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Preface 

LAAA'L'I'Y-DEEEZ AND GENNNNNTLEMEN: il'elcorne 
to the Greatest Mathematical Show on Earth! Coine and 
see the lrlost captivating and nlind-boggling puzzles ever 
derived by llunlan ingenuity! Marvel at the mysterious and 
fascinating parade of patterns in numbers, in words, in 
geometry, and in nature! Thrill to exotic and exciting 
paradoxes, to unbelievable feats of irlerltal gymnastics! 
il'atch the three rings in Chapters 1, 3, 8, 15, and 1 t! This 
is it-the REAL SOURCE of all the Best Anlusements, no~v 
Larger than Ever, in a new edition. 

Martin Gardner is once again the skillfl~l ringirlaster of 
a fast-paced varietj sho~l-. There's something here for 
everyone; indeed, there are dozens of things here for 
everyone. The t~.\~enty chapters of this book are nicely bal- 
anced between all sorts of stinlulatiiig ideas, suggested by 
doxvn-to-earth objects like niatchsticks and dollar bills as 
well as by faraway objects like planets and infinite random 
walks. i\'e learn about ancient devices for arithmetic and 
about irloderil explanations of artificial intelligence. Tllere 
are feasts here for the eyes and hands as well as for the 
brain. 

The 300 colunlns Martin Gardner has written about 
mathematical recreations are treasures of the world, anal- 
ogous to the symphonies of Joseph Haydii or the paint- 
ings of Hieronynlous Bosch. For nlany years I have 
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kept them close at  hand in my working library as sources 
of information and inspiration. First I saved the original 
pages, torn from my copies of Scientific American where 
the material first appeared. Later, as collections of 
columns began to appear in book form, I avidly acquired 
each book, appreciating the extra anecdotes and facts 
that had been added. I hope that someday these gems 
become among the first collections of writings to be made 
available on line, when technology permits books to be 
distributed on cassettes in digital form. 

What makes these little essays so special? There are 
many reasons, probably more than I can think of, but I 
suppose the principal one is that Martin's own enthusi- 
asm shines through his gracious writing. He has a special 
knack for describing mathematical ideas with a mini- 
mum of jargon, so that the beauty of the concepts can be 
appreciated by people of all ages, in all walks of life. His 
writing is accessible to my parents and to my children; 
yet the mathematics he describes is sufficiently concen- 
trated that professionals like myself can still learn much 
from it. 

P. T. Barnum correctly observed that people like to be 
hoodwinked once in awhile, and Martin the Magician is 
full of tricks and amusing swindles. But the important 
thing is that he is scrupulously fair. He painstakingly 
checks all of his facts and provides excellent historical 
background. These essays are masterpieces of scholar- 
ship as well as exposition; they are thoroughly reliable 
and carefully researched. On several occasions I have 
made what I thought was a comprehensive study of some 
topic, while Martin was independently preparing a col- 
umn about the same thing. Invariably I would find that 
he had selected all the choicest tidbits I knew and he 
would also have uncovered a few nuggets I had missed. 

So hurry, hurry, hurry-step right up into the Big 
Top: A stupendous show is about to begin! Gather a 
bagful of peanuts and take your seats. The band is ready 
to start the overture. On with the show! 



Introduction 

Sometimes these cogitations still amaze 
T h e  troubled midnight  and the noon's repose. 

-T. S. Eliot 

THE CHAPTERS OF THIS BOOK originally appeared in Scientific 
American as monthly columns with the heading "Mathematical 
Games." At times mathematicians ask me what I take the phrase 
to mean. It is not easy to reply. The word "game" was used by 
Ludwig Wittgenstein to illustrate what he meant by a "family 
word" that cannot be given a single definition. It has many 
meanings that are linked together somewhat like the members of 
a human family, meanings that became linked as the language 
evolved. One can define "mathematical games" or "recreational 
mathematics" by saying it is any kind of mathematics with a 
strong play element, but this is to say little, because "play," 
"recreation," and "game" are roughly synonymous. In the end 
one has to fall back oh such dodges as defining poetry as what 
poets write, or jazz as what jazz musicians play. Recreational 
math is the kind of math that recreational mathematicians 
enjoy. 

Although I cannot define a mathematical game any better 
than I can a poem, I do maintain that, whatever it is. i t  is the 
best way to capture the interest of young people in teaching ele- 
mentary mathematics. A good mathematical puzzle, paradox, or 
magic trick can stimulate a child's imagination much faster than 
a practical application (especially if the application is remote 
from the child's experience), and if the "game" is chosen care- 

xiii 
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fully it  can lead almost effortlessly into significant mathematical 
ideas. 

Not only children but adults too can become obsessed by a 
puzzle that has no foreseeable practical use, and the history of 
mathematics is filled with examples of work on such puzzles, by 

professionals and amateurs alike, that led to unexpected conse- 
quences. I n  his book Mathematics: Queen and Servant of Sci- 
ence, Eric Temple Bell cites the early work on classifying and 
enumerating knots as something that once seemed little more 
than puzzle play, but later became a flourishing branch of 
topology: 

So the problems of knots after all were more than mere puz- 
zles. The like is frequent in mathematics, partly because mathe- 
maticians have sometimes rather perversely reformulated seri- 
ous problems as seemingly trivial puzzles abstractly identical 
with the difficult problems they hoped but failed to solve. This 
low trick has decoyed timid outsiders who might have been 
scared off by the real thing, and many deluded amateurs have 
made substantial contributions to mathematics without suspect- 
ing what they were doing. An example is T. P. Kirkman's (1806- 
1895) puzzle of the fifteen schoolgirls (1850) given in books on 
mathematical recreations. 

Some mathematical puzzles really are trivial and lead nowhere. 
Yet both types have something in  common, and no one has ex- 
pressed this better than the eminent mathematician Stanislaw 
Ulam in  his autobiography, Adventures of a Mathematician: 

With all its grandiose vistas, appreciation of beauty, and vi- 
sion of new realities, mathematics has an addictive property 
which is less obvious or healthy. It is perhaps akin to the action 
of some chemical drugs. The smallest puzzle, immediately rec- 
ognizable as trivial or repetitive, can exert such an addictive 
influence. One can get drawn in by starting to solve such puz- 
zles. I remember when the Mathematical hlonthly occasion- 
ally published problems sent in by a French geometer concern- 
ing banal arrangements of circles, lines and triangles on the 
plane. "Belanglos," as the Germans say, but nevertheless these 
figures could draw you in once you started to think about how 
to solve them, even when realizing all the time that a solution 
could hardly lead to more exciting or more general topics. This 
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is much in contrast to what I said about the history of Fermat's 
theorem, which led to the creation of vast new algebraical con- 
cepts. The difference lies perhaps in that little problems can be 
solved with a moderate effort whereas Fermat's is still unsolved 
and a continuing challenge. Nevertheless both types of mathe- 
matical curiosities have a strongly addictive quality for the 
would-be mathematician which exists on all levels from trivia 
to the more inspiring aspects of mathematics. 

MARTIN GARDNER 
March 1979 
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Optical Illusiolzs 

OPTICAL ILLUSIONS-pictures, objects, or events that are not 
what they seem to be when perceived-have played and still 
play important roles in art, mathematics, psychology, and even 
philosophy. The ancient Greeks distorted the columns of the 
Parthenon so they would look straight to people on the ground. 
Renaissance muralists often distorted large wall paintings so 
they would appear normal when viewed from below. Mathema- 
ticians are interested in optical illusions because many of them 
are related to perspective (a branch of projective geometry) 
and other aspects of geometry. Psychologists investigate illu- 
sions to learn how the brain interprets the data that come to it 
by way of the senses. And philosophers of various schools of 
direct realism, who maintain that we perceive actual objects ex- 
ternal to our minds, have the problem of explaining how errors 
of perception can arise. 

On less serious levels, optical illusions are just plain fun. One 
enjoys being fooled by them for reasons not unlike those that 
underlie the delight of being fooled by a magician. Illusions re- 
mind us that the big outside world is not always what it seems. 



In  this chapter we will concentrate on a few optical illusions 
that are not so well known, and that have strong mathematical 
flavors. 

The process by which the brain interprets visual data is so 
complex and little understood that it is no surprise to find psy- 
chologists disagreeing sharply over explanations for even the 
simplest illusions. One of the oldest is the apparent increase in  
the size of the sun, moon, and constellations when they are near 
the horizon. The late Edwin G. Boring of Harvard University 
wrote many papers arguing that the "moon illusion" is caused 
primarily by the raising of one's eyes. A different view, going 
back to Ptolemy, is defended by Lloyd Kaufman and Irvin Rock 
in their article on "The Moon Illusion" in Scientific American, 
July 1962. Their "apparent distance" theory is in turn chal- 
lenged by Frank Restle in a paper in Science, February 20, 
1970. 

Today's approach is to regard most visual illusions as occur- 
ring in the brain as it searches its memory for what Richard L. 
Gregory calls the "best bet": the interpretation that best ex- 
plains the visual data in terms of the brain's stored experience. 
Such a view is supported by recent discoveries that many ani- 
mals, including birds and fish, have illusions that can be ex- 
plained in this way and also by work with people in cultures 
that differ markedly from ours. Zulus, for example, live in an  
almost completely round world. Their huts and doors are 
rounded. They plow fields in curves. Straight lines and right 
angles are seldom seen and there is no word for "square" in 
their language. As John Updike puts it in the second stanza of 
his poem "Zulus Live in Land Without a Square": 

When Zulus cannot smile, they frown, 
T o  keep an arc before the eye. 
Describing distances to town, 
They say, "As flies the butterfly." 

Several recent studies have shown that optical illusions in- 
volving parallel lines and angular corners, so common to the 
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rectangular world of technologically advanced societies, are dif- 
ficult for Zulus to perceive. The philosophers John Locke and 
George Berkeley both considered the question of whether a man 
born blind, who suddenly gains his sight, would be able to de- 
cide, without touching them, which of two objects was a cube 
and which a sphere. Locke and Berkeley thought not. Gregory's 
Eye and Brain summarizes recent studies along such lines and, 
although they are inconclusive, they seem to support both phi- 
losophers, again providing evidence for the modern view that 
most optical illusions are caused by the brain's faulty interpre- 
tation of input data. 

An amusing new development in visual illusions is the dis- 
covery of "undecidable figures": drawings of objects that can- 
not exist. The brain, unable to make sense of them, is thrown 
into a strange state of befuddlement. (They are analogous to 
such undecidable sentences as "This statement is false" or 
"Don't miss it if you can.") The best-known undecidable figure ' 

is the notorious three-pronged (or is it two-pronged?) "blivet," 
which began circulating among engineers and others in 1964. 
The March 1965 cover of Mad showed a grinning Alfred E. 
Neuman (with four eyes) balancing the blivet on his index 
finger. Roger Hayward contributed an article on "Blivets: Re- 
search and Development" to T h e  Worm Runner's Digest (De- 
cember 1968) in which he presented several variations [see Fig- 
ure I ] .  

Another well-known undecidable figure is the square stair- 
case around which one can climb or descend forever without 
getting higher or lower. It can be seen in Maurits C. Escher's 
1960 lithograph "Ascending and Descending" [see my Mathe- 
matical Carniual, page 951 and in the same artist's 1961 litho- 
graph of a waterfall operating a perpetual motion machine. 
This mystifying illusion, designed by the British geneticist L. S. 
Penrose and his son, the mathematical physicist Roger Penrose, 
was first published in their article "Impossible Objects: A Spe- 
cial Type of Visual Illusion" in T h e  British Journal of Psychol- 
ogy (February 1958, pages 31-33). 



FIGURE 1 

Roger Hayward's "undecidable" monument  
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The same two authors made use of it in their collection of 
original "Christmas Puzzles" for The New Scientist (December 
25,1958, pages 1580-81). Assuming [see Figure 21 that it takes 
three steps to go from the ground A to the top of step B, how 
can one get from A to C by climbing no more than 10 steps? 
The solution is possible only because the structure itself is not. 

FIGURE 2 

A puzzle  based on the Penrose stairway 

A third familiar impossible object is the skeleton of the cube 
held by a seated figure in another Escher lithograph that can be 



FIGURE 3 

Possible model for an impossible crate 

seen on page 94 of my Mathematical Carnival. The "Letters" 
department of Scientific American reproduced a photograph of 
such a "Freemish Crate" (as it was called) in its June 1966 
issue, but the picture was obtained by doctoring the print. There 
is, however, a way to build an actual model that will produce 
a genuine photograph of a Freemish crate. It  is explained by 
William G. Hyzer in Photo Methods for Industry, January 
1970. Hyzer's model is shown in Figure 3. If the model is 
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turned and tilted so that one open eye sees the gaps exactly co- 
inciding with two back edges of the crate, the brain assumes 
that the back edges are in front, producing a mental image of 
the impossible cube. 

The fact that we have two eyes makes possible many curious 
illusions. Hold your extended index fingers horizontally before 
your eyes, tips touching. Focus through the fingers on a dis- 
tant wall and then separate the fingertips slightly. You will see 
a "floating hot dog" between the two fingers. It is formed, of 
course, by overlapping fingertips, each seen by a different eye. 
Another ancient illusion of binocular vision is produced by 
holding a tube (such as a rolled-up sheet of paper) to your 
right eye like a telescope. Your left hand, palm toward you, is 
placed with its right edge against the tube. If you slide the hand 
back and forth along the tube, keeping both eyes open and look- 
ing at a distant object, you will find a spot where you seem to 
be looking through a hole in the center of your left palm. 

Under certain circumstances single-eyed vision gives an illu- 
sion of depth. Looking at a photograph through a tube with one 
eye produces a slight three-dimensional effect. One of the most 
striking illusions of monocular vision is shown in Figure 4. The 
page must be tilted back until it is almost flat. If the picture is 

FIGURE 4 

The nails that stand up 



viewed with one open eye from near the lower edge of the 
page, close to a spot above the point where all the lines would 
meet if they were extended downward, in a moment or two the 
nails will seem to stand upright. William James, in Volume 2, 
Chapter 19, of his famous Principles of Psychology, after giving 
an excellent explanation of this illusion, adds the following suc- 
cinct summary of the modern approach to perception: "In other 
words, we see, as always, the most probable object." 

An amazing binocular illusion is called the Pulfrich pendu- 
lum after its discoverer, Carl Pulfrich, who first described it in 
a German periodical in 1922. The pendulum is simply a piece 
of string, from one foot to four feet long, with a small object 
tied to one end. Have someone hold the other end and swing the 
bob back and forth along a plane perpendicular to your line of 
vision. Stand across the room and view the swinging bob by 
holding one lens of a pair of sunglasses over one eye. Both eyes 
must remain open. Keep your attention at  the center of the 
swing rather than following the moving bob. The bob will ap- 
pear to swing in an elliptical orbit! Shift the dark glass to your 
other eye and the bob will travel the same elliptical path but in  
the opposite direction. The depth illusion is so strong that if a 
large object is held behind the path of the bob, the bob actually 
seems to pass through it like a ghost. 

The Pulfrich illusion is explained by Gregory as arising from 
the fact that your dark-adapted eye sends messages to your 
brain at a lower speed than your uncovered eye. This time lag 
forces your brain to interpret the bob's movement as being al- 
ternately in front and in back of the plane in which it swings. 

Similar depth illusions are experienced if you look at a tele- 
vision picture with the dark glass over one eye or with one eye 
looking through a pinhole in a card. When something in the 
picture moves horizontally, it seems to travel in  front of the 
screen or behind it. I t  was this illusion that prompted several 
companies to advertise in 1966 a special pair of spectacles that, 
according to the advertisements, enabled one to see flat televi- 
sion pictures in three dimensions. The price was high and of 
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course the spectacles were merely inexpensive sunglasses with 
a piece of transparent plastic for one eye and darkened plastic 
for the other. 

A familiar category of illusions, much analyzed by the Ge- 
stalt school of psychology, concerns images capable of two in- 
terpretations of equal or nearly equal probability. The mind 
fluctuates, unable to settle on the best bet. The pattern of cubes 
that suddenly reverses, so that the number of cubes changes, is 
perhaps the best-known example. In  recent years we all have 
been annoyed by looking at  photographs of lunar craters and 
finding it difficult not to see them as mesas, particularly if the 
picture is turned so that the craters are illuminated by sunlight 
from below. an  angle of lighting that is seldom experienced. 

The black vase with contours that can be seen as profiles of 
two faces, another much-reproduced illusion of fluctuating ge- 
stalts, unexpectedly popped up in the new Canadian flag when 
it was officially adopted in 1965 after months of wrangling in 
the House of Commons. Direct your attention to the white back- 
ground at the top of the maple leaf [see Figure 51. You will see 

FIGURE 5 

The Canadian flag and its two a n g r y  m e n  



the profiles of two men (Liberal and Conservative?), foreheads 
together, snarling (one in English, the other in French?) at 
each other. Once you have spotted these faces you should have 
little difficulty understanding the odd-shaped polygons in Fig- 
ure 6. 

FIGURE 6 

A Gestalt puzzle. What  do the black shapes represent? 

The Necker cube (after L. A. Necker of Switzerland, who 
wrote about it in the 1830's) is another much-studied figure 
that reverses while you are looking at it. The Penroses, in their 
Christmas puzzles mentioned earlier, had the clever idea of add- 
ing a beetle to the "cube," in this instance a rectangular box 
[see Figure 71. The beetle appears to be on the outside. Stare 

FIGURE 7 

Put the bug inside the box. 



FIGURE 8 

A n  equal-distance illusion 

at the back corner of the box and imagine it to be the corner 
nearest you. The box will suddenly flip-flop, transporting the 
beetle to the floor inside. 

A surprising illusion, perhaps related to the Miiller-Lyer illu- 
sion (two lines of equal length that appear different because 
of arrow lines that point inward at  the ends of one line and 
outward at the ends of the other) can be demonstrated with 
three pennies. Place them in a row [see Figure 83. Ask some- 
one to slide the middle penny down until distance AB equals 
distance CD. Almost no one slides the coin far enough; indeed, 
it is hard to believe, until you measure the lines, that this illus- 
tration gives the correct position. The trick can also be done 
with larger coins, circular coasters, water glasses and other sim- 
ilar objects. 



The "ghost-penny" illusion, better known to magicians than 
to psychologists, is illustrated in Figure 9. Hold two pennies 
between the tips of pour forefingers and rub them rapidly back 
and forth against each other. A ghost penny will appear-but 
why should it be only at one end and not at the other? 

FIGURE 9 

Thc "ghost pcnrzy" 

A N S W E R S  

To CLIMB in 10 steps to the top of the Penrose staircase, walk 
up four steps, turn right, continue up three more steps, go back 
around the level U-shaped path, down three steps, then up three 
to the top. 

I have never seen in print an  explanation of the ghost-penny 
illusion, but so many readers sent such a convincing explana- 
tion that I have no doubt it is correct. When the two pennies are 
rubbed back and forth in the manner described, the angle of the 
fingers causes the coins to diverge in their forward positions 
alid create completely separate images. Contrariwise, the slight 
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lateral motion on the V side of the fingers causes their back- 
ward positions to converge and overlap. The result is that the 
separated forward images are faint, but the overlapping back- 
ward images reinforce one another to create a single, stronger 
image. 

Readers described many simple ways of confirming this the- 
ory. Marjorie Lundquist and S. H. Norris, for example, pro- 
posed the following experiment. Turn your palms outward, 
pointing the thumbs toward you. If two pennies are held be- 
tween the tips of the thumbs and rubbed together, the ghost 
coin appears on the V side of the thumbs, away from your body. 
This is what one would expect from the slight lateral motions 
that now overlap images on the far side. If the thumbs are held 
so that instead of making a V they form a straight line, the lat- 
eral motions are equalized on both sides and you see two ghost 
pennies. The same symmetrical double ghost results when the 
coins are held between the index fingertips, but instead of rub- 
bing forward and back, they are rubbed vertically up and down. 

Another striking confirmation of the theory, which I discov- 
ered myself, is obtained by rubbing the tips of your forefingers 
rapidly back and forth with no coins at all between them. The 
divergence in front and overlap in back is obvious. You will see 
a ghost fingertip within the V, with the edge of a fingernail 
right down its center! 

The ghost-penny illusion can be presented as a magic trick. 
Start with a penny (or nickel or quarter) palmed in the right 
hand. Borrow two similar coins from someone and hold them 
between the tips of your right thumb and forefinger. Slide the 
coins rapidly back and forth to create the ghost, holding the 
hand so the palmed coin can't be seen. After the ghost appears, 
close your hand into a fist, then open it to show that the ghost 
has materialized as a third coin. 
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Matches 

PAPER OR WOODEN MATCHES have two properties that lend 
themselves to mathematical amusements: they can be used as 
"counters," and they are handy models of unit line segments. 
A full compilation of mathematical recreations using matches 
would fill a large volume. In  this chapter we consider a few 
representative samples of tricks, games, and puzzles with 
matches. 

An old trick known to magicians as the "piano trick" (be- 
cause of the spectator's hand positions) can be presented as a 
miraculous exchange of odd and even parity. Ask someone to 
place his hands on the table, palms down. Insert two paper 
matches between each pair of adjacent fingers except for the 
ring finger and little finger of one hand, which get only a single 
match [see Figure 101. Remove the pairs of matches one at a 
time. Separate the matches of each pair and place them on the 
table, one match in front of each of the spectator's hands. Each 
time you do this say, "Two matches." Continue in this way, 
forming a small pile of matches in front of each hand, until 
only the single match remains. Take this match from his hand, 
hold it in the air, and say: "We have here two piles of matches, 



FIGURE 10 

The "piano trick" 

each formed with pairs. To which pile shall I add the single 
odd match?" Place the match on the pile designated. 

Point to the pile on which you dropped the match and say, 
"This is now a pile containing an extra match." Point to the 
other pile and say, "This remains a pile made up of pairs." 
Wave your hands over both piles and announce that you have 
caused the odd match to travel invisibly over to the other pile. 
To prove that this has indeed occurred, "count" the matches in 
the pile on which you dropped the single match by taking the 
matches by pairs and sliding them to one side. "Count" is in 
quotes because you do not actually count them. Instead, merely 
repeat, "Two matches" each time you move a pair to one side. 
The pile will consist entirely of pairs, with no extra match left 
over. "Count" the other pile in the same way. After the last pair 
has been slid aside a single match will remain. With convincing 
patter the trick will puzzle most people. Actually it is self-work- 
ing, and the reader who tries it should easily figure out why. 



A trick that goes back io medieval times and can be found in 
the first compilation ever made of recreational mathematical 
material, ProbL&zes plaisans et d&lectable.s. by Claude Gaspar 
Bachet, published in France in 1612, is still performed by magi- 
cians in numerous variants. The classical version is as follows. 

Twenty-four matches are placed on a table, together with any 
three small objects-say a dime, a finger ring, and a house key. 
Three spectators are chosen to assist. Designate them 1, 2, and 
3. To make sure that this order is remembered (you say), give 
one match to spectator 1, two matches to spectator 2, and three 
to spectator 3. These matches are taken from the 24 on the ta- 
ble, leaving a pile of 18. Ask each spectator to put his matches 
in his pocket. 

Turn  your back so that you cannot see what happens and ask 
that spectator 1 take any one of the three objects and put it in 
his pocket. Spectator 2 picks either of the two remaining objects. 
The third spectator pockets the last object. Now ask the person 
who took the dime to remove from the table as many matches as 
you origir~ally gave him and hold them in a closed fist. (You 
have no way of knowing who it is because your back is still 
turned.) ,4sk the person who took the ring to remove twice as 
marly matches as you originally gave him and hold them in his 
fist. Ask the oile who took the key to take four times the number 
of matches he was given and hold them. 

