only if the nim sum is zero is the pattern safe, otherwise it is 
unsafe (as it is here). If you play an unsafe pattern, you win by 
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changing it to safe. Here removing one counter from any pile 
will lower the nim sum to zero. In three-pile nim, with no pile 
exceeding seven counters, the safe nim patterns are 0-n-n, 
where n in the first triplet is any digit from 1 through 7, and 
1-2-3, 1-4-5, 1-6-7, 2-4-6, 2-5-7, 34-7,  3-5-6. If your op- 
ponent plays next, he is sure to leave a pattern with a nonzero 
nim sum that you can lower to zero again, thereby maintaining 
your winning strategy. 

Like all games of this type, nim has its misbre form, in which 
the player who takes the last piece is the loser. In many take- 
away games the strategy of misi.re play is enormously compli- 
cated, but in nim only a trivial modification is required at the 
end of the play. The winner need only play a normal strategy 
until it is possible to leave an odd number of single-counter 
piles. This forces his opponent to take the last counter. 

Many take-away games seem to demand a strategy different 
from that of nim but actually do not. Suppose the rules of nim 
allow a player (if he wishes) to take from a pile, then divide the 
remaining counters of that pile into two separate piles. (If the 
counters are in TOM'S, this is the same as taking contiguous 
counters from inside a row and regarding those that remain as 
being two distinct rows.) One might expect this maneuver to 
complicate the strategy, but it has no effect whatever. To win, 
compute the nim sum of a position in the usual way and, if it 
is unsafe, play a standard move to make it safe. For example, 
in the 3-3-7 game suppose your first move is taking a counter 
from the three-pile, leaving the safe 2-5-7. Your opponent re- 
moves two counters from the seven-pile and splits the remain- 
ing five counters into a two-pile and a three-pile. The pattern 
is now 2-3-2-3. Its nim sum is six, which you make safe by tak- 
ing t~vo from the five-pile. 

A pleasant counter-moving game on a chessboard is shown 
in Figure 83. No fe~ver than two columns may be used. In this 
example we use all eight columns. Black and white counters 
are placed on arbitrary squares in each column, black on one 
side, white on the other. (A randomizing device, such as a die, 
can be used for the placement.) Players sit on opposite sides 
and alternate moves. A move consists in advancing one of your 
counters any desired number of empty cells in its column. It 
may not leap its opposing counter, so that when two counters 
meet, neither may move again. The last player to move wins. 

An astute reader may see at once that this game is no more 
than a thinly disguised nim. The "piles" are the empty cells be- 
tween each pair of opposing counters. In the illustration, the 
piles are 3-14-2-0-3-6-3, which has an unsafe nim sum of 
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Figure 83 

A nim game on a chessboard 

4. The first player can win by moving the counter in column 
one, three or seven forward four spaces. If the game had be- 
gun with all the counters in each player's first row, the pattern 
would have been 6-6-6-6-6-6-6-6, a safe position because its 
nirn sum is zero. The first player must lose. The second player 
groups the columns into four pairs, then duplicates each of his 
opponent's moves in the paired column, a strategy that ensures 
a zero nirn sum after every move. 

Suppose we complicate the rules by allowing either player to 
move backward as well as forward. Such a retreat is equivalent, 
of course, to adding counters to a nim pile. How does this affect 
the winning strategy? 

A better-disguised game based on nim addition is a delight- 
ful pencil-and-paper game recently invented by John Horton 
Conway, the University of Cambridge mathematician who in- 
vented "Life," the topic of three of this book's chapters. Con- 
way calls the new game Hackenbush, but it has also been called 
Graph and Chopper, Lizzie Borden's Nim and other names. 

The initial pattern is a set of disconnected graphs, such as 
the Hackenbush Homestead as drawn by Conway [see Figure 
841. An "edge" is any line joining two "nodes" (spots) or one 
node to itself. In  the latter case the edge is a "loop" (for ex- 
ample, each apple on the tree). Between two nodes there can 
be multiple edges (for example, the light bulb). Every graph 
stands on a base line that is not part of the graph. Nodes on 
the base line, which is shown as.a broken line in the illustra- 
tions, are called "base nodes." 

Two players alternate in removing any single edge. Gravity 
now enters the game because taking an edge also removes any 
portion of the graph that is no longer connected to the base 
line. For instance, removing edge A eliminates both the spider 
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Figure 84 

The Hackenbush Homestead 

and the window since both would fall to the ground, but re- 
moving the edge joining the spider to the ~ ~ i n d o w  removes 
only the spider. Taking edge B chops down the entire apple 
tree. If one edge of the streetlight's base is taken, the structure 
still stands, but taking the second edge on a later move topples 
the entire structure. The person who takes the picture's last 
edge is the winner. 

As in nim, every picture is either safe (second-player win) or 
unsafe (first-player win), and the winner's strategy is to convert 
ever): unsafe pattern to safe. T o  evaluate a picture each graph 
must be assigned a number measuring the graph's "weight." 
To arrive at the assignment the first step is to collapse all the 
"cycles" (closed circuits of two or more edges) to loops, turning 
the graph into what Conway calls an apple tree, although in 
many cases the loops are best regarded as being flower petals. 
T o  see how it works, consider Conway's girl [see Figure 851. She 
incorporates two cycles: her head and her skirt. First the two 
nodes of her head are brought together and then the two 
edges are bent into loops. Do the same with the five nodes and 
five edges of the skirt. The girl is now a flower girl [middlefig- 
ure]. The next step is to change her to an ordinary tree by re- 
placing each loop with a single branch pgure u t  right]. 

We now calculate this tree's weight. First, label 1 all edges 
with a terminal node (a node unconnected to another edge) or, 
to put it differently, all edges that, if removed, cause no other 
edges to fall off the tree. Label 2 all edges that support only 
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Figure 85 

WEIGHT = 4 

Girl on one foot 

one edge. Each remaining edge is labeled with one more than 
the nim sum of all the edges it immediately supports. Consider 
the edge corresponding to the girl's hair between her head and 
her hair ribbon. It immediately supports 1-1-1. A pair of 1's 
cancel, giving a nim sum of 1. Add 1 to the nim sum and this 
edge has a weight of 2. The edge that forms the body above 
the skirt immediately supports edges of values 2-1-2-1-2. The 
nim sum is 2. Add 1 and the edge has a weight of 3. 

The girl's unraised thigh supports 3-1-1-3-1-1-1, a nim 
sum of 1, to which 1 is added to give the thigh a value of 2. 
The calf below it has a value of 3, the foot a value of 4. (In 
each case we simply add 1 to the value of the single, immedi- 
ately supported edge.) Since the foot is the only support of the 
entire graph, the girl has a weight of 4. All edge values are 
now transferred to corresponding edges on the original girl. 

With practice, edge values can be computed directly on the 
original graph, but it requires great care. For example, the 
girl's five skirt edges, raised thigh, and body are all "immedi- 
ately" supported by her unraised thigh. This is clear in the tree 
graph but is not so obvious in the original graph because many 
of the immediately supported edges are not close to the thigh. 

If a graph has more than one base node, such as the door, 
barrel and lamp in the Homestead, collapse the base cycle into 
loops, remembering that the broken line segment between a 
pair of base nodes is not part of the graph. The door's trans- 
formations are shown in Figure 87b. Since the nim sum of 
1-1-1 is 1, the door's weight is 1. A girl standing on both feet 
[see Figure 861 has a weight of 3. Note how the two cycles 
formed by her skirt and legs collapse into seven loops. A win- 
ning move, for a game played with her alone, is taking the top 
of her head or one of her hairs. This lowers the value of her 
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Figure 86 

Girl on both feet 

head to zero, her body to 1 and her weight to zero. In this 
manner a weight can be assigned to each of the five graphs that 
make up the Hackenbush Homestead: The apple tree, house 
(including window, spider, chimney, television antenna and 
drainpipe), door, barrel and streetlight. 

If Hackenbush is played with only the girl on one foot, the 
game is as trivial as playing nim with only one pile. The first 
player can win at once by taking the supporting foot. The poor 
girl collapses and he acquires all her edges. In the case of a fig- 
ure with more than one base node, such as the door, we must 
remember to take an edge so that the remaining nim sum is 
zero. A first player can do this only by taking the door's top 
edge, leaving two graphs of weight 1 each, or a combined nim 
sum of zero. Taking either side leaves only one graph (of 
weight 2), which can be taken entirely by the second player. 

A picture consisting of n graphs, such as the five graphs of 
the Homestead, is treated exactly like five piles in nim. The 
nim sum of all the weights is the total Grundy number. If and 
only if this number is zero is the picture safe and the second 
player assured of winning. As in nim, the winning strategy is 
to play so that the nim sum of what remains is always zero. 

The reader is invited to determine the weight of each graph 
in the Hackenbush Homestead and verify that the Home- 
stead's nim sum is 10. Since this is not zero, the first player can 
win. It turns out (of course Conway designed it that way) that 
there is only one edge the first player can take that will guar- 
antee a win by lowering the nim sum to zero. Which edge is it? 

My account of hackenbush is only a brief introduction to this 
game. For a fantastic amount of additional information about 
the game, its deep theorems and its numerous variations, see 
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Conway's On Numbers and Games, and the two volumes of Win- 
ning Ways by Berlekamp, Conway, and Guy. Both works also 
contain an abundance of material on other nim-like games and 
the theory behind them in both standard and miskre play. 

ANSWERS 

The first problem was to explain how the winning strategy in 
a chessboard version of nim is affected by allowing players to 
move their counters backward. The answer: It has almost no 
effect. If the loser retreats, the winner merely advances his op- 
posing counter until the number of spaces separating the two 
men is the same as before. This preserves the status quo, leav- 
ing the basic strategy unaltered. The winner never retreats 
and, since the chessboard is finite, the loser's retreats must 
eventually cease. This variation of the game has been attrib- 
uted to D. G. Northcott and is known as h'orthcott's nim. 

How the various parts (graphs) of John  Horton Conway's 
Hackenbush Homestead are transformed, as explained, into 
apple trees, then trees and labeled is shown in Figures 87, 88. 
The graphs have weights of 15-1-1-4-1, therefbre the Home- 
stead's nim sum is 10. The only way the first player can reduce 
this Grundy number to zero is by lowering the apple tree's 
weight to 5. "The tree trunk supports two branches of 8 and 
6," Conway writes, "and these must be changed to 2 and 6, or 

Figure 87 a & b 

WEIGHT = 1 

Weighing the Hackenbush apple tree, door, barrel 
and streetlight 
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Figure 87 c & d 

WEIGHT = 1 

WEIGHT = 4 

Weighing the Hackenbush apple tree, door, barrel 
and streetlight 

8 and 12, to have nim sum 4. Clearly we must choose the left 
branch. Climbing the tree, we discover that there is a unique 
winning move-chop the twig bearing the second apple from 
the left." 

This chop lowers the tree's weight (the value of its trunk) to 
5 [see Figure 891. The graphs now have weights of 5-1-14-1, 
which have a nim sum of zero. 
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Figure 88 

TELEVISION 
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WEIGHT= 1 

Weighing the Hackenbush house 

Figure 89 
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WEIGHT = 5 

Apple tree after the winning chop 
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GOLOMB'S GRACEFUL GRAPHS 

One of the least explored areas of modern mathematics is a 
class of problems that combine graph theory and arithmetic. 
Recreational problems of this type have been discussed before 
in my earlier book collections; for example, in the chapter on 
Magic Stars and Polyhedrons in Ll.lnthematical Cnmi-clal. In this 
chapter we take up a family of numbered-graph problems that 
has recently been defined and developed by Solomon W. Go- 
lomb, professor of engineering and mathematics at the Univer- 
sity of' Southern California. He is the author of Poljominoes 
(Scribner's, 1965), numerous articles on recreational topics and 
many technical papers. What follo~vs is extracted from his cor- 
respondence and from his paper ' L H ~ ~  to Number a Graph." 

Golo~nb has coined the term "graceful graph" for any graph 
that can be "gracefully numbered." He explains this terminol- 
ogy with a simple example: The graceful numbering of the 
graph shown in Figure 90. It is called the "complete graph for 
four points" because every pair of its four nodes is joined by a 
line called an edge. The graph is topologically equivalent to the 

Figure 90 

A graceful graph 
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skeleton of a tetrahedron. It is planar because it can be drawn 
on the plane without intersecting edges. A graph, as we shall 
see, need not be planar in order to be gracefully numbered, 
but it must be without loops (lines joining a node to itself) or 
multiple edges (more than one edge connecting the same pair 
of nodes). 

Each node is labeled with a nonnegative integer. The lowest 
integer (by convention) is 0, and no two integers may be alike. 
After the nodes are numbered every edge is labeled with the 
difference between the numbers of its two end nodes. Like 
node numbers, all edge numbers also must be distinct (no two 
alike). The objective is to do all these things and keep the larg- 
est node number as small as possible. Obviously it cannot be 
smaller than the number of edges. If the largest node number 
equals the number of edges, e, the edge numbers will run con- 
secutively from 0 through e, and we shall have achieved a 
graceful numbering. The number e will represent three values: 
the total number of edges, the highest node number and the 
highest edge number. Any graph that can be gracefully num- 
bered is a graceful graph. Some graceful graphs have only one 
basic numbering, others more than one. (Trivial variations ob- 
tained by such symmetry operations as rotations and reflec- 
tions, or by replacing each node number n by e-n, are not con- 
sidered different.) A graph that cannot be numbered gracefully 
is called an ungraceful graph. 

As Golomb points out, every complete graph can be drawn 
with all its nodes on a straight line and the remaining edges 
can be added as curved lines [see left szde of Figure 911. Let us 
go further. Imagine that the straight line is the edge of a ruler 
with a length equal to the largest edge number of a numbered 
graph. The nodes of the graph are marks on the ruler at 
points that correspond to their numbers, each number indicat- 
ing the mark's distance from the zero end of the ruler. Golomb 
calls such a ruler a "Euclidean model" of a numbered complete 

Figure 91 

Ruler version (left) of a complete graph (right) 
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graph. The problem of gracefully labeling a complete graph of 
n nodes is equivalent to the problem of putting l z  marks on a 
ruler (always including the ruler's two ends as marks) so that 
every distance between a pair of marks is a distinct integer. In 
this example the ruler is marked at points 0, 1, 4 and 6, the 
node numbers of the complete graph for four points after it is 
gracefully numbered. Such a ruler clearly can measure lengths 
of one, two, three, four, five and six units. At the right of the 
ruler is shown another way of drawing the complete graph for 
four points: as a four-sided polygon with all its diagonals. (The 
intersection of the diagonals is not, of course, a node). Note 
that the distances between adjacent marks on the ruler, to- 
gether with the ruler's length, correspond to the perimeter 
numbers of the gracefully labeled square graph. 

A closely related but less restricted ruler problem was dis- 
cussed in Chapter 6 of my book The Incredible Dr. Matrix. Dr. 
Matrix' rulers measure all integral distances from zero to the 
length of the ruler, but the numbers of its "edges" (distances 
between any pair of marks) are not required to be different. 
With the added proviso that all such distances must be differ- 
ent, Dr. Matrix' ruler problem becomes identical with the prob- 
lem considered here: That of finding a ruler with marks that 
correspond to the graceful numbering of a complete graph 
with n nodes. Golomb proves in his paper that this can be done 
only if n is 1, 2 ,  3, or 4. Expressed differently, no complete 
graph for n points, when n exceeds 4, can be gracefully 
numbered. 

If we keep the requirement that all distances between pairs 
of marks must be different, but we do not insist that they run 
consecutively from zero to the ruler's total length, we can still 
look for the shortest possible ruler of n marks (end points are 
included as marks) on which all distances between a pair of 
marks (which correspond to the edge numbers of the complete 
graph for n points) are different. In the chart of the shortest- 
known rulers when n is from 2 through 11 [see Figure 921, only 
the first three entries are solutions to Dr. Matrix' ruler prob- 
lem. They correspond to the graceful numbering of complete 
graphs for two, three and four points. The other rulers do not 
have consecutive integral distances from zero to the ruler's 
length; they correspond to what Golomb calls the "best" num- 
bering of complete graphs for more than four points. The 
numbers in each row give the distances between adjacent 
marks on rulers of two, three, four, .  . . , 11 marks. The chart, 
which extends downward to infinity, is called the Golomb 
triangle. 



GOLOMB'S GRACEFUL GRAPHS 155 

Figure 92 

GOLOMB'S TRIANGLE: Shortest Golomb rulers known in 1972. 

We can put the difference between Dr. Matrix' rulers and 
Golomb's rulers as follows. Dr. Matrix' rulers minimize the 
number of marks for a ruler of length k that can measure all 
integral distances from 1 through k. Golomb's rulers do not 
necessarily include all the integral distances from 1 through k; 
with Golomb's rulers, for a ruler with a given number of 
marks, the length of the ruler is minimized and all the integral 
distances the ruler does measure are different. If we draw a 
graph corresponding to a Dr. Matrix ruler, we may find two 
edges with the same edge number. By omitting all edges with 
duplicate numbers we can get a graceful graph that Golomb 
calls a "graceful approximation" of a complete graph. For ex- 
ample, by dropping one edge (the line between points 1 and 4) 
from a complete graph for five points [see Figure 931 the graph 
can be gracefully numbered. It is equivalent to Dr. Matrix' 
ruler with marks at points 0, 1, 4, 7 and 9. 

It is worth noting that on Golomb rulers not only are all dif- 
ferences between pairs of node numbers distinct, but also all 
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Figure 93 

O&I 

4 7 

Graceful graph for a Dr Matr~x ruler 

sums of pairs of node numbers, including the pairing of a node 
number with itself. "That this is equivalent to the differences 
being distinct is surprising," Golomb writes, "but fantastically 
simple to prove." (Proof: if a -  b= c-  d, then a f d  = b+ c, and 
conversely.) 

With a yardstick, or 36-unit ruler as an example, here is a 
quick way to prove that all distances measured by a Golomb 
ruler are distinct. The yardstick has eight marks. The top row 
[see F z p r e  941, taken from Golomb's triangle, gives the dis- 
tances between adjacent marks on this ruler. These seven num- 
bers, together with the ruler's total length, correspond to the 
eight edge numbers on the perimeter of an eight-sided poly- 
gon when it is made into a complete graph by drawing all its 
diagonals and then numbered as gracefully as possible. The 

F~gure 94 

1 3 6 1 1 8 5 2  

4 9 17 19 13 7 

10 20 25 24 15 

21 28 30 26 

29 33 32 

34 35 

36 

Proof for e~ght-mark Golomb ruler 
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second row of numbers is obtained by adding successive pairs 
of numbers in the row above it. The third row consists of add- 
ing successive triplets in the top row, the fourth row of adding 
successive quadruplets, and so on. The bottom number is the 
ruler's length. It is, of course, the sum of all the numbers in 
the top row. The 28 numbers of this triangle are the 28 edge 
numbers of the complete graph for eight points when it is 
given the best ungraceful numbering. If all these numbers are 
different, no two edge numbers of the complete graph will be 
alike and no two distances between pairs of marks on the cor- 
responding ruler will be alike. 

Golomb admits that for all rulers longer than six units the 
results were obtained (by himself and others) partly by trial 
and error. They have not yet been proved to be rulers of min- 
imal length. (The ruler of length 47, for nine marks, was first 
found in 1965 by Matthew J. C. Hodgart of Brighton in Eng- 
land; the ruler of 72 lengths, for 11 marks, by Robert Reid of 
Miraflores in Argentina, also in 1965.) Perhaps readers can im- 
prove on these results or extend the triangle farther downward. 

One of the many unusual properties for all graceful graphs 
discovered by Golomb is that the nodes of such graphs can al- 
ways be divided into two sets-those with even numbers and 
those with odd-and the number of edges connecting the two 
sets will be [ ( e +  1)12], where e is the total number of edges in 
the graph. The brackets mean that the expression is rounded 
down to the nearest integer. Golomb calls this a "binary label- 
ing." For example, the even set of nodes in the graph at the 
left of Figure 91 are numbered 0, 4 and 6, and the odd set has 
only the number 1. Inspection shows that the two sets are in- 
deed joined by [(6 + 1)/2] = 3 edges. 

Moreover, as Golomb proves, if all the nodes of a graph are 
of even order (attached to an even number of edges), the 
graph is graceful only if [(e+ 1)/2] is even. When this value is 
odd, binary labeling is impossible and therefore the graph can- 
not be gracefully numbered. Of the topologically distinct 
graphs with five or fewer nodes, only three are ungraceful. All 
three have five nodes and all their nodes are of even order. 
The three graphs violate Golomb's condition that [(e+ 1)/2] 
must be even [see Figure 951. Note that the first two graphs are 
planar whereas the third, the complete graph for five points, is 
not. This shows that not all planar graphs, and not all non- 
planar graphs, are graceful. Can a nonplanar graph be grace- 
ful? Yes, as the graceful labeling of the Thomsen graph shows 
[see Figure 961. The Thomsen graph is sometimes called the 
utilities graph because it diagrams the well-known (and unsolv- 
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Figure 95 

The only ungraceful graphs with fewer than six nodes 

Figure 96 

A graceful numbering of the Thomsen graph 

able) puzzle in which three houses are each to be connected to 
three utilities without any crossing of edges. The Thomsen 
graph is one of an infinite family of graphs, known as "com- 
plete bipartite graphs," in which every node in a set of a nodes 
is joined to every node in a set of b nodes, but nodes within 
each set are not connected. Golomb has established that all 
complete bipartite graphs are graceful. 

Skeletons of polyhedrons can be represented as planar 
graphs known as Schlegel diagrams. Of the five Platonic solids 
only the dodecahedron and icosahedron have not been shown 
to be graceful. We have seen how to gracefully number the te- 
trahedron. Can the reader gracefully number the Schlegel dia- 
grams of the cube and octahedron [see Figure 971 before Go- 
lomb's labelings are given in the Answer Section? Can he do 
the same for the diagram of the skeleton of the Great Pyramid 
of Egypt? Can he discover graceful numberings for the dode- 
cahedron or the icosahedron? 

Three other graceful graphs by Golomb have six, seven and 
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Figure 97 

Three graceful Schlegel graphs: cube (left), 
octahedron (center) and Great Pyramid (right) 

Figure 98 

Three graceful graphs by Golomb with six, seven, 
and ten nodes 

10 nodes [see Figure 981. Can the reader number these also be- 
fore the solutions are given? 

In addition to complete bipartite graphs there are other in- 
finite families of graceful graphs. One found by Golomb is 
shown in Figure 99. The question arises: As the number of 
nodes approaches infinity, does the fraction of graceful graphs 
among all graphs of n nodes approach a limit? If so, what is 
the limit? For several years no fractional value from 0 through 

Figure 99 

An infinite family of graceful graphs 



CHAPTER 15 

1 was excluded, but recently Paul Erdos has been able to show 
that the limit is 0. His proof, not yet published, is difficult. 
Gary Bloom and Herbert Taylor found a fairly easy way to 
show that the number of graceful graphs with e edges is 
equal to or less then e, from which it follows at once that the 
limit is 0. 

Although many unsolved problems about graceful graphs, 
some very technical, have now been cleared up by Golomb, 
Erdos, and others, there are still several major questions that 
remain unanswered: 

(1) What are the necessary and sufficient conditions for a 
graph to be graceful? It is not even known if all tree graphs 
are graceful. (Tree graphs are discussed in Chapter 17 of my 
iZilathematica1 i\4agic Show.) Gerhard Ringel in 1963 apparently 
was the first to conjecture, in a different terminology and in- 
dependently of Golomb's work, that all tree graphs can be 
gracefully numbered. This has been the subject of several pa- 
pers by Alexander Rosa and other Czechoslovakian mathema- 
ticians. The conjecture has been established only for special 
kinds of trees such as "caterpillars"; trees with every node on 
a central stalk or only one edge from the stalk [see Figure 1001. 
In a typical gracefully numbered caterpillar the edge numbers 
run consecutively from one end of the tree to the other. 

Figure 100 

A graceful caterpillar 

Golomb has discovered a similar algorithm for gracefully 
numbering an infinite class of polyomino graphs such as the 
pentomino and the heptomino [see Figure 1011. Note how the 
consecutive numbers run diagonally upward, from left to right. 
Unfortunately there is an infinite class of polyominoes with a 
greater degree of concavity (the degree is not easy to define) 
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Figure 101 

Graceful polyominoes 

for which this procedure fails even when they can be gracefully 
numbered. 

A simple graph found by Golomb [see Figure 1021 is particu- 
larly ungraceful because it is not ruled out by any known gen- 
eral theorem. 

Figure 102 

A curiously ungraceful graph 

(2) What are the rules for forming Golomb's triangle? Put 
another way, is there a general algorithm for finding the short- 
est rulers that correspond to the best ungraceful numbering of 
a complete graph for more than four points? 

(3) Is there a graph that, when numbered as gracefully as 
possible, violates the conjecture that on all such graphs the 
highest node number and the highest edge number are equal? 
Golomb is now searching for a counterexample; a graph with 
the best numbering but with a highest node number that ex- 
ceeds the highest edge number. (It cannot be the other way 
around.) "If I find one," Golomb writes in a letter, "the graph 
will not only be ungraceful but downright disgraceful." 
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Figure 103 

Solutions to the graceful-graph problems 

ANSWERS 

Solutions to the six graphs that readers were asked to number 
"gracefully" are shown in Figure 103. None of these number- 
i n g ~  is unique. 

Readers were also asked to improve on the rows of "Go- 
lomb's triangle," each row giving the shortest-known rulers of 
n marks (including end points) such that every distance be- 
tween a pair of marks is a distinct integer. Walter Penney of 
Greenbelt, Md., was the first to lower the eight-mark ruler to 
length 34. The same ruler was also found by hand by Daniel 
A. Lynch of Wildwood, N.J. 

William Mixon of the University of Chicago was the first to 
make an exhaustive computer search for all minimum-length 
rulers through 11 marks. His results show that rulers of eight, 
nine and 10 marks are unique, except of course for reversals 
[see Figure 1041. These results were completely confirmed by 
Ashok Kumar Chandra's computer program at Stanford Uni- 
versity and partly confirmed by the programs of Paul Steier, 
James R. Van Zandt, Edward Schonberg and others. Working 
by hand, Sheldon B. Akers found the nine-mark ruler, and 
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Figure 104 

Minimum-length Golomb rulers 

NODES 

3  

4  

5  

6  

7  

8  

9 

10 

11 

Wolfgang Harries, also working by hand, found all but one of 
the rulers with six and seven marks. 

The 10-mark ruler and one 1 1-mark ruler had been found 
earlier by John P. Kobinson of the University of Iowa with a 
nonexhaustive computer search made in connection with work 
on his 1966 doctorate on error-correcting codes. His best re- 
sults, for rulers through 24 marks, are given in "A Class of Bi- 
nary Recurrent Codes with Limited Error Propagation," by Ro- 
binson and Arthur J. Bernstein, in IEEE Transactions on 
Informatzon Theory (Volume IT- 13, Number 1, January, 1967, 
pages 106- 1 13). 

R. C. Asheilfelter of the Bell Telephone Laboratories was 
the first to gracefully label the dodecahedron. Charldra devised 

LENGTH 

3  

6  

11 

17 

25 

34 

44 

55 

72 

DIVISIONS 

1 , 2  

l , 3 , 2  

l , 3 , 5 , 2  

2, 5 , 1 , 3  

1, 3, 6, 2, 5  

1, 3,6 ,  5, 2 

1, 7 ,3 ,2 ,  4  

I, 7, 4, 2, 3  

1,3,  6,8,  5 , 2  

1, 6, 4, 9, 3, 2  

1, 10, 5, 3, 4, 2  

2, 1, 7, 6, 5, 4  

2, 5, 6, 8, 1, 3  

1, 3, 5, 6, 7, 10, 2  

1 , 4 , 7 , 1 3 , 2 , 8 , 6 , 3  

1 , 5 , 4 , 1 3 , 3 , 8 , 7 , 1 2 , 2  

1 ,3 ,9 ,15 ,5 ,14 ,7 ,10 ,6 ,2  

1 , 8 , 1 0 , 5 , 7 , 2 1 , 4 , 2 , 1 1 , 3  
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a computer program that made an exhaustive search for the 
icosahedron and produced five fundamentally different label- 
ings. A partial search for the dodecahedron yielded a large 
number of graceful labelings. This settles affirmatively Go- 
lomb's conjecture that the skeletons of all five Platonic solids 
are graceful graphs. 

ADDENDUM 
The earliest reference on Golomb rulers known to me is A. Ross 
Eckler's "The Construction of Missile Guidance Codes Resistant 
to Random Interference," in The Bell System Technzcal Journal, 
Vol. 39, July 1960, pages 973-974. 

Golomb rulers ha\e practical applications to pulsed radar 
and sonar codes (see "Synch-Sets: A Variant of Difference 
Sets," by G. J. Simmons, Proceedzngs of the Fzfth Southeastern Con- 
ference on Combznatorzcs, Graph The09 and Computzng, Boca Ra- 
ton, 1974, pages 625-645) and to X-ray diffraction crystallog- 
raphy. Two Golomb rulers of length 17 provide counterexamples 
to a "theorem" published by S. Picard in 1939 and used in crys- 
tallography for many years. 

Richard Guy reported (The Amerzcan Mathematzcal Monthly, 
Vol. 88, December 1981, page 756) that since Golomb revived 
Ringel's conjecture that all tree graphs are graceful, some 100 
papers have dealt with partial results on this notorious and still 
unanswered question. 

Ronald L. Graham and Neil Sloane, both of Bell Laborato- 
ries, have defined a "harmonious graph" as follows: A con- 
nected graph, with n edges, is harmonious if its points can be 
labeled with distinct integers (modulo n )  so that the sums of the 
pairs of numbers at the ends of each edge are also distinct 
(modulo n) .  Harmonious graphs have much in common with 
graceful graphs, and are related to error-correcting codes and 
to a famous combinatorial problem known as the postage 
stamp problem. See "On Additive Bases and Harmonious 
Graphs," by Graham and Sloane, SIAM Journal on Algebrazc and 
Dzscrete Methods, Vol. 1, December 1980, pages 382404. The 
authors show (among many other things) that graphs known as 
ladders, fans, and wheels are harmonious. Trees (with zero re- 
peated once) may be harmonious. The Peterseri graph and 
skeletons of the tetrahedron, dodecahedron, and icosahedron 
are harmonious. Skeletons of the cube and octahedron are not. 
Almost all graphs, the authors conclude, are neither harmoni- 
ous nor graceful. 
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CHARLES ADDAMS' SKIER 

AND OTHER PROBLEMS 

1. THE FLEXIBLE BAND 

Gustavus J. Simmons, in charge of research and development 
at Rolamite Inc., Albuquerque, N.M., sent this curious topo- 
logical problem. Work at Rolamite involves complex banded 
rolling systems. One of the Rolamite engineers, Virgil Erbert, 
was confronted in the course of his work with the problem 
shown in Figure 105. End A of a flexible band was fastened to 
an object that was too large to pass through the slot at end B. 
It was essential that the band be formed into the looped'con- 
figuration shown in the illustration without detaching end A 
from the object to which it was fastened. Can it be done? 

It looks impossible, but the answer is yes. The reader is in- 
vited to draw a rough facsimile of the band on a sheet of pa- 

Figure 105 

A looped-band topological puzzle 
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per, cut it out and tape end A to a tabletop. The puzzle, which 
is not difficult, is to manipulate the strip into the looped 
configuration. 

2. THE ROTATING DISK 

Six players-call them A, B, C, D, E and F-sit around a circu- 
lar table divided into six equal parts. At the center of the table 
is a disk mounted on a central pin around which it can rotate 
[see Figure 1061. The disk is marked with arrows and digits. 

Figure 106 

D. St. P. Barnard's game problem 

The wheel is spun five times. After each spin each player 
scores the number of points within his segment of the table. (If 
the wheel stops with its arrows exactly between adjacent play- 
ers, the spin is not counted.) The players keep a running total 
of points, and the one with the largest total after the fifth spin 
is the winner. If there are ties for the highest score, no one 
wins and the game is played again. 

The outcome of the first spin is shown in the illustration. 
C is ahead with five points. After the second spin D is ahead. 
After the fifth spin A is the winner. What was each player's fi- 
nal score? The information seems to be insufficient, yet the 
question can be answered accurately by deductive reasoning. 
This unusual logic problem is adapted from a puzzle in one of 
D. St. P. Barnard's popular "Brain-twister" columns in the Brit- 
ish Observer. 
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3. FRIEZE PATTERNS 

A frieze is a pattern that endlessly repeats itself along an infi- 
nite strip. Such patterns can exhibit different kinds of basic 
symmetry, but here we shall be concerned only with what is 
called "glide symmetry." A glide consists of a slide (more tech- 
nically a "translation") combined with mirror reflection and a 
half-turn. For example, repeatedly gliding the letter R to the 
right along a strip generates the following frieze: 

RBRBRBRBRBRBRBR... 
H. S. M. Coxeter, a geometer at the University of Toronto, 

recently investigated in depth a remarkable class of frieze pat- 
terns that can be constructed very simply by using nonnegative 
integers, if the lack of symmetry in the shapes of the numerals 
is ignored [see Figure 1071. Think of the numerals as represent- 
ing spots of colors, all 1's the same color, all 2's another color 
and so on. In this instance any rectangular portion of the frieze 
that is nine columns wide, such as the shaded one shown here, 
can be regarded as the unit pattern. By gliding it left or  right- 
that is, sliding and simultaneously reflecting and inverting- 
the infinite frieze pattern is generated. 

Figure 107 

A frieze pattern with glide symmetry 
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T o  produce this type of frieze pattern, begin with infinite 
borders of 0's and 1's at top and bottom, and a path of num- 
bers from top to bottom such as the zig-zag path of eight 1's 
shown on the left between the borders of 0's. The numbers in 
such a path (which may be straight, or crooked as it is here), as 
well as the length of the path, can be varied to produce differ- 
ent patterns. A simple formation rule, common to all such pat- 
terns, is now applied to obtain all the other integers. The sur- 
prising glide symmetry that results is a nontrivial consequence 
of this rule. 

Our puzzle, suggested by Coxeter, is to guess the simple 
rule. Hint: It can be written as an equation with three terms 
involving nothing more than multiplication and addition, and 
no exponents. When Coxeter first showed the pattern given 
here to the mathematician Paul Erdos, Erdos guessed the rule 
in 20 seconds. 

A discussion of the properties of such friezes, their fascinat- 
ing historical background and their applications to determi- 
nants, continued fractions and geometry can be found in Cox- 
eter's "Frieze Patterns" in Acta Arithmetica, Volume 18 (1 97 l) ,  
pages 297-310. On friezes in general and their seven basic 
kinds of symmetry see Coxeter's modern classic, Introduction to 
Geometry (Wiley, 196 l ) ,  pages 47-49. 

4.  THE CAN OF BEER 

On a picnic not long ago Walter van B. Roberts of Princeton, 
N.J., was handed a freshly opened can of beer. "I started to 
put it down," he writes, "but the ground was not level and I 
thought it would be well to drink some of the beer first in or- 
der to lower the center of gravity. Since the can is cylindrical, 
obviously the center of gravity is at the center of a full can and 
will go down as the beer level is decreased. When the can is 
empty, however, the center of gravity is back at the center. 
There must therefore be a point at which the center of gravity 
is lowest." 

Knowing the weight of an empty can and its weight when 
filled, how can one determine what level of beer in an upright 
can will move the center of gravity to its lowest possible point? 
When Roberts and his friends worked on this problem, they 
found themselves involved with calculus: Expressing the height 
of the center of gravity as a function of the height of the beer, 
differentiating, equating to zero and solving for the minimum 
value of the height of the center of gravity. Later Roberts 
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thought of an easy way to solve the problem without calculus. 
Indeed, the solution is simple enough to get in one's head. 

T o  devise a precise problem assume that the empty can 
weighs 1% ounces. It is a perfect cylinder and any asymmetry 
introduced by punching holes in the top is disregarded. The 
can holds 12 ounces of beer, therefore its total weight, when 
filled, is 131/zounces. The can is eight inches high. Without us- 
ing calculus determine the level of the beer at which the center 
of gravity is at its lowest point. 

5.  THE THREE COINS 

Three coins are on the table; a quarter, a half-dollar and a sil- 
ver dollar. Smith owns one coin and Jones owns the other two. 
All three coins are tossed simultaneously. 

It is agreed that any coin falling tails counts zero for its 
owner. Any coin falling heads counts its value in cents. The 
tosser who gets the larger score wins all three coins. If all three 
come up tails, no one wins and the toss is repeated. 

What coin should Smith own so that the game is fair, that is, 
so that the expected monetary win for each player is zero? 

David L. Silverman, author of the excellent book of game 
puzzles called Your Move (McGraw-Hill, 1971), is responsible 
for this new and unpublished problem. It has an amazing an- 
swer. Even more astonishing is a generalization, formally 
proved by Benjamin L. Schwartz, of which this problem is a 
special case. 

6. KOBON TRIANGLES 

Kobon Fujimura, a Japanese puzzle expert, recently invented 
a problem in combinatorial geometry. It is simple to state, but 
no general solution has yet been found. What is the largest 
number of nonoverlapping triangles that can be produced by 
n straight line segments! 

It is not hard to discover by trial and error that for n= 3, 4, 
5 and 6 the maximum number of triangles is respectively one, 
two, five and seven [see Figure 1081. For seven lines the prob- 
lem is no longer easy. The reader is asked to search for the 
maximum number of nonoverlapping triangles that can be 
produced by seven, eight and nine lines. 

The problem of finding a formula for the maximum 'number 
of triangles as a function of the number of lines appears to be 
extremely difficult. 
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Figure 108 

Maximum number of nonoverlapping triangles for 
three, four, five, and six lines 

7. A NINE-DIGIT PROBLEM 

One of the satisfactions of recreational mathematics comes 
from finding better solutions for problems thought to have 
been already solved in the best possible way. Consider the fol- 
lowing digital problem that appears as Number 81 in Henry 
Ernest Dudeney's Amusements in Mathematics. (There is a Dover 
reprint of this 1917 book.) Nine digits (0 is excluded) are ar- 
ranged in two groups. On the left a three-digit number is to be 
multiplied by a two-digit number. On the right both numbers 
have two digits each: 

In each case the product is the same: 3,634. How, Dudeney 
asked, can the same nine digits be arranged in the same pat- 
tern to produce as large a product as possible, and a product 
that is identical in both cases? Dudeney's answer, which he said 
"is not to be found without the exercise of some judgment and 
patience," was 

Victor Meally of Dublin County in Ireland later greatly im- 
proved on Dudeney's answer with 
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This remained the record until last year, when a Japanese 
friend of Fujimura's found an even better solution. It is be- 
lieved, although it has not yet been proved, to give the highest 
possible product. Can the reader find it without the aid of a 
computer? 

8. CROWNING T H E  CHECKERS 

A well-known problem with checkers is begun by placing eight 
checkers in a row. A move consists in picking up a checker, car- 
rying it right or left over exactly two checkers, then placing it 
on a checker to make a king. (Carrying a checker over a king 
counts as moving it over two checkers.) In four moves form 
four kings. The problem is not difficult, and it is easy to show 
that for any even number of checkers, n, when n is at least 8, 
a row of 12i2 kings can always be produced in nl2 moves. 