You turn around and. after a few moments of feigned extra- 
sensory corlceirtratiori. tell each person which object he took. 
The clue is provided by the number of matches remaining on 
the table. There are six possible permutations of the three ob- 
jects in the pockets of the three spectators. Each permutation 
leaves a different number of matches on the table. If we desig- 
nate the objects S ,  M. and L for small. medium, and large, the 
chart in Figure 11 shows the permutation that corresponds to 
each possible remaining number of matches. (Note that it is 
impossible for four matches to remain. If you see four matches 
on the table, someone goofed and the trick has to be repeated.) 



Matches Spectators 
Left f , 2 

FIGURE 11 

I i c ~  for the tlzrcc7-ohjclc-t tric k 

D o z e ~ ~ s  of mnemonic sentences have been devised so that a 
performer can determine quickly how the three objects are dis- 
tributed. Bachet labeled the objects a,  e, i, the first three vowels, 
and used this French sentence: (1)  Par f p r  (2) Ct;sar ( 3 )  jadis 
( 5 )  d u > i n t  (6)  si grand ( 7 )  prince. The two vowels ill each 
word or phrase provide the ~ ~ e e d e d  information. For example. 
if the magician sees five matches on the table, the fifth \vord, 
"dcvsint." tells him that object c was taken by the first spectator 
(who had beell giver1 one match) and object i by the second 
spectator !vi-ho had t~l-o matches) ; the remailling object. n, must 
be in the pocket of the remaining spectator, who had been 
giver1 three niatches at the start of the trick. Other 17th-century 



European tricksters, also using the first three vowels for the ob- 
jects, remembered the six permutations by the first two vowels 
of each word in the Latin line: Salve certa animae semita vita 
quies. 

For the version given here, with objects designated S,  M, L, 
a good English mnemonic sentence was invented by Oscar Wei- 
gle, an amateur magician: (1)  Sam (2) moves ( 3 )  slowly [ (4)  
since] (5) mule (6) lost ( 7 )  limb. The first two appearances of 
the key letters, shown in italics, give the objects taken by the 
first and second spectators respectively, leaving the third object 
to be paired with the third spectator. Many other mnemonic 
sentences for the trick have been published in English and other 
languages. The reader may enjoy making up one of his own. 
The objects can be designated by other letters, such as A, B, C 
or L, Ill, H (for light, medium, heavy), or by the initial letters 
of whatever objects are used, and so on. It is convenient to in- 
troduce a dummy fourth word, as in Weigle's sentence, where it 
is shown bracketed, even though four remaining matches are 
not possible. This enables the performer to count the matches 
quickly by repeating the words of the sentence without having 
to worry about skipping number 4 if there are more than three 
matches. An interesting extension of the trick, dating from 
1893, to n players and n objects using an n-based number sys- 
tem, is given in W. W. Rouse Ball's Mathematical Recreations 
and Essays (page 30 in the revised 1960 edition). 

Some elementary number theory and the fact that a new 
folder of paper matches contains 20 matches lie behind a more 
recent mind-reading stunt. While your back is turned ask some- 
one to tear from a full folder any number of matches from one 
through 10 and pocket them. Then have him count the remain- 
ing matches, add the t.wo digits in this number and tear from 
the folder the number of matches equal to the sum. (For in- 
stance, if 16 matches remain, he adds 1 and 6 and tears out 
seven more matches.) These matches he also puts in his pocket. 
Finally, he tears out a few more matches-as many as he 



Matches 2 1 

wishes-and holds them in his closed fist. You turn around 
and take the folder from him, mentally counting the remaining 
matches as you put the folder in your pocket. You can now tell 
him the number of matches in his fist. The first two operations 
always leave nine matches in the folder. (Can you prove that 
this must be the case?) Therefore you have only to subtract 
from 9 the number of matches still in the folder to learn the 
number concealed in his hand. 

A variety of "take away" games, such as nim. can be played 
with matches, and there are various betting games in which 
matches are used as counters and concealed in  a fist. The fol- 
lowing game is one in which paper matches are particularly ap- 
propriate because of their shape and the fact that they can be 
obtained with differently colored heads. The game was invented 
recently by Jurg Nievergelt, a computer mathematician, who 
calls the game "Hit-and-Run." I t  is ordinarily played on an  
order-4 square matrix [see Figure 121. 

One player starts with a full folder of black-tipped matches, 
the other with a full folder of gray-tipped matches. It  is a 
pleasant coi~icidence that 40 matches are just enough. Players 
take turns placing a single match on any line segment of the 
matrix. Black's object is to construct a path connecting the two 
black sides of the board, Gray's is to construct a path connecting 
the other two sides. (Opposing paths may cross each other at a 
right angle.) The first player to build his path wins. The game 
is called Hit-and-Run because a move can block all opponent's 
path (a hit) and at the same time extend the player's own path 
(a  run) .  

The game bears a superficial resemblance to Piet Hein's game 
of Hex and later variants such as Bridg-it and Twixt, but the 
mathematical structure behind it is quite different. As in tick- 
tacktoe there is a simple proof that if both players of Hit-and- 
Run play rationally, the game is either a first-player win or a 
draw. Assume that the second player has a winning strategy. 
The first player can steal the strategy by first making an irrel- 



MATHEMATICAL CIRCUS 

BLACK 

BLACK 

BLACK 

BLACK 

FIGURE 12 

Hit-and-Run board ( t op )  and a completed game (bot tom)  
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evant move, and thereafter playing the winning strategy. The 
irrelevant move can only be an asset, never a liability. If the 
winning strategy later calls for the irrelevant move, the move 
has already been made so another irrelevant move is made. In 
this way the first player can win. Because this contradicts the 
initial assumption, it follows that the second player has no win- 
ning strategy. The first player, consequently, can either win or 
draw, although the proof provides no information about the 
strategy he must follow. 

On an order-2 square Hit-and-Run is easily seen to be a win 
for the first player [at left in Figure I S ] .  Black's first move (Bl)  
forces Gray to reply GI. B2 puts Black in position to complete a 
path by one move in either of two ways (marked B3), and so 
there is no way Gray can stop Black from winning on the next 
move. The first player can win in a similar way by playing 
first on any of the six vertical line segments. 

Readers can try to prove that on the order-3 square the game 
can also always be won by the first player (Black) if he or she 

BLACK 

BLACK 

BLACK BLACK 

FIGURE 13 

First-player w i n  on order-2 ( l e f t )  and ordcr-3 ( r ight )  boards 



plays first on either line marked Bl [at right in Figure 131. 
Nievergelt obtained such a proof by exhausting all possibilities; 
because it is long and tedious it will not be given. To my knowl- 
edge it is not yet known whether Hit-and-Run on the order-4 
board, or any square board of a higher order, is a win for the 
first player or a draw, if both sides play their best. 

Black and gray matches can also be used for playing Connecto, 
a game described by David L. Silverman in his book Your Move 
(McGraw-Hill, 1971).  Here too the players alternate in placing 
matches on a square matrix of any size, but the object now is to 
be the first to enclose a region of any shape within a boundary 
of one's own matches. In Figure 14 Black has won the game. Can 
you discover Silverman's simple strategy by which the second 
player can always prevent the first player from winning, even 
on an infinite matrix? 

FIGURE 14 

Completed game of Connecto 
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Finally, here are seven entertaining match puzzles [see Fig- 
ures 15A and 1 5 B l :  

1. Remove six matches, leaving 10. 
2. The six matches are shown forming a map requiring three 

colors, assuming that no two regions sharing part of a border 
can have the same color. Rearrange the six to form a planar 
map requiring four colors. Confining the map to the plane rules 
out the three-dimensional solution of forming a tetrahedral 
skeleton. 

3. Rearrange the 12 matches to spell what matches are made 
of. 

FIGURE 15A 

Seven match puzzles 



4. Change the positions of two matches to reduce the number 
of unit squares from five to four. "Loose ends"-matches not 
used as sides of unit squares-are not allowed. An amusing fea- 
ture of this classic is that, even if someone solves it, you can set 
up the pattern again in mirror-reflected form or upside down 
(or both) and the solution will be as difficult as before. 

5. It  is easy to see how to remove four matches and leave 
two equilateral triangles, or to remove three matches and leave 
two equilateral triangles, but can you remove just two matches 
and leave two equilateral triangles? There must be no "loose 
ends." 

FIGURE 158 



6. Move one match to produce a valid equation. Crossing the 
equality sign with a match to make it a not-equal sign is ruled 
out. 

7. Move one match to make a square. (The old joke solution 
of sliding the top match up a trifle to form a square hole at the 
center is not permitted; here the solution is a different kind of 
joke.) 

A D D E N D U M  

THE TWO MATCH GAMES are described as played with matches 
of different colored heads. If you can find a folder of black 
matches, then playing with black and white matches is even 
better. And of course both games can be played on paper by 
making an array of dots to be joined by lines of two different 
colors. 

Nievergelt pointed out that David Silverman's proof of sec- 
ond-person win, on Connecto fields, does not apply when the 
game is played on other regular grids. For example, on a trian- 
gular lattice the first player can win by completing a unit tri- 
angle on or before his or her seventh move. 

Nievergelt finds Connecto challenging on a variety of other 
grids, and wonders who has the win if the game is played on a 
cubical lattice. "It would be interesting," he writes, "if some- 
body found conditions of a graph-theoretical nature that would 
classify regular, infinite gaphs  as to whether the first player 
can force a circuit or not." 

ANSWERS 

DAVID SILVERMAN'S puzzle is answered by observing that any 
player who wins the game of Connecto obviously must have 



FIGURE 16 

Solutions to match puzzles 
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two matches forming the letter L in the boundary of his region. 
The second player can prevent the first player from winning, 
on a board of any size, simply by playing to prevent his oppo- 
nent from forming an L. If the first player plays the vertical 
bar of a possible L, the second player plays the horizontal bar. 
If the first player forms the horizontal part of a possible L, the 
second player forms the vertical part. This guarantees at least 
a draw for the second player. 

Answers to the seven match puzzles are given in Figure 16. 
Several readers found an alternate solution to the sixth puzzle. 
The VI on the left is changed to XI, the Roman equivalent of 
the Arabic 11 on the other side. 



C H A P T E R  3 

Spheres and Hypersfiheres 

"Mommy,  Mommy,  w h y  do I always go 'round i n  
circles?" 

"Shut up or I'll nail your other foot to the floor." 
-Children's sick joke, circa 1955 

A CIRCLE is the locus of all points on the plane at  a given dis- 
tance from a fixed point on the plane. Let's extend this to Eu- 
clidean spaces of all dimensions and call the general n-sphere 
the locus of all points in n-space at a given distance from a fixed 
point in n-space. In  a space of one dimension (a line) the 1- 
sphere consists of two points at a given distance on each side of 
a center point. The 2-sphere is the circle, the 3-sphere is what is 
commorily called a sphere. Beyond that are the hyperspheres of 
4, 5, 6 . . . dimensions. 

Imagine a rod of unit length with one end attached to a fixed 
point. If the rod is allowed to rotate only on a plane, its free 
end will trace a unit circle. If the rod is allowed to rotate in 3- 
space, the free end traces a unit sphere. Assume now that space 
has a fourth coordinate, at right angles to the other three, and 
that the rod is allowed to rotate in 4-space. The free end then 
generates a unit 4-sphere. Hyperspheres are impossible to vis- 
ualize nevertheless, their properties can be studied by a simple 
extension of analytic geometry to more than three coordinates. 
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A circle's Cartesian formula is a2 + b2 = r2, where r is the ra- 
dius. The sphere's formula is a2 + b2 + c2 = r2. The 4-sphere's 
formula is a2 + b2 + c2 + d2 = r2, and so on up the ladder of Eu- 
clidean hyperspaces. 

The "surface" of an  n-sphere has a dimensionality of n - 1. 
A circle's "surface" is a line of one dimension, a sphere's surface 
is two-dimensional, and a 4-sphere's surface is three-dimen- 
sional. Is it possible that 3-space is actually the hypersurface 
of a vast 4-sphere? Could such forces as gravity and electromag- 
netism be transmitted by the vibrations of such a hypersurface? 
Many late-19th-century mathematicians and physicists, both 
eccentric and orthodox, took such suggestions seriously. Einstein 
himself proposed the surface of a 4-sphere as a model of the 
cosmos, unbounded arid yet finite. Just as Flatlanders on a 
sphere could travel the straightest possible line in any direction 
and everltually return to their starting point, so (Einstein sug- 
gested) if a spaceship left the earth and traveled far enough in 
any one direction, it would eventually return to the earth. If a 
Flatlander started to paint the surface of the sphere on which 
he lived, extending the paint outward in ever widening circles, 
he would reach a halfway point at which the circles would be- 
gin to diminish, with himself on the inside, and eventually he 
would paint himself into a spot. Similarly, in Einstein's cosmos, 
if terrestrial astronauts began to map the universe in ever- 
expanding spheres, they would eventually map themselves into 
a small globular space on the opposite side of the hypersphere. 

Many other properties of hyperspheres are just what one 
would expect by analogy with lower-order spheres. A circle ro- 
tates around a central point, a sphere rotates around a central 
line, a 4-sphere rotates around a central plane. In  general the 
axis of a rotating n-sphere is a space of n - 2. (The 4-sphere is 
capable, however. of a peculiar double rotation that has no ana- 
logue in 2- or 3-space: it can spin simultaneously around two 
fixed planes that are perpendicular to each other.) The projec- 
tion of a circle on a line is a line segment, but every point on 



the segment, with the exception of its end points, corresponds to 
two points on the circle. Project a sphere on a plane and you get 
a disk, with every point inside the circumference corresponding 
to two points ori the sphere's surface. Project a 4-sphere on our 
3-space and you get a solid ball with every internal point cor- 
responding to two points on the 4-sphere's hypersurface. This 
too generalizes up the ladder of spaces. 

The same is true of cross sections. Cut a circle with a line and 
the cross section is a 1-sphere. or a pair of points. Slice a sphere 
with a plane and the cross section is a circle. Slice a 4-sphere 
with a 3-space hyperplane and the cross section is a 3-sphere. 
(You can't divide a 4-sphere into two pieces with a 2-plane. A 
hyperapple. sliced down the middle by a 2-plane, remains in 
one piece.) Imagine a +sphere moving slowly through our 
space. We see it first as a point and then as a tiny sphere that 
slowly grows in size to its maximum cross section, then slowly 
diminishes and disappears. 

A sphere of any dimension, made of sufficiently flexible mate- 
rial, can be turned inside out through the next-highest space. 
Just as we can twist a thin rubber ring until the outside rim 
becomes the inside, so a hypercreature could seize one of our 
tennis balls and turn it inside out through his space. He could 
do this all at once or he could start at one spot on the ball, turn 
a tiny portion first, then gradually enlarge it until the entire 
ball had its inside outside. 

One of the most elegant of the formulas that generalize easily 
to spheres of all dimensions is the formula for the radii of the 
maximum number of mutually touching n-spheres. On the 
plane, no more than four circles can be   laced so that each cir- 
cle touches all the others, with every pair touching at  a differ- 
ent point. There are two possible situations (aside from degen- 
erate cases in which one circle has an infinite radius and so 
becomes a straight line) : either three circles surround a smaller 
one [Figure 17, left] or three circles are inside a larger one 
[Figure 17, right].  Frederick Soddy, the British chemist who 
received a Nobel prize in 1921 for his discovery of isotopes, put 
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FIGURE 17 

Find the radius of the fourth circle. 

it this way in the first stanza of The  Kiss Precise, a poem that 
appeared in Nature (Vol. 137, June 20,1936, page 1021) : 

For pairs of lips to kiss maybe 
Inuolves no trigonometry. 
'Tis not so when four circles kiss 
Each one the other three. 
T o  bring this off the four must be 
As three in one or one in  three. 
If one i n  three, beyond a doubt 
Each gets three kisses from without. 
If three in one, then is that one 
Thrice kissed internally. 

Soddy's next stanza gives the simple formula. His term 
"bend" is what is usually called the circle's curvature, the recip- 
rocal of the radius. (Thus a circle of radius 4 has a curvature 



or "bend" of 1/4.) If a circle is touched on the inside, as it is in 
the case of the large circle enclosing the other three, it is said 
to have a concave bend, the value of which is preceded by a 
minus sign. As Soddy phrased all this: 

Four circles to the  kissing come. 
T h e  smaller are the benter. 
T h e  bend is just the inuerse of 
T h e  distance from the center. 
Though  their intrigue left Euclid d u m b  
There's now no need for rule of thumb.  
Since zero bend's a dead straight line 
And concave bends haue minus  sign, 
The sum of the squares of all four bends 
Is half the square of their sum. 

Letting a, b ,  c, d stand for the four reciprocals, Soddy's for- 
mula is 2 ( a 2  + b2 + c2 + @) = ( a  + b + c + d ) 2 .  The reader 
should have little difficulty computing the radii of the fourth 
kissing circle in each illustration. In  the poem's third and last 
stanza this formula is extended to five mutually kissing spheres: 

T o  spy out spherical affairs 
A n  oscular surveyor 
Might find the task laborious, 
The sphere is m u c h  the gayer, 
And now besides the pair of  airs 
A fifth sphere in the kissing shares. 
Y e t ,  signs and zero as before, 
For each to kiss the other four 
The square of the sum of all five bends 
Is thrice the sum of their squares. 

The editors of Nature reported in the issue for January 9, 
1937 (Vol. 139; page 62), that they had received several fourth 
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stanzas generalizing Soddy's formula to n-space, but they pub- 
lished only the following, by Thorold Gosset, an English barris- 
ter and amateur mathematician. 

And let us  not confine our cares 
T o  simple circles, planes and spheres, 
But rise to hyper  flats and bends 
W h e r e  kissing multiple appears. 
I n  n-ic space the  kissing pairs 
Are  hyperspheres, and T r u t h  declares- 
A s  n + 2 such osculate 
Each wi th  a n  n + I-fold mate.  
The square of the sun1 of all the bends 
Is n times the sum of their squares. 

In simple prose, for n-space the maximum number of mutu- 
ally touching spheres is n + 2, and rz times the sum of the 
squares of all bends is equal to the square of the sum of all 
bends. It  later developed that the formula for four kissing cir- 
cles had been known to Rent5 Descartes, but Soddy rediscovered 
it and seems to have been the first to extend i t  to spheres. 

Note that the general formula even applies to the three mutu- 
ally touching two-point "spheres" of 1-space: two touching line 
segments "inside" a third segment that is simply the sum of the 
other two. The formula is a great boon to recreational mathe- 
maticians. Puzzles about mutually liissing circles or spheres 
yield readily to it. Here is a pretty problem. Three mutually 
kissing spherical grapefruits, each with a radius of three inches, 
rest on a flat counter. A spherical orange is also on the counter 
under the three grapefruits and touching each of them. What is 
the radius of the orange? 

Problems about the packing of unit spheres do not generalize 
easily as one goes up the dimensional ladder; indeed, they be- 
come increasingly difficult. Consider, for instance, the problem 
of determining the largest number of unit spheres that can 



FIGURE 18 

Six unit circles touch a seventh. 

touch a unit sphere. For circles the number is six [see Figure 
181. For spheres it is 12, but this was not proved until 1874. 
The difficulty lies in the fact that when 12 spheres are arranged 
around a 13th, with their centers at the corners of an imagi- 
nary icosahedron [see Figure 191, there is space between every 
pair. The waste space is slightly more than needed to accom- 
modate a 13th sphere if only the 12 could be shifted around and 
properly packed. If the reader will coat 14 ping-pong balls with 
rubber cement, he will find it easy to stick 12 around one of 
them, and it will not be at all clear whether or not the 13th can 
be added without undue distortions. An equivalent question 
(can the reader see why?) is: Can 13 paper circles, each cover- 
ing a 60-degree arc of a great circle on a sphere, be pasted on 
that sphere without overlapping? 

H. S. M. Coxeter, writing on "The Problem of Packing a 
Number of Equal Nonoverlapping Circles on a Sphere" (in 
Transactions of the New York Academy of Sciences, Vol. 24, 
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FIGURE 19 

Twelve unit spheres touch a thirteenth. 



January 1962, pages 320-31 ), tells the story of what may be 
the first recorded discussion of the problem of the 13 spheres. 
David Gregory, an Oxford astronomer and friend of Isaac New- 
ton, recorded in his notebook in 1694 that he and Newton had 
argued about just this question. They had been discussing how 
stars of various magnitudes are distributed in the sky and this 
had led to the question of whether or not one unit sphere could 
touch 13 others. Gregory believed they could. Newton dis- 
agreed. As Coxeter writes, "180 years were to elapse before 
R. Hoppe proved that Newton was right.'' Simpler proofs have 
since been published, the latest in 1956 by John Leech, a British 
mathematician. 

How many unit hyperspheres in 4-space can touch a unit 
hypersphere? It is not yet known if the answer is 24, 25, or 26. 
Nor is it known for any higher space. For spaces 4 through 8 
the densest possible packings are known only if the centers of 
the spheres form a regular lattice. These packings give lower 
bounds of 24, 40, 72, 126, and 240 for the number of unit 
spheres that can touch another. If we are not confined to regu- 
lar lattice packings, the conjectured upper bounds are 26, 48, 
85, 146, and 244. For spaces higher than 8, not even the densest 
regular packings are known. On the basis of nonlattice packing 
reported by Leech and N. J. A. Sloane in 1970, it is possible for 
306 equal spheres to touch another equal sphere in 9 dimen- 
sions, and 500 can touch another in 10 dimensions. (The upper 
bounds are, respectively, 401 and 648.) 

Why the difficulty with 9-space? A consideration of some 
paradoxes involving hypercubes and hyperspheres may cast a 
bit of dim light on the curious turns that take place in 9-space. 
Into a unit square one can pack, from corner to diagonally op- 
posite corner, a line with a length of fl Into a unit cube one 
can similarly pack a line of fl The distance between opposite 
corners of an n-cube is fi and since square roots increase 
without limit, it follows that a rod of any size will pack into a 
unit n-cube if n is large enough. A fishing pole 10 feet long 
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will fit diagonally in the one-foot 100-cube. This also applies to 
objects of higher dimension. A cube will accommodate a square 
larger than its square face. A 4-cube will take a 3-cube larger 
than its cubical hyperface. A 5-cube will take larger squares 
and cubes than any cube of lower dimension with an edge of 
the same length. An elephant or the entire Empire State Build- 
ing will pack easily into an n-cube with edges the same length 
as those of a sugar cube if n is sufficiently large. 

The situation with respect to an n-sphere is quite different. 
NO matter how large n becomes, an n-sphere can never contain 
a rod longer than twice its radius. And something very queer 
happens to its n-volume as n increases. The area of the unit cir- 
cle is, of course, n-. The volume of the unit sphere is 4.1+. The 
unit 4-sphere's hypervolume is 4.9+. In 5-space the volume is 
still larger, 5.2+, then in6-space it decreases to 5.1+, and there- 
after steadily declines. Indeed, as n approaches infinity the hy- 
pervolume of a unit n-sphere approaches zero! This leads to 
many unearthly results. David Singmaster, writing "On Round 
Pegs in Square Holes and Square Pegs in Round Holes" (Math- 
ematics Magazine, Vol. 37, November 1964, pages 335-37), de- 
cided that a round peg fits better in a square hole than vice 
versa because the ratio of the area of a circle to a circumscribing 
square (.rr/4) is larger than the ratio of a square inscribed in a 
circle (2/7r). Similarly, one can show that a ball fits better in a 
cube than a cube fits in a ball, although the difference between 
ratios is a bit smaller. Singmaster found that the difference con- 
tinues to decrease through 8-space and then reverses: in 9-space 
the ratio of n-ball to n-cube is smaller than the ratio of n-cube 
to n-ball. In  other words, an n-ball fits better in an n-cube than 
an n-cube fits in an n-ball if and only if n is 8 or less. 

The same 9-space turn occurs in an unpublished paradox dis- 
covered by Leo Moser. Four unit circles will pack into a square 
of side 4 [see Figure 207. In  the center we can fit a smaller cir- 
cle of radius $Z - 1. Similarly, eight unit spheres will pack 
into the corners of a cube of side 4 [see Figure 211. The largest 



FIGURE 20 

Four circles around one of radius fl- 1 

sphere that will fit into the center has a radius of ~ ' 3  - 1. This 
generalizes in the obvious way: In a 4-cube of side 4 we can 
pack 16 unit 4-spheres and a central 4-sphere of radius fl- 1, 
which equals 1, so that the central sphere now is the same size 
as the others. In general, in the corners of an n-cube of side 4 
we can pack 2" unit n-spheres and presumably another sphere 
of radius 6- 1 will fit at the center. But see what happens 
when we come to 9-space: the central hypersphere has a radius 
of fl- 1 = 2, which is equal to half the hypercube's edge. The 
central sphere cannot be larger than this in any higher n-cube 
because it now fills the hypercube, touching the center of every 
hyperface, yet there is space at 29 = 512 corners to take 512 
unit 9-spheres! 

A related unpublished paradox, also discovered by Moser, 
concerns n-dimensional chessboards. All the black squares of a 
chessboard are enclosed with circumscribed circles [see Figure 
221. Assume that each cell is of side 2 and area 4. Each circle 
has a radius of fl and an area of 2 ~ .  The area in each white 
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FIGURE 21 

Eight unit spheres leave room for one with a radius of  d F -  1 

cell that is left white (is not enclosed by a circle) is 8 - 27~ = 
1.71 +. In  the analogous situation for a cubical chessboard, the 
black cubical cells of edge 2 are surrounded by spheres. The vol- 
ume of each black cell is 8 and the volume of each sphere, 



FIGURE 22 

Leo Moser's hyperchessboard problem 

which has a radius of \% is 477\3 but the volume of the un- 
enclosed portion of each white cube is not so easy to calculate 
because the six surroundirlg spheres intersect one another. 

Consider now the four-dimensional lattice of hypercubes of 
edge 2 with cells alternately colored as before so that each cell 
is surrounded by eight hypercubes of opposite color. Around 
each black hypercell is circumscribed a hypersphere. What is 
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the hypervolume of the unenclosed portion within each white 
cell? The surprising answer car1 be determined quickly without 
knowing the formula for the volume of a hypersphere. 

A N S W E R S  

THE FIRST problem was to determine the sizes of two circles, 
each of which touches three mutually tangent circles with radii 
of one, two, and three units. Using the formula given in the 
chapter, 

where x is the radius of the fourth circle, one obtains a value 
of 6/23 for the radius of the smaller circle, 6 for the larger one. 

The second problem concerned three grapefruits with three- 
inch radii and an orange, all resting on a counter and mutually 
touching. What size is the orange? The plane on which they 
rest is considered a fifth sphere of infinite radius that touches 
the other four. Since it has zero curvature it drops out of the 
formula relating the reciprocals of the radii of five mutually 
touching spheres. Letting x be the radius of the orange, we 
write the equation, 

which gives x a value of one inch. 
The problem can, of course, be solved in other ways. When it 

appeared as problem 43 in the Pi M u  Epsilon Journal, Nbvem- 
ber 1952, Leon Bankoff solved it this way, with R the radius of 
each large sphere and r the radius of the small sphere: 

"The small sphere, radius r, touches the table at a point equi- 



distant from the contacts of each of the large spheres with the 
table. Hence it lies on the circumcenter of an equilateral trian- 
gle, the side of which is 2R. Then ( R  + r )  is the hypotenuse of 
a right triangle, the altitude of which is ( R  - r )  and the base of 
which is 2 R f l / 3 .  So 

The answer to Leo Moser's paradox of the hypercubic chess- 
board in four-dimensional space is that no portion of a white 
cell remains unenclosed by the hyperspheres surrounding each 
black cell. The radius of each hypersphere is fi or 2. Since the 
hypercubic cells have edges of length 2, we see at once that each 
of the eight hyperspheres around a white cell will extend all 
the way to the center of that cell. The eight hyperspheres inter- 
sect one another, leaving no portion of the white cell unenclosed. 



C H A P T E R  4 

Patterns qf Induction 

MANY GAMES AND PASTIMES have flimsy analogies with induc- 
tion, that strange procedure by which scientists observe that 
some ostriches have long necks and conclude that all unobserved 
ostriches also have long necks. In  poker and bridge, for in- 
stance, players use observational clues to frame probable hy- 
potheses about an opponent's hand. A cryptographer guesses 
that a certain "pattern word," say BRBQFBQF, is NONSENSE, then 
tests this inductive conjecture by trying the letters elsewhere in 
the message. An old parlor entertainment involves passing a 
pair of scissors around and around a circle of players. As each 
person transfers the scissors he says "Crossed" or "Uncrossed." 
Those acquainted with the secret rule tell a player when he 
says the wrong word, and the joke continues until everyone has 
guessed the rule inductively. The scissors' blades are a red her- 
ring; a player should say "Crossed if and only if his legs are 
crossed. 

Familiar games such as Battleship and Jotto have slightly 
stronger analogies with scientific method, but the first full- 



fledged induction game was Eleusis, a card game invented by 
Robert Abbott and first explained in my  Scientific American 
column for June 1959. (Fuller details are in Ahbott's New Card 
Games, a Stein and Day hard-cover book in 1963 and a Funk & 
Wagr~alls paperback in 1969.) Eleusis intrigued many mathe- 
maticianr-notably Martin D. Kruskal of Princeton University, 
who worked out an excellent variant that he described in 1962 
in a privately issued booklet, Delphi-a Game of Inductice 
Reasoning. 

In Eleusis and Delphi a secret rule, specifying the order in 
which single carcls may be played, corresponds to a law of na- 
ture. Players try to guess the rule inductively and then (like 
scientists) test their conjectures. I n  this chapter I shall explain 
a new type of induction game called Patterns, devised by Sid- 
ney Sackson and included in his delightful book A Gamut  of 
Games. 

Patterns is a pencil-and-paper game that can be played by 
any number of people, although preferably no more than six. 
I t  differs markedly from Eleusis and Delphi. but it shares with 
them such a strikiiig similarity to scientific method that many 
thorny problems about induction, that have needled philoso- 
phers of science ever since David Hume showed induction has 
no logical justification, have pleasant analogues in  the game. 

Each player draws a square six-by-six grid on a sheet of pa- 
per. A player called the Designer (the role of Designer passes 
to another player with each new game) secretly fills in his 36 
cells by drawing in each cell one of four different symbols. 
Sackson suggests the four shown in Figure 23, but any other 
four may be used. The Designer, who can be regarded as Na- 
ture, the Universe. or the Deity. is free to mark the cells as he 
likes, they may form a strong or a weakly ordered pattern, a 
partially ordered pattern, or no pattern at  all. However (and 
here Sackson adopts the brilliant original idea of Abbott's). the 
method of scoring is such as to impel the Designer to create a 
pattern, or a regularity of nature, that is easy to discover for at 
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FIGURE 23 

Patterns for Sidney Sackson's induction game, 
all showing forms of symmetry 

least one player and yet difficult enough to be missed by at least 
one other player. 

Four typical patterns given in Sackson's book are arranged 
roughly in order of difficulty [see Figure 231. All have some 
type of visual symmetry, but nonsymmetrical forms of order 
can be used if the players are mathematically sophisticated. For 



FIGURE 24 

How is this pattern ordered? 

example, a Designer might take the cells in sequence, left to 
right and top to bottom, putting a plus sign in each cell whose 
number is prime and a star in all the remaining cells. The basis 
for ordering the Master Pattern is intimately bound up with 
the Designer's estimate of the abilities of the other players be- 
cause, as we shall see, he makes his highest score when one 
player does very well and another very poorly. Can the reader 
discern the simple basis for the nonsymmetrical ordering shown 
in Figure 24? 

The Designer puts his sheet face down on the table. Any 
player may now make inquiries by drawing on his own grid a 
small slant line in the lower left-hand corner of any cell about 
which he seeks information. His sheet is passed face down to 
the Designer, who must enter the correct symbol in each cell in 
question. There are no turns. A player may ask for information 
whenever he wants, and there is no limit to the number of cells 
about which he may inquire. Each request represents an ob- 
servation of nature--or an experiment, which is simply a con- 
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trolled way of making special observations; cells filled in by the 
Designer correspond to the results of such observations. A 
player could ask for information about a11 36 cells and obtain 
the entire pattern at once, but this is not to his advantage be- 
cause, as we shall learn, it would give him a score of zero. 

When a player believes he has guessed the Master Pattern, 
he draws symbols in all his untested cells. To make it easy to 
identify these inductions, guessed symbols are enclosed in pa- 
rentheses. If a player decides he cannot guess the pattern, he 
may drop out of the game with a zero score. This is sometimes 
advisable because it prevents him from making a minus score 
and also because it inflicts a penalty on the Designer. 

After all players have either filled in all 36 cells or dropped 
out of the game, the Designer turns his Master Pattern face up. 
Each player checks his guesses against the Master Pattern, 
scoring +I for every correct symbol, -1 for every incorrect 
symbol. The sum is his final score. If he made a small number 
of inquiries and correctly guessed all or most of the entire pat- 
tern, his score will be high. If he has more wrong than right 
guesses, his score is negative. High scorers are the brilliant (or 
sometimes lucky) scientists; poor scorers are the mediocre, im- 
pulsive (or sometimes unlucky) scientists who rush poorly con- 
firmed theories into print. Dropouts correspond to the mediocre 
or overcautious scientists who prefer not to risk framing any 
conjecture at all. 

The Designer's score is twice the difference between the best 
and the worst scores of the others. His score is reduced if there 
are dropouts. Five points are subtracted for one dropout, 10 for 
each additional dropout. Sackson gives the following examples 
of games with a Designer (D) and players A, B, C: 

If A scores 18, B scores 15, and C scores 14, D's score is 8, or 
twice the difference between 18 and 14. 

If A scores 18, B scores 15, and C scores -2, D's score is 40, 
or twice the difference between 18 and -2. 

If A scores 12, B scores 7, and C drops out with a score of 0, 



FIGURE 25 

Three stages in probing 
for the Master Pattern 

D's score is 19, or twice the difference between 12 and 0, with 
five points deducted for the single dropout. 

If A scores 12 and B and C both give up7 D scores 9. This is 
twice the difference between 12 and 0, with five points deducted 
for the first dropout, 10 for the second. 

If all three players drop out, D's score is -25. His basic score 
is 0, with 25 points subtracted for the three dropouts. 

An actual game played by Sackson suggests how a good 
player reasons [see Figure 251. The five initial inquiries probe 
the grid for evidence of symmetry [left]. The sheet is returned 
with the five symbols filled in [midd le] .  A series of additional 
inquiries brings more information [ r i g h t ] .  It looks as if the pat- 
tern is symmetrical around the diagonal axis from top left to 
bottom right. Since no stars have appeared, Sackson induces 
that they are absent from the pattern. 

Now comes that crucial moment, so little understood, for the 
intuitive hunch or the enlightened guess, the step that symbol- 
izes the framing of a hypothesis by an informed, creative scien- 
tist. Sackson guesses that the top left-hand corner cell contains 
a circle, that the three cells flanking it all have plus marks, and 
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that, continuing down the diagonal, the pluses are flanked by 
three-spot symbols, the pattern repeating itself with larger bor- 
ders of the same three symbols in the same order. To test this 
conjecture with as few new inquiries as possible, Sackson asks 
for information on only two more cells, the two cells shown 
empty but with slant lines on the grid at the right in Figure 25. 

If those cells do not contain circles, his conjecture is false. As 
the philosopher Karl Popper maintains, the "strongest" conjec- 
ture is the one that is easiest to falsify, and Popper considers 
this the equivalent of the "simplest" conjecture. In Sackson's 
game the strongest (and simplest) conjecture is that every cell 
contains the same symbol, say a star. I t  is strong because a sin- 
gle inquiry about any cell, answered by anything but a star, 
falsifies it. The weakest conjecture is that each cell contains 
one of the four symbols. Such a hypothesis can be completely 
confirmed. Since no inquiry can falsify it, however, it is a true 
but useless hypothesis, empty of all empirical content because 
it tells one nothing about the Master Pattern. 

The circles turn out to be where Sackson expected them. This 
increases what the philosopher Rudolf Carnap calls the "degree 



FIGURE 26 

Player's grid ( l e f t )  compared wi th  Master Pattern ( r ight )  

of confirmation" of Sackson's hypothesis in relation to the total 
evidence he has bearing on it. Sackson decides to take the induc- 
tive plunge and "publish" his conjecture. He fills in the empty 
cells of his grid. When his pattern is compared with the Master 
Pattern [see Figure 261, a count of the guessed symbols (in pa- 
rentheses) shows that Sackson has 20 right and one wrong, for 
a score of 19. 

The single star Sackson missed is unexpected, but it is typical 
of the surprises Nature often springs. Science is a complicated 
game in which the universe seems to possess an uncanny kind 
of order. an order that it is possible for humans to discover in 
part. but not easily. The more one studies the history of the 
game of science, the more one has the eerie feeling that the 
universe is trying to maximize its score. A splendid recent ex- 
ample is the independent discovery by Murray Gell-Mann and 
Yuval Ne'eman of the "eightfold way." This is a symmetry pat- 
tern. defined by a continuous group structure, into which all the 
elementary particles seem to fit. As soon as enough information 
had accumulated the pattern was simple enough to be spotted 
by two physicists, and yet it remained complicated enough to 
be missed by all the other players. 
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Sackson, the inventor of Patterns, is a professional engineer 
who worked on steel bridges and buildings. Collecting, study- 
ing, and inventing games has been his lifelong avocation. He 
owns the largest private collection of modern proprietary 
games, books on games, and notes obtained by painstaking re- 
search in the world's great libraries and museums. H e  has in- 
vented hundreds of games. The first, he discloses in his book, 
was invented when he was in the first grade; it had to do with 
circling words on a page and joining them in chains. The first 
board game he owned was Uncle Wiggily, a track game that is 
still on the market. He immediately modified it by altering its 
rules and substituting toy soldiers for rabbits to make it a war 
game. 

Almost all of Sackson's marketed games emphasize intellec- 
tual skill rather than luck. A game called Acquire, based on 
the theme of investing in hotel chains, has been his best-selling 
item. His other commercial games include The Case of the 
Elusive Assassin (a logic game based on Venn diagrams), 
Focus, Bazaar, Tam-Bit, Take Five, Odd or Even, Tempo, In- 
terplay, and two card games, Venture and Monad. 

A Gamut of Games is unique in that almost every one of its 
38 games will be completely unfamiliar to any reader. All can 
be played with equipment that is easily acquired or constructed: 
cards, dice, dominoes, counters, and checkerboards. Twenty- 
two are Sackson originals. The others are either creations of 
Sackson's game-inventor friends or old, forgotten games that 
deserve revival. No two readers will, of course, have the same 
reaction to every game. I particularly like Knight Chase, played 
on a chessboard with one black and one white knight and 30 
small counters. I t  is the invention of Alexander Randolph, 
Czechoslovakian born but now living in Venice, who has sev- 
eral excellent games on the U.S. market: Oh-Wah-Ree (based 
on the African game of mancala), Twixt, and Breakthru. An- 
other mathematically appealing game (which Sackson found in 
an 1890 book) is Plank, a version of ticktacktoe played with 12 
tricolored cardboard strips. The reader will find a valuable bo- 



nus in the book's final section: brief reviews of more than 200 
of the best adult games on sale in this country. 

Sackson's informal text is interspersed with personal anec- 
dotes and snippets of surprising historical data. Until I read his 
book I did not know that the 17th-century poet Sir John Suck- 
ling invented cribbage, or that Monopoly, the most successful 
of all proprietary board games, is derived from The Landlord's 
Game, which was patented in 1904 by one Lizzie J. Magie and 
was intended to teach Henry George's single-tax theory. Sack- 
son reproduces the patent drawing of the Magie board; the sim- 
ilarity to Monopoly is obvious. 

Marketed board games, Sackson reminds us, tend to reflect 
major eveilts and interests of the time. Although he does not 
mention it, an ironic example of this is The Money Game, a 
card game invented by Sir Norman Angell, who received the 
Nobel peace prize for 1933. The special cards and miniature 
money for this stock-market-speculation game were packaged 
with a 204-page explanatory book issued by E. P. Dutton, with 
puffs on the jacket by Walter Lippmann, John Dewey, and 
iioted economists. Why is Angell's Money Game so grimly 
amusing? The year of its publication was 1929. 

A D D E N D U M  

ROBERT ABBOTT has considerably modified his game of Eleusis 
to make it more exciting in actual play. For the rules of "New 
Eleusis," see my  Scientific American columri for October 1977. 

Sidney Sackson retired in 1970 from his engineering chores 
to devote full time to inventing games and to writing. His 
Gamut of Games is still in print in hard cover (Castle Books), 
and currently on sale are four paperbacks he has done for 
Pantheon, a division of Random House: Beyond Tic Tac Toe 
(1975), Beyond Solitaire (1976), Beyond Words j 1977), and 
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Beyond Competition (1977). All four contain tearout sheets for 
playing novel pencil-and-paper games. Sackson continues to 
review new games in his regular column in the war-gaming bi- 
monthly Strategy and Tactics, and to contribute to the British 
magazine Games arzd Puzzles and to the new U.S. periodical 
Games. 

More than two dozen of Sackson's original board games have 
been marketed in this country, of which the best knonrn are 
his 3M games: Acquire, Bazaar. Executive Decision, Venture, 
Monad, arid Sleuth. His game Focus is discussed in Chapter 5 
of my  Sixth Book of Mathematical Games from Scientific 
American. 

Attempts to mechanize the process of induction by computer 
programs continues to be the object of much current research. 
and the topic of a growing body of literature. Several computer 
scientists experimented with programs for playing Sackson's 
game of Patterns. One such program is discussed in detail in 
Edward Thomas Purcell's A Game-Playing Procedure for a 
Game of Induction. I t  was Purcell's 1973 thesis for a master's 
degree in computer science at the University of California in 
Los Angeles. 

A N S W E R S  

THE PROBLEM was to determine how a certain pattern for Sack- 
son's induction game is ordered. The answer: Starting at the 
upper left-hand cell and spiraling clockwise to the center, there 
is first one symbol. then two symbols, then three, then four, 
then the same order of symbols is repeated in sets of five, six, 
seven, and eight. 



C H A P T E R  5 

Elegant Triangles 

ONE MIGHT SUPPOSE that the humble triangle was so thor- 
oughly investigated by ancient Greek geometers that not much 
significant knowledge of the polygon with the fewest sides and 
angles could be added in later centuries. This is far from true. 
The number of theorems about triangles is infinite, of course, 
but beyond a certain point they become so complex and sterile 
that no one can call them elegant. George Polya once defined a 
geometric theorem's degree of elegance as "directly propor- 
tional to the number of ideas you see in i t  and inversely propor- 
tional to the effort it takes to see them." Many elegant triangle 
discoveries have been made in recent centuries that are both 
beautiful and important but that the reader is unlikely to have 
come across in elementary plane geometry courses. In this chap- 
ter we shall consider only a minute sample of such theorems, 
emphasizing those that have suggested puzzle problems. 

"Ferst," as James Joyce says in the mathematical section of 
Finnegans W a k e ,  "construct ann aquilittoral dryankle Probe 
loom!" We begin with a triangle, ABC, of any shape [see Fig- 
ure 271. On each side an equilateral triangle is drawn outward 
[ top left] or inward [ top r ight] .  In  both cases, when the centers 
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FIGURE 27 

Joining the centers of three equilateral triangles 
creates a fourth one (dotted).  

(the intersections of two altitudes) of the three new triangles 
are joined by straight [dotted] lines, we find we have con- 
structed a fourth equilateral triangle. (The theorem is some- 
times given in terms of constructing three isosceles triangles 
with 30-degree base angles, then joining their apexes, but since 
these apexes coincide with the centers of equilateral triangles, 
the two theorems al;e identical.) If the initial triangle is itself 



equilateral, the inward triangles give a "degenerate" equilat- 
eral triangle, a point. It  is a lovely theorem, one that holds even 
when the original triangle has degenerated into a straight line, 
as shown at the right in the illustration. I do not know who first 
thought of it-it has been attributed to Napoleon-but many 
different proofs have been printed in recent decades. An un- 
usual proof using only group theory and symmetry operations 
is given by the Russian mathematician Isaac Moisevitch Yag- 
lom in Geometric Transformations. 

Another elegant theorem, in which a circle (like the fourth 
equilateral triangle of the preceding example) seems to emerge 
from nowhere, is the famous nine-point-circle theorem. It  was 
discovered by two French mathematicians, who ~ublished i t  in 
1821. On any given triangle we locate three triplets of points 
[see Figure 281 : 

1. The midpoints (a, b, c) of the three sides. 
2. The feet (p, q, r)  of the three altitudes. 
3. The midpoints (x, y, zj of line segments joining each 

corner to the "orthocenter" (the spot where the three altitudes 
intersect). 

As the illustration shows, those nine points lie on the same 
circle, a startling theorem that leads to a wealth of other theo- 
rems. I t  is not hard to show, for instance, that the radius of the 
nine-point circle is exactly half the radius of a circle that cir- 
cumscribes the original triangle. The fact that the three alti- 
tudes of any triangle are concurrent (intersect at  the same 
point) is interesting in itself. I t  is not in Euclid. Although 
Archimedes implies it, Proclus, a fifth-century philosopher and 
geometer, seems to have been the first to state i t  explicitly. 

Three lines joining each midpoint of a side to the opposite 
vertex are called the triangle's medians [see Figure 291. They 
too are always concurrent, intersecting a t  what is known as the 
triangle's centroid. The centroid trisects each median and the 
three medians carve the triangle into six smaller triangles of 
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FIGURE 28 

T h e  nine-point circle 

FIGURE 29 

Centroid trisects medians 

equal area. h/loreover, the centroid is the triangle's center of 
gravity, another fact known to Archimedes. Your high scl~ool 
geometry teacher may have demonstrated this by cutting a 
scalene triangle from cardboard, drawing its medians to find 
the centroid, then balancing the triangle on a pencil by putting 
the centroid oil the pencil's point. 



The median is a special case of a more general line called a 
"cevian" (after a 17th-century Italian mathematician, Gi- 
ovanni Ceva). A cevian is a line from a triangle's vertex to any 
point on the opposite side. If instead of midpoints we take tri- 
section points, three cevians drawn as shown in Figure 30 will 
cut the triangle into seven regions, each a multiple of 1/21 of 
the original triangle's area. The central triangle, shown shaded, 
has an area of 3/21, or 1/7. There are many clever ways to 
prove this, as well as the results of a more general case where 
each side of the triangle is divided into n equal parts. If the 
cevians are drawn as before, to the first point from each vertex 
in a clockwise (or counterclockwise) direction around the trian- 
gle, the central triangle has an area of ( n  - 2)" (n2 - n -t 1 ) .  
A still broader generalization, in which the sides of the original 

FIGURE 30 

Trisecting ceuians 

triangle may vary independently in their number of equal 
parts, is discussed by H. S .  M. Coxeter in his Introduction to 
Geometry. A formula going back to 1896 is given, and Coxeter 
shows how easily it can be obtained by embedding the triangle 
within a regular lattice of points. 
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FIGURE 31 

Smallest "5-con" triangle pair 

Every triangle has three sides and three angles. Euclid proved 
three cases in which two triangles are congruent if only three of 
the six elements are equal (for example, two sides and their 
included angle). Is it possible for two triangles to have five of 
the six elements identical and yet not be congruent? It seems 
impossible, but there is an infinite set of such "5-con" triangles, 
as they have been called by Richard G. Pawley. Two 5-con 
triangles are congruent if three sides are equal, and therefore 
the only situation that permits noncongruence is the one in 
which two sides and three angles are equal. The smallest ex- 
ample of such a pair with integral sides is shown in Figure 31. 
Note that the equal sides of 12 and 18 are not corresponding 
sides. The triangles are necessarily similar, because correspond- 
ing angles are equal, but they are not congruent. The problem 
of finding all such pairs is intimately connected with the golden 
ratio. 