Numerous variants on this old problem have been proposed 
by Dudeney and other puzzle inventors. The following varia- 
tion on the theme, which I believe is new, was suggested and 
solved by W. Lloyd Milligan of Columbia, S.C. 

An even number of checkers, n, are placed in a row. First 
move a checker over one checker to make a king, then move a 
checker over two checkers, then a checker over three checkers, 
and so on, each time increasing by one the number of checkers 
to be passed over. The objective is to form ni2 kings in nl2 
moves. 

Can the reader prove that the problem cannot be solved un- 
less n is a multiple of 4, and give a simple algorithm (proce- 
dure) for obtaining a solution in all cases where n is a multiple 
of 4' A solution is easily found by trial and error when n is 4 
or 8, but for n= 16 or higher it is not so easy without a system- 
atic method. 

9. C H A R L E S  ADDAMS'  SKIER 

Single-panel gag cartoons, like Irish bulls, are often based on 
outrageous logical or physical impossibilities. Lewis Carroll 
liked to tell about a man who had such big feet that he had to 
put his pants on over his head. Almost the same kind of im- 
possibility is the basis of a famous New Yorker cartoon by 
Charles Addams of a woman skier going down a slope. Behind 
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her you see her parallel ski tracks approaching a tree, going 
around the tree with a track on each side and then becoming 
parallel again. 

Suppose you came on a pair of such ski tracks on a snowy 
slope, going around a tree exactly as in Addams' cartoon. As- 
sume that they are, in truth, tracks made by skis. Can you think 
of at least six explanations that are physically possible? 

ANSWERS 

1. How to form a loop with the Rolamite band while end A 
is taped to a tabletop is shown in Figure 109. 

Figure 109 

Solutions to the loop problem 

Robert Neale, whom we encountered in the chapter on pa- 
per folding, suggested applying this to a playing card, say the 
joker. Use a razor blade to cut along the lines shown on the 
card at the left of Figure 110. Discard the shaded cut-out re- 
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Figure 11 0 

The curious joker 

gion. By carefully executing the trick bend with the little 
square loop, taking care not to crease or tear its sides, you can 
produce the structure shown on the right. It is an amusing cur- 
iosity to carry in a wallet and show to friends. How the devil 
was it made? It looks, of course, as if the entire card had to be 
somehow pushed through the tiny window! 

2. The first two rows of the chart [see Figure 11 11 show the 
results of the first two spins. The first spin was given, and we 
were told that D had the highest total after the second spin. 
This could happen only if the wheel distributed the points as 
shown in the second row. Now comes the tricky part. Every op- 
posite pair of digits on the disk used in the game add to 5. This 

Figure 11 1 

Solution to D. St. P. Barnard's problem 
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means that every spin will give a combined sum of five points 
to each pair of players seated opposite each other-namely AD, 
BE and CF. At the end of the game, which has five spins, each 
of these pairs of players will have a combined sum of 25 points. 

We know that A won the game. Since his was the highest 
score, D (who sits opposite) must have ended with the low- 
est score. D's final score must be less than 13, otherwise A's fi- 
nal score would be smaller. D's final score cannot be 12. True, 
A would score 13, but then a player of the pair BE,  as well as 
a player of the pair CF, would necessarily score 13 or better, 
preventing A from being the highest scorer. 

As we have seen, D cannot score more than 11. He already 
has nine points at the end of the second spin, threfore, at least 
one of the three remaining spins must give him zero. Since the 
order of the results of each spin cannot affect the final scores, 
we can assume that D scored zero after the third spin. This de- 
termines the points for the other players as indicated in the 
third row of the chart. 

On the next two spins, D's points can only be 0-0, 0-1, 1-1 
or 0-2. We test each in turn. If 0-0 or 0-2, A will tie with 
someone on his final score. If 1-1, F gets 5-5 and wins with a 
score of 15. Only 0-1 remains for D. This makes A the winner, 
with 15 points, and enables us to complete the chart as indi- 
cated. We do not know the order of the last three spins, but 
the final scores are accurate. The problem is No. 2 in D. St. P. 
Barnard's first pu~z le  book, F f t j  Observer Brazn-Twzsters (Faber 
and Faber, Ltd., 1962). 

3. The formation rule for H. S. M. Coxeter's frieze patterns 
is that everv four adjacent numbers 

b 
a d 

C 

satisfy the equation ad = bc + 1. 
4. Walter van B. Roberts answered his beer-can problem this 

way: "Imagine that the beer is frozen so that the can of beer 
can be placed horizontally on a knife-edge pivot and balanced 
with the can's top to the left. If it balances with the pivot under 
the beer-filled part, adding more beer would make the can tip 
to the left, whereas removing beer would make it tip to the 
right. If it balances with the pivot under the empty part, the 
reverse would be true. But if it balances with the pivot exactly 
under the beer's surface, any change in the amount of beer will 
make the can tip to the left [see Figure 1121. Since in this case 
the center of gravity moves toward the can's top when any 
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Figure 1 12 

The balanced beer can 

change is made in the amount of beer, the center of gravity 
must be at its lowest point when it coincides with the beer's 
surface. 

"With the can balanced in this condition, imagine that the 
ends are removed and their mass distributed over the side of 
the can. This cannot upset the balance because it does not shift 
the center of gravity of the system, but it allows us to con- 
sider the can as an open-ended pipe whose mass per unit 
length on the empty (left) side is proportional to the weight of 
an empty can, whereas the mass on the beer-filled right side is 
proportional to the weight of a full can. The moment of force 
on the left is therefore proportional to the weight of an empty 
can multiplied by the square of the length of the empty left 
side, and the moment on the right side is similarly proportional 
to the weight of a full can multiplied by the square of the 
length of the beer-filled right side. Since the can is balanced, 
these moments must be equal. 

"Pencil and paper are now hardly required to deduce that 
the square of the length of the empty part divided by the 
square of the length of the full part equals the weight of a full 
can divided by the weight of an empty can, or, finally, that the 
ratio of the length of the empty part to the full part is the 
square root of the ratio of the weight of a full can to an empty 
one." 

Expressed algebraically, let a and b stand for the lengths of 
the empty and filled parts of the can when the center of gravity 
is at its lowest point and E and F for the can's weight when 
empty and full. Then a2E = b2F, or alb =  FIE. 

In the example given, the can weighs nine times as much 
when it is full as it does when it is empty. Therefore the center 
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of gravity reaches its lowest point when the empty part is three 
times the length of the full part, in other words, when the beer 
fills the can's lower fourth. Since the can is eight inches high, 
the level of the beer is 814 = 2 inches. 

After the above solution appeared in Scient$c American, 
Mark H .  Johnson wrote to say that the answer is not strictly ac- 
curate. Because the tops and bottoms of the frozen can are at 
unequal distances from the pivot, they exert unequal moments 
of force. Distributing their masses over the can's side, to make 
a uniform and open pipe, would tilt the can slightly to the air 
side. To  solve the problem precisely one needs more data 
about the can's dimensions and the masses of its top, bottom 
and side. Other readers reported that the solution also neglects 
what naval architects and engineers call the "free surface ef- 
fect." When liquids are free to move inside containers, a slight 
raising of the vessel's center of gravity results. 

5. Regardless of which coin Smith chooses, the game is fair. 
The payoff matrices show [see Figure 1131 that in every case the 
person least likely to win (because he has only one coin) wins 
just enough when he does win to make both his expectation 
and that of his opponent zero. 

As David Silverman suspected when he found this solution, 
the problem is a special case of the following generalization. If 

Figure 11 3 

Payoffs for player with silver dollar (top,) 
half-dollar (middle), and quarter (bonom) 
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a set of coins have values that are adjacent in the doubling se- 
ries 1 - 2 4 8 - 1 6  . . . and the game is played as described, 
it is a fair game regardless of how the coins are divided. We 
assume, of course, that each player has at least one coin and 
that each value is represented by only one coin. 

Daniel S. Fisher, a high school student in Ithaca, N.Y., gen- 
eralized Silverman's generalization. He showed that Silver- 
man's game is fair for any division of ownership of the coins 
when values of the coins are 1, n, n2, . . . , nk and the coins are 
weighted to fall tails with probability lln (n equal to or greater 
than 2). 

6. The maximum number of nonoverlapping triangles that 
can be produced by seven, eight and nine lines are 1 1 ,  15 and 
21 respectively [see Figure 1141. These are thought, although 
not yet proved, to be maximal solutions. 

Figure 1 14 

Solution to triangle problem 

7. The solution with the largest product is: 
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The problem has 11 basic solutions: 

Many readers found all eleven by hand, others found them 
with computer programs. Allan L. Sluizer pointed out that the 
maximum answer has digits 1 through 5 in one of the multi- 
plications, and digits 6 through 9 in the other. 

If 0 is included among the digits (though not as an initial 
digit of a number), we may ask for solutions of the expression 
abc x de = fgh x y. There are 64 solutions, all independently 
found by Richard Hendrickson, R. F. Forker, and Sluizer. The 
one with the smallest product is 306 x 27 = 459 x 18 = 8,262. 
The one with the largest product is 915 x 64= 732 x 80= 
58,560. The maximum solution is given by Dudeney, in his an- 
swer to problem 82 of Amusements zn Mathematzcs, as the maxi- 
mum product obtainable if the ten digits are divided in any 
manner whatever to form a pair of multiplications, each of 
which gives the product. As in all such problems, 0 may not be 
an initial digt. The lowest product is given by 3,485 x 2 = 6,970 x 
1 = 6,970. 

"It is extraordinary," Dudeney once declared, "what a large 
number of good puzzles can be made out of the ten digits." 
Here are some examples similar to our original problem. How 
many solutions are there to ab x cde = fghz, using the nine posi- 
tive digits? And how many to a x  bcde=fghz? The seven solu- 
tions to the first problem, and the two to the second, are given 
by Dudeney in his answer to problem 80, Amusements zn 
Mathematzcs. 

Using all ten digits, how many solutions are there for a b x  
cde=fghg? I have not seen this answered in print, but Y. K. 
Bhat, a correspondent in New Delhi, found nine: 
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How about ab x c=de-  fg= hi, excluding O? In Modern Puz- 
zles, problem 73,  Dudeney gives the only answer: 17 x 4 = 93 - 
25 = 68. 

Clement Wood, in his rare Book of Mathematzcal Oddztzes (Lit- 
tle Blue Book No. 1210), asserts that a b x c = d e x  f=ghz (0  ex- 
cluded) has only two solutions: 38 x 4 = 7 8  x 2 = 156, and 58 x 
3 = 2 9 ~ 6 =  174. 

One final problem that I leave unanswered. Find the only so- 
lution (excluding 0 )  to a x bc = d x ef = g  x hz. This was sent to me 
in 1972 by Guy J .  Crocker, who discovered it. I cannot recall 
having seen it before. 

8. If n is odd, it is obvious there is no solution. If n is even 
but not a multiple of 4, an odd number of checkers must be 
jumped on the final move. This would necessarily leave a sin- 
gle checker in the row, therefore the assumption that there is 
a solution when n is not a multiple of 4 must be false. 

If there are 4 n  checkers, the problem can be solved by work- 
ing it backward according to the following algorithm. Start 
with ni2 kings in a row. Take the top checker from either of 
the two middle kings, jump over the largest group of kings and 
put down the checker as a single man. On the next backward 
move take the top checker from the other middle king and 
jump in the same direction as before, jumping one fewer 
checker. Follow this procedure until all kings in the direction 
of the first jump are eliminated. Take the top checker from the 
inside king and jump in the same direction as the previous 
jumps, moving it over the proper number of checkers. Con- 
tinue this procedure, always in the same direction, until all the 
kings are reduced to single men. When these moves are taken 
in reverse order, they provide one solution (there are many 
others) to the original problem. 
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9. Here are six possible explanations of the ski tracks: 
(1) The skier bumped into the tree but protected himself 

with his hands. Keeping one ski in place, he carefully lifted his 
other foot and moved to the lower side of the tree. With his 
back against the tree, he replaced his raised foot and ski on the 
other side, then continued down the slope. 

(2) The skier slammed into the tree with such force that his 
skis came off and continued down the slope without him. 

(3) Two skiers went down the hill, each wearing only one ski. 
(4) One skier went down the hill twice, each time with one 

ski on one foot. 
(5) A skier went down a treeless slope, moving his legs apart 

at one spot. Shortly thereafter a tree with a sharpened trunk 
base was plunged into the snow at that spot. 

(6) The skier wore stilts that were high enough and suffi- 
ciently bowed to allow him to pass completely over the tree. 

So many readers sent other preposterous explanations that 
I can give only a sampling: 

A small, supple tree that bent as the skier went over it was 
proposed by John Ferguson, John Ritter, Brad Schaefer, 
Oliver G. Selfridge and James Weaver. Fergusvn also sug- 
gested (among his 23 possibilities) a pair of skis pulled uphill 
by long ropes and two toboggan teams of v e q  small midgets, 
four on each ski. Selfridge included this one: The skier, aware 
of his ineptness, wore a protective lead suit. His impact on the 
tree sheared out a cylindrical section. The dazed skier passed 
between top and bottom parts of the tree before the top fell 
down and balanced perfectly on the base. 

Manfred R. Schroeder, director of the Drittes Physikalisches 
Institut at the University of Gottingen, reported an actual ex- 
perience he had in 1955 while skiing down a mountain in h'ew 
Hampshire. "I hit a small but sturdy tree with my right shin- 
bone. The binding came loose and the ski and leg went around 
different sides of the tree. Below the tree, leg and ski came to- 
gether again. However, the binding did not engage (no auto- 
matic step-in bindings then!) and the tracks ended in a spill 
about ten yards farther down the slope. Even then, in spite of 
considerable pain in the leg, I thought it was a worthwhile 
experience." 

Johnny Hart, in his B.C. comic strip, has played with the 
theme. Thor, speeding toward a tree on his stone wheel uni- 
cycle, once went around the tree leaving two tracks. What hap- 
pened on a later occasion is reproduced in Figure 115. 
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Figure 11 5 

7 

By permission of Johnny Hart and Field Enterprises, Inc. 
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CHESS TASKS 

Everyone who calls a [chess] problem 
"beautiful" is applauding mathematical beauty, 
even if it is beauty of a comparatively lowly 
kind. Chess problems are the hymn-tunes of 
mathematics. 

-G. H .  HARDY,  A Mathematician's Apology 

It has been my policy to avoid chess problems of the type 
"Mate in n moves" on the assumption (perhaps a mistaken one) 
that too few readers play chess and that, even among those 
who do, too few like chess problems. In this chapter, however, 
I shall consider a variety of what are called chess "task" prob- 
lems. They have so little in common with actual play that they 
are of more interest to puzzle buffs than to serious chess play- 
ers. True, a knowledge of chess rules is essential. But apart 
from that, even a tyro is as likely as a grandmaster to be able 
to solve such problems. 

What is a chess task? It is a chess problem where a person 
seeks an objective in a way that maximizes or minimizes one or 
more parameters. Among chess players the best-known task 
question is: What is the shortest possible game? The answer, of 
course, is the "fool's mate." White opens with, say, P-KB4. 
Black replies P-K3. If White foolishly moves P-KN4, Black 
checkmates on his second move, Q-R5. 

The shortest game ending in perpetual check was published 
in 1866 by one of the great pioneer chess problemists, Sam 
Loyd. It is 
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1. P-KB4 1. P-K4 
2. K-B2 2. Q-KBS 
3. K-h'3 3. Q x P ( c h )  

Black now has a perpetual check by moving his queen back 
and forth from the square it is on to Black's R3 square. 

A much more difficult task Lvas also posed in 1866 by Loyd. 
W'hat is the shortest game ending in stalemate? Loyd's spectac- 
ular 10-move solution has never been surpassed: 

White 
1. P-K3 
2. Q-R5 
3. Q x Q R P  
4. Q x B P  
3. P-KR4 
6. Q x QP (ch) 
7. Q x N P  
8. Q x N  
9. Q x B  

10. Q-K6 (stalemate) 

Black 
1. P-QR4 
2. R-R3 
3. P-KR4 
4. QR-KR3 
5. P-KBS 
6. K-B2 
7. Q-Q6 
8. Q-KR2 
9. K-N3 

The  final position is shown in Figure 116, No. 1. In 1882 a 
search began for the shortest "no capture" stalemate that left 
all 32 men on the board. The  present record, 12 moves, Fvas 
found by C. H. Lt'heeler in 1887. It tvas forgotten, then redis- 
covered independently by several men, including Loyd and 
Henry Ernest Dudeney (who gives it as Problem 349 in his 
Amusements in ~Uathe,natics). In January, 1906, Loyd published 
in Lasker's Chess Llfagarine a hilarious commentary on the game, 
pretending to explain the strategy behind each crazy move and 
calling attention to a five-move mate overlooked by Black when 
he made his final stalemating move. (Loyd's commentary can 
be found in Alain C. White's Sam Lojd and His Chess Problems, 
1913, pages 128-129, currently available as a Dover reprint.) 

Figure 116, No. 2 shows how 30 men, the largest number 
kno~vn, can be placed in a legal position-a position that can 
result in actual play-such that no move is possible by either 
side: a double stalemate. It was published in 1882 by G. R. 
Reichelm, who also showed how the position could be reached 
in 25 moves. Note the pattern's twofold symmetry. 

Another remarkable task solved by Loyd is to play the short- 
est game ending tvith only the two kings on the board. Loyd's 
17-move solution is given in Alain White's book as Problem 
116. T h e  trvo kings are left on their own pawn squares. Differ- 
ent 17-move solutions were later found by others, with the 



CHESS TASKS 185 

Figure 11 6, No. 1 & 2 

1. Shortest stalemate game 2. Double stalemate with 30 men 

kings left on other cells. No one has found a 17-move game 
leaving the kings on their own starting squares. The two-king 
ending is rare among task problems in that 17 moves (by each 
player) can be proved an absolute minimum. Fifteen captures 
must be made by each side, but neither player can capture on 
his first move, and one more noncapture move can be proved 
necessary. 

Dudeney later found a 17-move game (Problem 352 of his 
Amusements in Mathematics) that eliminates only the 14 pieces 
(nonpawns) of both sides, leaving both kings and the 16 pawns 
on their starting cells. Curiously, every move by Black is a mir- 
ror copy of White's preceding move. Here again, 17 moves can 
be proved minimal. 

Along similar lines, one of Dudeney's great achievements 
was a 16-move game ending with all 16 of White's men on their 
starting cells and Black with only his king on the board. After 
Dudeney published this game [see Figure 116, No. 31 Loyd dis- 
covered that White could checkmate in three moves. This is an- 
other minimum, since no shorter mate is believed possible with 
Black's lone king on any other cell. Can the reader work out 
the mate before it is revealed in the Answer Section? Dude- 
ney's game (Problem 351 of his Amusements in Mathematics) was 
reduced by a half-move in 1898-that is, the final position is 
achieved after White's 16th move-but then there is no mate 
in three because it is Black's turn. 

A special class of task problem is known as a "one-move con- 
struction task" because only immediately possible moves are 
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Figure 11 6, No. 3 & 4 

3. White to mate in three moves 4. 122 moves 

considered. A classic example is the task of placing the eight 
pieces of one color so that the largest number of moves can be 
made. The proved maximum of 100 was achieved by M. Bezzel 
in 1848 (see page 62 of The Sixth Book of Mathematical Games 
from Scientijic American). If all 16 men of one color are used, the 
maximum was believed for 10 years to be 119 moves until 
Nenad Petrovic increased it in 1949 to 122 [see Figure 116, No. 
41. When I first saw this pattern, I was unable to count more 
than 104 moves until I realized that a promoted pawn must be- 
come one of four different pieces, each of course a different 
move. (Modern chess laws do not allow a pawn on the eighth 
rank to remain a pawn.) The record for the 16 black and white 
pieces is 173, for all 32 men it is 164, and for a legal position 
with no promoted men or promotion moves it is 181. The 
present record for an illegal position is shown in Figure 116, 
No. 5. By arranging the colors of the border queens as shown, 
W. A. Shinkman, in 1923, achieved 412 moves. Captures are, 
of course, counted as moves. 