There are many ancient formulas for finding a triangle's 
sides, angles or area, given certain facts about its altitudes, me- 
dians and so on. The expression ds- 

where a, b, c are the sides of any triangle and s is half of the 
sum of the three sides, gives the triangle's area. This amazingly 
simple formula was first proved in the Metrica of Heron of 
Alexandria, who lived in the first or second century. The for- 
mula, Heron's chief claim to mathematical fame, is easily 
proved by trigonometry. Heron, or Hero as he is sometimes 
called, is best known today for his delightful treatises on Greek 
automata and hydraulic toys, such as the perplexing "Hero's 
fountain," in which a stream of water seems to defy gravity by 
spouting higher than its source. 



A classic puzzle of unknown origin, the solution to which 
involves similar triangles, has become rather llotorious because, 
as correspondent Dudley F. Church so aptly put it, "its charm 
lies in the apparent simplicity (at first glance) of its solution, 
which quickly evolves into an algebraic mess." The problem 
concerns two crossed ladders of unequal length. (The problem 
is trivial if the ladders are equal.) They lean against two build- 
ings as shown in Figure 32. Given the lengths of the ladders and 
the height of their crossing point, what is the width of the space 
between the buildings? The three given values vary widely in 
published versions of the ~uzzle.  Here we take a typical in- 
stance from William R. Ransom's One Hundred Mathematical 
Curiosities. The ladders, with lengths of 100 units (a)  and 80 
units (b),  cross 10 units (c) above the ground. By considering 
similar triangles Ransom arrives at the formula, k4 - 2ck3 + 
k2(a2 - b2) - 2ck(a2 - b2) + 2 (a2 - b2) = 0, which in this case 
becomes k4 - 20k3 + 3,600k2 - 72,000k + 360,000 = 0. 

This formidable equation is a quartic, best solved by Horner's 
method or some other method of successive approximations. 
The solution gives k a value of about 11.954, from which the 
width between buildings (u + v )  is found to be 79.10-k. There 
are many other approaches to the problem. 

A difficult question now arises. Are there forms of this prob- 
lem (assuming unequal ladders) in which all the labeled line 
segments in Figure 32 have integral lengths? As far as I know, 
this was first answered by Alfred A. Bennett in 1941 (see bibli- 
ography). His equations have since been rediscovered many 
times. The simplest solution (it minimizes both the height of 
the crossing and the width between buildings) is when the 
ladders are 119 and 70 units long, the crossing is 30 units above 
ground, and the width is 56 units. The number of solutions is 
infinite. There also are an infinite number of solutions in which 
the distance between the tops of the ladders is also an integer. 
(See Gerald J. Janusz's solution, cited in the bibliography.) 

If we require only that the lengths of the ladders, the dis- 
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FIGURE 32 

Crossed-ladders problem 

tance between buildings, and the height of the crossing be in- 
tegers, we can then seek answers that minimize particular 
values. H. G. ApSimon sent the most complete analysis. The 
solution that minimizes the space between buildings is 40 for 
this variable, 38 for the height of crossing, 58 and 401 for the 
ladders. The height of the crossing has a minimum of 14 when 
the space between buildings is 112 and the ladders are 113 and 
238. (Both these solutions had earlier been found by John W. 
Harris.) The solution that minimizes the longest ladder length 



is 63 for the space between buildings, 38 for crossing height, 87 
and 105 for the ladders. The solution that minimizes the short- 
est ladder length is 40 for the space between buildings, 38 for 
the crossing, 58 and 401 for the ladders. 

ApSimon also searched for a solution that minimizes the dif- 
ference between the ladders. His best was 1,540 for the space 
between buildings, 272 for the crossing, and ladder lengths of 
1,639 and 1,628-a difference of 11. He was, however, unable 
to prove this minimal. 

If we are given no more than the distances from a point to 
the three vertexes of a triangle, there obviously is an infinity 
of triangles determined by the three distances. If, however, the 
triangle is required to be equilateral, the three distances can 
uniquely determine the triangle's side. The point may be inside, 
outside, or on the triangle. An ancient problem of this type is 
frequently sent to me by readers, usually in the following form. 
A point inside an equilateral triangle is 3, 4, and 5 units from 
the triangle's corners. How long is the triangle's side? 

A N S W E R S  

THE PROBLEM was to find the side of an equilateral triangle 
containing a point p that is three, four, and five units from the 
triangle's corners. The following solution is from Charles W. 
Trigg, Mathematical Quickies. The broken lines of Figure 33 
are constructed so that PCF is an equilateral triangle and A E  is 
perpendicular to PC extended left to E. Angle PCB = 60 de- 
grees minus angle PCA = angle ACF. Triangles PCB and FCA 
are therefore congruent and AF = BP = 5.  Because APF is a 
right triangle, angle APE = 180 - 60 - 90 = 30 degrees. Froin 
this we conclude that AE is 2 and EP is twice the square root of 
3. This permits the equation 
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F 
FIGURE 33 

Solution to three-distances problem 

which gives AC, a side of the original triangle, a value of 
6.766f. 

There is a beautifully symmetric equation for finding the 
side of an equilateral triangle when given the distances of a 
point from its three corners: 

Any three variables can be taken for the three distances. 
Solving for the fourth then gives the triangle's side. The sim- 
plest solution in integers is 3, 5, 7, 8. The point is outside the 
triangle except when the side is 8, when it lies on a side of the 
triangle. W. H. Grindley, Jorg Waldvogel, and others sent 
proofs that in all three cases (point inside, outside, or on the 
triangle) there is an  infinity of primitive (no common divisor) 
integral solutions. The  simplest solution for the point inside the 
triangle is 57, 65, and 73 for the distances, and 112 for the tri- 
angle's side. 
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Random Walks 
and Gambling 

H e  calmly rode on, leaving it to his horse's discretion 
to go which  way  it pleased, firmly believing that i n  this 
consisted the  very essence of adventures. 

-DON QUIXOTE, Vol.  1, Chapter 2 

THE COMPULSIVE DRIFTER who wanders aimlessly from town to 
town may indeed be neurotic, and yet even the sanest person 
needs moderate amounts of random behavior. One form of such 
behavior is traveling a random path. Surely the popularity of 
the great picaresque novels such as D o n  Quixote is due partly 
to the reader's vicarious pleasure in the unexpectedness of 
events that such haphazard paths provide. 

Jorge Luis Borges, in his essay "A New Refutation of Time," 
describes a random walk through the streets of Barracas: "I 
tried to attain a maximum latitude of probabilities in order not 
to fatigue my  expectation with the necessary foresight of any 
one of them." G. K. Chesterton's second honeymoon, as he de- 
scribes it in his autobiography, was a random "journey into the 
void." He and his wife boarded a passing omnibus, left it when 
they came to a railway station, took the first train and at  the 
end of the line left the train to stroll at random along country 
roads until they finally reached an inn, where they stayed. 
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Mathematicians insist on analyzing anything analyzable. 
The random walk is no exception and (mathematically speak- 
ing) is as adventurous as the wanderings of the man of La 
Mancha. Indeed, it is a major branch of the study of Markov 
chains, which in turn is one of the hottest aspects of modern 
probability theory because of its increasing application in 
science. 

A Markov chain (named for the Russian mathematician 
A. A. Markov, who first investigated them) is a system of dis- 
crete "states" in which the transition from any state to any 
other is a fixed probability that is unaffected by the system's 
past history. One of the simplest examples of such a chain is 
the random walk along the line segment shown in Figure 34. 
Each interval on the line is a unit step. A man begins the walk 
at spot 0. He flips a coin to decide the direction of each step: 
heads he goes right, tails he goes left. In mathematical termi- 
nology his "transition probability" from one mark to the next 
is 1/2. Since he is just as likely to step to the left as to the right, 
the walk is called "symmetric." Vertical bars A and B, at -7 
and +lo, are "absorbing barriers." This means that if the man 
steps against either barrier, it "absorbs" him and the walk ends. 

A novel feature of this walk is its isomorphism with an an- 
cient betting problem called "gambler's ruin." Player A starts 

FIGURE 34 

One-dimensional random walk wi th  absorbing barriers 



with $7, B with $10. They repeatedly flip a coin. For each head 
B gives A $1 and for each tail A gives B $1. The game ends 
when either player is "ruined," or runs out of money. I t  is easy 
to see the correspondence between this game's progress and the 
random walker's movements. At any moment A's capital in 
dollars is represented by the walker's distance from barrier A, 
B's capital by the walker's distance from barrier B. If the first 
two tosses are heads, the walker moves two steps to the right; in 
the betting interpretation, A has increased his capital from $7 
to $9, whereas B has gone from $10 to $8. If the walker hits 
barrier A, it corresponds to A's ruin. If he hits barrier B, it cor- 
responds to B's ruin. 

All kinds of probability questions have identical answers in 
both interpretations. Some are easy to solve, some are extremely 
difficult. One of the easiest is: What is the probability of each 
player's winning? This is the same as asking for the probability 
that the walk will end at one barrier or the other. It  is not hard 
to prove that the probability of each man's winning is given by 
his original capital divided by the total number of dollars held 
by both players. A's probability of winning is 7/17, B's is 10/17. 
In random-walk terms the probability that the walk ends at 
barrier B is 7/17, at barrier A 10/17 [for a simple proof of this, 
based on a stretched rubber band, see "Brownian Motion and 
Potential Theory," by Reuben Hersh and Richard J. Griego, in 
Scientific American, March 19691. 

The two probabilities must add to 1 (certainty), meaning 
that if the walk or game continues long enough, it is sure to 
end. What happens if one barrier, say B, is removed, allowing 
the line to stretch rightward to infinity? Then, if the walk con- 
tinues long enough, it is certain to end at barrier A. In the bet- 
ting interpretation, if A plays against an opponent with an 
infinite supply of dollars, eventually A is sure to be ruined. 
This is bad news for the compulsive gambler: even if all his 
wagers are at fair odds, he is playing against an "opponent" 
(the gambling world) with virtually unlimited capital, making 
his eventual ruin almost certain. 
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Another type of easy calculation is the probability that the 
walker, starting at a certain spot, will reach another given spot 
(or return to his starting point) after a specified number of 
steps. Odd and even parity is involved, so that in half the cases 
the answer is 0 (impossible). For instance, the walker cannot 
go from 0 to an even-numbered spot in an odd number of steps 
or to any odd-numbered spot in an even number of steps. What 
is the probability that he will walk from 0 to +I in exactly 
three steps? It  is the same as the probability that three coin 
tosses will show, in any order, two heads and one tail. Since this 
happens three times in the eight equally probable outcomes, the 
answer is 3/8. (The situation can be complicated by replacing 
either or both absorbing barriers by a "reflecting barrier" half- 
way between two marks. When the walker hits such a barrier, 
he bounces back to the mark he has just left. I n  the betting in- 
terpretation this happens when a ruined gambler is given $1 
so that he can stay in the game. If both barriers are reflecting, 
of course, the walk never ends.) 

Another simple calculation, although one that is harder to 
prove, is the expected number of tosses before the walker, on 
the line with two absorbing barriers, is absorbed. "Expected 
number" is the average in the long run of repeated repetitions 
of the walk. The answer is the product of the distances of the 
two barriers from the starting spot. In this case, 7 X 10 = 70. 
The "typical" walk lasts for 70 steps; the typical game ends 
with one player ruined after 70 coin tosses. This is considerably 
longer than most people would guess. It means that in a fair 
betting game between two players, each starting with $100 and 
each making $1 bets, the average game will last for 10,000 bets. 
Even more counterintuitive: If one man starts with $1 and the 
other with $500, the average game will last for 500 bets. In the 
random walk, if the man begins one step from one barrier and 
500 steps from the other, his average walk before being ab- 
sorbed is 500 steps! 

What is the expected number of steps until a walker first 
reaches a distance n from 0, the starting spot, assuming that 



neither barrier (if any) is closer to the start than n? This is 
easily seer1 to be a special case of the above problem. It  is the 
same as asking for the expected number of steps until the 
walker is absorbed, when each barrier is a distance n from 0. 
It  is simply n x n = n2. Thus if a walker takes n steps and finds 
himself at a maximum distance from 0, the expected distance 
is fl 

This is not the same as asking for the expected distance from 
0 after n steps when the distance need not be maximum. In this 
case the formula is a bit trickier. For one step it is obviously 1, 
for two steps it is also 1 (the four equally possible distances 
are 0, 0, 2, 2). For three steps it is 1.5. As n approaches infinity 
the limit for the expected distance (which may be on either side 
of 0) is d w o r  about .8-\/;E for large n, as Frederick Mostel- 
ler and his coauthors point out in their book Probability and 
Statistics, page 14. 

The hardest to believe of all aspects of the one-dimensional 
walk emerges when we consider a walk starting on a l i~ le  with 
no barriers and ask how often the walker is likely to change 
sides. Because of the walk's symmetry one expects that in a long 
walk the man should spend about half of his time or1 each side 
of the starting spot. Exactly the opposite is true. Regardless of 
how long he walks, the most probable number of changes from 
one side to the other is 0, the next most probable is 1, followed 
by 2, 3, and so on! 

William Feller, in a famous chapter on "Fluctuations in Coin 
Tossing and Random Walks" (in his classic An Introduction 
to Probability Theory and Its Applications, Vol. I, Chapter 111), 
has this to say: "If a modern educator or were to 
describe the long-run case histories of individual coin-tossing 
games, he would classify the majority of coins as maladjusted. 
If marly coins are tossed n times each, a surprisir~gly large pro- 
portion of them will leave one player in the lead almost all the 

- .  

time; and in very few cases will the lead change sides and fluc- 
tuate in the manner that is generally expected of a well- 
behaved coin." In a mere 20 tosses the probability that each 
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player will lead 10 times is .06+, the least likely outcome. The 
probability that the loser will neuer be in the lead is .35+. 

If a coin is tossed once a second for a year, Feller calculates, 
in one out of 20 repetitions of this experiment the winning 
player can be expected to lead for more than 364 days and 10 
hours! "Few people will believe," he writes, "that a perfect coin 
will produce preposterous sequences in which no change of lead 
occurs for millions of trials in succession, and yet this is what 
a good coin will do rather regularly." 

Figure 35 is a graph of a typical random walk along the in- 
finite vertical line at the left, with time represented by move- 
ment to the right. Instead of flipping a coin or using a table of 
random numbers, the walk is based on the digits of pi to 100 
decimals. (Since the decimals of pi have passed all randomness 
tests, they provide a convenient source of random digits.) Each 
even digit is a step up, each odd digit a step down. After 101 
steps the walker has been above the line only 17 times, about 
17  percent of the total. He  has crossed the starting spot only 
once. The graph is also typical in showing how returns to 0 or 
close to 0 come in waves that tend to increase in length at a rate 
about equal to the square root of the time. Similar graphs based 
on simulations of 10.000 coin tosses appear in Feller's book. 

We can complicate matters by allowing transition probabil- 
ities to vary from 1/2 and by allowing steps longer than one 
unit. Consider the following curious paradox first called to my 

I --. TIME \rJL 

FIGURE 35 

Symmetric- random walk based o n  the first 101 digits of pi 



attention (in betting terms) by Enn Norak, a Canadian mathe- 
matician. A walker starts 100 steps to the right of 0 on a line 
that has no barriers [see Figure 361. Instead of a coin a packet 
of 10 playing cards-five red and five black-is used as a ran- 
domizer. The cards are shuffled and spread face down and any 
card is selected. After its color is noted it is discarded. If it is 

FIGURE 36 

Paradox based on a random walk along a l ine  wi thout  barriers 

red, the walker steps to the right: if black, he steps to the left. 
This continues until all 10 cards have been taken. (The transi- 
tion probability varies with each step. I t  is 1/2 only when there 
is an equal mixture of red and black cards before the draw.) 
The walk differs also from walks discussed above in that before 
each card is noted the walker chooses the length (which need 
not be integral) of his next step. 

Assume that the walker adopts the following halving strategy 
in choosing step lengths. After each card is noted he takes a step 
(left or right) equal to exactly half of his distance from 0. His 
first step is 100/2 = 50 units. If the card is red, he goes to the 
150 mark. His next step will then be 150/2 = 75. If the first 
card drawn is black, he goes left to the 50 mark, and so his next 
step will be 50/2 = 25. He continues in this manner until the 
tenth card is noted. Will he then be to the right or to the left of 
the 100 mark where he began the walk? 

The answer is that he is sure to be to the left. This may not 
be very surprising, but i t  is surely astonishing that, regardless 
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of the order in which the cards are drawn, he will end the walk 
at exactly the same spot! I t  is about 76 units left of where he 
started. The precise distance is given by the following formula, 

where a is the starting spot and n the number of red (or black) 
cards in the packet. When a is 100 and n is 5, as in the present 
example, the formula gives 76.26953125 as the distance he has 
moved to the left when the walk ends. 

Let us translate this into Norak's betting game. A man starts 
with $100. Wins and losses are decided by a shuffled packet of 
five red and five black cards, from which cards are drawn and 
discarded. (This is equivalent to flipping a coin 10 times, pro- 
vided that the coin happens to show an equal number of heads 
and tails. Using cards guarantees this equality.) The man wins 
on red and loses on black. Each time he bets half of his capital. 
I t  is hard to believe, but at the end of every such game he will 
have lost exactly $76.26953125. This amount increases as n 
increases. If n is 26, as it is if a standard deck of 52 cards is 
used, he will lose more than $99.90. His loss, however, will 
always be less than $100. 

Instead of betting half of his capital each time, he can bet a 
fixed fraction. Let the fraction be l/'k, where k is any positive 
real number. The smaller this fraction is, the less he will have 
lost by the end of the game; the larger the fraction, the more 
he will have lost. If it equals 1, he is certain to lose everything. 
In  this more general case the amount lost is 

The formula can be generalized further by allowing an un- 
equal mixture of red and black cards, but this gets too com- 
plicated to explore here. 



Now consider an amusing problem suggested by Norak and 
based on a variation of the game just described. It can be given 
as a random walk problem but I shall give only its betting 
equivalent. The game is the same as before except that the 
opponent of the man who starts with $100 is allowed to name 
the size of each bet. Call the opponent Smith and assume that 
he has enough capital to be able to pay any loss. A standard 
deck of 52 playing cards is used. Before each card is drawn and 
discarded, Smith bets exactly half the capital then owned by 
the other man, the player who begins with $100. After the last 
card is noted will Smith have lost or gained? In either case, is 
the loss or gain always the same and, if so, what is its formula? 
If you have understood the discussion to this point, you should 
be able to answer these questions almost immediately. 

The staggering topic of random walks will be concluded in 
the next chapter with a consideration of some random walks 
on the plane and in space, and on lattices such as checkerboards 
and the edges of regular solids. 

A N S W E R S  

THE BETTING PROBLEM was intended as a joke. If player A 
begins with a certain number of dollars and if, on each draw of 
a card from a packet with an equal number of red and black 
cards, A's opponent B is allowed to bet half of A's current capi- 
tal, the game obviously is the same as the one explained earlier, 
in which A always bets half of his own capital. B, who now 
calls the bets, will win precisely what A would have lost in the 
earlier game. Therefore the formula given for the first game 
applies here. We were told that the loser starts with $100 and 
that a deck of 52 cards is used as a randomizer. The winner is 
sure to win exactly 100 - [I00 (3/4)26] dollars, leaving the 
loser with less than a dime. 
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Random Walks 
on the Plane and in Space 

IN THE PREVIOUS CHAPTER I discussed the random walk of dis- 
crete steps along a line, with or without absorbing barriers, 
and pointed out its curious equivalence to various two-person 
betting games. I n  this chapter the random walk moves onto the 
plane and into space. 

One type of two-dimensional random walk that has been 
much studied is one that goes from vertex to adjacent vertex on 
the infinite checkerboard lattice shown in  Figure 37. Every step 
is one unit and the walk is "symmetric" in  the sense that each 
of the four possible directions is picked with a probability of 
1/4. The walk can be made finite by surrounding the walker 
with absorbing barriers, shown as dots; when he steps on one of 
these dots, he is "absorbed" and the walk ends. (The surround- 
ing barriers need not form a neat square. They may form a 
boundary of any shape.) As in the analogous finite walk on 
the line, it is not hard to calculate the probability that a walk 
starting at any vertex inside the boundary will end at a spe- 
cified barrier. One can also determine the expected number of 
steps (the average in the long run of repeated walks) that will 



be taken before a walk ends. The formulas involved in such 
calculations have many unexpected scientific applications, such 
as determining the voltages at  interior parts of electrical net- 
works. 

When the walker is not trapped inside barriers but can es- 

FIGURE 37 

Random walk on a square lattice 
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cape to wander over a square lattice that covers the infinite 
plane, the situation grows more complicated and gives rise to 
many problems that are as yet unsolved. Some of the established 
theorems are deep and paradoxical. Consider a random walk 
on an infinite lattice with no barriers. If the walk continues an 
arbitrarily long time, the proportion of visits the walker makes 
to any specified corner approaches zero as a limit. On the other 
hand, if the walk continues long enough, the walker is certain 
to touch every vertex, including a return visit to his starting 
spot. As John G. Kemeny points out in "Random Walks," an 
excellent nontechnical article in Enrichment Mathematics for 
High School, this introduces a profound distinction between 
logical and practical possibility. It is logically possible that such 
a walker can travel forever without reaching a given corner. 
To the mathematician, however, it has a practical probability 
of zero even though the expected number of steps for reaching 
any specified corner is infinite. The distinction is often encoun- 
tered where infinite sets are concerned. If a penny is flipped 
forever, for example, it is logically possible that heads and tails 
will forever alternate, although the practical probability that 
this will happen is zero. 

Kemeny expresses it this way: If you stand at an intersection 
on the infinite lattice while a friend, starting at any other spot, 
wanders randomly over the lattice, he will be practically cer- 
tain to meet you if you are able to wait an arbitrarily long time. 
The statement can be even stronger. After the first meeting the 
probability is again 1 that if your friend continues wandering, 
he will eventually return to you. In other words, it is practically 
certain that such a walker, given enough time, will visit every 
intersection an infinity of times! 

Suppose two walkers move haphazardly over an infinite 
square lattice. Are they certain to meet? (If they begin an odd 
number of steps apart and step in unison, they can never meet 
at a corner, but they can bump into each other at the middle of 
a line segment.) Once more the answer is that they will meet 
infinitely often if they walk long enough. If three men step in 



unison and wander over the infinite lattice, and if each pair of 
their starting spots is separated by an even number of steps, all 
three are certain to meet at some corner. The probability of 
their meeting at a specified corner, however, drops to less than 
1. For four or more walkers the probability that all four will 
meet somewhere also becomes less than 1. 

The biggest surprise comes when we generalize to a space 
lattice. If such a lattice (it need not be cubical) is finite, a ran- 
dom walker is practically certain to reach any intersection in a 
finite time. As Kemeny puts it, if you are inside a large building 
with a complex network of corridors and stairways, you can be 
sure of reaching an exit in a finite time by walking randomly 
through the building. If the lattice is infinite, however, this is 
not the case. George Polya proved in 1921 that the probability 
is less than 1 that a random walker will reach any assigned 
corner on such a lattice even if he walks forever. In 1940 W. H. 
McCrea and F. J. W. Whipple showed that the probability of a 
walker's returning to his starting spot, after wandering an in- 
finite time on an infinite cubical lattice, is about .35. 

Turning from planar lattices to the plane itself, allowing the 
walker to step a unit distance in any randomly selected direc- 
tion, the situation becomes more complicated in some ways and 
simpler in others. For example, the expected (average) distance 
of the walker from his starting spot, after n equal steps, is sim- 
ply the length of the step times the square root of n. This was 
proved by Albert Einstein in a paper on molecular statistics 
published in 1905, the same year he published his celebrated 
first paper on relativity. (It was independently proved by Mar- 
ian Smoluchowski. Readers will find a simple proof in George 
Gamow's One Two Three . . . Infinity.) 

Discrete random walks in space obey the same square-root 
formula. As on the plane, the steps need not be uniform in 
length. The expected distance from the origin, after n steps, is 
the average length of a step times the square root of n. It is 
here that random walks become invaluable in the study of dif- 
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fusion phenomena: the random movements of molecules in a 
liquid or gas, the diffusion of heat through metals, the spread 
of rumors, the spread of a disease, and so on. The drift of a flu 
epidemic is a blend of millions of random walks by microbes. 
There are applications in almost every science. The first major 
use of the Monte Carlo method-a way of using computers to 
simulate difficult probability problems-was in calculating the 
random walks of neutrons through various substances. In  such 
diffusion phenomena, as well as in Brownian motion, the 
square-root formula must be modified by many other factors 
such as temperature. the viscosity of the embedding medium, 
and so on. Moreover, such motions are usually continuous, not 
discrete; they are called Markov "processes," as distinct from 
Markov "chains." The square-root formula provides only a first 
approximation for estimating expected distances. (For recent 
work in this field, beginning with Norbert Wiener's brilliant 
first paper on Brownian motion in 1920, see "Brownian Motion 
and Potential Theory," by Reuben Hersh and Richard J. 
Griego, in Scientific American, March 1969.) 

The outward drift of a random walker from his starting spot, 
on the plane or in space, is not at a constant rate. If the walk 
itself is at a steady pace, the square root of the number of steps 
increases at a steadily decreasing rate. The longer the walk, the 
slower the drift. Garnow, in the book cited above, gives a dra- 
matic illustration. A light quantum near the sun's center takes 
about 50 centuries to perform a "drunkard's nalk" to the sur- 
face. Once free of the sun, it instantly sobers up and, if it is 
headed in the right direction, reaches the earth in about eight 
minutes. 

Here is a simple question. Two men start at the same spot on 
the plane. One makes a random walk of 70 unit steps, then 
stops. The other stops after a random walk of 30 unit steps. 
What is the expected distance between them at  the finish? 

We turn now to a type of random walk that is different from 
any we have collsidered so far. Assume that a bug starts at  cor- 
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FIGURE 38 

"Ergodic walk" on a square ( l e f t )  and the matrix of its 
transition probabilitics ( r ight )  

ner A of the square shown at the left of Figure 38 and crawls 
randomly along its edges. Inslead of equalizing the "transition 
probabilities" from corner to corner, as in earlier examples, 
assume that at corners B and C the probability of the bug's 
heading toward D is twice the probability of its returning to A. 
At A and D the bug chooses between two paths with a proba- 
bility of 1/2 for each, whereas at B and C it chooses the path 
to D with a probability of 2/3 and the path to A with a prob- 
ability of 1/3. The network is finite but, since there are no ab- 
sorbing barriers, the walk never ends. Such a walk is usually 
called an "ergodic walk." We should like to calculate what 
fraction of visits, in the long run, the bug makes to each corner. 

One way to do it is to draw the "stochastic matrix" at the 
right in the illustration, which shows the transition probabilities 
from any corner to any other. Zeros on the matrix indicate tran- 
sitions that cannot occur. Since every state of this ergodic 
Markov chain must lead to another, the sum of the probabilities 
on any horizontal row, called a "probability vector," must be 1. 
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The probability that the bug will visit a given corner is the 
same as the sum of the probabilities that it will move to that 
corner from an adjacent corner during its endless walk. For in- 
stance, the probability that it is at D is the probability that it 
will go to D from B added to the probability that it will go to D 
from C. (These are long-run probabilities, not the probabilities 
of going to D when the bug starts at B or C.) Let d be the prob- 
ability that at any moment when the bug is at a corner it will 
be at corner D. Let a, b, c be the probabilities that it is at cor- 
ners A ,  B, C. From the D column of the matrix we can see that 
the probability that, in the long run, the bug will be going from 
B to D is b (2/3) and from C to D is c (2/3). The long-run prob- 
ability of being at D is the sum of these two probabilities, and 
therefore we can write the following equation: d = b(2/3) + 
c (2 /3 ) .  This simplifies to 

The other three columns give us similar formulas for a, b, 
and c: 

When the bug is not on an edge, it is certain to be at a corner, 
and so we have a fifth equation: 

A glance at the four preceding equations shows that b = c 
and d = 2a, making it easy to solve the five simultaneous equa- 
tions: a = 1/6, b = 1/4, c = 1/4, d = 1/3. The bug will spend 
1/6 of its corner time at A ,  1/4 at B, 1/4 at C, 1/3 at D. It will 
make twice as many visits to D as to A. 

Readers might like to try the same technique on the cube 
analogue of this problem, given by Kemeny in the article men- 
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FIGURE 39 

Ergodic random walk on  a cube ( l e f t )  and the  matrix of its 
transition probabilities ( r ight )  

tioned above. On the cube shown at the left in Figure 39, the 
bug is twice as likely to step toward H as toward A. The sto- 
chastic matrix of transition probabilities is shown to the right 
of the cube. The eight simultaneous equations derived from the 
eight columns, together with the equality a + b + c + d + e + 
f + g + h = 1, have a unique solution. The bug, performing its 
perpetual ergodic walk, will make 3/54 of its corner visits to A, 
5/54 to each of B, C, D, 8/54 to each of E, F, G, and 12/54 to 
H. I t  will visit H four times as often as A. 

If an ergodic walk of this type is symmetric, in the sense that 
at  each vertex the possible next steps are chosen with equal 
probability, the fraction of visits spent at  any two given corners 
is proportional to the number of different ways to walk to those 
two corners. For example, a cat performing a symmetric ran- 
dom ergodic walk along the edges of the Great Pyramid of 
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Egypt will visit the apex four times for every three times it 
visits a base corner because there are four ways to walk to the 
top corner and only three ways to reach each base corner. It  is 
easy to draw the matrix and write the equations showing that 
the cat will make 1/4 of its visits to the apex and 3/16 to each 
base corner. 

For another easy problem, assume that on the cube shown in 
Figure 39, with the same matrix, a fly starts a random walk at  
A. At the same time a spider begins a random walk at H. Both 
move at the same speed. What is the probability that they will 
meet at the middle of an edge after each has gone the minimum 
distance of 1 % edges? 

Many other pleasant problems arise in connection with 
ergodic random walks along the edges of a cube and other reg- 
ular solids. If a drunk bug starts at a corner of a cube and walks 
to the most distant corner, a t  each corner choosing one of the 
three paths with equal probability, its average walk will have 
a length of 10 edges. If the bug is only semidrunk, never going 
back along an edge just traversed but selecting the otht )r two 
paths with equal probability, its average walk to the most dis- 
tant corner is 6. In  both cases the bug's average walk back to its 
starting corner is 8, the number of corners on a cube. 

This is no coincidence. Thomas H. O'Beirne of Glasgow 
(whose term "semidrunk I have borrowed) has showri in an 
unpublished proof that, on any regular network with every 
vertex topologically the same as every other, a random walk 
back to a starting vertex has an  expected number of steps equal 
to the total number of vertices. I t  is true regardless of whether 
the walker chooses all paths at each vertex with equal probabil- 
ity or only those that exclude the path just traveled. A drunk or 
semidrunk bug stepping from corner to corner on a square will 
have an average walk back to the starting corner of four steps. 
The edges of all Platonic and Archimedean solids form regular 
space networks of the same kind. On a tetrahedron a drunk or 
semidrunk bug will traverse four edges in an average walk back 
to a starting corner; on a dodecahedron it will traverse 20 edges, 



and so on. Readers interested in how to set up equations for cal- 
culating average walks on such networks will find the method 
explained, with reference to the dodecahedron, in solutions to 
problems El752 and El897 in The  American Mathematical 
&i'onthly, February 1966, page 200, and October 1967, pages 
1008-10. For the rhombic dodecahedron, which is not regular, 
see O'Beirne's article "A Nonsense Result in the Traffic Statis- 
tics of Drunk Flies," in the Brllletin of the Institute of Mathe- 
matics and Its Applications, August 1966, pages 116-19. 

Steps need not be to adjacent spots on a network. Consider the 
symmetric random ergodic walk of a rook over a chessboard, as- 
suming that on each move the rook chooses between all possible 
moves with equal probability. Since a rook can reach any cell 
from 14 other cells, the transition probability for every move is 
1/14. The rook will therefore spend the same time on each cell. 

The situation with respect to other chess pieces is different be- 
cause their transition probabilities vary. A knight, for example, 
can reach a corner cell only from two other cells, whereas it can 
reach any of the 16 central cells from eight other cells. Since 
the proportion here is 2/8 or 1/4, it follows that during an  endless 
random walk over the chessboard, a knight will visit any desig- 
nated corner square one-fourth as often as it will visit a given 
square among the central 16. For a proof see "Generalized 
Symmetric Random Walks," by Eugene Albert, in Scripta 
Mathematica, August 1964, pages 185-87. 

A D D E N D U M  

EARLIER IN THIS CHAPTER we encountered a pleasant theorem 
that is expressed in graph-theoretic terms as follows. Consider 
any graph that is regular in the sense that every point belongs 
to the same number of lines. If a bug starts at  any point and 
makes a random walk, at each point choosing one of the avail- 
able lines with equal probability, the expected (average) num- 
ber of steps back to the starting point is equal to the graph's 
number of points. 
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Although I gave some references that explain how to calcu- 
late such walks, I did not provide an example. It  may be of in- 
terest to see how it is done for a triangle and tetrahedron. The 
reader may then be able to generalize the procedure to the 
edges of polygons and polyhedrons, and other regular graphs. 

Label the corners of a triangle A, B, C. We wish to know the 
expected length of a random walk from A back to A, assuming 
that at each corner one of the two edges is chosen with equal 
probability. Note that this is the same as calling A an absorbing 
barrier (after the first step is made), then asking for the ex- 
pected length of a random walk before the bug is absorbed. 

Let x be the expected length of a walk from B to A. For sym- 
metry reasons it is the same as the expected walk from C to A. 

Suppose the bug is at B. If it chooses to walk to A, the ex- 
pected path to A is 1. If it chooses to walk to C, the expected 
path to A is 1 plus the expected path from C to A. The latter is 
equal to x, therefore the expected path from C to A is (1 + x).  
Add the lengths of the two paths, 1 + (1 + x), and divide by 2 
to get the average. Thus we have the following simple equation: 

which gives x a value of 2. 
We now know that if the bug starts at either B or C, the ex- 

pected path to A is 2. If the bug starts at A, however, it must go 
1 step to get to either B or C. Therefore the expected length of 
a walk from A back to A is 1 + 2 = 3. 

The tetrahedron is easily solved the same way. Label the cor- 
ners A, B, C, D. The bug starts at A. If it chooses to go directly 
to A .  the expected path is 1. If it chooses to go to C or D, the ex- 
pected path to A is ( I  + x). The average walk from B to A, 
therefore, is 1 + (1 + x)  + (1 + x) divided by 3. Our equa- 
tion is 



which gives x a value of 3. The bug at A must make 1 step to 
get to one of the other three corners, therefore the expected 
walk from A back to A is 1 + 3 = 4. 

As an exercise, with only slightly more complicated equa- 
tions, the reader may enjoy proving that the expected walk on 
a square or cube, from a corner back to the same corner, is re- 
spectively 4 and 8. 

A N S W E R S  

1. Two MEN start at the same spot on the plane. One makes 
a random walk of 70 unit steps, the other a random walk of 30 
steps. What is the expected (average) distance between them at 
the finish? If you imagine one man reversing the direction of his 
walk until he returns to where he started and then continuing 
along the other man's path, you will see that the question is the 
same as asking for the expected distance from the starting spot 
of a single random walk of 100 steps. We were told that this ex- 
pected distance is the average length of a step times the square 
root of the number of steps. Therefore the answer is 10 units. 

2. Because of the cube's symmetry any first step of the 
drunken fly is sure to take it toward the cube's most distant cor- 
ner, where the drunken spider has begun its simultaneous walk. 
It  does not matter, therefore, what first step the fly takes. The 
spider, however, can reach a corner adjacent to the fly only by 
taking two of its three equally probable first steps. Therefore 
the probability that, after their first steps, the creatures will be 
at adjacent corners is 2/3. At every possible pair of adjacent cor- 
ners they can then occupy, the probability that the fly will 
move toward the spider is 2/5 and the probability that the spider 
will move toward the fly is 1/4. The product of these three prob- 
abilities, 2/3, 2/5, and 1/4, is 1/15. This is the probability that 
the spider and the fly will meet in the middle of an edge after 
each has traveled 1 l/z edges. 
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Boolean A lge bra 

ARI~TOTLE deserves full credit as the founder of formal logic 
even though he restricted his attention almost entirely to the 
syllogism. Today. when the syllogism has become a trivial part 
of logic, it is hard to believe that for 2,000 years it was the prin- 
cipal topic of logical studies, and that as late as 1797 Immanuel 
Kant could write that logic was "a closed and completed body 
of doctrine." 

"In syllogistic inference," Bertrand Russell once explained, 
"you are supposed to know already that all men are mortal and 
that Socrates is a man; hence you deduce what you never sus- 
pected before, that Socrates is mortal. This form of inference 
does actually occur, though very rarely." Russell goes on to say 
that the only instance he ever heard of was prompted by a 
comic issue of Mind, a British philosophical journal. that the 
editors concocted as a special Christmas number in 1901. A 
German philosopher, puzzled by the magazine's advertisements, 
eventually reasoned: Everything in this magazine is a joke, the 
advertisements are in this magazine, therefore the advertise- 



ments are jokes. "If' you ~vish to become a logician," R~~ssell 
wrote else~vhere, "there is one piece of sound advice ~zhich I 
cannot urge too strongly, and that is: Do not learn the tradi- 
tional logic. In ih-istotle's da) it \\as a creditable effort, but so 
\tias the Ptolemaic astronomy." 

The big turning point came in 1847 when George Boole 
(1 81 5 1  8G4), a inodest, self-taught son of a poor English shoe- 
maker [see Figure 401, published The hluthenzcrticul A7zciljsis oj- 
Logic. This and other papers led to his appointillent (although 
he had no university degree) as professor of mathenlatics at 
Queens College (now University College) at Cork in Ireland, 
where he wrote his treatise An Invesligcllion oJ'  he Ltrz~ls oJ' 
T ~ I  ought, 012 T/T71~ic1t (la7 Foiirtdetl the M u t h e ~ ~ ~ u t i c a l  Tl~eories oj' Logic 
and Pmbnbilities (London, 1854). The basic idea-substituting 
symbols for all the ~vords rlsed in formal logic-had occui.red 
to others before, btlt Boole was the first to produce a rzorkable 
system. By and large, neither pl~ilosopl~ers nor mathenlaticians 
of his century showed rrlucll interest in this rerrlarkable 
achievement. Perhaps that ~vas one reason for Boole's tolerailt 
attitude toward mathematical eccentrics. He wrote an article 
about a Cork crank rla~rled John Tl'alsh (Philo.cop17iccrl iCIcrgcrzi?7e, 
November 1851) that Augustus De Morgan, in his Budget of 
Pcrrudoxes, calls "the best biography of a single hero of the kind 
that I k11o117." 

Boole died of prleunlorlia at the age of 49. His illness \\-as at- 
tributed to a chill that follo~ved a lecture he gave in wet clothes 
after ha\ing been caught in the min. He was survived by his 
wife and five daughters. Korman Gridgeman, ~vriting "In 
Praise of Boole" (see bibliography), gives some fascinating 
details about the six ladies. Boole's ~vife, Mary Everest, wrote 
popular books about her husband's vie~vs on nlatheniatics and 
education. One book is titled The Philosol~hj crnd Fliu ofAlgc.61-a. 
The oldest daughter, Mar); married Charles Hinton, a mathe- 
matician and bigaillist ~vho Tvrote the first novel about flatland 
(see Chapter 12 of nly C:r~expectecl Harlging), as well as books on 
the fourth dinlension. 
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FIGURE 40 

George Boole 

Margaret became the mother of Sir Geoffrey Taylor, a Cam- 
bridge mathematician. Alicia, intrigued by Charles Hinton's 
excursions into higher space dimensions, made some significant 
discoveries in the field. Lucy became a professor of chemistry. 
Ethel Lilian, the youngest daughter, married Wilfrid Voynich, 
a Polish scientist. They settled in Manhattan, where Ethel died 



in 1960. She wrote several novels, including one called The 
Gadfly (1898) that became so popular in Russia that three op- 
eras were based on it. In recent years a million copies have been 
sold in China. "Modern Russians are constantly amazed," writes 
Gridgeman, "that so few Westerners have heard of E. L. Voy- 
nich, the great English novelist." 

The few who appreciated Boole's genius (notably the Ger- 
man mathematician Ernst Schrijder) rapidly improved on 
Boole's notation, which was clumsy mainly because of Boole's 
attempt to make his system resemble traditional algebra. Today 
Boolean algebra refers to an "uninterpreted" abstract structure 
that can be axiomized in all kinds of ways but that is essentially 
a streamlined, simplified version of Boole's system. "Uninter- 
preted" means that no meanings whatever-in logic, mathe- 
matics, or the physical world-are assigned to the structure's 
symbols. 

As in the case of all purely abstract algebras, many different 
interpretations can be given to Boolean symbols. Boole himself 
interpreted his system in the Aristotelian way as an algebra of 
classes and their properties, but he greatly extended the old 
class logic beyond the syllogism's narrow confines. Since Boole's 
notation has been discarded, modern Boolean algebra is now 
written in the symbols of set theory, a set being the same as 
what Boole meant by a class: any collection of individual "ele- 
ments." A set can be finite, such as the numbers 1, 2, 3, the resi- 
dents of Omaha who have green eyes, the corners of a cube, the 
planets of the solar system, or any other specified collection of 
things. A set also can be infinite, such as the set of even integers 
or possibly the set of all stars. If we specify a set, finite or in- 
finite, and then consider all its subsets (they include the set it- 
self as well as the empty set of no members) as being related to 
one another by inclusion (that is, the set 1, 2, 3 is included in 
the set 1 ,2 ,3 ,4 ,5) ,  we can construct a Boolean set algebra. 

A modern notation for such an algebra uses letters for sets, 
subsets, or elements. The "universal set," the largest set being 
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considered, is symbolized by U.  The empty, or null, set is @. 
The "union" of sets a and b (everything in a and b) is sym- 
bolized by u, sometimes called a cup. (The union of 1, 2 and 3, 
4, 5 is 1, 2, 3, 4, 5.) The "intersection" of sets a and b (every- 
thing common to a and b) is symbolized by n , sometimes called 
a cap. (The intersection of 1, 2, 3 and 3, 4, 5 is 3.) If two sets 
are identical (for example, the set of odd numbers is the same 
as the set of all integers with a remainder of 1 when divided by 
2), this is symbolized by =. The "complement" of set a--all 
elements of the universal set that are not in a-is indicated by 
a'. (The complement of 1, 2, with respect to the universal set 
1, 2, 3, 4, 5, is 3, 4, 5.) Finally, the basic binary relation of set 
inclusion is symbolized by E ;  a E b means that a is a member of b. 

As a matter of historical interest, Boole's symbols included 
letters for elements, classes, and subclasses: 1 for the universal 
class; 0 for the null class; + for class union (which he took in 
an "exclusive" sense to mean those elements of two classes that 
are not held in common; the switch to the "inclusive" sense, 
first made by the British logician and economist William Stan- 
ley Jevons, had so many advantages that later logicians adopted 
it) ; x for class intersection; = for identity; and the minus sign, 
-, for the removal of one set from another. To show the com- 
plement of z, Boole wrote 1 - x. He had no symbol for class in- 
clusion but could express it in various ways such as a >; b = a, 
meaning that the intersection of a and b is identical with all of a. 

The Boolean algebra of sets can be elegantly diagrammed 
with Venn circles (after the English logician John Venn), 
which are now being introduced in many elementary school 
classes. Venn circles are diagrams of an  interpretation of Boolean 
algebra in the point-set topology of the plane. Let two overlap- 
ping circles symbolize the union of two sets [see Figure 411, 
which we here take to be the set of the 10 digits and the set 
of the first 10 primes. The area outside both circles is the uni- 
versal set. It  is usually enclosed in a rectangle shaded to in- 
dicate that it is the null set; it is empty because we are con- 



FIGURE 41 

Venn diagram for set intersection 

cerned solely with the elements inside the two circles. These 16 
elements are the union of the two sets. The overlapping area 
contains the intersection. It  consists of the set 2, 3, 5, 7: digits 
that are also among the first 10 primes. 

Adopting the convention of shading any area known to rep- 
resent an empty set, we can see how a three-circle Venn dia- 
gram proves the ancient syllogism Russell so scornfully cited. 
The circles are labeled to indicate sets of men, mortal things, 
and Socrates (a  set with only one member). The first premise, 
"All men are mortal," is diagrammed by shading the men cir- 
cle to show that the class of nonmortal men is empty [see Fig- 
ure  42, l e f t ] .  The second premise, "Socrates is a man," is simi- 
larly diagrammed by shading the Socrates circle to show that 
all of Socrates, namely himself, is inside the men circle [see 
Figure 42, r igh t ] .  Now we inspect the diagram to see if the con- 
clusion, "Socrates is mortal," is valid. It is. All of Socrates (the 
unshaded part of his circle marked by a dot) is inside the circle 
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MEN MORTALS 

SOCRATES SOCRATES 
Premise: "Al l  m e n  are mortal." Premise: "Socrates is a man." 

FIGURE 42 

FIGURE 43 

Corresponding symbols i n  two versions of Boolean algebra 

BOOLEANSETALGEBRA 

U (UNIVERSAL SET) 

4 (NULL SET) 

a b c (SETS SUBSETS 
ELEMENTS) 

a v b  (UNION ALL OF a AND b )  

a n b  (INTERSECTION WHAT a 
AND b HAVE IN COMMON) 

a = b (IDENTITY a AND b 
ARE THE SAME SET) 

a'(C0MPLEMENT ALL OF U 
THAT IS NOT a) 

a t b  (INCLUSION a IS A 
MEMBER OF b ) 

PROPOSITIONAL CALCULUS 

T (TRUE) 

F (FALSE) 

p  q  r (PROPOSITIONS) 

p v q  (DISJUNCTION EITHER p  ALONE 
OR q  ALONE OR BOTH ARE TRUE) 

p * q  (CONJUNCTION BOTH p  AND q 
ARE TRUE ) 

p = q  (EQUIVALENCE IF AND ONLY 
IF p  IS TRUE THEN q  IS TRUE) 

- p  (NEGATION p  IS FALSE ) 

p 3 q  (IMPLICATION IF p  IS TRUE 
n I$ TRl lF i 



of mortal things. By exploiting the topological properties of 
simple closed curves, we have a method of diagramming that is 
isomorphic with Boolean set algebra. 

The first important new interpretation of Boolean algebra 
was suggested by Boole himself. He  pointed out that if his 1 
were taken as truth and his 0 as falsehood, the calculus could 
be applied to statements that are either true or false. Boole did 
not carry out this program but his successors did. It is now 
called the propositional calculus. This is the calculus concerned 
with true or false statements connected by such binary relations 
as "If p then q," "Either p or q but not both," "Either p or q or 
both," "If and only if p then q," "Not both p and q," and so on. 
The chart in Figure 43 shows the symbols of the propositional 
calculus that correspond to symbols for the Boolean set algebra. 