The minimum number of moves for the eight pieces of one 
color is 10 (see my The Unexpected Hanging and Other Mathemat- 
ical Diversions, page 88): The same position also minimizes the 
number of pieces (three) among the eight that are able to 
move. Ten also is the record for minimum moves when the 16 
pieces of both colors are used. In 1923 T. R. Dawson found 
the record minimum for all 32 men in a legal position [see Fig- 
ure 116, No. 61. Only two moves can be made. E. Fielder 
showed in 1938 how the same 32 men can be legally placed so 
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Figure 116, No. 5 & 6 

5. 412 moves 6. Two moves 

that only one man (the white queen) can move [see Figure 116, 
No. 71. No one has yet found a way to place legally all 32 men 
so that no move is possible. 

There are many legal ways to place the 16 nonpawns to 
achieve a maximum of 46 captures, and all 32 men can be le- 
gally placed to allow 88 captures. How about illegal positions? 
If 32 black knights go on black cells and 32 white knights on 
white cells, 336 captures are possible. This was considered the 

Figure 11 6, No. 7 

7. Only white queen can move 
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maximum for many decades until 1967, when T. Marlow in- 
geniously substituted two queens and two pawns for four 
knights to raise the record to 338 [see Figure 116, No. 81. It is 
assumed that each capture by a pawn counts as four moves be- 
cause it can become any of four pieces. 

I have touched on only a small fraction of tasks concerning 
moves and captures. Space does not allow discussing the 
hundreds of tasks involving checks, discovered checks, mates, 
selfmates, stalemates, forced captures (every move a capture), 
forced checks, forced mates and'so on. Of special interest to 
combinatorial mathematicians are one-move consrruction tasks 
involving the placing of a specified set of men SC) that a maxi- 
mum or a minimum number of cells are attacked or unat- 
tacked, or  to achieve some other goal that does not involve 
moves or captures. A classic problem of this type (see Chapter 
16 of The Unexpected Hangzng) is to place eight queens (the 
maximum) so that no queen attacks another. The similar tasks 
of maximizing the number of nonattacking rooks (a), bishops 
(14), knights (32) and kings (16) are considered in the same 
chapter. A more difficult problem is to place 16 pawns (the 
maximum) so that no three are in a straight line. Lines are not 
restricted to rows, columns or diagonals but may have any ori- 
entation. Think of each pawn as a point in the center of the 
cell it occupies. No three such points may be colinear. One of 
many solutions is shown in Figure 116, No. 9. It is the only one 
in which two pawns occupy central cells. 

Figure 11 6, No. 8 & 9 

8. 338 captures 9. No three pawns in a line 
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Another difficult task of the same general category is to place 
eight queens so that 11 vacant squares are not attacked. There 
are at least six basic ways to do it (the exact number is not 
known), one of which will be given ill the Answer Section. Eleven 
unchecked cells is undoubtedly maximum, although no proof is 
known to me. 

A generalization of this problem-placing n queens on an 
order-n square to leave a maximum number of unattacked Ira- 
cant cells-has not, to my knowledge, been f ~ ~ l l y  analyzed. When 
n equals 1, 2 or 3, it is easy to see that no cell may be unchecked. 
It'hen n equals 4, only one cell may be unchecked. For n equals 
5 the problem is suddenly nontrivial. Three cells may be unat- 
tacked, but the pattern is difficult to find and also unique, except 
for rotations and reflections. Can the reader find it before check- 
ing the answer? The maximum number of unattacked cells when 
n equals 6, 7, 8, 9, 10, 11, 12 is believed to be 5, 7, 11, 18, 22, 
30, and 36 respectivelv. 

The minimum number of queens needed to attack all vacant 
cells of square boards is a general problem that has been thor- 
oughly explored for boards of order 2 through 13. Since no 
piece attacks the cell it is on, the problem falls into three main 
groups: solutions in which no queen attacks another, or all 
queens are attacked, or some, but not all, are attacked. On the 
standard chessboard five queens are required in all three cases, 
and there are hundreds of solutions. TNO tasks of this type on 
smaller boards are particularly prettv because each has only one 
basic solution. Can the reader put three queens on an order-6 
board so that all vacant cells are attacked? Can he put four 
queens on an order-7 board so that all vacant cells are attacked 
and no queen attacks another? 

Four queens can be placed on the order-8 board so that a 
maximum of 58 vacant cells are checked, leaviiig only two un- 
checked empty cells. There are many ways to eliminate those two 
squares by adding a single rook, bishop or king, but to check all 
vacant cells with four queens and a knight seems to have only 
one basic solutioi~, which was first published by J. Tt'allis in 1908. 
Can the reader discover it? (Hint: The four queens must leave 
three of the vacant cells unchecked.) 

It is easy to prove that nine kings, eight bishops or eight 
rooks are needed to attack all vacant cells on a standard chess- 
board. Much harder to find is the unique pattern by which 12 
knights (the minimum) check all vacant cells. (See my illathe- 
.~natzcal lZlngzc Show, Chapter 14.) To attack all 64 squares re- 
quires 14 knights, or eight rooks, or 10 bishops, or 12 kings. 
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The eight pieces of one color can attack all 64 squares only 
if the bishops are on the same color. With bishops on opposite 
colors 63 squares is maximum. Douglas G. Smith, of Fresno, 
CA., recently sent me the result of his long search for a way to 
eliminate one of these eight pieces and still attack all vacant 
cells. He found how to do it by dropping a bishop. I do not 
know if his beautiful solution is unique (aside from rotations, 
reflections and trivial rearrangements of the rooks and queen) 
or if the task can be solved by dropping a knight or the king 
instead of a bishop. T o  make the task completely clear: Place a 
queen, king, two rooks, two knights and a bishop on a chess- 
board so that all vacant cells are in check. 

For readers who may want to go more deeply into this ob- 
scure corner of chess recreations, I have listed basic references 
in the Bibliography for this chapter. 

ANSWERS 

1. Sam Loyd's three-move mate, all white men in starting 
position and a lone black king on Black's KR5: 

1. P-Q4 1. K-R4 
2. (2-Q3 2. K moves 
3. Q-KR3 (mate) 

or 
1. P-Q4 1. K-N5 
2. P-K4 (ch) 2. K-R5 
3. P-KN3 (mate) 

2. One of six known ways to place eight queens so that 11 
vacant cells are unattacked is shown in Figure 117 a. 'The un- 
checked squares are indicated by dots. 

3. There is only one basic way to place five queens on an or- 
der-5 board so that three vacant cells are unattacked [see Figure 
117 b]. Mafinis Charosh has suggested that the best systematic 
search procedure for proving uniqueness is to explore the 
equivalent problem of placing three queens so that five cells 
are unchecked, taking advantage of the board's symmetries to 
shorten the search. 

4. The only basic way to place three queens on an order-6 
board so that all vacant cells are checked is shown in Figure 
117 c. 

5. The only basic wa) to put four queens on an order-7 
board so that all vacant cells are checked and no queen attacks 
another queen is shown in Figure 117 d. 
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Figure 1 17 

Answers to the chess tasks 
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6. The only known basic way to place four queens and one 
knight so that all vacant cells are attacked is shown in Figure 
117 e. 

7. Figure 117 f shows one way to place seven of the eight 
pieces of one color so that all vacant cells are in check. The po- 
sitions of the rooks and queen can be given trivial variations. 

ADDENDUM 

The problem of placing five queens on a 3 x 5 board so that 
three cells are not attacked has appeared in many places since 
I introduced it in my 1972 column. It is usually given in the 
following form: Place five queens of one color and three of an- 
other color on an order-5 board so that no queen attacks a 
queen of a different color. I myself gave it in this form in a 
later (February 1978) column. 

I had in 1972 confined the task to n queens on a board also 
of order n. When I gave it again in 1978 for the order-5 board, 
a number of readers generalized it to k queens on an order-n 
board. The best results came from Hiroshi Okuno, of Tokyo, 
whose computer search provided valuable data for low values 
of n and k. In 1983, Ronald L. Graham and Fan K. Chung, 
both of Bell Laboratories, turned their attention to Okuno's 
data and made some truly remarkable discoveries about the 
general problem. They will be reported in a paper that may 
appear before this book is off the press. 
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A N D  OTHER CURIOUS QUESTIONS 
- - -- - - -- - -- - - - - 

Pride in craftsmanship obligates the 

mathematicians of one generation to dispose 

of the unfinished business of their 

predecessors. 

-E. T. BELL, The Last Problem 

Two familiar irrational numbers are IT (3.141 . . .), the ratio of 
the circumference of a circle to its diameter, and e (2.718 . . .), 
the base of natural logarithms. Each has a nonrepeating deci- 
mal fraction. Both IT and e are also transcendental numbers, 
that is, numbers that are not algebraic. Specifically, a transcen- 
dental number is an irrational number that is not the root of 
an algebraic equation with rational coefficients. Is the sum of IT 

and e transcendental? No mathematician knows if the sum is 
even irrational. 

One might suppose that any two numbers with infinite, non- 
repeating decimal fractions would necessarily have a sum with 
a nonrepeating (therefore irrational) decimal fraction. This is 
not the case. The difference between IT and 7, for instance, is 
another transcendental. It is easy to compute. Represent 7 as 
6.999 . . . , then subtract IT (3.14159 . . .) to obtain the transcen- 
dental number 3.858407. . . . The sum of these two transcen- 
denta l~ obviously is 6.999 . . . , or 7. 

It seems unlikely, but until someone proves otherwise n and 
e could be related by a curious unknown formula that would 
give their sum a repeating (rational) decimal fraction with a 
very long period, say one of more than a billion digits. It also 
is not known if ne, IT., ee or  IT^ are irrational. It has been shown, 
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however, that em is transcendental, and it is easy to prove that 
at least one of the two numbers, ne and (T + e ) ,  is transcenden- 
tal. The unanswered questions about n and e are among 
hundreds of problems that are ridiculously simple to state but 
so difficult and deep that long-lasting fame awaits the first per- 
son to solve them. 

It is not easy to distinguish significant unsolved problems 
from trivial ones. In A Mathematician's Apology, G .  H .  Hardy 
characterized a significant problem as being one connected to 
such a large complex of other mathematical ideas that when it 
is solved, it leads to important advances in mathematics and 
perhaps in science as well. An example of an essentially trivial 
but extremely difficult question is: If two people play the best 
possible checker game, will it end in a draw, a victory for the 
player who makes the first move or a victory for the player who 
makes the second move? A computer, given enough time, will 
probably work out the answer one day. When it does, the so- 
lution is unlikely to lead to any breakthroughs in mathematics 
or science. On the other hand, settling Fermat's last theorem 
would open all kinds of barred doors. (Please do not send me 
proofs. I am incapable of spotting flaws and always return 
them unread.) 

There are dozens of unsolved map-color~ng problems that, 
although they may not be as profound as the recently solved 
four-color theorem, are by no means trivial. Here is a noto- 
rious one given in C. Stanley Ogilvy's new revision of Tomor- 
row's Math, a splendid collection of unsolved problems for am- 
ateurs. What is the minimum number of colors needed to color 
the plane in such a way that any pair of points a unit distance 
apart are assigned to different colors? This question was first 
raised 20 years ago by Paul Erdos, a prolific inventor of 
problems. 

That such a map must have at least four colors was cleverly 
established by Leo Moser with the diagram in Figure 118. Each 
edge of this graph has a length of one unit. Imagine that the 
graph is placed anywhere on a plane in which the problem is 
solved with only three colors. If vertex a is on red, say, then b 
and c must be on the other two colors, and g also must be red. 
Similarly, d and e must be on the other two colors and f must 
be red. Now, however, we have contradicted our assumption, 
because f and g, which are a unit distance apart, are both on 
red. At least four colors are therefore necessary. 

Ogilvy's book has a proof that seven different colors are 
enough [see Figure 1191. The numbers give a repeating color 
pattern for a hexagonal tesselation of the plane, each hexagon 
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Figure 11 8 

Leo Moser's graph for proving four-color necessity 

Figure 11 9 

Proof of seven-color sufficiency 

slightly less than one unit from corner to opposite corner. The 
gap remaining to be closed is a big one. Do such maps of four, 
five or six colors exist:> No one yet knows. 

There is an unusual class of unsolved arithmetic problems 
that, to use a computer-science term, we can call "looping" 
problems. A series of integers is generated according to a rule. 
One then asks if' the series always enters one or more loops in 
which a finite set of integers keeps repeating cyclically. For ex- 
ample, start with any positive integer. Halve it if it is even; tri- 
ple it and add 1 if it is odd. Keep repeating this procedure un- 
til the series loops in the cycle 2, 1, 4, 2 ,  1, 4, . . . . (Sample: 3, 
10, 5, 16, 8, 4, 2,  1, . . . .) But does the series always enter the 
2,  1, 4 loop? No one has proved that it does, nor has a coun- 
terexample been found. 

Since Ogilvy revised his book a group of workers in the Ar- 
tificial Intelligence Laboratory at the Massachusetts Institute 
of Technology have computer-tested all positive integers to 
60,000,000 without finding an exception. They also discovered 
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that if the rule 3 n f  1 (for odd integers) is replaced by 3n- 1, 
the result, in absolute values, is the same as starting with a neg- 
ative integer and following the old rules. In this case all nega- 
tive integers to - 100,000,000 were found to enter one of three 
loops with the following absolute values: 

Michael Beeler, William Gosper and Rich Schroeppel give 
these results in HAKMEM (short for "Hacker's Metno"), Memo 
239, Artificial Intelligence Laboratory, M.I.T., 1972, page 64. 
No one has yet come up with good ideas about how to establish 
the general case for all nonzero integers. (Zero, of course, is 
already in a 0, 0, 0 ,  . . . loop.) N o  one knows if there are other 
loops, or if there are integers that generate a nonlooping series 
of numbers that diverge to infinity. 

Gosper and Schroeppel, incidentally, proved an amusing 
loop conjecture involving English names for numbers (HAK- 
MEM, page 64). Spell out the name of any number. It need not 
be rational or even real. Counting numbers must be named di- 
rectly, and not by such circumlocutions as "twelve plus one" or 
"twenty minus five," and so on. Keplace the name by the num- 
ber of digits in the name and keep repeating the procedure. 
Example: T H E  CUBE ROOT OF PI,  FIFTEEN, SEVEN, FIVE, FOUR, 

FOUR, FOUR, . . . . The series always, and quickly loops at FOUR. 

In explaining a recent triangle-dissection problem, Ogilvy 
wrote that i t  might "have a solution before this book appears." 
He was right. It had been known that any triangle can be cut 
into four triangles similar to itself, or into n triangles similar to 
itself when n is 6 or more. If n is 2 or 3, only a right triangle 
can be properly cut. If n is 5, a right triangle can be dissected 
into five triangles sinlilar to itself, but for nonright triangles the 
conditions for dissection were unknown when R. W. Freese, 
Ann K. Miller and Zalman Usiskin wrote their article "Can 
Every Triangle be Divided into n Triangles Similar to It?" (The 
American Mathematical Monthly, Volume 77, October, 1970, 
pages 867-869). 

Recently it has been independently proved by several people 
that when n is 5 and the triangle has no right angle, it can be 
cut into five triangles sinlilar to itself if and only if one angle is 
120 degrees and the others are each 30 degrees [see Figure 
1201. This unique dissection is given in "Partitioning a Trian- 
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A unique dissection 
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gle into 5 Triangles Similar to It" (Mathemattcs Magazzne, Vol- 
ume 45, January, 1972, pages 37-42), by Z. Usiskin and S. G. 
Wavment. Still open are questions such as: Which triangles can 
be cut into n similar triangles not similar to themselves? For 
what values of n can a quadrilateral be cut into n quadrilaterals 
similar to one another and/or to itself? 

In 1960, Stanislaw M. Ulam, another virtuoso puzzle maker, 
published a fine collection of advanced unsolved problems, 
most of them original. The book was reprinted in 1964 as a 
paperback, Problems zn Modern Mathematzcs. One of Ulam's 
topological-game problems seemed as uncrackable as it was cu- 
rious. Imagine a cube divided into a lattice of unit cubes, like 
a three-dimensional checkerboard. Players take turns marking 
a unit edge of the lattice. The first player marks any edge. 
Thereafter each marked edge must join the previously marked 
edge. One end of the path remains fixed as the other end 
grows one unit in length with each more, as though a bug ~vere 
crawling along the lattice lines and leaving a trail. Since the lat- 
tice is finite, the path must eventually intersect itself to form a 
closed-space curve. One of the players wins if the curve is knot- 
ted. The other player wins if there is no knot. Who wins when 
the game is played rationally? 

John Horton Conway, a University of Cambridge mathema- 
tician, found an ingenious proof that the "no knot" player can 
always win regardless of whether he goes first or second. As- 
sume that the game is played on a three-by-three-by-three cube 
(a lattice of 27 unit cubes). This is the smallest cube on which 
the path can knot. The following no-knot strategy extends 
readily to all cubes of higher orders. 

Through each lattice point there are karious planes that are 
perpendicular to a body diagonal (a diagonal joining diamet- 
rically opposite corners) of the large cube. We shall call such a 
plane a primary plane, or P plane. If the P plane goes through 
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a corner of the large cube, there may be only one adjacent 
plane parallel to it and passing through points adjacent to 
points on the P plane; otherwise there will be two such adja- 
cent planes, one on each side of the P plane. We call these A 
planes. 

Imagine all lattice points on A planes-call them A points- 
projected on the P plane, together with all edges joining A 
points to P points. This puts on the P plane a graph equivalent 
to one of the five shown in Figure 121. On each graph black 
vertexes are lattice points originally on the P plane. The open 
circle vertexes are A points projected from A planes. The C's 
mark the corners of the large cube. 

Figure 121 

Graphs for Stanislaw M. Ulam's knot game 

Note that the three graphs on the left have loose ends 
Those on the right do not. Conway has shown (his unpublished 
proof is not difficult) that, given any lattice point, one can al- 
ways find passing through it a P plane on which the graph has 
no loose ends. 

If your opponent goes first, you should choose a P plane 
through either end of the marked edge that has a no-loose- 
ends graph. One end of the path will be on an A plane. Play so 
that the path returns to the P plane, that is, join the black end 
of the path to a black vertex. Each succeeding move by your 
opponent must take the path off the P plane (to a black spot). 
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Your strategy is always to return the path to the P plane by ex- 
tending it to a black spot. Because the graph has no loose ends, 
and because its black and open-circle vertexes alternate, you 
can always do so. It is obvious that when the path first closes, 
it will have to be unknotted. 

If you go first, mark any edge. After your opponent has 
moved choose a P plane that goes through the path's middle 
vertex and on which the graph has no loose ends. Your no- 
knot strategy is the same as before. Play so that the path always 
returns to the P plane; in other words, always extend the path 
to a black vertex. The path cannot be knotted when it first in- 
tersects itself. 

"I think it was obvious from the start," Conway writes in a 
letter, "that the no-knot player had the best of it. He only had 
to make the path close, whereas the other player really had to 
do things." 

Conway's strategy does not apply to noncubical "brick" lat- 
tices (because finding a no-loose-ends graph is not always pos- 
sible) or to cubical games in which the no-knot player goes first 
and moves are allowed at all times at either end of the growing 
path. In both cases, so far as I know, winning strategies remain 
unknown. 