It is easy to understand the isomorphism of the two interpre- 
tations by considering the syllogism about Socrates. Instead of 
saying, "All men are mortal," which puts it in terms of class 
properties or set inclusion, we rephrase it as, "If z is a man 
then x is a mortal." Now we are stating two propositions and 
joining them by the "connective" called "implication." This is 
diagrammed on Venn circles in exactly the same way we dia- 
grammed "All men are mortal." Indeed, all the binary rela- 
tions in the propositional calculus can be diagrammed with 
Venn circles and the circles can be used for solving simple 
problems in the calculus. I t  is shameful that writers of most in- 
troductory textbooks on formal logic have not yet caught on to 
this. They continue to use Venn circles to illustrate the old 
class-inclusion logic but fail to apply them to the propositional 
calculus, where they are just as efficient. Indeed, they are even 
more efficient, since in the propositional calculus one is uncon- 
cerned with the "existential quantifier," which asserts that a 
class is not empty because it has at least one member. This was 
expressed in the traditional logic by the word "some" (as in 
"Some apples are green"). To take care of such statements 
Boole had to tie his algebra into all sorts of complicated knots. 
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FIGURE 44 

V e n n  diagram for martini puzzle 

To see how easily the Venn circles solve certain types of logic 
puzzles, consider the following premises about three business- 
men, Abner, Bill, and Charley, who lunch together every work- 
ing day: 

1. If Abner orders a martini, so does Bill. 
2. Either Bill or Charley always orders a martini, but never 

both at the same lunch. 
3. Either Abner or Charley or both always order a martini. 
4. If Charley orders a martini, so does Abner. 

To diagram these statements with Venn circles, we identify 
having a martini with truth and not having one with falsehood. 
The eight areas of the overlapping circles shown in Figure 44 
are labeled to show all possible combinations of truth values for 
a, b, c, which stand for Abner, Bill, and Charley. Thus the area 
marked a, -b, c represents Abner's and Charley's having mar- 
tinis while Bill does not. See if you can shade the areas de- 
clared empty by the four premises and then examine the result 



to determine who will order martinis if you lunch with the 
three men. 

There are many other ways to interpret Boolean algebra. I t  
can be taken as a special case of an  abstract structure called a 
ring, or as a special case of another type of abstract structure 
called a lattice. It  can be interpreted in combinatorial theory, 
information theory, graph theory, matrix theory, and meta- 
mathematical theories of deductive systems in general. In  re- 
cent years the most useful interpretation has been in switching 
theory, which is important in the design of electronic computers 
but is not limited to electrical networks. I t  applies to any kind 
of energy transmission along channels with connecting devices 
that turn the energy on and off, or switch it from one channel 
to another. 

The energy can be a flowing gas or liquid, as in modern fluid 
control systems [see "Fluid Control Devices," by Stanley W. 
Angrist, in Scientific American, December 19641. I t  can be 
light beams. I t  can be mechanical energy as in the logic ma- 
chine Jevons invented for solving four-term problems in Boolean 
algebra. I t  can be rolling marbles, as in several computerlike 
toys now on the market: Dr. Nim, Think-a-Dot, and Digi- 
Comp 11. And if inhabitants of another planet have a highly de- 
veloped sense of smell, their computers could use odors trans- 
mitted through tubes to sniffing outlets. As long as the energy 
either moves or does not move along a channel, there is an  iso- 
morphism between the two states and the two truth values of 
the propositional calculus. For every binary connective in  the 
calculus, there is a corresponding switching circuit. Three sim- 
ple examples are shown in Figure 45. The bottom circuit is used 
whenever two widely separated electric light switches are used 
to control one light. It  is easy to see that if the light is off, 
changing the state of either switch will turn it on, and if the 
light is on, either switch will turn it off. 

This electrical-circuit interpretation of Boolean algebra had 
been suggested in a Russian journal by Paul S. Ehrenfest as 
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"AND" CIRCUIT: BULB LIGHTS ONLY 
IF BOTH a AND b ARE CLOSED. 

INCLUSIVE "OR" CIRCUIT: BULB LIGHTS ONLY 
IF a OR b OR BOTH ARE CLOSED. 

EXCLUSIVE "OR" CIRCUIT: BULB LIGHTS ONLY 
IF a OR b, BUT N O T  BOTH, IS LOWERED. 

FIGURE 45 

Circuits for three binary relations 



early as 1910 and independently in Japan in 1936, but the first 
major paper, the one that introduced the interpretation to com- 
puter designers, was Claude E. Shannon's "A Symbolic Analy- 
sis of Relay and Switching Circuits" in the Transactions of the 
American Institute of Electrical Engineers, Vol. 57, December 
1938. It was based on Shannon's 1937 master's thesis at the 
Massachusetts Institute of Technology. 

Since Shannon's paper was published, Boolean algebra has 
become essential to computer design. It is particularly valuable 
in simplifying circuits to save hardware. A circuit is first trans- 
lated into a statement in symbolic logic, the statement is "mini- 
mized" by clever methods, and the simpler statement is trans- 
lated back to the design of a simpler circuit. Of course, in modern 
computers the switches are no longer magnetic devices or vac- 
uum-tube diodes but transistors and other tiny semiconductors. 

Now for one final interpretation of Boolean algebra that is a 
genuine curiosity. Consider the following set of eight numbers: 

i 

1, 2, 3, 5, 6, 10, 15, 30. They are the factors of 30, including 1 
and 30 as factors. We interpret "union" as the least common 
multiple of any pair of those numbers. "Intersection" of a pair 
is taken to be their greatest common divisor. Set inclusion be- 
comes the relation "is a factor of." The universal set is 30, the 
null set 1. The complement of a number a is 30/a. With these 
novel interpretations of the Boolean relations, it turns out that 
we have a consistent Boolean structure! All the theorems of 
Boolean algebra have their counterparts in this curious system 
based on the factors of 30. For example, in Boolean algebra the 
complement of the complement of a is simply a, or in the propo- 
sitional-calculus interpretation the negation of a negation is the 
same as no negation. More generally, only an odd series of ne- 
gations equals a negation. Let us apply this Boolean law to the 
number 3. Its complement is 30/3 = 10. The complement of 10 
is 30/10 = 3, which brings us back to 3 again. 

Consider two famous Boolean laws called De Morgan's laws. 
In the algebra of sets they are 
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(a  u b ) ' = d  n b' 
( a n  b ) ' = d  U b'. 

In the propositional calculus they look like this: 

If the reader will substitute any two factors of 30 for a  and b, 
and interpret the symbols as explained, he will find that De 
Morgan's laws hold. The fact that De Morgan's laws form a 
pair illustrates the famous duality principle of Boolean algebra. 
If in any statement you interchange union and intersection (if 
and wherever they appear) and interchange the universal and 
the null sets, and also reverse the direction of set inclusion, the 
result is another valid law. Moreover, these changes can be 
made all along the steps of the proof of one law to provide a 
valid proof of the other! (An equally beautiful duality principle 
holds in projective geometry with respect to interchanges of 
lines and points.) 

The numbers 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 
105, 210-the 16 factors of 210-also form a Boolean algebra 
when interpreted in the same way, although of course 210 is 
now the universal set and the complement of a  is 210/a. Can the 
reader discover a simple way to generate sets of 2" numbers, 
where n is any positive integer, that will form Boolean systems 
of this peculiar kind? 

A N S W E R S  

THREE VENN CIRCLES are shaded as in Figure 46 to solve the 
problem about the three men who lunch together. Each of the 
first four diagrams is shaded to represent one of the four prem- 
ises of the problem. Superimposing the four to form the last dia- 
gram shows that if the four premises are true, the only possible 



FIGURE 46 

Venn-diagram solution to martini problem 
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combination of truth values is a, b, -c, or true a, true b, and 
false c. Since we are identifying truth with ordering a martini, 
this means that Abner and Bill always order martinis, whereas 
Charley never does. 

The method of generating 2" integers to form Boolean alge- 
bras was given by Francis D. Parker in T h e  American Mathe- 
matical Monthly for March 1960, page 268. Consider a set of 
any number of distinct primes, say 2, 3, 5. Write down the mul- 
tiples of all the subsets of these three primes, which include 0 
(the null set) and the original set of three primes. Change 0 to 
1. This ~roduces the set 1, 2, 3, 5, 6, 10, 15, 30, the first of the 
examples given. In  a similar way the four primes 2, 3, 5, 7 will 
generate the second example, the Z4 = 16 factors of 210. A 
proof that all such sets provide Boolean algebras can be found 
in Boolean Algebra, by R. L. Goodstein in the answer to prob- 
lem No. 10, page 126. 
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Can Machines Think? 

There was a t ime when  it must have seemed highly 
improbable that machines should learn to make  their 
wants known b y  sound, even through the ears of man; 
m a y  w e  not conceive, then,  that a day  wil l  come when  
those ears will be no  longer needed, and the hearing wil l  
be done b y  the  delicacy of the machine's o w n  construc- 
tion?-when its language shall have been developed 
f rom the  cry of animals to a speech as intricate as our 
own? 

-SAMUEL BUTLER, Erewhon 

ALAN MATHISON TURING, a British mathematician who died in 
1954 at the age of 42, was one of the most creative of the early 
computer scientists. Today he is best known for his concept of 
the Turing machine. We shall take a quick look at such ma- 
chines and then consider one of Turing's less well-known ideas, 
the Turing game- a game that leads to deep and unsettled philo- 
sophical controversies. 

A Turing machine is a "black box" (a machine with un- 
specified mechanisms) capable of scanning an infinite tape of 
square cells. The box can have any finite number of states. A 
finite portion of the tape consists of nonblank cells, each bearing 
one of a finite number of symbols. When the box views a cell, 
it can leave a symbol unaltered, erase it, erase it and print an- 
other symbol, or print a symbol in a blank cell. The tape is then 
shifted one cell to the left or right or stays fixed; the box either 
remains in the same state or clicks to a different state. 
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FIGURE 47 

A Turing machine for addition 

1 

+ 

A table of rules describes what the box does for every achiev- 
able combination of symbol and state. Such a table completely 
defines a particular Turing machine. There is a countable 
(aleph null) infinity of Turing machines, each designed for a 
specific task, and for every task the machine's structure can 
vary widely in symbols, states, and rules. 

A good way to grasp the essence of a Turing machine is to 
make one, albeit a trivial one [see Figure 471. Eight cells on the 
paper tape are marked 11 11 + 11 1, signifying the addition of 4 
and 3 in the "unary" system in which an integer n is symbol- 
ized by n 1's. To make the machine, draw a small square (the 
black box) and cut two slits in it so that the tape can be inserted 
as shown. Adjust the tape so that the first 1 is visible. The table 
at the bottom of the picture gives all the necessary rules. 

STATE A 

1. ERASE THE 1. 
2. SCAN NEXT CELL ON RIGHT. 
3. GO TO STATE B. 

STATE B 

1. SCAN NEXT CELL ON RIGHT. 
2. STAY IN STATE B. 

1. ERASE THE +. 
2. PRINT 1. 
3. STOP. 



Start by assuming that the machine is in state A. Consult the 
table for the combination of symbol 1 and state A and do what 
it says: erase the 1, move the tape left (so that the box scans the 
next cell to the right) and assume that the machine clicks to 
state B. Continue in this way until the table tells you to stop. 

If you follow the rules correctly, the machine will erase the 
first 1, shift the tape to the left cell by cell until it reaches the 
plus sign, change + to 1 and stop. The strip will then show 
1 1 1 1 1 1 1, or 7. These simple rules obviously program the device 
to add any pair of positive integers, however large. 

It is a tedious way to add, of course, but Turing's idea was to 
reduce machine computation to a simple and abstract schema, 
making it easier to analyze all kinds of thorny theoretical prob- 
lems, such as what can and what cannot be computed. Turing 
showed that his idealized device can be programmed to do, in 
its clumsy way, anything the most powerful electronic com- 
puter can do. Like any computer-and like the human brain- 
it is limited by the fact that certain calculations (such as calcu- 
lating pi) require an infinite number of steps and by the fact 
that some ~roblems are unsolvable in principle; there is no algo- 
rithm, or effective procedure, by which they can be solved. A 
"universal Turing machine" is capable of doing whatever any 
special-purpose Turing machine can do. In  brief, it computes 
anything that is computable. 

In 1950 Turing's article "Computing Machinery and Intelli- 
gence" appeared in Mind, a British philosophical journal, and 
it has since been reprinted in several anthologies, including 
James R. Newman's T h e  World of Mathematics. "I propose," 
Turing began, "to consider the question, 'Can machines think?' " 
This, Turing decided, was much too vague to have a meaning- 
ful answer. He proposed instead a related but more precise ques- 
tion: Can a computer be taught to win the "imitation game," 
now commonly called the Turing game or Turing test? 

Turing based his test on a parlor game in which a man is con- 
cealed in one room and a woman in another. An interrogator of 
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either sex asks the concealed players questions, which are con- 
veyed by an intermediary; the answers are returned in type- 
script. Each player tries to convince the interrogator that he or 

- 

she is, say, the woman. The interrogator wins if he guesses cor- 
rectly who is telling the truth. 

Suppose, Turing said, we replace one player with a learning 
machine that has been taught to converse in an ordinary lan- 

- 

guage such as English. Is it possible for such a machine to de- 
ceive an interrogator when both the machine and its human 
partner try to persuade the questioner that he, she, or it is the 
human? 

Several continuums blur the meaning of "deceive." How long 
a conversation is allowed? How intelligent is the interrogator? 
How intelligent is the person competing against the machine? 
It is possible today for a computer to pass the Turing test if the 
questioner is a child and is allowed only a few questions. There 
may be no dramatic future breakthroughs, just as there prob- 
ably were no dramatic breakthroughs in the evolution of man. 
Conversation machines could improve gradually, so that it takes 
increasingly long dialogues, with increasingly clever interroga- 
tors, to beat the machines. Perhaps someday only an interro- 
gating computer will consistently guess correctly. Turing him- 
self made a cautious prediction. By the year 2000, he wrote, 
computers will speak fluently enough to deceive an "average in- 
terrogator" at least 30 percent of the time after "about five 
minutes" of dialogue. He imagined the following conversation 
as being typical: 

Q. Please write me a sonnet on the subject of the Forth 
Bridge. 

A .  Count me out on this one. I never could write poetry. 
Q. Add 34957 to 70764. 
A. (Pause about 30 seconds and then give as answer) 105621. 
Q. Do you play chess? 
4 .  Yes. 



Q. I have K at my K1, and no other pieces. You have only K 
at K6 and R at R1. It is your move. What do you play? 

A. (After a pause of 15 seconds) R-R8 mate. 

Many programs enabling computers to simulate English con- 
versation now exist. Joseph Weizenbaum, an electrical engineer 
at the Massachusetts Institute of Technology, has written one 
he calls Eliza, after Eliza Doolittle of Shaw's Pygmalion. The 
New York Times (June 15, 1968) reported a typewritten dia- 
logue with a woman in which an IBM 7094 computer assumed 
the role of a psychiatrist: 

w. Men are all alike. 
c. In  what way? 
w. They're always bugging us about something or other. 
c. Can you think of a specific example? 
w. Well, my boyfriend made me come here. 
c. Your boyfriend made you come here? 
w. He says I'm depressed much of the time. 
c. I am sorry to hear you are depressed. 
w. It's true. I am unhappy. 
c. Do you think coming here will help you not to be un- 

happy? 
w. I need some help, that much seems certain. 
c. What would it mean to you if you got some help? 
w. Perhaps I could learn to get along with my mother. 
c. Tell me more about your family. 
w. My mother takes care of me. 
c. Who else in your family takes care of you? 
n-. My father. 
c. Your father? 
w. You are like my father in some ways. 
c. What resemblance do you see? 
w. You are not very aggressive but I think you don't want 

me to notice that. 
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c. What makes you think I am not very aggressive? 
w. You don't argue with me. 

The dialogue continues in a similar vein and is indistinguish- 
able from a conversation between a patient and a nondirective 
therapist. The program was not even a learning program. Wei- 
zenbaum readily admitted that the computer did not "under- 
stand" anything being said. I t  certainly could not pass the Tur- 
ing test. Suppose, however, that by the year 2000 computers can 
play the Turing game as well as they now play checkers and 
chess. What, if anything, will this reveal about the nature of 
the machine's "mind"? 

Readers of Arthur C. Clarke's novel 2001: A Space Odyssey 
may recall that HAL, the spaceship's talking computer, is said 
to " th ink  because he could "pass the Turing test with ease." 
(HAL stands for heuristically programmed algorithmic com- 
puter, but Clarke may have had some trickier wordplay in 
mind when he picked the name. Can the reader figure out what 
it is?) Does HAL really think or does he just mimic thinking? 
Turing believed that when the time comes that computers con- 
verse well enough to pass his test, no one will hesitate to say 
that they are thinking. 

Enormously tangled questions immediately arise. Can such a 
computer be self-conscious? Can it have emotions? A sense of 
humor? In short, should it be called a "person" or just a dead 
machine built to imitate a person? L. Frank Baum described 
Tiktok, a windup mechanical man, as a robot that "thinks, 
speaks, acts, and does everything but live." 

Surely the ability of a computer to pass Turing tests would 
prove only that a computer could imitate human speech well 
enough to pass such tests. Suppose someone in the Middle Ages 
had proposed the following "tulip test." Will it ever be possible 
to make an artificial tulip that cannot be distinguished from a 
real tulip if one is allowed only to look at  it? Fake tulips can 



now pass this test, but this tells us nothing about a chemist's 
ability to synthesize organic compounds or to make a tulip that 
will grow like a tulip. Just as we can touch what we think is a 
flower and exclaim, "Oh-it's artificial!" it seems unsurprising 
that a day might come when we can hold a lengthy conversa- 
tion with what we think is a person, then open a door and be 
amazed to discover that we have been talking to a computer. 

Keith Gunderson, in an important 1964 paper in which he 
criticized Turing for making too much of the significance of his 
test, expressed the point this way. "In the end, the steam drill 
outlasted John Henry as a digger of railway tunnels, but that 
didn't prove the machine had muscles; it proved that muscles 
were not necessary for digging railway tunnels." 

A curious twist was given to the Turing test in a lecture by 
Michael Scriven. reprinted as "The Compleat Robot: A Prole- 
gomena to Androidology" in Dimensions of Mind, edited by 
Sidney Hook. Scriven conceded that conversational ability does 
not prove that a computer possesses other attributes of a "per- 
son." Suppose, however, a conversing computer is taught the 
meaning of "truth" (in, say, the correspondence sense made 
precise by Alfred Tarski) and then is programmed so that it 
cannot lie. "This makes the robot unsuitable," Scriven said, "for 
use as a personal servant, advertising copywriter, or politician, 
but renders it capable of another service." We can now ask if it 
is aw-are that it exists, has emotions, thinks some jokes are 
funny, acts on its own free will, enjoys Keats and so on, and ex- 
pect it to give correct answers. 

There is the possibility that a "Scriven machine" (as it is 
called by one of several philosophers who criticize Scriven's pa- 
per in other chapters of Hook's anthology) will say no to all 
such questions. But if it gives yes answers, Scriven contends, we 
have as much justification for believing it as we have for believ- 
ing a human, and no reason for not calling it a "person." 

Philosophers disagree about Turing's and Scriven's argu- 
ments. I n  a short piece titled "The Supercomputer as Liar," 
Scriven replied to some of his critics. Mortimer J. Adler, in his 
book The Difference of Man and the Difference It Makes, takes 
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the view that the Turing test is an "all-or-none affair," and that 
success or continued failure in creating computers capable of 
passing it will respectively weaken or strengthen the view that 
a man is radically different in kind from any possible machine 
as well as any subhuman animal. 

Would conversing machines really alter the beliefs of people 
who hold such a view? It is not hard to imagine a television 
show 50 years from now in which guests ad-lib with a robot 
Johnny Carson whose memory has been stocked with a million 
jokes and that has been taught the art of timing by human com- 
ics. I doubt that anyone would suppose the computer had a 
sense of humor any more than a person defeated by a robot 
chess player supposes he has played against a machine radically 
different in kind from a computer that plays ticktacktoe. Rules 
of syntax and semantics are just not all that different from rules 
of chess. 

At any rate, the debate continues, complicated by metaphysi- 
cal and religious commitments and complex linguistic problems. 
All the age-old enigmas about mind and body and the nature of 
personality are being reformulated in a new terminology. It is 
hard to predict what thresholds will be crossed and how the 
crossings will affect fundamental philosophical disagreements 
as robots of the future improve-as they surely will-in their 
ability to think, speak, and act like humans. 

Samuel Butler's chapters in Erewhon explaining why the 
Erewhonians destroyed their machines before the machines 
could become masters instead of servants were read 100 years 
ago as far-fetched satire. Today they read like sober prophecy. 
"There is no security," Butler wrote, "against the ultimate de- 
velopment of mechanical consciousness, in the fact of machines 
possessing little consciousness now. A mollusc has not much 
consciousness. Reflect upon the extraordinary advance which 
machines have made during the last few hundred years, and 
note how slowly the animal and vegetable kingdoms are ad- 
vancing. The more highly organized machines are creatures not 
so much of yesterday, as of the last five minutes, so to speak, in 
comparison with past time." 



A N S W E R S  

IF EACH LETTER in HAL is shifted forward one letter in the al- 
phabet, the result is IBM. Because the IBM logo is visible on 
HAL'S display terminals, everybody assumed that the letter 
shift was intentional on Arthur Clarke's part. Clarke has since 
assured me that it was totally accidental, and that he was as- 
tounded when the shift was first called to his attention. 
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Cyclic Num beys 

THE NUMBER 142,857, which students of recreational number 
theory are likely to recognize at once, is one of the most remark- 
able of integers. Apart from the trivial case of 1, it is the small- 
est "cyclic number." A cyclic number is an integer of n digits 
with an unusual property: when multiplied by any number 
from 1 through n, the product contains the same n digits of the 
original number in the same cyclic order. Think of 142,857 as 
being joined end to end in a circular chain. The circle can be 
broken at six points and the chain can be opened to form six six- 
digit numbers, the six cyclic permutations of the original digits: 

The cyclic nature of the six products has long intrigued ma- 
gicians, and many clever mathematical prediction tricks are 
based on it. Here is one: 



FIGURE 48 

Endless strip ( t op )  placed i n  envelope (bot tom)  
for prediction trick 

Prepare a deck of playing cards by removing the nine spades 
with digit values. Place them on the bottom of the deck so that 
their order from the bottom up is 1, 4, 2, 8, 5, 7, with the re- 
maining three cards following in any order. Your prediction of 
the trick's outcome is the number 142,857 written in large nu- 
merals on a strip of paper twice as long as the envelope into 
which it will be put. Paste the ends of the strip together to make 
a circular band, with the numerals on the outside, then press 
the band flat as shown in Figure 48. Thus flattened, the band is 
sealed into the envelope as shown. 
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You have, of course, memorized the number 142,857, recall- 
ing also that its first three digits are on the top side of the band, 
its last three digits on the bottom side. The envelope later is cut 
open by scissoring it at one of the four places marked A, B, C, 
D. If you cut at A or D, cut through the end of the band also, so 
that when it is pulled from the envelope, it will be a strip bear- 
ing 142,857 or 857,142. The other four permutations are ob- 
tained by cutting the envelope at B o r  C. Start the cut in the 
envelope only, below the band. As you continue cutting, make 
sure that the scissors snip only the upper part of the band and 
the upper part of the envelope. In this way you can pull from 
the slit a strip bearing 428,571 or 285,714. For the remaining 
two permutations simply turn the envelope over and follow the 
same procedure on the other side. This way of cutting an en- 
velope to take from it a strip showing any of the six cyclic per- 
mutations of 142,857 is based on a procedure devised by Samuel 
Schwartz, a New York City attorney and amateur magician. He 
uses a window envelope so that spectators can see numerals on 
the band, and a slightly different preparation and handling, but 
the method is essentially the same. 