Three-dimensional lattices are awkward "boards" for actual 
play, but closely related topological games on planar lattices 
make excellent pencil-and-paper contests. David L. Silverman, 
whose book Your Move includes several such games, is respon- 
sible for the latest fad among Los Angeles puzzlers: an unpub- 
lished, unsolved game that Silverman calls Slither. Its five-by- 
six-point lattice is just large enough to have resisted all efforts 
to determine which player has the win [see Figure 1221. In a tab- 

Figure 122 
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The game of Slither 
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ulation of several hundred games the wins were about equally 
divided between first and second players. The rules are simple. 
Opponents take turns marking an orthogonal unit segment. 
The segments must form a continuous path but may be added 
to either end of the preceding path. The player forced to close 
the path is the loser. (If the first to close it wins, it is a duller 
game, although even that version is unsolved.) The illustration 
shows a typical position in which the next play must be a losing 
one. Perhaps a reader will discover a winning strategy for 
either version (or both versions) of Slither. 

Hallard T .  Croft, a colleague of Conway's at Cambridge, pe- 
riodically sends lists of new unsolved problems to his friends. 
A few years ago one of Croft's problems asked if there existed 
a finite set of points on the plane such that the perpendicular 
bisector of the line segment joining any two points would al- 
ways pass through at least two other points of the set. The 
problem was solved by Leroy M. Kelly, a mathematician at 
Michigan State University. Although the problem cannot be 
called significant, Kelly's solution, using only eight points, is so 
elegant that I give it as an exercise. 

ANSWERS 

The solution for the problem of placing eight points so that the 
perpendicular bisector of each pair of points passes through at 
least two other points is shown in Figure 123. 

David L. Silverman's game of Slither produced a flood of 
strategies of steadily mounting generality until finally Ronald 
C. Read, a graph theorist at the University of Waterloo, re- 
duced the standard game to monumental triviality. 

Figure 123 

Solution to the eight point problem 
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Standard Slither is played on a rectangular field consisting of 
a square lattice of dots. Players take turns drawing orthogonal 
unit "edges" connecting adjacent dot pairs, adding each move 
to either end of the continuous path that is formed. The player 
who is forced to make the slithering line meet itself is the loser. 
Several dozen readers immediately pointed out that on the 
5-by-6 field that had been given as a sample playing field, the 
first player has an easy win by taking the central edge and 
thereafter making his moves symmetrically opposite to his op- 
ponent's moves. He also wins the reverse version (the first to 
close the path wins) by seizing the first winning opportunity 
offered. 

George A. Miller of Philadelphia was the first to provide a 
general strategy for all rectangular boards. If the field has an 
even number of dots, draw a Hamiltonian path along the lat- 
tice lines, that is, a path visiting every dot once only. Color the 
alternate edges red, beginning and ending with red. The first 
player's winning strategy is: Always play red. If the field con- 
tains an odd number of dots, the second player's winning strat- 
egy is: After the first move, draw any Hamiltonian path start- 
ing at one end of the first move, color the path as before and 
always play red. Essentially the same strategy was also discov- 
ered by Michael Kelly, by Oliver G. Selfridge, and others. 

Next I found that this strategy applies if diagonal moves be- 
tween adjacent dots are allowed, and also when the game is 
played on triangular lattices. My elation was short-lived. When 
I wrote to Read about it, he saw at once that these were merely 
special cases of a general strategy that applies to any set of dots 
in any formation in a space of any dimensions. Moreover, a 
"move" can be the joining of any pair of dots, and it does not 
matter whether this is allowed at both ends of the path or only 
at the end of the preceding move. 

Read explained it this way. A graph is said to have a "l-fac- 
tor" if it is possible to join all the nodes in pairs so that every 
node belongs to one and only one of the disjoint edges. Think 
of an array of dots as the vertexes of a complete graph consist- 
ing of all possible joining edges. Draw a 1-factor of the graph 
with a red pencil. (A Hamiltonian path on square lattices is one 
way of doing this, but the 1-factor is more general because 
some graphs have 1-factors but no Hamiltonian path.) Any 
move connecting two dots is now allowed. 

If the number of dots is even, the graph can be 1-factored 
and the first player wins by always playing on red edges. If the 
number of dots is odd, the second player disregards one end 
of the first move, 1-factors the remaining dots and plays always 
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on red. The player who first runs out of unused dots to move 
to is the loser. 

This obvious and trivial parity strategy was obscured in 
Slither by the game's many irrelevancies. Reverse Slither, in 
which the first to close the path wins, is a more difficult matter. 
As we have seen, a symmetry strategy wins for the first player 
on all odd-by-even fields. The second player can win by bilat- 
eral symmetry play if the first play is to a main diagonal of a 
square or to a central orthogonal line of any rectangle that has 
one. Selfridge has found a strategy for a second-player win on 
all squares. 

Michael Beeler of M.I.T. wrote a computer program for re- 
verse Slither. Here are some of its results: 

1. The second player wins on squares through order 6. 
2. Taking the center move is the only winning first play on 

the 3 by 4, 4 by 5, 4 by 9 and 5 by 6. 
3. A theory devised by Beeler, establishing a first-player win 

on all 2 x n  fields (n greater than 2) is confirmed through 
n= 18. 

4. On 3 x n fields, TZ = 2 through 12, the first player wins if n 
is even, loses if n is odd. 

5. On 4 x n fields, n = 3 through 9, the first player wins in all 
cases. 

6. The second player wins on the 5 by 7. 
These data suggest the following unproved conjecture: The 

first player wins on all nonsquare rectangles if the number of 
spots is even. The second player wins on all squares and on all 
nonsquare rectangles if the number of spots is odd. 

ADDENDUM 

The 3 X f  1 problem, as it is now usually called, is still resisting 
solution. According to Richard Guy, it was first proposed be- 
fore World War I1 by Lothar Collatz, now a mathematician at 
the University of Hamburg, when he was a student. In a 1970 
lecture H. S. M. Coxeter offered $50 for a proof he could un- 
derstand or $100 for a counterexample. He has since been del- 
uged with so many false proofs that he is no longer willing to 
evaluate them. Indeed, it seems as easy to make subtle mistakes 
in such proofs as in proofs of Fermat's last theorem. False 
proofs have even been published; for example, in Fibonacci 
Quarterly, Vol. 18, 1980, pages 231-242. In 1982 Paul Erdos 
expressed his opinion-and who is more qualified to give 
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one?-that if the conjecture is true, present-day number theory 
lacks the tools for a proof. 

A counterexan~ple ~vould be a number that either keeps gen- 
erating larger and larger numbers forever, without ever re- 
peating a number, or one that enters a loop higher than the 
4-2-1. If a counterexample exists it would have to be exceedingly 
large because the conjecture has been tested, according to Guy, 
for all numbers less than 7 x 10". Early in the game it was ob- 
served that it is not necessary to test even numbers, or odd 
numbers of the form 4k+ 1, 16k+3, or 128k+7. This greatly 
simplifies computer programs. Of course as soon as a sequence 
hits a power of 2,  often after many chaotic ups and downs, it 
crunches quickly to 4-2-1. The power of 2 on which most se- 
quences converge is 16. 

Among numbers smaller than 50, the worst is 27. After 77 
steps it reaches its peak of 9,232, then 34 steps are required to 
take it down to 1 .  When John H .  Conway introduces the 
3X+ 1 conjecture in lectures, he likes to stand by a blackboard 
and say, "Let's take some random small number, say 27, and 
see what happens." A graph theorist would describe the theo- 
rem by saying that, if true, we can draw an infinite directed 
tree, each point labeled with a distinct positive integer, that will 
catch all the integers, and which will converge along the arrows 
to a root that is the triangular cycle 4-2-1. 

A simple proof that of the two numbers ne  and n + e, at least 
one is transcendental, is given by David Brubaker in i2lathemat- 
ics Magazine, Vol. 44,  November 197 1, page 267. 

On triangles that can be cut into five similar triangles not sim- 
ilar to the original, see Guy's report in The American i2lathemat- 
ical Monthly, Vol. 80, December 1973, page 1123. Apparently 
there are ten essentially different cases. The equilateral trian- 
gle and any isosceles triangle can be cut into five similar right 
triangles, and the equilateral triangle can also be cut into five 
similar triangles containing an angle of 120 degrees. 

For more on "honest numbers" that spell with the same 
number of letters as the number they represent (FOUR is the 
only honest number in English), see Chapter 7 of my Incredible 
Dr. Matrix. 

An ultimate generalization of Slither was analyzed by Wil- 
liam N.  Anderson, Jr.,  in a paper listed in the Bibliography. 
The game is played on an arbitrary finite graph, each player 
taking an edge of the graph on his turn. Anderson presents a 
strategy for this generalized Slither that is based on a matching 
algorithm in a 1965 paper by J. Edmonds. 
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MATHEMATICAL TRICKS WITH CARDS 

"Do you lzke card trrcks?" 
"No,  I hate c a ~ d  t71cks," I nnsulered 
"Well, I ' l l just  show you thzs or~e." 
H e  showed nze three 

-SOMERSET MAUGHAM, iMr. Know-All 

Maugham's experience with card magicians is all too familiar. 
"I don't really like people who do card tricks," Elsa M a x ~ ~ e l l  
once wrote (I quote from an autobiography of a lady magician, 
You Don't Have to Be Crazy, by Frances Ireland). "They never 
stop at one or two, but go on and on and on, and always make 
you take cards, or turn up cards, or cover cards, until you are 
worn out." 

Mathematical card tricks, let it be admitted at once, are pre- 
cisely the kind of tricks that are the most boring to most peo- 
ple. Nevertheless, they have a curious appeal to mathemati- 
cians and mathematically minded magicians. 

Many excellent card deceptions are based on a parity prin- 
ciple, but the underlying even-odd structure is usually con- 
cealed so ingeniously that if you follow the directions with 
cards in hand you are likely to astonish yourself. Consider the 
following trick invented about 1946 by the Chicago card expert 
Ed Marlo. Magicians classify it as an "oil and water" effect, for 
reasons that will be apparent in a moment. There are many 
ways of achieving the same effect by secret and difficult 
"moves," but this version is entirely self-working. 

Remove 10 red and 10 black cards from the deck and ar- 
range them in two face-up piles, side by side, with all red cards. 
on the left and all black cards on the right. First you tell your 
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watchers that you will demonstrate what you intend to do by 
using only five cards of each color. With both hands simulta- 
neously remove the top card from each pile and place them, 
still face up, on the table at the bottom of each pile. Do the 
same with the next two top cards, but this time cross your arms 
before you place the two cards on the two new piles you are 
starting. This puts a black card on the red one and a red card 
on the black one. The next transfer of a pair of cards is made 
with uncrossed arms, the next with crossed arms, and the fifth 
and last pair is dealt with arms uncrossed. In other words, five 
simultaneous deals are made, with arms crossed only on alter- 
nate deals. On each side you now have a pile of five face-up 
cards with their colors alternating. Put either pile on the other 
one. Spread the 10 cards to show that colors alternate 
throughout. 

Square the cards and turn the packet face down. From its 
top deal the cards singly and face up to form two piles again, 
dealing alternately to the left and right. Call attention to the 
fact that this procedure naturally separates the colors. At the 
finish you will have five reds on the left and five blacks on 
the right. 

State that you will repeat this simple series of operations with 
all 20 cards. Begin as before, with 10 face-up reds on the left 
and 10 face-up blacks on the right. Transfer the cards to form 
two new piles, just as you did before, crossing your arms on 
alternate deals so that the colors alternate in each pile. After 
all 20 cards are dealt put one pile on the other, square the 
cards, turn the packet over and hold it face down in your left 
hand. 

Deal 10 cards face up to form two piles, dealing from left to 
right and observing aloud that this brings the reds together on 
the left and the blacks together on the right. After the 10 cards 
have been dealt face up do not pause but continue smoothly 
and deal the remaining 10 cards face down. It is best to put 
down the cards so that they overlap in two vertical rolvs [see 
Figure 1241. 

Pick up the five face-down cards on the left with your left 
hand and the five face-down cards on the right with your right 
hand. Cross your arms and put the cards down. You explain 
that you have transferred half of the cards of each pile to the 
pile of the opposite color but that like oil and water the colors 
mysteriously refuse to mix. Turn over the face-down cards. To 
everyone's surprise (you hope) the reds are back with the reds 
and the blacks are back with the blacks! Readers should have 
little difficulty discovering why it works with any set of cards 
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Figure 124 
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The oil-and-water effect 

containing an even number of cards of each color and why it 
did not work when you demonstrated it with 10 cards. 

After you have finished the oil-and-water trick put the two 
piles together with either color on top. Turn the packet face 
down and spread it in a fan. You are ready to perform a red- 
black trick invented by Karl Fulves and published in his magic 
periodical, The Pallbearers Review, September, 197 1 .  

Ask someone to pull slightly forward any 10 cards he 
pleases. The fan will resemble the one shown in Figure 125. 
With your right hand count the jogged (protruding) cards to 
make sure there are 10. Do this by removing the cards one at 
a time from right to left, putting them into a face-down pile as 
you count from one to 10. Close up the 10 cards remaining in 
your left hand and place them in a second face-down pile 
alongside the first. 



MATHEMATICAL TRICKS WITH CARDS 

Figure 125 

Ten cards jogged forward 

Tell your audience that an amazing thing has happened. Al- 
though 10 cards were selected randomly, the colors in the two 
piles are so ordered that every nth card in one pile has a color 
opposite to the color of the nth card in the other pile. T o  prove 
this, turn over the top cards of each pile simultaneously. One 
will be red and the other black. Place the black under the red, 
turn the pair over and put it aside to form a new face-down 
pile. Repeat the procedure with the cards now on top of the 
two original piles. They will be red-black too. Indeed, every 
pair you turn will be red-black! 

As you show the pairs always put the black card under the 
red before you turn them over and place them on the third 
pile. When you finish, the cards in this face-down pile will have 
alternating colors. 

Now you are ready to perform a truly mystifying trick in 
which parity is conserved in spite of repeated shuffling. Known 
as Color Scheme, it was invented by Oscar Weigle, an amateur 
magician who is now an editor at Grosset & Dunlap. It sold as 
a manuscript in magic stores in 1949. 

Give the packet of 20 cards to someone and ask him to hold 
it under the table where neither he nor anyone else can see the 
cards. Tell him to mix the cards by the following procedure. 
(It is known as the Hummer shuffle, after Bob Hummer, the 
magician who first used it in tricks.) Turn over the top two 
cards (not one at a time but both together as if they were one 
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card), place them on top and cut the packet. Your assistant is 
to keep repeating this procedure of turn two, cut, turn two, cut 
for as long as he wishes. The procedure will, of course, result 
in a packet containing an unknown number of randomly dis- 
tributed reversed cards. 

With the cards still held under the table, tell your assistant to 
do the following. Shift the top card to the bottom. Then turn 
over the next card, produce it from under the table and place 
it on the table. This procedure is repeated--card to bottom, re- 
verse next card and deal-until 10 cards have been dealt to the 
table. It will be apparent that the cards have become mysteri- 
ously ordered. All the face-up cards are the same color and all 
the face-down ones are of the opposite color. 

The second and climactic half of the trick, which Weigle con- 
fesses is a "bare-faced swindle," now unfolds. Your assistant is 
still holding 10 cards under the table. Ask him to shuffie them 
by separating them into two packets; then, keeping all the 
cards flat (no card must be allowed to turn over), weave the two 
packets into each other in a completely random way. You can 
demonstrate how to do this by using the 10 cards already dealt. 
After your assistant has executed the shuffle a few times, ask 
him to turn over the packet and shuffle the same way a few 
more times. If he likes, he can give the packet a final cut. 

Now he continues with the dealing procedure he used be- 
fore: card to bottom, next card reversed and dealt. (The final 
card is reversed and dealt.) In spite of the thorough mixing the 
result is exactly the same as before. All the face-up cards match 
the former face-up cards in color, and the same is true of all 
face-down cards. 

One of the oldest themes in card magic is to produce in some 
startling fashion a card that has been randomly selected and 
replaced. Here is a simple method that exploits a binary sort- 
ing technique. Fulves published it in his periodical in Novem- 
ber, 1970. 

Take 16 cards from a shuffled deck and spread them face 
down on the table without mentioning how many cards you are 
using. A viewer selects a card, looks at it and places it on top of 
the deck. The remaining cards in the spread are squared and 
put on top of the deck above the chosen card. Ask him to cut 
off about half of the deck, give or take half a dozen cards. Ac- 
tually he can take between 16 and 32 cards. He hands this 
packet to you. 

Hold the packet in both hands. As your left thumb slides the 
cards one at a time to the right, move your right hand forward 
and back so that every other card, starting with the first one, is 



MATHEMATICAL TRICKS WITH CARDS 

jogged forward. The resulting fan of cards will resemble the 
one in Figure 125 except that the jogged cards are not ran- 
domly distributed. Strip all the projecting cards from the fan 
and discard them. Square the remaining cards and repeat the 
procedure, jogging forward all the cards at odd positions, start- 
ing with the first card. Strip them out and discard. Continue in 
this way until one card is left. Before turning it over ask for 
the chosen card's name. It will be the card you hold. 

A completely different method of locating a selected card 
can be found in several books on card magic. Turn your back 
and instruct someone to cut a shuffled deck into three approx- 
imately equal piles. He turns over any pile and then reassem- 
bles the deck by sandwiching the face-up pile between the 
other two, which remain face down. He is told to remember 
the top card of the face-up pile. With your back still turned, 
ask him to cut the deck several times, then give it one thorough 
riffle-shuffle. The shuffle will of course distribute the face-up 
cards randomly throughout the deck. 

Turn around, reverse the pack and spread it in a row. Look 
for a long run of face-up cards, remembering that a cut may 
have split the run so that part of it is at each end of the spread. 
The first face-down card above the run is the chosen one. Slide 
it from the spread, have the card named and then turn it over. 

Our last trick, based on a curious shuffling principle discov- 
ered by Fulves, is presented as a gambling proposition. All 
cards of one suit (the suit can be chosen by the victim) are re- 
moved from the deck. Assume that the discarded suit is dia- 
monds. The remaining cards are arranged so that each triplet 
has three different suits in the same order. (Card values are 
ignored.) Again the victim may specify the ordering. Suppose 
he chooses spades, hearts and clubs. The 39-card deck is ar- 
ranged from the top down so that the suits follow the sequence 
spades, hearts, clubs, spades, hearts, clubs and so on. 

Place the deck face up in front of the victim. Ask him to cut 
it in two packets and riffle-shuffle them together. As he makes 
the cut, note the suit exposed on top of the lower half. We shall 
call this suit k. After the single shuffle the deck is turned face 
down. The cards are now taken from the top three cards at a 
time, and each triplet is checked to see if it contains two cards 
of the same suit. 

It is hard to believe, but: 
(1) If k is spades, no triplet will contain two spades. 
(2) If k is hearts, no triplet will contain two clubs. 
(3) If k is clubs, no triplet will contain two hearts. 
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This assumes, of course, a spades-hearts-clubs ordering. If 
the ordering is otherwise, the three rules must be modified ac- 
cordingly; that is, spades must be changed to whatever suit is 
at the top of each triplet, and so on. Let m stand for the suit 
that you know cannot show twice in any triplet, and a and b for 
the suits that can. 

Before dealing through the deck to inspect the triplets, make 
the following betting proposition. For every triplet containing 
a pair of m's you will pay the victim $10. In return he must 
agree to pay you 10 cents for every pair of a's or b's. It seems 
like a good bet for the victim, but it is impossible for you to 
lose, and the swindle can be repeated as often as you please. 
Just arrange the cards again and allow the victim to make the 
single riffle-shuffle. Naturally you always promise to pay him 
for doublets of the suit that you know cannot show. The fact 
that this suit may vary from deal to deal makes the bet partic- 
ularly mystifying. 

As Fulves has observed, the triplets have other unexpected 
properties. Of the triplets containing pairs the a's and b's will 
alternate; after a pair of a's the next pair will be b's and vice 
versa. Pairs of one suit always include a top card of the triplet. 
Pairs of the other suit always include a bottom card. 