The sealed envelope with your prediction is given to someone 
at the start of the trick. Hand another person the prepared deck 
and ask him to give it two thorough riffle shuffles (the usual 
kind of shuffle in which the deck is separated into two piles and 
the piles are interleaved). The two shuffles will distribute the 
nine spades upward through the deck without disturbing their 
order. To obtain a random six-digit number, you explain, you 
will go through the shuffled deck, cards face up, and remove the 
first six spades that have digit values. The digits will be 1, 4, 2, 
8, 5, 7. Arrange the six cards in a row on a table. A random 
multiplier from 1 through 6 is now obtained by rolling a die. 
Better still, hand someone an imaginary die and ask him to roll 
this invisible die and tell you what he "sees" on top. Multiply 
142,857 by the digit he names. Cut open the envelope properly 
(in order to determine where to cut, multiply 7 by the selected 



digit to get the last digit of the product) and pull out the strip 
to prove you have correctly predicted the product. 

The number 142,857 is involved in many other mathematical 
magic tricks (see bibliography for several references). A defect 
of all these tricks is that spectators may notice that the same 
digits of 142,857 reappear in the prediction; also, the magic 
number itself has now become fairly well known. One way 
around this is to use, instead of 142,857, the quotient obtained 
by dividing it by one of its factors. For example: 142,857/3 = 
47,619. Instead of having 47,619 multiplied by 1, 2, 3, 4, 5, or 
6, have it multiplied by any of the first six multiples of 3. The 
result, of course, will be a cyclic permutation of 142,857. Or you 
can use 142,857/9 = 15,873 and have it multiplied by any of 
the first six multiples of 9; or 142,857/11 = 12,987 and have it 
multiplied by 11,22,33, M ,  55, or 66; and so on. 

Many centuries ago, when mathematicians first became aware 
of the cyclic character of 142,857, they began looking for larger 
numbers with the same whimsical property. Early work along 
such lines is summarized in the first volume of Leonard Eugene 
Dickson's History of the Theory of Numbers, Chapter 6, and 
dozens of papers on the topic have been written since Dickson's 
history first appeared in 1919. It turns out that all cyclic num- 
bers are the periods (sometimes called repetends) in the re- 
peating decimals (also called recurring, circulating, or periodic 
decimals) of the reciprocals of certain prime numbers. The re- 
ciprocal of 7, or 1/7, produces the repeating decimal .142,857; 
142,857; 142,857. . . . Note that the number of digits in the 
period is one less than 7, which generates it. This provides one 
way of finding higher cyclics. If l/p, where p is a prime, pro- 
duces a repeating decimal with a period of p - 1 digits, the pe- 
riod is a cyclic number. The next-larger prime that generates 
such a number is 17. Its repeating period is the 16-digit cy- 
clic 0,588,235,294,117,647. Multiplied by any number from 1 
through 16, the product repeats those 16 digits in the same cy- 
clic order. All cyclics generated by primes higher than 7 must 
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begin with one or more 0's. If these numbers are used for pre- 
diction tricks or lightning-calculation stunts. the initial O's can 
be dropped-provided, of course. that you remember to insert 
them at  the proper place in the final product. 

Exactly nine primes smaller than 100 generate cyclic num- 
bers: 7, 17, 19, 23, 29,47, 59. 61, 97. In the 19th century many 
larger cyclics were found. William Shanks, who is best known 
for his flawed calculation of pi to 707 decimals. discovered the 
cyclic number generated by 1/17.389 and calculated its 17,388 
digits (correctly). 

No fraction with a denominator d can have a repeating pe- 
riod longer than d - l digits. Since this maximum-length pe- 
riod is achieved only when d is a prime, i t  follows that cyclic 
numbers are equivalent to periods of maximum length for re- 
ciprocals of an integer. It is easy to see why d - 1 gives the long- 
est possible period. When 1.000 . . . is divided by d, there are 
only d - 1 possible remainders at each step of the division 
process. As soon as a remainder is repeated, the period will start 
over, and therefore no fraction with a denominator d can have 
a period longer than d - 1 digits. I t  is also easy to see why such 
maximum-length periods are cyclic. Consider 8/17. Since every 
possible remainder appears in dividing 1 by 17, dividing 8 by 
17 is merely starting the cyclic process at a different place. You 
are certain to get the same cyclic order of digits in the period of 
the repeating decimal. Multiplying the cyclic number gener- 
ated by 1/17 by 8 is the same as finding the period for 8/17; 
conseque~ltly the product must be a cyclic permutation of the 
same 16 digits in the period for 1/17. 

No nonrecursive formula is known that will automatically 
generate all primes with reciprocals of maximum period length 
(and hence generate all cyclic numbers), but there are many 
dodges that simplify the identification of such primes and the 
computer search programs for them. It  is not yet known if 
there are infinitely many primes that generate cyclic numbers, 
but the conjecture seems highly probable. In Samuel Yates' 



valuable table of prime period lengths for all primes through 
1,370.471 (see bibliography), about 3/8 of the primes are of 
this type. The proportion remains fairly constant throughout, 
arid there is a reasonable conjecture that it holds for all primes. 

When a cyclic number is multiplied by its generating prime, 
the product is always a row of 9's. For instance, 142,857 times 
7 is 999,999. This provides another way to search for c~clics: 
divide a prime, p, into a row of 9's until there is no remainder. 
If the quotient has p - 1 digits, it is a cyclic number. Even less 
expected is the fact that every cyclic (or any of its cyclic permu- 
tations), when split in half, gives two numbers that add to a 
row of 9's. For example, 142 + 857 = 999. For another example, 
split the cyclic generated by 1/17 into halves and add: 

This surprising property is a special case of "Midy's theo- 
rem," credited by Dickson to E. Midy, who published it in 
France in 1836. The theorem states that if the period of a re- 
peating decimal for a/p (where p is a prime and a/p is reduced 
to its lowest terms) has an even number of digits, the sum of its 
two halves will be a string of 9's. Some primes, such as 11, have 
periods of even length that are not cyclic numbers and yet have 
the 9's property. Other primes, such as 3 and 31, have periods 
of odd ler~gth. All cyclic numbers are even in length, however, 
and therefore Midy's theorem applies to them. This is good to 
remember because if you are doing the division to obtain a cy- 
clic, you need only proceed halfway. You can write the remain- 
ing digits quickly by considering the digits already obtained 
and simply putting down their differences from nine. Of course 
it follows at once from Midy's theorem that all cyclics are mul- 
tiples of nine, because any number whose digits add to a multi- 
ple of nine must itself be a multiple of nine. Readers interested 
in an elementary proof of Midy's theorem can find it in The 
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Enjoyment of Mathematics, by Hans Rademacher and Otto 
Toeplitz (Princeton University .Press, 195 7), pages 158-60. An- 
other proof is given by W. G. Leavitt in "A Theorem on Re- 
peating Decimals" in The  American Mathematical Monthly, 
June-July 1967, pages 669-73. 

There are many other strange properties of cyclic numbers, 
some of which the reader may have the pleasure of discovering 
for himself. I shall mention only one more. Every cyclic can be 
generated in numerous ways as the sum of an infinite arithme- 
tic progression written diagonally. For example, start with 14 
and double at each step, writing every number so that it pro- 
jects two digits to the right: 

The sum repeats the smallest nontrivial cyclic number. An- 
other way to obtain the same cyclic is to start with 7 and move 
diagonally down and left, multiplying by five at each step and 
keeping the diagonal uniform on the right: 



This same procedure, using the simple doubling series 1, 2, 
4, 8, 16, 32, . . . , will give the period of 1/19, the third cyclic 
number: 052,631,578,947,368,421. The tripling series 01, 03, 
09, 27, 81, . . . , written diagonally down and right, each step 
projecting two digits rightward, has a sum that repeats the pe- 
riod of 1/97, the largest cyclic generated by a prime smaller 
than 100. 

I conclude this brief discussion, which covers only a small 
portion of the fascinating properties of cyclics, by asking the 
reader what cyclic properties he can discover for the period of 
1/13. This period, 076,923, is not a true cyclic. It  can be called 
a cyclic of order-2. The answer will open a new field for ex- 
ploration that is closely tied up with the better-known order-1 
cyclics we have been considering. 

A D D E N D U M  

JOHN W. WARD called my attention to the perfect magic square 
shown in Figure 49. It  appears on page 176 of W.  S. Andrews, 
Magic Squares and Cubes, a 191 7 work currently available as a 
Dover paperback. The square is based on the cyclic number ob- 
tained from 1/19. All rows, columns, and main diagonals add 
to 81. 

It  is readily apparent that any cyclic number will provide a 
square that is magic for rows and columns, but Ward found 
that the one shown here is unique in also including the two 
main diagonals. As Andrews put it, "It is not easy to understand 
why each of the two diagonals of this square should sum 81, 
but if they are written one over the other, each pair of numbers 
will sum 9." Ward also showed that all semiperfect magic 
squares based on cyclic numbers have diagonals whose sums 
add to twice the magic constant. 

Many readers wondered about and investigated what hap- 
pens when a cyclic number of the first order is multiplied by 



Cyclic Numbers 119 

3 FIGURE 49 

%&y perfect magic square generated b y  a cyclic number 

numbers larger than its number of digits, n. It turns out, pleas- 
antly enough, that in all such cases the product can be reduced 
either to a cyclic permutation of the original number or to a 
number consisting of n nines. I will illustrate this with 142,857, 
and it will be apparent how it generalizes to larger cyclics. 

We consider first all multipliers higher than n that are not 
multiples of n + 1. For example: 142,857 X 123 = 17,571,411. 
Mark off six digits from the right, and to this number add the 
number that remains: 



The sum is a cyclic permutation of' 142857. 
Another example: 142,857' = 20,408,122,449. 

If the ~llultiplier is ven large, we start fro~ll the right and par- 
tition the number into groups of six digits each. For example: 
142,857 X 6,430,514,712,336. 

Because the sum has more than six digits, Ive must repeat the 
procedure: 

If the rllultiplier of the cjclic nuniber is a multiple of r z  + 1 
 here n is the ilumbei- of digits in the cyclic number), the pro- 
cedure just described ~vill pi-oduce a row of nines. For example: 
142,857 X 84= 11,999,988. 

The reader can easily discover for himself how the procedure 
also applies to higher-order cyclic numbers. 

Ratner'~ Sta? a no\el by Don DeLillo (Knopf, 1976), is spot- 
ted \\it11 references to 142,837 and its malij strange nu- 
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merological properties. The protagonist is a 14-year-old mathe- 
matical prodigy from the Bronx named Billy Twillig. He is 
hired by the government in 1979 for a top secret project that is 
trying to determine why a distant star in the Milky Way gal- 
axy is sending 14-28-57 to the earth as a pulsed code. It finally 
turns out that the number means-but you'd best read the 
novel to find out. 

A N S W E R S  

THE PERIOD OF 1/13-076,9234s not a true cyclic in the sense 
defined previously. It is cyclic, however, in the following double 
sense. If multiplied by any number from 1 through 12, half of 
the products are the six cyclic permutations of 076,923 and the 
other half are the six cyclic permutations of 153,846. Note that 
each of these two numbers (like the smallest order-I cyclic, 
142,857) can be split in half and added to get 999. Moreover, 
each can be trisected and added to get 99 (07 + 69 + 23 = 99; 
15 + 3 8 + 4 6 = 9 9 ;  1 4 + 2 8 + 5 7 = 9 9 ) .  

When a number with n digits, multiplied by 1 through 272, 
yields products that are all the cyclic permutations of two n-digit 
numbers, it is called an order-2 cyclic. Disregarding the trivial 
case generated by 1/3, the lowest prime generating an order-2 
cyclic is 13. Other primes under 100 that generate order-2 cy- 
clics are 31, 43, 67, 71, 83 and 89. 

Cyclic numbers can be of any order. The smallest prime gen- 
erating an order-3 cyclic is 103. The repeating period of 1/103, 
multiplied by any integer from 1 through 102, gives products 
that fall into three sets, each containing 34 cyclic permutations 
of a 34-digit number. The smallest prime generating an order-4 
cyclic is 53. In general, as H. J. A. Dartnall, a London corre- 
spondent, has pointed out, if the reciprocal of a prime p has a 
repeating decimal period with a length (number of digits) 
equal to ( p  - 1 ) /n, the period is an n-order cyclic. For example, 
1/37 generates the three-digit period 027. Since 36/3 = 12, the 



period is a 12-order cyclic. The loxvest primes generatilig cyclics 
of orders 5 thi.ough 13 are I-especti\,ely 1 1, 79, 2 1 1, 4 1, 73, 28 1, 
333, 37, 2393, 449, 3061. Note that the 10 products of the 
order-5 cyclic, 09 (the period of 111 l), are the first 10 lllultiples 
of 9. 

There is a curious relationship between the Fibonacci num- 
bers and the order-:! cyclic generated by 89. It is explailied on 
pages 161-162. 

The topic of higher-order cyclic llulrlbers is a vast jungle, wit11 
a scattered literature that deserves to be brought together some- 
day in a comprehensi\le bibliography. The same remarks apply 
to cyclic numbers in base systelrls other than 10. Most base nota- 
tions have sucll ~iumbers; In the binary, for example, the 
sequence of first-order c~~clics (~vritten in decimal notation) 
begins: 3, 5 ,  11, 13, 19, 29 .... 



C H A P T E R  1 1  

Eccentric Chess and 
Other Problems 

1 .  E C C E N T R I C  C H E S S  

ON A RECENT VISIT to an imaginary chess club I found a game 
in progress between Mr. Black and Mr. White, the club's two 
most eccentric players. To my surprise the board appeared as 
shown in Figure 50. My first thought was that each player had 
started without his king's knight and that Black had moved 
first, but Mr. Black informed me that he had just completed his 
fourth move in a standard game that had been played as follows: 

White Black 
N-KB3 P-Q4 
N-K5 N-KB3 
N-QB6 KN-Q2 
N takes N N takes N 

FIGURE 50 

Chessboard after 
Blaclc's fourth move 



An hour later, after losing a game to another player, I came 
back to see what Black and White were up to. In  their second 
game the board looked exactly the same as it had before except 
that now all four knights were missing! Mr. Black, playing 
black, looked up and said, "I've just completed my fifth move." 

a. Can the reader construct a legitimate game that leads to 
such a peculiar opening position? 

"By the way," said Mr. White, "I've invented a problem that 
might amuse your readers. Suppose we dump a complete set of 
chessmen into a hat-all 16 black pieces and all 16 white- 
shake the hat, then remove the pieces randomly by pairs. If 
both are black, we put them on the table to form a black pile. 
If both happen to be white, we put them on the table to form a 
white pile. If the two pieces fail to match in color, we toss them 
into their chess box. After all 32 ~ ieces  have been removed 
from the hat, what's the probability that the number of pieces 
in the black pile will be exactly the same as the number in the 
white pile?" 

"H7m," I said. "Offhand I'd guess the probability would be 
rather low." Black and White continued their game with sub- 
dued chuckles. 

b. What is the exact probability that the two piles will be 
equal? 

2 .  T A L K A T I V E  EVE 

THIS CRYPTARITHM (or alphametic, as some puzzlists prefer to 
call them) is an old one of unknown origin, surely one of the 
best and, I hope, unfamiliar to most readers: 

EVE - -- 
DID 

TALKTALKTALK. . . . 

The same letters stand for the same digits, zero included. The 
fraction EVE/DID has been reduced to its lowest terms. Its deci- 
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ma1 form has a repeating period of four digits. The solution is 
unique. To solve it, recall that the standard way to obtain the 
simplest fraction equivalent to a decimal of n repeating digits 
is to put the repeating period over n 9's and reduce the fraction 
to its lowest terms. 

3 .  THREE SQUARES 

USING only elementary geometry (not even trigonometry), 
prove that angle C in Figure 51 equals the sum of angles A 
and B. 

I am grateful to Lyber Katz for this charmingly simple prob- 
lem. He writes that as a child he went to school in Moscow, 
where the problem was given to his fourth-grade geometry class 
for extra credit to those who solved it. "The number of blind 
alleys the problem leads to," he adds, "is extraordinary." 

FIGURE 51 

Prove  that  ang le  A plus ang le  B equals  ang le  C .  



4 .  POHL'S PROPOSITION 

FREDERIK POHL, a top writer of science fiction, thought of this 
stunt, which appeared in a recent issue of a magic magazine 
called Epilogue. Computer programmers are likely to solve it 
more quickly than others. 

Ask someone to draw a horizontal row of small circles on a 
sheet of paper to indicate a row of coins. Your back is turned 
while he does this. He  then places the tip of his right thumb on 
the first circle so that his thumb and hand completely cover the 
row of circles. You turn around and bet you can immediately 
put on the sheet a number that will indicate the total number 
of combinations of heads and tails that are possible if each coin 
is flipped. For example, two coins call fall in four different 
ways, three coins in eight different ways and so on. 

You have no way of knowing how many coins he drew and 
yet you win the bet easily. How? 

5 .  ESCOTT'S SLIDING BLOCKS 

THIS REMARKABLE SLIDING-BLOCK PUZZLE [see Figure 521 was 
invented by Edward Brind Escott, an  American mathematician 
who died in 1946. I t  appeared in the August 1938 issue of a 
short-lived magazine called Games Digest. No solution was 
published. The problem is to slide the blocks one at a time, keep- 
ing them flat on the plane and inside the rectangular border, 
until block 1 and block 2 have exchanged places with block 7 
and block 10, so that at the finish the two pairs of blocks are in 
the position shown at  the right, with the other pieces anywhere 
on the board. No block is allowed to rotate, even if there is space 
for it to do so; each must keep its original orientation as it moves 
up, down, left or right. 

I t  is the most difficult sliding-block puzzle I have seen in 
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START FINISH 

FIGURE 52 

Escott's sliding-block puzzle 

print. The solution will be in 48 moves, counting each move- 
ment of one block as a single move even if it goes around a 
corner. 

Escott was an expert on number theory who contributed fre- 
quently to mathematical journals. He taught at several schools 
and colleges in the Middle West and in his later years was an 
insurance company actuary in Oak Park, Ill. 

6.  RED, W H I T E ,  A N D  BLUE W E I G H T S  

PROBLEMS INVOLVING weights and balance scales have been 
popular during the past few decades. Here is an unusual one 
invented by Paul Curry, who is well known in conjuring circles 
as an amateur magician. 

You have six weights. One pair is red, one pair white, one 
pair blue. In each pair one weight is a trifle heavier than the 



other but otherwise appears to be exactly like its mate. The 
three heavier weights (one of each color) all weigh the same. 
This is also true of the three lighter weights. 

In two separate weighings on a balance scale, how can you 
identify which is the heavier weight of each pair? 

FIGURE 53 

A digital problem 

7 .  THE 1 0 - D I G I T  NUMBER 

IN THE 10 CELLS of Figure 53 inscribe a 10-digit number such 
that the digit in the first cell indicates the total number of zeros 
in the entire number, the digit in the cell marked "1" indicates 
the total number of 1's in the number, and so on to the last cell, 
whose digit indicates the total number of 9's in the number. 
(Zero is a digit, of course.) The answer is unique. 

8 .  B O W L I N G - B A L L  PENNIES 

KOBON FUJIMURA, the leading puzzle authority of Japan, de- 
vised this tricky little puzzle, which appears in one of his recent 
books. Arrange 10 pennies in the familiar bowling-pin forma- 
tion [see Figure 541.  What is the smallest number of coins you 
must remove so that no equilateral triangle, of any size, will 
have its three corners marked by the centers of three pennies 
that remain? Not counting rotations and reflections as different, 
there is only one pattern for the removal of the minimum num- 
ber of pennies. 
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FIGURE 54 

Coin puzzle from Japan 

Note that the pattern contains two equilateral triangles that 
are tipped so that their bases are not horizontal. 

9.  K N O C K O U T  G E O G R A P H Y  

KNOCKOUT OPEN-END GEOGRAPHY is a word game for any num- 
ber of players. The first player names any one of the 50 states. 
The next player must name a different state that either ends 
with the initial letter of the preceding state or begins with the 
last letter of the preceding state. For instance, if the first player 
gives Nevada, the next player can either affix Alaska or prefix 
Wisconsin. In other words, the chain of states remains open at 
both ends. When a player is unable to add to the chain, he is 
eliminated and the next player starts a new chain with a new 
state. No state can be named more than once in the same game. 
The game continues until only the winner remains. 

David Silverman asks: If you are the first to name a state in a 
three-player game, what state can you name that will guarantee 
your winning? We assume that all players play rationally and 
without collusion to trap the first player. 



A N S W E R S  

1. a. ONE POSSIBLE line of play: 

White Black 
1. N-KB3 N-KB3 
2. N-QB3 N-QB3 
3. N-Q4 N-Q4 
4. KN takes N QP takes N 
5. N takes N P takes N 

Both chess problems were reprinted in the Summer 1969 
issue of a mathematics magazine called Manifold, published at 
the University of Warwick in Coventry, England. I t  cited a 
1947 issue of Chess Reciew as its source. The above variation is 
credited to Larry Blustein, an American player. 

Mannis Charosh called my attention to an interesting variant 
of the problem of the two missing knights. Instead of removing 
the two king-side knights, remove the two queen-side knights, 
and instead of advancing the black queen's pawn two squares, 
advance it only one square. This too has a four-move solution, 
but it has the merit of being unique. (In the version I gave, 
Black's first two moves are interchangeable.) The problem ap- 
peared in the Fairy Chess Review, February 1955, where it was 
credited to G. Schweig, who had first published it in 1938. I 
leave the finding of the solution to the reader. 

b. The probability is 1. Because the discarded set of pairs 
must contain an equal number of black and white pieces, the 
all-black and the all-white pile must be equal. 

2. As stated earlier, to obtain the simplest fraction equal to a 
decimal of n repeated digits, put the repeating period over n 
9's and reduce to its lowest terms. In  this instance  TALK/^,^%, 
reduced to its lowest terms, must equal EVE/DID. DID, conse- 
quently, is a factor of 9,999. Only three such factors fit DID: 

101, 303, 909. 
If DID = 101, then EVE/~OI =  TALK/^,^%, and EVE = TALK/ 
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99. Rearranging terms, TALK = (99) (EVE). EVE cannot be 101 
(since we have assumed 101 to be DID) and anything larger 
than 101, when multiplied by 99, has a five-digit product. And 
so DID = 101 is ruled out. 

If DID = 909, then E V E / ~ O ~  =  TALK/^,%^, and EVE = TALK/ 

11. Rearranging terms, TALK = (1 1 ) (EVE). In that case the last 
digit of TALK would have to be E. Since it is not E, 909 also is 
ruled out. 

Only 303 remains as a possibility for DID. Because-EVE must 
be smaller than 303, E is 1 or 2. Of the 14 possibilities (121, 
141, . . ., 292) only 242 produces a decimal fitting .TALK- 

TALK. . . , in which all the digits differ from those in EVE and DID. 

The unique answer is 242/303 = .798679867986.. . . If EVE/ 

DID is not assumed to be in lowest terms, there is one other solu- 
tion, 212/606 = .349834983498 . . . , proving, as Joseph Mada- 
chy has remarked, that EVE double-talked. 

3. There are many ways to prove that angle C in the figure 
is the sum of angles A and B. Here is one [see Figure 551. Con- 
struct the squares indicated by gray lines. Angle B equals angle 

FIGURE 55 

Construction for proof of three-square theorem 



D because they are corresponding angles of similar right tri- 
angles. Since angles A and D add to angle C, B can be substi- 
tuted for D, and it follows immediately that C is the sum of A 
and B. 

This little problem produced a flood of letters from readers 
who sent dozens of other proofs. Scores of correspondents 
avoided construction lines by making the diagonals equal to the 
square roots of 2,5, and 10, then using ratios to find two similar 
triangles from which the desired proof would follow. Others 
generalized the problem in unusual ways. 

Charles Trigg published 54 different proofs in the Journal of 
Recreational Mathematics, Vol. 4, April 1971, pages 90-99. A 
proof using paper cutting, by Ali R. Amir-Mokz, appeared in 
the same journal, Vol. 5, Winter 1973, pages 8-9. For other 
proofs, see Roger North's contribution to The Mathematical 
Gazette, December 1973, pages 334-36, and its continuation in 
the same journal, October 1974, pages 212-15. For a generaliza- 
tion of the problem to a row of n squares, see Trigg's "Geo- 
metrical Proof of a Result of Lehmer's," in The Fibonacci Quar- 
terly, Vol. 11, December 1973, pages 539-40. 