No explanation of these tricks will be given. Readers will 
find it stimulating, however, to analyze each trick to see if they 
can comprehend exactly why it operates with such uncanny 
precision. 

ADDENDUM 

Peter T. Sarjeant extended Fulves' shuffling trick to the four 
suits of a full deck. Arrange the cards so that from top down 
the sequence is a repetition of clubs, diamonds, hearts, spades. 
As before, the deck is placed face up and cut about in half. 
Note the suit on the top of the bottom half. Call it k. The 
halves are then interlaced with a single riffle-shuffle. 

When cards are taken four at a time from the top you will 
find the following true of each quadruplet: 

(1) If k is clubs, there will be no pair of hearts and no pair of 
clubs. 

(2) If k is diamonds, any suit may be paired. 
(3) If k is hearts, there will be no pair of diamonds and no 

pair of spades. 
(4) If k is spades, any suit may be paired. 
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Knowledge of these facts can, of course, be the basis of a va- 
riety of betting swindles. 

Edward M. Cohen proposed the following variation of 
Fulves' trick involving a selected card that goes sixteenth from 
the top of the deck. He likes to begin by forming a square ar- 
ray of 16 cards, face down on the table. A spectator picks a 
row. Another person picks a column. The card at the intersec- 
tion is turned face up and remembered. This card goes to the 
bottom of the deck. The remaining 15 cards are swept into a 
pile and the deck placed on top of them. The chosen card is 
now sixteenth from the bottom. 

Anyone may now cut the deck about in half (it is only nec- 
essary that the lower portion contain more than 16 and less 
than 32 cards). The top half is discarded. Hand the lower half 
to someone with the request that he deal it into two face-up 
piles, alternating piles as he deals. The pile that gets the last 
card is discarded. The other pile is turned face down, and this 
procedure is repeated until only one card remains. It will be 
the chosen card. 

Hundreds of more elaborate card tricks have been based on 
the binary principles that underlie this trick, but the one just 
described is as simple, effective, and as easy to perform as any. 
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THE GAME OF LIFE, PART I 

Most of the work of John Horton Conway, a distinguished 
mathematician at the University of Cambridge, has been in 
pure mathematics. For instance, in 1967 he discovered a new 
group--some call it "Conway's constellation"-that includes all 
but two of the then known sporadic groups. (They are called 
"sporadic" because they fail to fit any classification scheme.) It 
is a breakthrough that has had exciting repercussions in both 
group theory and number theory. It ties in closely with an ear- 
lier discovery by John Leech of an extremely dense packing of 
unit spheres in a space of 24 dimensions where each sphere 
touches 196,560 others. As Co~lway has remarked, "There is a 
lot of room up there." 

In addition to such serious work Conway also enjoys recrea- 
tional mathematics. Although he is highly productive in this 
field, he seldom publishes his discoveries. One exception was 
his paper on "Mrs. Perkins' Quilt," a dissection problem dis- 
cussed in my Mathematzcal Carnzval. Another was sprouts, a to- 
pological pencil-and-paper game invented by Conway and 
M. S. Paterson. It is also the topic of a chapter in the same 
book. 

In this chapter we consider Conway's most famous brain- 
child, a fantastic solitaire pastime he calls "Life." Because of its 
analogies with the rise, fall and alterations of a society of living 
organisms, it belongs to a growing class of what are called "sim- 
ulation games"-games that resemble real-life processes. T o  
play Life without a computer you need a fairly large checker- 
board and a plentiful supply of flat counters of two colors. 
(Small checkers or poker chips do nicely.) An Oriental "go" 
board can be used if you can find flat counters small enough to 
fit within its cells. (Go stones are awkward to use because they 
are not flat.) It is possible to work with pencil and graph paper 
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but it is much easier, particularly for beginners, to use counters 
and a board. 

The basic idea is to start with a simple configuration of 
counters (organisms), one to a cell, then observe how it changes 
as you apply Conway's "genetic laws" for births, deaths and 
survivals. Conway chose his rules carefully, after a long period 
of experimentation, to meet three desiderata: 

(1) There should be no initial pattern for which there is a 
simple proof that the population can grow without limit. 

(2) There should be initial patterns that upparentlj do grow 
without limit. 

(3) There should be simple initial patterns that grow and 
change for a considerable period of time before coming to an 
end in three possible ways: Fading away completely (from 
overcrowding or from becoming too sparse), settling into a sta- 
ble configuration that remains unchanged thereafter, or enter- 
ing an oscillating phase in which they repeat an endless cycle 
of two or more periods. 

In brief, the rules should be such as to make the behavior of 
the population both interesting and unpredictable. 

Conway's genetic laws are delightfully simple. First note that 
each cell of the checkerboard (assumed to be an infinite plane) 
has eight neighboring cells, four adjacent orthogonally, four 
adjacent diagonally. The rules are: 

(1) Survivals. Every counter with two or three neighboring 
counters survives for the next generation. 

(2) Deaths. Each counter with four or more neighbors dies 
(is removed) from overpopulation. Every counter with one 
neighbor or none dies from isolation. 

(3) Births. Each empty cell adjacent to exactly three neigh- 
bors-no more, no fewer-is a birth cell. A counter is placed 
on it at the next move. 

It is important to understand that all births and deaths occur 
simultaneously. Together they constitute a single generation or, 
as we shall usually call it, a "tick" in the complete "life history" 
of the initial configuration. Conway recommends the following 
procedure for making the moves: 

(1) Start with a pattern consisting of black counters. 
(2) Locate all counters that will die. Identify them by putting 

a black counter on top of each. 
(3) Locate all vacant cells where births will occur. Put a white 

counter on each birth cell. 
(4) After the pattern has been checked and double-checked 



CHAPTER 20 

to make sure no mistakes have been made, remove all the dead 
counters (piles of two) and replace all newborn white organ- 
isms with black counters. 

You will now have the first generation in the life history of 
your initial pattern. The same procedure is repeated to pro- 
duce subsequent generations. It should be clear why counters 
of two colors are needed. Because births and deaths occur si- 
multaneously, newborn counters play no role in causing other 
deaths or births. It is essential, therefore, to be able to distin- 
guish them from live counters of the previous generation while 
you check the pattern to be sure no errors have been made. 
Mistakes are very easy to make, particularly when first playing 
the game. After playing it for a while you will gradually make 
fewer mistakes, but even experienced players must exercise 
great care in checking every new generation before removing 
the dead counters and replacing newborn white counters with 
black. 

You will find the population constantly undergoing unusual, 
sometimes beautiful and always unexpected change. In a few 
cases the society eventually dies out (all counters vanishing), al- 
though this may not happen until after a great many genera- 
tions. Most starting patterns either reach stable figures-Con- 
way calls them "still 1ifes"-that cannot change or patterns that 
oscillate forever. Patterns with no initial symmetry tend to be- 
come symmetrical. Once this happens the symmetry cannot be 
lost, although it may increase in richness. 

Conway originally conjectured that no pattern can grow with- 
out limit. Put another way, any configuration with a finite number 
of counters cannot grow beyond a finite upper limit to the number 
of counters on the field. At the time this was one of the most 
difficult questions posed by the game. Conway offered a prize of 
$50 to the first person who could prove or disprove the conjecture 
before the end of 1970. One way to disprove it would be to dis- 
cover patterns that keep adding counters to the field: A "gun" (a 
configuration that repeatedly shoots out moving objects such as 
the "glider," to be explained below) or a "puffer train" (a configu- 
ration that moves but leaves behind a trail of "smoke"). The 
results of the contest for Conway's prize are discussed in the next 
chapter. 

Let us see what happens to a variety of simple patterns. 
A single organism or any pair of counters, wherever placed, 

will obviously vanish on the first tick. 
A beginning pattern of three counters also dies immediately 

unless at least one counter has two neighbors. Figure 126 
shows the five connected triplets that do not fade on the first 
tick. 
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Figure 126 

The fate of five triplets in "life" 

(Their orientation is of course irrelevant.) The first three [a, b, 
c] vanish on the second tick. In connection with c it is worth 
noting that a single diagonal chain of counters, however long, 
loses its end counters on each tick until the chain finally dis- 
appears. The speed a chess king moves in any direction is 
called by Conway (for reasons to be made clear later) the 
"speed of light." We say, therefore, that a diagonal chain de- 
cays at each end with the speed of light. 

Pattern d becomes a stable "block" (two-by-two square) on 
the second tick. Pattern e is the simplest of what are called 
"flip-flops" (oscillating figures of period 2). It alternates be- 
tween horizontal and vertical rows of three. Conway calls it a 
"blinker." 

Figure 127 shows the life histories of the five tetrominoes 
(four rookwise-connected counters). The square [a] is, as we 
have seen, a still-life figure. Tetrominoes b and c reach a stable 
figure, called a "beehive," on the second tick. Beehives are fre- 
quently produced patterns. Tetromino d becomes a beehive on 
the third tick. Tetromino e is the most interesting of the lot. 
After nine ticks it becomes four isolated blinkers, a flip-flop 
called "traffic lights." It too is a common configuration. Figure 
128 shows 12 common forms of still life. 

The reader may enjoy experimenting with the 12 pentomi- 
noes (all possible patterns of five rookwise-connected counters) 
to see what happens to each. He will find that five vanish be- 
fore the fifth tick, two quickly reach a stable loaf, and four in 
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The life histories of the five tetrominoes 
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Figure 128 

The commonest stable forms 

a short time become traffic lights. The only pentomino that 
does not end quickly (by vanishing, becoming stable or oscillat- 
ing) is the R pentomino ["a" in  Figure 1291. Conway has tracked 
it for 460 ticks. By then it has thrown off a number of gliders. 
Conway remarks: "It has left a lot of miscellaneous junk stag- 
nating around, and has only a few small active regions, so it is 
not at all obvious that it will continue indefinitely." Its fate is 
revealed in the addendum to this chapter. 

Figure 129 

The R pentomino (a) and exercises for the reader 

For such long-lived populations Conway sometimes uses a 
computer with a screen on which he can observe the changes. 
The program was written by M. J. T .  Guy and S. R. 
Bourne. Without its help some discoveries about the game 
would have been difficult to make. 

As easy exercises the reader is invited to discover the fate of 
the Latin cross ["b" i n  Figure 1291, the swastika [c], the letter H 
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[dl ,  the beacon [el, the clock fl, the toad [g] and the pinwheel 
[ h ] .  The last three figures were discovered by Simon Norton. If 
the center counter of the H is moved up one cell to make an 
arch (Conway calls it "pi"), the change is unexpectedly drastic. 
The H quickly ends but pi has a long history. Not until after 
173 ticks has it settled down to five blinkers, six blocks and two 
ponds. Conway also has tracked the life histories of all the hex- 
ominoes, and all but seven of the heptominoes. Some hexomi- 
noes enter the history of the R pentomino; for example, the 
pentomino becomes a hexomino on its first tick. 

One of the most remarkable of Conway's discoveries is the 
five-counter glider shown in Figure 130. After two ticks it has 
shifted slightly and been reflected in a diagonal line. Geome- 
ters call this a "glide reflection"; hence the figure's name. After 
two more ticks the glider has righted itself and moved one cell 
diagonally down and to the right from its initial position. We 
mentioned earlier that the speed of a chess king is called the 
speed of light. Conway chose the phrase because it is the high- 
est speed at which any kind of movement can occur on the 
board. No pattern can replicate itself rapidly enough to move 
at such speed. Conway has proved that the maximum speed 
diagonally is a fourth the speed of light. Since the glider rep- 
licates itself in the same orientation after four ticks, and has 
traveled one cell diagonally, one says that it glides across the 
field at a fourth the speed of light. 

Figure 130 

The "glider" 

Movement of a finite figure horizontally or vertically into 
empty space, Conway has also shown, cannot exceed half the 
speed of light. Can any reader find a relatively simple figure 
that travels at such a speed? Remember, the speed is obtained 
by dividing the number of ticks required to replicate a figure 
by the number of cells it has shifted. If a figure replicates in 
four ticks in the same orientation after traveling two unit 
squares horizontally or vertically, its speed will be half that of 
light. Figures that move across the field by self-replication are 
extremely hard to find. Conway knows of four, including the 
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glider, which he calls "spaceships" (the glider is a "feather- 
weight spaceship"; the others have more counters). I will dis- 
close their patterns in the Answer Section. 

Figure 13 1 depicts three beautiful discoveries by Conway 
and his collaborators. The stable honey farm [a in Figure 1311 
results after 14 ticks from a horizontal row of seven counters. 
Since a five-by-five block in one move produces the fourth gen- 
eration of this life history, it becomes a honey farm after 11 
ticks. The "figure 8" [b in Figure 1311, an oscillator found by 
Norton, both resembles an 8 and has a period of 8. The form 
c, in Figure 131 called "pulsar CP 48-56-72," is an oscillator 
with a life cycle of period 3. The state shown here has 48 
counters, state two has 56 and state three has 72, after which 
the pulsar returns to 48 again. It is generated in 32 ticks by a 
heptomino consisting of a horizontal row of five counters with 
one counter directly below each end counter of the row. 

Figure 131 

Three remarkable patterns, one stable and two oscillating 

Conway has tracked the life histories of a row of n counters 
through n= 20. We have already disclosed what happens 
through n = 4 .  Five counters result in traffic lights, six fade 
away, seven produce the honey farm, eight end with four bee- 
hives and four blocks, nine produce two sets of traffic lights, 
and 10 lead to the "pentadecathlon," with a life cycle of period 
15. Eleven counters produce two blinkers, 12 end with two bee- 
hives, 13 with two blinkers, 14 and 15 vanish, 16 give "big 
traffic lights" (eight blinkers), 17 end with four blocks, 18 and 
19 fade away and 20 generate two blocks. 

Conway also investigated rows formed by sets of n adjacent 
counters separated by one empty cell. When n = 5 the counters 
interact and become interesting. Infinite rows with n= 1 or 
n = 2 vanish in one tick, and if n = 3 they turn into blinkers. If 
n = 4 the row turns into a row of beehives. 
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The 5-5 row (two sets of five counters separated by a vacant 
cell) generates the pulsar CP 48-56-72 in 21 ticks. The 5-5-5 
ends in 42 ticks with four blocks and two blinkers. The 5-5-5-5 
ends in 95 ticks with four honey farms and four blinkers, 
5-5-5-5-5 terminates with a spectacular display of eight gliders 
and eight blinkers after 66 ticks. Then the gliders crash in 
pairs to become eight blocks after 86 ticks. The form 5-5-5-5- 
5-5 ends with four blinkers after 99 ticks, and 5-5-5-5-5-5-5, 
Conway remarks, "is marvelous to sit watching on the com- 
puter screen." This ultimate destiny is given in the addendum. 

ANSWERS 

The Latin cross dies on the fifth tick. The swastika vanishes on 
the sixth tick. The letter H also dies on the sixth tick. The next 
three figures are flip-flops: As Conway writes, "The toad pants, 
the clock ticks and the beacon flashes, with period 2 in every 
case." The pinwheel's interior rotates 90 degrees clockwise on 
each move, the rest of the pattern remaining stable. Periodic 
figures of this kind, in which a fixed outer border is required 
to move the interior, Conway calls "billiard-table configura- 
tions" to distinguish them from "naturally periodic" figures 
such as the toad, clock and beacon. 

The three unescorted ships (in addition to the glider, or 
"featherweight spaceship" are shown in Figure 132. T o  be pre- 
cise, each becomes a spaceship in 1 tick. (The patterns in Fig- 
ure 132 never recur.) All three travel horizontally to the right with 
half the speed of light. As they move they throw off sparks 
that vanish immediately as the ships continue on their way. Unes- 
corted spaceships cannot have bodies longer than six counters 
without giving birth to objects that later block their 

Figure 132 

Lightweight (left), middleweight (center), 
and heavyweight (right) spaceships 

motion. Conway has discovered, however, that longer space- 
ships, which he calls "overweight" ones, can be escorted by two 
or more smaller ships that prevent the formation of blocking 
counters. Figure 133 shows a larger spaceship that can be es- 
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Figure 133 

Overweight spaceship with two escorts 

corted by two smaller ships. Except for this same ship, length- 
ened by two units, longer ships require a flotilla of more than 
two companions. A spaceship with a body of 100 counters, 
Conway finds, can be escorted safely by a flotilla of 33 smaller 
ships. 

ADDENDUM 

My 1970 column on Conway's "Life" met with such an instant 
enthusiastic response among computer hackers around the 
world that their mania for exploring "Life" forms was esti- 
mated to have cost the nation millions of dollars in illicit com- 
puter time. One computer expert, whom I shall leave name- 
less, installed a secret switch under his desk. If one of his 
bosses entered the room he would press the button and switch 
his computer screen from its "Life" program to one of the 
company's projects. The next two chapters will go into more 
details about the game. Here I shall comment only on some of 
the immediate responses to two questions left open in the first 
column. 

The troublesome R pentomino becomes a 2-tick oscillator 
after 1,103 ticks. Six gliders have been produced and are trav- 
eling outward. The debris left at the center [see Figure 1341 
consists of four blinkers, one ship, one boat, one loaf, four bee- 
hives, and eight blocks. This was first established at Case West- 
ern Reserve University by Gary Filipski and Brad Morgan, and 
later confirmed by scores of "Life" hackers here and abroad. 

The fate of the 5-5-5-5-5-5-5 was first independently found 
by Robert T. Wainwright and a group of hackers at Honey- 
well's Computer Control Division, later by many others. The 
pattern stabilizes as a 2-tick oscillator after 323 ticks with four 
traffic lights, eight blinkers, eight loaves, eight beehives, and 



Figure 134 

R pentomino's original (black) and final (open dots) state. 
(Six gliders are out of sight.) 
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four blocks. Figure 135 reproduces a printout of the final 
steady state. Because symmetry cannot be lost in the history of 
any life form, the vertical and horizontal axes of the original 
symmetry are preserved in the final state. The maximum pop- 
ulation (492 bits) is reached in generation 283, and the final 
population is 192. 

Figure 135 

Initial pattern and final state of the 5-5-5-5-5-5-5 row 
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Cellular automata theory began in the mid-fifties when John 
von Neumann set himself the task of proving that self-replicat- 
ing machines were possible. Such a machine, given proper in- 
structions, would build an exact duplicate of itself. Each of the 
two machines would then build another, the four would be- 
come eight, and so on. (This proliferation of self-replicating 
automata is the basis of Lord Dunsany's amusing 1951 novel 
The Last Revolution.) Von Neumann first proved his case with 
"kinematic" models of a machine that could roam through a 
warehouse of parts, select needed components and put to- 
gether a copy of itself. Later, adopting an inspired suggestion 
by his friend Stanislaw M. Ulam, he showed the possibility of 
such machines in a more elegant and abstract way. 

Von Neumann's new proof used what is now called a "uni- 
form cellular space" equivalent to an infinite checkerboard. 
Each cell can have any finite number of "states," including a 
"quiescent" (or empty) state, and a finite set of "neighbor" cells 
that can influence its state. The pattern of states changes in dis- 
crete time steps according to a set of "transition rules" that ap- 
ply simultaneously to every cell. The cells symbolize the basic 
parts of a finite-state automaton and a configuration of live 
cells is an idealized model of such a machine. Conway's game 
of "Life" is based on just such a space. His neighborhood con- 
sists of the eight cells surrounding a cell; each cell has two 
states (empty or filled), and his transition rules are the birth, 
death and survival rules I explained in the previous chapter. 
Von Neumann, applying transition rules to a space in which 
each cell has 29 states and four orthogonally adjacent neigh- 
bors, proved the existence of a configuration of about 200,000 
cells that would self-reproduce. 
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The reason for such an enormous configuration is that, for 
von Neumann's proof to apply to actual automata, it was nec- 
essary that his cellular space be capable of simulating a Turing 
machine: an idealized automaton, named for its inventor, the 
British mathematician A. M. Turing, capable of performing 
any desired calculation. By embedding this universal computer 
in his configuration, von Neumann was able to produce a uni- 
versal constructor. Because it could in principle construct any 
desired configuration by stretching "arms" into an empty re- 
gion of the cellular space, it would self-replicate when given a 
blueprint of itself. Since von Xeumann's death in 1957 his ex- 
istence proof (the actual configuration is too vast to construct 
and manipulate) has been greatly simplified. The latest and 
best reduction, by Edwin Roger Banks, a mechanical engineer- 
ing graduate student at the Massachusetts Institute of Tech- 
nology, does the job with cells of only four states. 

Self-replication in a trivial sense-without using configura- 
tions that contain Turing machines-is easy to achieve. A de- 
lightfully simple example, discovered by Edward Fredkin of 
M.I.T. about 1960, uses two-state cells, the von Neumann 
neighborhood of four orthogonally adjacent cells and the fol- 
lowing parity rule: Each cell with an even number of live 
neighbors (0, 2, 4) at time t becomes or remains empty at time 
t+ 1, and each cell with an odd number of neighbors (1, 3) at 
time t becomes or remains live at time t+ 1. It is not hard to 
show that after 2" ticks (n varying with different patterns) any 
initial pattern of live cells will reproduce itself four times- 
above, below, left and right of an empty space that it formerly 
occupied. The four replicas will be displaced 2" cells from the 
vanished original. The new pattern will, of course, replicate 
again after another 2" steps, so that the duplicates keep quad- 
rupling in the endless series 1, 4, 16, 64, . . . . Figure 136 shows 
two quadruplings of a right tromino. Terry Winograd, in a 
1967 term paper written when he was an M.I.T. student, gen- 
eralized Fredkin's rule to other neighborhoods, any number of 
dimensions and cells with any prime number of states. 

Ulam investigated a variety of cellular automata games, ex- 
perimenting with different neighborhoods, numbers of states 
and transition rules. In a 1967 paper "On Recursively Defined 
Geometrical Objects and Patterns of Growth," written with 
Robert G. Schrandt, Ulam described a number of different 
games. Figure 137 shows generation 45 of a history that began 
with one counter on the central cell. As in Conway's game, the 
cells are two-state, but the neighborhood is that of von Neu- 
mann (four adjacent orthogonal cells). Births occur on cells 
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Figure 136 

The replication of a trornino 

that have one and only one neighbor, and all live cells of gen- 
eration n vanish when generation n + 2 is born. In other words, 
only the last two generations survive at any step. In Figure 137 
the 444 new births are shown as black cells. The 404 white cells 
of the preceding generation wi!l all disappear on the next tick. 
Note the characteristic subpattern, which Ulam calls a "dog 
bone." Ulam experimented with games in which two configu- 
rations were allowed to grow until they collided. In the ensuing 
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F~gure 137 
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Generation 45 In a cellular game dev~sed by 
Stan~slaw M. Ulam 

"battle" one side would sometimes wipe out the other; some- 
times both arniies would be annihilated. Ula~n also explored 
games on three-dimensional cubical tessellations. His major pa- 
pers on cellular automata are in E u a y ~  on Cellular Automata, ed- 
ited by Arthur W. Burks. 

Similar ganies can he devised for triangular and hexagonal 
tessellations but, although they look different, they are not es- 
sentially so. All can be translated into equivalent games on a 
square tessellation by a suitable definition of "neighborhood." 
A neighborhood need not be made up of touching cells. In 
chess, for instance, a knight's neighborhood consists of the 
squares to which it can leap and squares on which there are 
pieces that can attack it. As Burks has pointed out, games such 
as chess, checkers and go can be regarded as cellular automata 
games in which there are complicated neighborhoods and tran- 
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sition rules and in which players choose among alternative next 
states in an attempt to be first to reach a certain final state that 
wins. 

Among the notable contributions of Edward F. Moore to cel- 
lular automata theory the best-known is a technique for prov- 
ing the existence of what John W. Tukey named "Garden of 
Eden" patterns. These are configurations that cannot arise in 
a game because no preceding generation can form them. They 
appear only if given in the initial (zero) generation. Because 
such a configuration has no predecessor, it cannot be self- 
reproducing. I shall not describe Moore's ingenious technique 
because he explained it informally in an article in Scientific 
American (see "Mathematics in the Biological Sciences," by Ed- 
ward F. Moore; September, 1964) and more formally in a pa- 
per that is included in Burks's anthology. 

Alvy Ray Smith 111, a cellular automata expert at Kew York 
University's School of Engineering and Science, found a simple 
application of Moore's technique to Conway's game. Consider 
two five-by-five squares, one with all cells empty, the other with 
one counter in the center. Because, in one tick, the central nine 
cells of both squares are certain to become identical (in this 
case all cells empty) they are said to be "mutually erasable." It 
follows from Moore's theorem that a Garden of Eden config- 
uration must exist in Conway's game. Unfortunately the proof 
does not tell how to find such a pattern and so far none is 
known. It may be simple or  it may be enormously complex. 
Using one of Moore's formulas, Smith has been able to calcu- 
late that such a pattern exists within a square of 10 billion cells 
on a side, which does not help much in finding one. 

Smith has been working on cellular automata that simulate 
pattern-recognition machines. Although this is now only of 
theoretical interest, the time may come when robots will need 
"retinas" for recognizing patterns. The  speeds of scanning de- 
vices are slow compared with the speeds obtainable by the 
"parallel computation" of animal retinas, which simultaneously 
transmit thousands of messages to the brain. Parallel compu- 
tation is the only way new computers can increase significantly 
in speed because without it they are limited by the speed of 
light through miniaturized circuitry. The  cover of the Febru- 
ary, 1971, issue of Scientific Arnerican [reproduced in Figure 
1381 shows a simple procedure, devised by Smith, by which a 
finite one-dimensional cellular space employs parallel compu- 
tation for recognizing palindromic symmetry. Each cell has 
many possible states, the number depending on the number of 
different symbols in the palindrome, and a cell's neighborhood 
is the two cells on each side. 
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Figure 138 

Cellular automaton 

Smith symbolizes the palindrome TOO HOT TO HOOT with 
four states of cells in the top row. T, 0 and H are represented 
by blue, red and yellow respectively, and black marks the pal- 
indrome's two ends. Here we have indicated the colors by dif- 
ferent shadings. The white cells in the other rows are in the 
quiescent state. The horizontal rows below the top row are suc- 
cessive generations of the top configuration when certain tran- 
sition rules are followed in discrete time steps. In other words, 
the picture is a space-time diagram of a single row, each suc- 
cessive row indicating the next generation. 

In the first transition each shade travels one cell to the left 
and one cell to the right, except for the end shadings, which 
are blocked by black; black moves inward at each step. Each 
cell on which two shadings land acquires a new state, symbol- 
ized by a cell divided into four triangles. The left triangle has 
the shading that was previously on the left, the right triangle 
has the shading previously on the right. The result of this first 
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move is shown in the second row. When an adjacent pair of 
cells forms a tilted square in the center that is a solid shading, 
it indicates a "collision" of like shadings and is symbolized by 
black dots in the two white triangles of the left cell. Dots re- 
main in that cell for all subsequent generations unless a colli- 
sion of unlike shadings occurs to the immediate right of the 
dotted cell, in which case the dots are erased. When collisions 
of unlike shadings occur, the left cell of the pair remains un- 
dotted for all subsequent generations even though like shad- 
ings may later collide on its right. 

At each move the shadings continue to travel one cell left or 
right (the direction in which the shaded triangles point) and all 
rules apply. If the palindrome has n letters, with n even as in 
this example (the scheme is modified slightly if n is odd), it is 
easy to see that after nl2 moves only two adjacent nonquiescent 
cells remain. If the left cell of this pair is dotted, the automaton 
has recognized the initial row as being palindromic. Down the 
diagram's center you see the colliding pairs of like shadings in 
the same order as they appear on the palindrome from the 
center to each end. As soon as recognition occurs the left cell 
of the last pair is erased and the right cell is altered to an "ac- 
cept" state, here symbolized by nested squares. An undotted 
left cell would signal a nonpalindrome, in which case the left 
cell would become blank and the right cell would go into a "re- 
ject" state. 

A Turing machine, which computes serially, requires in gen- 
eral n2 steps to recognize a palindrome of length 7%. Although 
recognition occurs here at step nl2, the accept state is shown 
moving in subsequent generations to the right to symbolite the 
cell-by-cell transmission of the acceptance to an output bound- 
ary of the cellular space. Of course it is easy to construct more 
efficient palindrome-recognizing devices with actual electronic 
hardware, but the point here is to do it with a highly abstract, 
one-dimensional cellular space in which information can pass 
only from a cell to adjacent cells and not even the center of the 
initial series of symbols is known at the outset. As Smith puts i t  
anthropomorphically, after the first step each of the three dot- 
ted cells thinks it is at the center of a palindrome. The dotted 
cells at each end are disillusioned on the next move because of 
the collision of unlike shadings at their right. Not until genera- 
tion nI2 does the dotted cell at the center know it zs at the center. 

Now for some startling new results concerning Conway's 
game. Conway was fully aware of earlier games and it was with 
thefi in mind that he selected his recursive rules with great 
care to avoid two extremes: too many patterns that grow 
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quickly without limit and too many that fade quickly. By strik- 
ing a delicate balance he designed a game of surprising unpre- 
dictability and one that produced such remarkable figures as 
oscillators and moving spaceships. He conjectured that no fi -  
nite population could grow (in number of members) without 
limit, and he offered $30 for the first proof or disproof. The 
prize was won in November, 1970, by a group in the Artificial 
Intelligence Project at M.I.T. consisting of (in alphabetical or- 
der) Robert April, Michael Beeler, R. William Gosper, Jr., 
Richard Howell, Rich Schroeppel and Michael Speciner. Using 
a program devised by Speciner for displaying life histories on 
an oscilloscope, Gosper made a truly astounding discovery: he 
found a glider gun! The configuration in Figure 139 grows 
into such a gun, firing its first glider on tick 40. The gun is an 
oscillator of period 30 that ejects a new glider every 30 ticks. 
Since each glider adds five more counters to the field, the pop- 
ulation obviously grows without limit. 

Figure 139 

A configuration that grows into a glider gun 

The glider gun led the M.I.T. group to many other amazing 
discoveries. A series of printouts (supplied by Robert T. Wain- 
wright of Yorktown Heights, N.Y.) shows how 13 gliders crash 
to form a glider gun [see Figure 1401. The last five printouts 
show the gun in full action. The group also found a way to po- 
sition a pentadecathlon [see Figure 1411, an oscillator of period 
15, so that it "eats" every glider that strikes it. A pentadecath- 
lon can also reflect a glider 180 degrees, making it possible for 
two pentadecathlons to shuttle a glider back and forth forever. 
Streams of intersecting gliders produce fantastic results. Strange 
patterns can be created that in turn emit gliders. Sometimes 
collision configurations grow until they ingest all guns. In other 
cases the collision mass destroys one or more guns by shooting 
back. The group's latest burst of virtuosity is a way of placing 
eight guns so that the intersecting streams of gliders build a 
factory that assembles and fires a middleweight spaceship 
about every 300 ticks. 
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Figure 140 

Here and on the facing page 13 gliders crash to 
form a glider gun (generation 75) that oscillates 
with a period of 30, firing a glider in each cycle 
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The  existence of glider guns raises the exciting possibility 
that Conway's game will allow the simulation of a .l'uring ma- 
chine, a universal calculator capable in principle of doing any- 
thing the most powerful computer can do. The  trick would be 
to use gliders as unit pulses for storing and transmitting infor- 
mation and performing the required logic operations that are 
handled in actual computers by their circuitry. If' Conrz-ay's 
game allows a universal calculator, the next question will be 
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Figure 141 

Pentadecathlon (bottom right) "eats" gliders 
fired by the gun 
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rvhether it allows a universal constructor, fiom which nontrivial 
self-replication would follow. So far this has not been achieved 
~vith a two-state space and Conway's neighborhood, although it 
has been proved impossible with two states and the von Neu- 
maim neighborhood. 

The  b1.I.T. group found many new oscillators [sep Figure 
1421. One of' them, the barber pole, can be stretched to any 
length and is a flip-flop, with each state a mirror image of the 
other. Another, rvhich they redi~covered, is a pattern Con~vay's 
group had found earlier and called a Hertz oscillator. Ever); 
four ticks the hollo~v "hit" s~\.itches f'rorn one side of the central 
frame to the other, making it an oscillator of period 8. The  
tumbler, which was found by George D. Collins, Jr., of hIc- 
Lean, \'a,, turns upside down every seven ticks. 

Figure 142 

Barber pole (left), Hertz oscillator (middle), 
and tumbler (right) 

T h e  Cheshire cat [see Figure 1431 was discovered by C. R. 
Tompkins of Corona, Calif. On the sixth tick the face vanishes, 
leaving only a grin; the grin fades on the next tick and only a 
permanent paw print (block) remains. The  harvester was con- 
structed by David W. Poyner of Basildon in England. It plows 
up  an infinite diagonal at the speed of light, oscillating Tvith 
period 4 and ejecting stable packages along the way [see Figure 
1441. "Unfortunately," writes Poyner, "I have been unable to 
develop a propagator that will sow as fast as the harvester will 
reap." 

Wainwright has made a number of intriguing investigations. 
He filled a 120-by- 120 square field with 4,800 randomly placed 
bits (a density of one-third) and tracked their history for 450 
generations, by which time the density of this primordial soup, 
as Wainwright calls it, had thinned steadily to one-sixth. 
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Figure 143 

The Cheshire cat (0) fades to a grin (6) 
and disappears, leaving a paw print (7) 

Figure 144 

The harvester, shown at generations (0) left 
and 10 (right) 

Whether it would eventually vanish or, as Wainwright says, 
percolate at a constant minimum density is anybody's guess. At 
any rate, during the 450 generations 42 short-lived gliders 
were formed. Wainrvright found 14 different patterns that be- 
came glider states on the next tick. The most coinrrlon pattern 
to produce a glider on the next tick is shown [a in Figure 1451. 
A Z-pattern found by Collins and by Jeffrey Lund of' Pewau- 
kee, LVis., after 12 ticks becomes two gliders that sail off in op- 
posite directions [b in Fkure 1451. Wainwright and others set 
two gliders on a collision course that causes all bits to vanish on 
the fourth tick [c in Figure 1451. Wallace W. Wagner of Ana- 
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Figure 145 

Two spawners of gliders and two collision courses 

heim, Calif., found a collision course for two lightweight space- 
ships that also ends (on the seventh tick) in total blankness [d 
in Fzgure 1451. 

Wainwright has experimented with various infinite fields of 
regular stable patterns, which he calls agars-rich culture me- 
diums. When, for instance, a single "virus," or bit, is placed in 
the agar of blocks shown in Figure 146 so that it touches the 
corners of four blocks, the agar eliminates the virus and re- 
pairs itself in two ticks. If, however, the alien bit is positioned 
as shown (or at any of the seven other symmetrically equivalent 
spots), it initiates an inexorable disintegration of the pattern. 
The portion eaten away contains active debris that has overall 
bilateral symmetry along one axis and a roughly oval border 
that expands, probably forever, in the four compass directions 
at the speed of light. 

Figure 146 

Agar doomed by a virus 

The most immediate practical application of cellular auto- 
mata theory, Banks believes, is likely to be the design of circuits 
capable of self-repair or the wiring of any specified type of new 
circuit. No one can say how significant the theory may eventu- 
ally become for the physical and biological sciences. It may 
have important bearings on cell growth in embryos, the repli- 
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cation of DNA molecules, the operation of nerve nets, genetic 
changes in evolving populations and so on. Analogies with life 
processes are impossible to resist. If a primordial broth of 
amino acids is large enough, and there is sufficient time, self- 
replicating, moving automata may result from complex transi- 
tion rules built into the structure of matter and the laws of 
nature. There is even the possibility that space-time itself is 
granular, composed of discrete units, and that the universe, as 
Fredkin and others have suggested, is a vast cellular automaton 
run by an enormous computer. If so, what we call motion may 
be only simulated motion. A moving spaceship, on the ultimate 
microlevel, may be essentially the same as one of Conway's 
spaceships, appearing to move on the macrolevel whereas ac- 
tually there is only an alteration of states of basic space-time 
cells in obedience to transition rules that have not yet been 
discovered. 
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So much has been discovered about Conway's "Life" since I 
first wrote the last two chapters, that it was impossible to sum- 
marize the highlights in an addendum. A book could and 
should be written about the game, an Encyclopedia of Life, or a 
Handbook of Life, that would put all the important known Life 
forms on record and thereby save Lifenthusiasts the labor of 
rediscovering them. The eleven issues that appeared of Robert 
Wainwright's periodical Lifeline continue to be the main repo- 
sitory of such data. Wainwright is said to be working on a book, 
and there are rumors of other books about "Life" that are in 
the making. In the meantime, I will try in this chapter to pull 
together some of the significant developments in "Life" since 
my second column on the game ran in Scient$c American in 
197 1 .  Because so many basic forms were independently discov- 
ered by many people, I shall not often attempt to credit first 

iscoverers. d' 
The earliest and most important group of Lifenthusiasts was 

at M.I.T., centering around William Gosper who is now work- 
ing for Xerox at their Stanford research headquarters. In the 
mid-70s the most active "Life" group was in the computer con- 
trol division of Honeywell, Inc., Framington, Mass. It included 
(alphabetical order) Thomas Holmes, Keith McClelland, Mi- 
chael Sporer, Philip Stanley, Donald Woods, and his father 
William Woods. In the late seventies, an active group of "Life" 
hackers formed at the University of Waterloo, in Canada, with 
John Abbott, David Buckingbam, Mark Niemiec, and Peter 
Raynham as the leaders. Most of what I shall report comes 
from these three groups. 

All still lifes with 13 or fewer bits have long been known. 
The block and tub are the only 4-bit stable forms, and the boat 
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Figure 147 

More still lifes 

is the only one with 5 bits. Figure 128 caught four of the five 
6-bit still lifes, missing only the aircraft carrier shown in Figure 
147. There are four 7-bit stable forms: the loaf, long boat, long 
snake, and fishhook. The fishhook or "eater" is the smallest still 
life lacking any kind of symmetry. Note that forms such as the 
boat, barge, ship, and sinking ship can be stretched to any 
length, and lakes can be made as large as you like, with any 
number of barges, boats, and ships at anchor on the lvater. 
There are nine 8-bit still lifes, ten 9-bit forms, 25 with 10 bits, 
46 with 11 bits, 121 with 12 bits, and 149 with 13 bits. The sta- 
ble pool table in Figure 148 was constructed out of long sink- 
ing ships and parts of ponds by William Woods. 

Figure 148 

The stable pool table 
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Figure 149 

Low-period oscillators 

Hundreds of elegant oscillators have been found. Figure 149 
shows a few of' small size, with short periods. The M.I.T. 
group, early in the history of "Life," found easy ways to con- 
struct giant flip-flops (period-:! oscillators) such as the one 
shown in Figure 150. It oscillates between the patterns shown 
in black dots and circles. 

Figure 150 

A flip-flop pattern that alternates between states 
shown in black and with circles 
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Another large class of "Life" forms that have been inten- 
sively investigated are what the Honeywell group named the 
fuses. These are stems one or more bits wide, either diagonal 
or orthogonal, usually infinite in length, that burn steadily 
from one end toward the other. The simplest is the fuse shown 
in Figure 15 1 a, a diagonal of bits that either rises to infinity or 
has a stable top as shown. It simply burns itself out without 
producing any sparks or stable smoke. If you put another bit 
to the left of the lower end, it forms a tiny flame that travels 
along with the burning. 

Figure 151 

Five fuses 

Fuse b in Figure 151 oscillates with a period of 4, giving off 
sparks that fade quickly. A "dirty fuse," like the one shown in 
c in Figure 151, leaves clouds of debris behind as it burns. At 
one point it shoots off a glider. Fuse d in Figure 151, named 
the "baker" by its discoverer, McClelland, is a confused fuse 
that bakes a string of stable loaves while it burns. The last three 
fuses all oscillate with periods of 4, and all four burn with the 
speed of light. 

Fuse e in Figure 151 eventually becomes a clean fuse of pe- 
riod 4, but leaves behind a cloud consisting of three blocks, 
three beehives, two blinkers, a ship, and four gliders. William 
Woods calls it a "reverse fuse" because it explodes first, then 
burns quietly for the rest of its endless life. The harvester, de- 
scribed in the previous chapter, is of course a fuse. 

Other unusual fuses are shown in Figure 152. Fuse a, found 
by Steve Tower, has a period of 8. It leaves behind a trail of 
beacons. Fuse b abandons a twin pair of boats every four ticks. 
Orthogonal fuse c, which burns with a speed slower than light, 
consumes two tubs every 18 ticks, then changes them to traffic 
lights (four blinkers). It was discovered by Earl Abbe. Wain- 
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Figure 152 

More fuses 

wright's fuse d consumes three fenceposts every 12 genera- 
tions, and turns them into a beehive. 

Two fuses of a more complicated nature, discovered by Don 
Woods, are sho\vn in Figure 153. The cow burns at light speed, 
with period 8, slowly "chewing its cud" by eating the blocks on 
either side, bringing them back again, then eating them a sec- 
ond time. The two-glider fuse throws off two gliders every 12 
ticks. I resist the impulse to describe two close relatives of 
fuses, the wicks (infinite in both directions) and the kinkbombs. 
Kinkbombs come in three varieties: duds, firecrackers, and 
bombs, as detailed by Mark Horton in the 1 lth issue of Lifehn~. 

Figure 153 .. 1.. .. L. .... .. . .LO 0. 8. 0. 0. . i..NOOW.. 
e. . 0. . .w. e ~..Lo~ou.. r~ .. . ..., 0.00 UI.~ --3* 
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THE COW TWO GLIDER FUSE 

Two remarkable fuses 

There are 102 distinct patterns of bits within a 3 x 3 square 
(excluding rotations and reflections, but including the patterns 
consisting of nine bits and no bits). Some of these are polyo- 
minoes, some not. All the letters of the alphabet in Braille are 
among the 102. The fates of all 102 are known. Also known 
are the fates of all polyominoes through the order-7 
heptominoes. 
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Methuselah patterns are those of fewer than 10 bits which 
do not stabilize until after more than 50 generations. Two ex- 
amples were given in the previous chapter: 'I'he 5-bit R-pen- 
tomino and the pi-heptomino of T bits. The first generation of 
the pi-heptomino, by the way, reappears in tick 31, but shifted 
9 cells. Because of interaction with its exhaust, in generation 
61, it fails to make it as a spaceship. 

Other examples of Methuselahs are shown in Figure 154. 
The first one, u is the smallest known. It becomes the R-pen- 
tomino in two ticks, giving it a life of 1,105 generations. Me- 
thuselah b stabilizes (six blocks, twelve blinkers, one loaf) after 
608 generations, c (the thunderbird) lasts 243 ticks, and d goes 
to 1,108. The heptomino e stabilizes after 148 ticks, having 
produced three blocks, a ship, and two gliders. The acorn f ,  
found by Charles Corderman, is the most amazing Methuselah 
known. It lives for 5,206 generations! When it stabilizes as an 
"oak" of 633 bits, it has produced numerous gliders, 13 of 
which escape. 

Figure 154 

Methusalehs 

The Honeywell group tracked the life histories of the first 
nine members of the 5-cell crosses, of which the simplest are 
shown in Figure 155. The first is a portion of an infinite trellis 

Figure 155 

The five-cell cross series 
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consisting of solid horizontal and vertical rows, two cells apart, 
that surround an infinity of empty 2 x 2 squares. Like the infi- 
nite trellis, this cross vanishes in one tick. The next cross dis- 
appears in 8 ticks. The third ends with many traffic lights in 6 
ticks, and the fourth stabilizes after 34 ticks with eight blinkers, 
having produced a truly spectacular display of fireworks along 
the way. (Its 19th generation is a beautiful ring of blocks with 
a checkerboard in the center.) Order-5 and order-7 crosses in 
this sequence stabilize as four pulsars in 36 and 21 ticks re- 
spectively, orders 6 and 8 go to four pulsars and a tub in 36 
and 21 ticks respectively, and order-9 ends after 42 ticks with 
16 blocks and 8 blinkers. 

William Gosper, in 1971, found the eater (fishhook), the in- 
credible 7-bit stable form shown with circles in Figure 156. It 
has the ability to consume an enormous variety of "Life" forms, 
then quickly repair itself. The first four pictures show the eater 
about to ingest a glider, blinker, pre-beehive, and a lightweight 
spaceship. In the fifth picture two eaters are poised to devour 
one another. This is prevented by their amazing ability to self- 
repair, so the pattern oscillates with period 3. The last picture 
shows how two gliders collide to produce an eater on the 13th 
tick. In recent years eaters of larger size have been discovered, 
with a variety of bizarre feeding habits. 

Figure 156 

The eater (circles) and some of its prey 

Extensive investigations have been made of different kinds 
of agars (regular patterns that are infinite in two dimensions), 
the procrastinators (forms that take more than 50 ticks to 
become a single simple stable form), and puffer trains. The 
puffers leave a trail of permanent smoke. Three are shown in 
Figure 15'7. The first, discovered by Gosper, is an engine es- 
corted between two lightweight spaceships. It puffs along at 
half the speed of light until after more than 1,000 ticks it de- 
velops a period of 140. Paul Schick discovered an entire family 
of puffer trains, the simplest of which, shown in b, leaves noth- 
ing behind. The pair of mirror-image lightweight spaceships 
pull a l o n ~  the s) >nmetrical heptomino engine with a period of 
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Figure 157 

Puffer trains 

12. The switch-engine puffer train c in Figure 157, moves too 
slowly (one-twelfth the speed of light) to be of much use. It 
travels diagonally like a glider, eventually producing eight 
blocks every 288 generations. No escorting spaceships are 
needed, but without the stabilizing block its smoke catches up 
with the engine and destroys it. 

The first Garden of Eden pattern, reproduced in Figure 
158, was found by Roger Banks in 1971. It required an enor- 
mous computer search of all possible predecessor patterns. 
The confining rectangle (9 x 33) holds 226 bits. The only other 
Garden of Eden pattern known was found by a French group 
in 1974, led by J. Hardouin-Duparc, at the University of Bor- 
deaux. It is inside a rectangle of 6 x 122. 

Figure 158 

A garden of Eden 

Although any "Life" pattern generates only one successor, 
the converse is not true. A given pattern may have two or more 
predecessors. This is why searching for Garden of Eden pat- 
terns is so difficult-the computer has to look at all possible 
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predecessors at each backward tick. If the universe eventually 
turns out to be one monstrous cellular automaton, one may 
reasonably ask whether there is an initial Garden of Eden state 
that required a creation because it has no predecessor pattern. 
By the way, the fact that a "son" of a Garden of Eden pattern 
may have more than one "father" has led Conway to offer $50 
to the first person who can find a pattern that has a father but 
no grandfather. The existence of such a pattern is still an open 
question. 

The most spectacular of the new developments in "Life" in- 
volve gliders and their collisions. Gosper's group found new 
types of glider guns, more compact spaceship factories pro- 
duced by glider crashes, and innumerable "Life" forms that eat 
gliders or reflect them back at different angles. Before its 
members broke up to go their separate ways, the M.I.T. group 
managed to complete a 17-minute film about their discoveries 
that has become a classic. 

A pure glider generator is one that generates one or more 
gliders with no debris left over. Two elegant ones found by the 
Honeywell group are shown in Figure 159. The biloaf left in 
four ticks produces two gliders going opposite ways. The 4-8- 
12 diamond right in 15 ticks forms four gliders headed in four 
different directions. Half a dozen 5-bit forms turn into a single 
glider, and more than a hundred 6-bit forms do the same. A 
search for predecessors of the original Gosper glider gun 
turned up a pattern of 21 bits that is the smallest known, 
though it seems possible there may be a way of positioning just 
four gliders (20 bits) so that they crash and form a gun. 

Figure 159 

Two glider-generators 

I mentioned earlier Gosper's way of placing eight guns so 
that their gliders crash to form a spaceship factory which fires 
off a middleweight spaceship about every 300 generations. 
Gosper soon improved this to four guns and one pentadecath- 
lon. This pattern produces a factory that shoots off lightweight 
or middleweight spaceships (depending on the timing) every 
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60 ticks. Wainwright positioned three "newguns" that generate 
a middleweight spaceship every 46 generations. 

Lifenthusiasts have investigated thousands of ways that glid- 
ers and spaceships can collide to produce an incredible variety 
of stable patterns (including the null pattern of nothing at all), 
as well as patterns that change, and patterns that produce new 
gliders andlor spaceships. Figure 160 shows some unusual col- 
lisions found by the Waterloo group. On the left is the pattern 
just before the crash; on the right, the outcome after the indi- 
cated number of ticks ( t  = ticks). 

The breeder is one of the most remarkable life forms found 
by the M.I.T. group; remarkable because its population growth 
is so rapid. Figure 161 is a photograph of a computer scope 
that shows the breeder breeding gliders. The little dots are 
gliders, about 1,000 of them inside the triangular region. The 
breeder consists of ten puffer trains moving east, their exhaust 
carefully controlled so that they generate gliders that crash to 
form guns that instantly spring into action along the horizontal 
axis. The picture shows the breeder at generation 3,333. 
Thirty guns are firing northeast at a rate of one glider per tick. 
The firing rate increases without limit until at about tick 6,500 
the number of gliders starts to exceed the age of the breeder. 
Seeing the breeder in action was one of the most awesome high 
points of my visit to M.I.T. 

When I wrote the previous chapter for the February 1971 
issue of Scientijic American, I raised the question of ~vhether the 
rules of "Life" permit the construction of a universal com- 
puter. I had the pleasure of reporting the next month that 
"Life" is indeed universal. Gosper at hf.1.T. and Conway at 
Cambridge independently "universalized" the "Life" space by 
showing how gliders could be used as pulses to simulate a Tur- 
ing machine. Exactly how this is done is too complicated to go 
into here, but you will find it clearly outlined by Conway in the 
second volume of Winning Ways, the book he coauthored with 
Elwyn Berlekamp and Richard Guy. 

The universality of "Life" means that it is possible in princi- 
ple to use moving gliders to perform any calculation that can 
be perfbrmed by the most powerful digital computer. For ex- 
ample, one can arrange a formation of glider guns, eaters, and 
other "Life" forms so that a stream of gliders, with gaps in the 
right places, will calculate pi, e, the square root of 2, or any 
other real number to any number of decimal places. Of course, 
it would be a very inefficient way to do such calculations, none- 
theless they are possible if you have a large enough field and 
sufficient ingenuity to build the needed "machine.'' 

In Winning Wajs Conway uses Fermat's last theorem to illus- 
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Figure 161 

The breeder 

trate "Life's" computing power as well as its limitations. A 
"Life" machine can be constructed that will steadily test the val- 
ues of the four variables in Fermat's famous formula. The pro- 
gram could be designed to halt, say by fading away, if it found 
a counterexample to Fermat's conjecture. On the other hand, 
if the conjecture is true, the "Life" machine will keep searching 
forever for the right combination of values. We know from un- 
decidability theory that there is no way to know in advance 
whether any given problem is solvable, therefore there is no 
way to know in advance whether any given pattern in "Life" 
will continue to change or to reach a stable end. 

In 1981, in a letter telling me he had found "Life" to be uni- 
versal, Conway added a note on the back of the envelope. "If 
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(ask Gosper) gliders can crash to form a pentadecathlon, then 
I can produce self-replicating machines, and it's undecidable 
whether a given machine is self-replicating." 

I cannot remember if I asked Gosper this question, but at any 
rate, gliders can crash to form pentadecathlons, and Conway states 
flatly, in Winning Ways, that self-replicating machines can be con- 
structed in "Life" space. We are not speaking now of moving 
forms like spaceships, but of machines that will build exact copies 
of themselves. The  original machine may either remain in the 
space or  it can be programmed to self-destruct after it has repli- 
cated itself. So far as I know no one has built such a machine, but if 
Conway is right (his proof has not been published), it is possible to 
build them. 
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Conway also asserts in Winning Ways that he has proved that 
"Life" patterns exist which move steadily in any desired ra- 
tional direction, recovering their initial forms after a fixed 
number of moves. As for spaceships (which move without pro- 
ducing smoke), no new ones have been discovered other than 
those already known to Conway in 1970. 

Conway goes on to speculate that if you imagine a sufficiently 
large broth of randomly placed bits, one would expect that by 
pure chance self-replicating creatures would arise, and those best 
adapted to survive would live longer than the others. Interactions 
with the environment would produce mutations. As in organic 
evolution, most mutations would be harmful, but some would 
have survival value. "It's probable," Conway writes, "given a 
large enough 'Life' space, initially in a random state, that after a 
long time, intelligent self-reproducing animals will emerge and 
populate some parts of the space." 

I would prefer the word "possible" here to "probable," but 
there is no question that "Life's" analogy with biological evolu- 
tion on earth is remarkable. One science fantasy writer, the 
widely read Piers Anthony, plays with this theme in his 1976 
novel, Ox. Diagrams of "Life" patterns head each chapter, and 
the book's plot involves intelligent, sentient beings called "pat- 
tern entities" or  "sparkle clouds" that have evolved by just the 
process Conway imagines, in a cellular space of dimensions 
higher than our spacetime. Their beha~:ior is totally deter- 
mined by transition rules, but like us they imagine themselves 
to have free ~rills. There is an amusing Chapter 11 in which 
Cal explains the rules of "Life" to Aquilon and she experi- 
ments with some simple patterns. 

"Try this one," Cal suggests, giving her the R-pentomino: 

"That's similar to the one I just did. You've just tilted it 
sideways, which makes no topological difference, and added 
one dot." 

"Try it," he repeated. 
She tried it, humoring him. But soon it was obvious that 

the solution was not a simple one. Her numbered patterns 
grew and changed, taking up more and more of the working 
area. The problem ceased to be merely intriguing; it became 
compulsive. Cal well understood this; he had been through it 
himself. She was oblivious to him now, her hair falling across 
her face in attractive disarray, teeth biting lips. "What a dif- 
ference a dot makes!" she muttered. 

In Chapter 13 Aquilon, still tracking the pattern's fate, ex- 
claims: "This K-pentomino is a menace! I'm getting a head- 
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ache! It just goes on and on." Gosper once said that to him the 
most impressive aspect of Conway's game is how it demon- 
strates the impossibility of predicting the outcome of processes 
that are rigidly determined by extremely simple rules of 
change. After Aquilon has learned about gliders and glider 
guns, she remarks: "If I were a pattern, I'd be very careful 
where I fired my gliders! That game plays a rough game!" 

"It does," Cal replies. "As does all nature." 
Much work has been done on variants of "Life": playing by 

other rules, and on other lattices such as triangular or hexag- 
onal, and in dimensions higher than two. One-dimensional 
"Life" has also been explored-see the articles by Jonathan 
Millen and Munemi Miyamoto. "Life" has been investigated on 
wraparound fields that are cylinders and toruses, and even 
Moebius surfaces and Klein bottles. Some interesting results 
have emerged, but nothing compares with "Life" in the com- 
bination of richness of interesting forms with such simple tran- 
sition rules. This is a tribute to Conway's intuition, and to the 
thoroughness with which he and his friends initially explored 
hundreds of alternate possibilities, including games with two or 
more sexes. Attempts have also been made to invent competi- 
tive games based on "Life," for two or more players, but so far 
without memorable results. 

"Life" may have some practical uses. There have been at- 
tempts to apply it to socioeconomic systems, and a generaliza- 
tion of "Life" has been suggested as an explanation of why 
some nebulas have spiral arms (see the article by Kenneth 
Brecher). Arthur Appel and Arthur Stein, at IBM, found a 
way of applying rules similar to "Life's" in programs designed 
to identify the hidden edges in computer drawings of' solid 
shapes. 

I spoke earlier of the possibility that the universe is a vast 
cellular automaton, operated by the movements of ultimate 
particles (perhaps not yet discovered) according to unknown 
transition rules. Physicists are now searching for a GUT 
(Grand Unification Theory) that will bring together all the 
forces of nature into one unified theory based on a gauge 
structure. As physicist Claudio Rebbi explained in his article on 
"The Lattice Theory of Quark Confinement" (ScientiJic Arneri- 
can, February 1983), a popular approach is to think of the 
gauge game as being played by particles on an abstract lattice 
of four-dimensional cubes-a sort of spacetime "Life." This 
suggestion was made in 1974 by Kenneth Wilson, and is now 
known as lattice gauge theory. 

The game metaphor for GUT carries with it the implication 



CHAPTER 22 

that the basic particles of the universe (pieces), the fundarnen- 
tal laws (transition rules), and spacetime (board) are not logical 
necessities. They are simply given. It is folly, as Hunle and the 
positivists have taught us, to ask why they are what they are. 
Like chess players, physicists should accept the game and enjoy 
their (endless?) task of trying to guess how it is played, not 
waste energy speculating on why the game is designed the way 
it is. Now we are back to Leibniz and his stupendous vision of 
a transcendent Mind, contemplating all possible games, then 
choosing for our universe the Game that best suits the Mind's 
incomprehensible purposes. 
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Postscript 1994

All readers of Chapter 2 surely know that in 1993 Andrew Wiles
announced a proof of Fermat’s last theorem. After much fanfare
in the media, and articles in science and math periodicals, a seri-
ous gap was found in the proof. Wiles is confident he can over-
come the snag, but at the time of this postscript the flaw had not
been corrected. In September of 1994 Fermat’s conjecture
became a theorem at last when R. Taylor and A. Wiles
announced they had found a way around the difficulty of Wiles’s
earlier approach.

Noam P. Elkies found an infinity of fourth powers that equal
the sum of three distinct fourth powers. See his paper “On A4 +
B4 + C4 = D4,” in Mathematics of Computation, Vol. 51 (1988),
pages 825–835. A later computer search by Roger Frye found
only one solution for D4 less than one million: 958004 + 4145604

+ 2175194 = 4224814. No wonder the question remained so
long unanswered!

Minimum lengths for Golomb rulers through 19 marks have
now been proved, extending the chart shown on page 163. The
shortest 12-ruler is 2,4,18,5,11,3,12,13,7,1,9 (length 85), and
the shortest 13 ruler is 2,3,20,12,6,16,11,15,4,9,1,7 (length
106). Both were proved unique by Douglas Robertson. The
shortest rulers of 14 and 15 marks are 127 and 151. The latter
was shown unique in 1985 by James B. Shearer. The shortest
ruler of 16 marks has a length of 179.

In 1993 W. Olin Sibert proved that 199 and 216 are optimal
lengths for 17 and 18 marks. Apostolos Dollas has shown that the
shortest length for 19 nodes is 246. He is planning to work on 20
marks, for which the conjectured minimum length is 283. More
than 200 papers on Golomb rulers have appeared since I first
introduced them in the column here reprinted as Chapter  15.

The total number C(n) of n × n Costas arrays (two-dimension-
al analogs of Golomb rulers) has now been enumerated for all n
equal or less than 22. Much of this work has been done by Oscar
Moreno and his group at the University of Puerto Rico, at Rio
Piedras. It is still not known whether there are Costas arrays for
n = 31 and 32.
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