4. In order to win the bet, draw a 1 to the left of the tip of 
the thumb that is covering the row of circles. When the thumb 
is removed, the paper will show a binary number consisting of 
1 followed by a row of 0's. Assuming the 0's to represent n 
coins, this binary number will be equivalent to the decimal 
number 2n, the number of ways n coins can fall heads or tails. 

5. When I originally presented Escott's sliding-block puzzle 
in my column, I gave a solution in 66 moves, but many readers 
succeeded in lowering the number to 48. This is now the short- 
est known solution. 

There is no unique 48-move solution. The one given in Fig- 
ure 56 (sent by John W.  Wright) is typical. The letters U ,  D, 
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FIGURE 56 

A 48-move solution to sliding-block puzzle 



L, and R stand for up, down, left, and right. In each case the 
numbered piece moves as far as possible in the indicated di- 
rection. 

Since the initial pattern has twofold symmetry, every solution 
has its inverse. In this case the inverse starts with piece 5 mov- 
ing down and to the left instead of piece 6 moving up and to the 
right and continues with symmetrically corresponding moves. 

6. One way to solve the problem of the six weights-two red, 
two white, and two blue-is first to balance a red and a white 
weight against a blue and a white weight. 

If the scales balance, you know there are a heavy and a light 
weight on each pan. Remove both colored weights, leaving the 
white weights, one on each side. This establishes which white 
weight is the heavier. At the same time it tells you which of the 
other two weights used before (one red, one blue) is heavy and 
which is light. This in turn tells you which is heavy and which 
is light in the red-blue pair not yet used. 

If the scales do not balance on the first weighing, you know 
that the white weight on the side that went down must be the 
heavier of the two whites, but you are still in the dark about the 
red and blue. Weigh the original red against the mate of the 
original blue (or the original blue against the mate of the 
original red). As C. B. Chandler (who sent this simple solution) 
put it, the result of the second weighing, plus the memory of 
which side was heavier in the first weighing, is now sufficient 
to identify the six weights. 

For readers who liked working on this problem, Ben Braude, 
a New York City dentist and amateur magician, devised the 
following variation. The six weights are alike in all respects 
(including color) except that three are heavy and three light. 
The heavy weights weigh the same and the light weights weigh 
the same. Identify each in three separate weighings on a bal- 
ance scale. 
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As Thomas O'Beirne pointed out, Braude's problem has two 
essentially different types of solutions: one in which pairs are 
weighed against pairs, and one in which each weighing involves 
a single weight on each side. John Hamilton gave this concise 
chart for the four possibilities of the simpler method. (It ap- 
peared in the March 1970 issue of the magic periodical, The  
Pallbearers Reuiew.) 

1 2 3 4 
a\B a\B a-b a-b 
c\D c-d b-c b\C 
e\F d\E c\D D-E 

A capital letter indicates a heavy weight, a small letter a 
light weight. A horizontal line means balance, a slanted line 
shows how the scale tips. 

7. The only answer is 6,210,001,000. I do not have the space 
for a detailed proof, but a good one by Edward P. DeLorenzo is 
in Allan J. Gottlieb's puzzle column in the Massachusetts Insti- 
tute of Technology's Technical Reuiew for February 1968. The 
same column for June 1968 has a proof by Kenneth W. Dritz 
that for fewer than 10 cells the only answers in bases 1 through 9 
are 1,210; 2,020; 21,200; 3,211,000; 42,101,000, and 521,001,000. 

See Journal of Recreational Mathematics, Vol. 11, 1978-79, 
pages 76-77, for Frank Rubin's general solution. He shows that 
for all bases above 6 there is one solution, of the form R21 (0 . .  .O) 
1000, where R is 4 less than the base, and the number of zeroes 
inside the parentheses is 7 less than the base. 



8. The four pennies shown shaded [see Figure 571 are the 
fewest that must be removed from the 10 so that no three re- 

Solution 
FIGURE 57 

for 10-penny 

maining coins mark the corners of an equilateral triangle. Bar- 
ring rotations, the pattern is unique; it is, of course, identical 
with its reflection. 

9. A simple way to win David Silverman's geography game 
is to name Tennessee. The second player can only prefix Con- 
necticut or Vermont. Since no state begins with E or ends with 
C or V, the third player is eliminated. I t  is now your turn to 
start again. You can win with Maine or Kentucky. Maine elimi- 
nates the second player immediately because no state begins 
with E or ends with M. Kentucky is a quick winner, among sev- 
eral other possibilities. It forces him to name New York. You 
win by prefixing Michigan, Washington, or Wisconsin. 

Three other first moves also win for the first player on his 
second move: Delaware, Rhode Island, and Maryland. Other 
states, such as Vermont, Texas, and Connecticut, lead to wins 
on the first player's third move. 



C H A P T E R  1 2  

Dominoes 

SURPRISINGLY LITTLE seems to be known about the early history 
of dominoes. There are no references to them in Western litera- 
ture before the middle of the 18th century, when domino games 
were first played in Italy and France. Later they spread over 
Europe and to England and America. The standard Western set 
of dominoes has always consisted of 28 tiles that display all pos- 
sible pairs of digits from 0 through 6 [see Figure 581. Each 
digit appears eight times in the set. Larger sets that run from 
the "doublet" 0-0 (two blank squares) to 9-9 (55 tiles in all) 
or to 12-12 (91 tiles) have occasionally been sold to accommo- 
date larger numbers of players. The tiles are usually black with 
sunken white spots. They may have been called dominoes be- 
cause of the resemblance of the 1-1 tile to the black domino 
half-mask worn in masquerades. 

No one knows whether European dominoes were invented 
independently or copied from the Chinese. In any case they 
were popular in China for centuries before they became known 
in Europe. Chinese dominoes, called kwat p'ai, have no blanks. 



FIGURE 58 

T h e  standard set of 28 Wes tern  dominoes 

A set includes every pair combination from 1-1 through 6-6 
(21 tiles), but 11 tiles are duplicated, making 32 in all. As on 
Chinese dice, the ace and the 4 have red spots. All other spots 
are white (or black if the tiles are white) except on the 6-6, 
where three spots on one side of each 6 are red. (Korean dom- 
inoes are the same except that the ace is much larger than the 
other spots.) Each tile has a colorful Chinese name: 6-6 is 
L'heaven," 1-1 is "earth," 5-5 is "plum flower," 6-5 is "tiger's 
head," and so on. The names are the same as those given to the 
corresponding 21 throws of a pair of dice. 

Chinese dominoes are frequently made of cardboard rather 
than of such material as wood, ivory, and ebony and are then 
handled like playing cards. As in the West, many different 
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games are played with the pieces. The most popular Western 
games are described in any modern "Hoyle." For Chinese and 
Korean games the best reference is Stewart Culin's Games of the 
Orient, an 1895 book reprinted by Charles Tuttle in 1958. 
Japan has no native dominoes but domino games are sometimes 
played with Western sets. 

According to the Encyclopaedia Britannica, bone sets of 60 
to 148 pieces are used by certain Eskimo tribes for frantic gam- 
bling contests in which players occasionally stake and lose their 
wives. Domino games have long been a favorite pastime in 
Cuba, and are now the primary recreation of Cuban refugees 
in Miami. 

One of the oldest combinatorial problems involving dominoes 
is determining the number of ways in which a complete set of 
Western dominoes can be arranged in a straight row in accord- 
ance with the familiar playing rule that touching ends must 
match. (A set is complete if it contains all pairs from 0-0 
through n-n.) The problem is interesting because it translates 
directly into a ~ rob lem of graph-tracing [see Figure 591. Ignor- 
ing the trivial set of one domino, 0-0, consider the simplest com- 
plete set: 0-0, 0-1, 1-1 [ a ] .  The line from 0 to 1 corresponds to 
the 0-1 tile. The circles, showing that each digit is paired with 
itself, indicate the doublets in the set. The number of ways the 
three tiles can be arranged in a row is the same as the number 
of ways the simple graph can be traversed by a single path that 
does not go over any line twice. Obviously there are only two 
such paths, one a reverse of the other. These two (0-0, 0-1, 1-1, 
and its reversal) are the only two ways the tiles can be placed 
in a row with touching ends matching. 

The problem is less trivial with the next-largest set of six tiles 
from 0-0 through 2-2. Its triangular graph [b] also has a 
unique path (and its reversal), but now the path must return 
to its starting spot. This means that the corresponding chain of 
dominoes is a closed ring: 0-0, 0-1, 1-1, 1-2, 2-2, 2-0. Think 
of the two ends as joined: 2-0, 0-0. Since the ring can be broken 



at six places to form a row, there are six different solutions, or 
12 if reversals are counted as different. 

The complete set of 10 dominoes (0-0 through 3-3) takes an 
unexpected turn [c]. All four vertexes are odd, that is, an odd 
number of lines meet at each. (The center crossing point of the 
two diagonals is not considered a vertex.) An old graph-tracing 
rule, first given by Leonhard Euler in his famous analysis of 
the problem of traversing the seven bridges of Konigsberg, is 
that a graph can be traced by one path, without going over any 
line twice, if and only if all vertexes are even, or if there are 
exactly two odd vertexes. In the first case the path is always 
closed, ending where it began. In  the second case the path must 
begin at one odd vertex and end at the other. Since we have here 
four odd vertexes, there is no single path that will trace the en- 
tire graph and therefore no way the 10 dominoes can form a 
row. An equivalent impossibility proof is to note that every digit 
appears five times in the complete set. Because each digit must 
appear within the row an even number of times-a result of 
the end-matching rule-it must appear once at one end of the 
row. There are four digits, but a row has only two ends, and so 
a single row is impossible. The best we can do is to traverse the 
graph with two unjoined paths, which correspond to two sep- 
arate rows of tiles. The end digits of the two rows obviously 
must be 0, 1, 2, 3. 

The "complete graph" for five spots, with circles added to 
join each spot to itself, corresponds to the complete set of 15 
tiles, 0-0 through 4-4 [ d l .  Since all vertexes are even, a closed 
path can be drawn. (As on all such graphs, crossing points 
inside the polygon are not vertexes.) Counting the number of 
such paths, each of which can be broken at 15 places to make 
an open chain, is a moderately complicated task. Henry Ernest 
Dudeney, answering this problem in his Amusements in Mathe- 
matics (Problem 283), points out that the pentagonal graph, 
aside from its circles, can be traversed in 264 ways, each of 
which gives a ring of dominoes. (For example, the path that 



Dominoes 

FIGURE 59 

Graphs for solving the row problem wi th  
complete sets of dominoes 



starts 3024 . . . yields the ring that starts 3-0, 0-2, 2-4, . . .) 
The five doublets can be inserted into each ring in Z5 = 32 ways, 
making 264 X 32 = 8,448 different rings. Each ring can be 
broken at 15 places; therefore we multiply 8,448 by 15 to get 
126,720 different row arrangements, including reversals. 

The hexagonal graph for six spots [el has six odd vertexes. 
Consequently the complete set of 21 dominoes, 0-0 through 5-5, 
cannot be arranged in one row. The best we can achieve is three 
separate rows with 0, 1,2, 3, 4, 5 at the six ends. 

The standard set of 28 dominoes, 0-0 through 6-6, has a hep- 
tagonal graph [f]. Note that 28 is the second perfect number 
(equal to the sum of its divisors). All perfect numbers are tri- 
angular (sums of successive integers I, 2, 3 . . .), and it takes 
only a glance at Figure 58 to see that every triangular number 
is the number of tiles in a complete set. All vertexes on the hep- 
tagonal graph are even, and therefore closed paths can be 
drawn. It turns out that there are 7,959,229,931,520 such paths! 
This is the number of ways, including reversals, that the 28 
dominoes can be arranged in a row. For all complete sets, with 
the exception of the set whose highest number is 1, a single row 
can be formed if and only if the highest number is even. If the 
highest number n is odd, at least (n + 1)/2 rows are required, 
with all n digits appearing at the ends of the rows. 

The fact that a chain of 28 dominoes must be closed is the 
basis of an old parlor trick. The performer secretly removes 
from the set any domino that is not a doublet. He leaves the 
room while the other players arrange all the dominoes in a 
single row. After this has been done the magician is able to 
name the two end numbers of the row without seeing the tiles. 
They will, of course, be the two numbers on the domino he 
removed. (If he prefers, he can predict the two numbers in ad- 
vance by writing them on a piece of paper that is folded and put 
aside.) To repeat the trick he replaces the stolen domino in the 
act of shuffling the tiles and palms a different one. 

Many domino problems have been proposed in which a com- 
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FIGURE 60 

A sample quadrille 

plete set is formed into a symmetrical polygon under certain 
restrictions, For example, the 19th-century French mathema- 
tician Edouard Lucas, in the second volume of his RAcrAations 
Math&matiques, i~itroduced what are called "quadrilles," poly- 
gons in which the standard 28 tiles are so arranged that every 
digit forms two sets of two-by-two squares. A quadrille from 
Lucas's work is shown that has a unique solution except for 
permutations of the digits and reflections of the entire figure 
[sec Figure 601. 



Forming magic squares with dominoes is another old recrea- 
tion. A square is magic if all rows and columns and the two 
main diagonals have the same sum. Only squares of order 2, 4, 
and 6 can be made with tiles from the set of 28. (Odd-order 
squares contain an odd number of cells, and therefore any at- 
tempt to form them with dominoes is bound to leave a hole.) A 
magic square of order 2 clearly is impossible; even if diagonals 
are disregarded, the two tiles would have to be duplicates. 

An order-6 domino magic square with the lowest possible 
magic constant, 13 [see Figure dl, top], can be changed to a 
square with the highest possible constant, 23, by replacing each 
digit with its difference from 6. The two squares are said to be 
"complementary" with respect to 6. To prove that 13 and 23 are 
minimum and maximum constants, first note that an order-6 
magic square must have a total of spots that is evenly divisible 
by 6. Since 78 and 138 are the smallest and largest multiples of 
6 that can be the sum of the spots on 18 dominoes, it follows 
that 78/6 = 13 and 138/6 = 23 are the smallest and largest pos- 
sible constants. 

The smallest and largest constants for an order-4 magic 
square formed with eight dominoes from the standard set are 
20/4 = 5 and 76/4 = 19. If one starts with a square with a con- 
stant of 5 [at bottom left in Figure dl] ,  replacing each digit 
with its difference from 6 produces a magic square with the 
maximum constant, 19. Order-4 domino magic squares are pos- 
sible with any constant from 5 through 19. Can the reader find 
eight dominoes from the standard set that will fit the blank 
pattern [at bottom right in illustration] to produce a magic 
square that adds to 10 along all rows and columns and the 
two main diagonals? In 1969 Wade E. Philpott proved that 
order-6 magic squares can be made with any constant from 13 
through 23. 

One may explore magic squares of odd order by adopting one 
of several inelegant conventions: 
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mmmmHm 
UCBM13H 
mumaam 
mBB[8[8mm 
mammam 
rnMRlUrnH 
mmm. .... 
mourn.... mmmm.... 
HMO. .mum 

FIGURE 61 

Domino magic squares 



1. Leave a unit hole that coulits as zero. It is not hard to 
prove that an order-3 liiagic square of this type is not possible. 

2. Allo~\~ one cell of a tile, preferably blank, to project be- 
yond the square. 

3. Treat each domino as a single number that is the suill of 
its spots. Since single dominoes in a standard set of 28 h u e  
sunls of 1 through 12, the unique order-3 lllagic square with dig- 
its 1 through !1 call be formed with nine dominoes. For orders 3 
and 7, duplicate sunls nlust be used. Leslie E. Card has found 
that any set of 25 donlinoes from the standard set will for111 an 
order-5 magic square of this kind. (See ''An Enuilleration 
Problem" by David L. Silverrnan, Jolil-~zal of Reel-entiollnl 
1blnlhe~17trlics, October 1970, pages 226-27.) 

An intriguing puzzle game with donlinoes comes to me by way 
of Lech Pijano~vski, a film critic in 62'arsa~v who also writes a 
Lveekly ne1vspaper colrumn on garnes of mental skill and is the 
ar~thor of a 3(iO-page book on board garnes, Pod?-oze PC'Kminie 
G Z P I .  (Jolirnej into thp Laud of C;ames). Any number call play but ~ v e  
shall assunie that there are only two players. Each does as fol- 
lo~vs. While his opponent is out of the room he shuffles the 28 
face-doxvn tiles of a standard set, then forills them randomly into 
a seven-by-eight rectangle. The tiles are turned over and their 
digits copied on a grid ~vitliout shoxving the donlino pattern. (It 
is a good plan to make a second copy, sho~ving the pattern, to 
prove later that such a pattern does indeed exist.) The pattern- 
less grids are exchanged and the first player to find a way of 
forming it  \\.it11 dominoes is the ~vinnel: Since rnany arrange- 
ments of digits on a seven-by-eight grid have more than one 
solution, it  is not necessary to discover the original pattern-just 
a pattern that ~vill produce the grid. 

Given a patternless grid [.see "a" in  Figriw 621, how does one go 
about finding a solution? Pijano~vski suggests first listing 
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a 

FIGURE 62 

Solving a domino grid problem (see overleaf) 
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FIGURE 63 

Two d o m i n o  grid problems 

all 28 domino pairs, then searching the grid for pairs that can 
be at only one spot. In this case 4 5 ,  2-2, 3-6, and M must be 
where they are shown in b. To prevent holes the 0-0 and 3-3 
can immediately be added. Because this prevents the 0-0 and 
3-3 from appearing elsewhere, the two small bars are drawn to 
show that a domino cannot cross either bar. 

The 2-5 tile must be either horizontal or vertical as indicated 
by the broken lines [c]. In  either case 0-1 must go in the spot 
shown, from which 1-3 and 0-4 follow to avoid duplicating 0-1. 
More bars can now be added. Proceeding in this way it is not 
hard to find a solution. Figure 62d shows one of four solutions. 

The reader is urged to test his prowess on the slightly more 
difficult grid shown at the left in Figure 63. It has only one 
solution. If successful, the reader may feel sufficiently confident 
to tackle the extremely difficult grid shown at the right in the 
illustration. The two grids were supplied by Pijanowski. The 
second has eight solutions. 



A N S W E R S  

Two OF MANY SOLUTIONS for the domino magic-square problem 
are given in Figure 64. The answer to the first domino grid 
problem is unique [see Left d rawing  in Figure 651. 

FIGURE 64 

Magic-square solutions 

FIGURE 65 

Domino grid solutions 

The second grid problem has eight solutions. There are three 
basic patterns: the one shown at  the right of Figure 65, which 
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has a second form arising from a trivial rearrangement of the 
two shaded tiles; a second pattern also with two forms obtained 
by two arrangements of the same two tiles; and a third pattern 
in which there are two order-2 squares, each with two arrange- 
ments, to make four more solutions. 



C H A P T E R  1 3  

Fibonacci and 
Lucas Numbers 

Each wife of Fibonacci, 
Eating nothing that u,asn't starchy, 
Weighed as much  as the two before her. 
His fifth was some signora! 

-J. A. LINDON 

THE GREATEST European mathematician of the Middle Ages 
was Leonardo of Pisa, better known as Fibonacci. meaning "son 
of Bonaccio" [see Figure 661. Although Leoilardo was born in 
Pisa, his father was an official of an Italian mercantile factory 
in Bougie in Algeria, and it was there that young Leonardo re- 
ceived his early mathematical training from Moslem tutors. H e  
quickly recognized the enormous superiority of the Hindu- 
Arabic decimal system, with its positional notation and zero 
symbol, over the clumsy Roman system still used in his own 
country. His best-known work, Liber abaci (literally, "Book of 
the Abacus," but actually a comprehensive merchant's hand- 
book on arithmetic and algebra), defended the merits of the 
Hindu-Arabic notation. The arguments made little impression 
on the Italian merchants of the time but the book eventually 
became the most influential single work in introducing the 
Hindu-Arabic system to the West. Although Liber abaci was 
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Figure 66 
Fibonacci 

completed in Pisa in 1202, it survives only in a revised 1228 edi- 
tion dedicated to a famous court astrologer of the period. There 
has never been an English translation. 

It is ironic that Leonardo, who made valuable contributions 
to mathematics, is remembered today mainly because a 19th- 
century French number theorist, Edouard Lucas (who wrote a 
classic four-volume work on recreational mathematics), at- 
tached the name Fibonacci to a number sequence that appears 
in a trivial problem in Liber abaci. Suppose, Leonardo wrote, a 
male-female pair of adult rabbits is placed inside an enclosure 
to breed. Assume that rabbits start to bear young two months 
after their own birth, producing only a single male-female pair, 
and that they have one such pair at the end of each subsequent 
month. If none of the rabbits die, how many pairs of rabbits will 
there be inside the enclosure at the end of one year? 



END TOTAL 
OF MONTH OF PAIRS 

FIGURE 67 

Tree graph for Fibonacci's rabbits 

The tree graph [see Figure 671 shows what happens during 
the first five months. I t  is easy to see that the numbers of pairs 
at the close of each month form the sequence 1,2, 3, 5, 8 . . . , 
in which each number (as Fibonacci pointed out) is the sum of 
the two numbers preceding it. At the end of 12 months there 
will be 377 pairs of rabbits. 

Fibonacci did not investigate the sequence, and no serious 
study of it was undertaken until the beginning of the 19th cen- 



tury, xvhen, as a liiathenlatician once put it, papers 011 the se- 
quence began to multiply allliost as fast as Fibonacci's rabbits. 
Lucas made a deep study of sequences (11o~v called "generalized 
Fibonacci sequences") that begin rvith n n j  two positive integei.~, 
each n~lrnbei thereafter being the stun of the preceding two. He 
called the silliplest sucll series, 1 ,  1 ,  2, 3, 5, 8 ,  1 3 ,  2 1 . . . , the 
Fibonacci sequence. (The next-simplest series, 1 ,  3, 4, 7 ,  1 1 ,  
18 . . ., is no~v called the Lucas sequence.) The position of each 
nuillber in this sequence is traditionally indicated by a sub- 
script, so that F, = 1, F, = 1, F, = 2, and so on. (The first 40 
Fibo~lacci ilumbers are listed in Figure 68). Fl, refers to any 
Fibo~lacci nunlbec FI2+, is the 11unlber following FTi; Frj-, is the 
number preceding F,(;  F217 is the F-number with a subscript twice 
that of FT2, and so on. 

The Fibonacci sequence has intrigued mathematicians for 
centuries, partly because i t  has a way of tru-ning up in rmex- 
pected places but lrlairlly because the veriest aniateur in nuni- 
ber theor); with no kno\~-ledge beyond sinlple arithmetic, can 
explore the sequence and discover a seeirlingly endless variety 
of curious theorems. Recent de~elopments in computer pro- 
grarrlming have reaxvakened interest in the series because it 
turns out to have useful applications in the sorting of data, 
i~lfor~llatioll retrieval, the generatio11 of ra~ldo~l l  nunlbers, and 
even in rapid methods of' approximating illaximum and mini- 
111~111 values of complicated functions for \chic11 derivatives are 
not kno\\in. 

Early results are s~lrnmai.ized in Chapter 17 of the first vol- 
ume of Leonard Eugene Dickson's Hisforj of the Tlz~orj of 
~ \ r l i n ~ b ~ ) ~ .  For the most recent discoveries interested readers can 
consult The FiOoncrrci Qlrcrrterlj, published since 1963 by the 
Fibonacci Association. Launched by 17erner E. Hoggatt, Jr., of 
Sail Jose State College in Sail Jose, Calif., the quarterly is con- 
cerned prinlarily ~vith generalized Fibo~lacci ~lu~llbers and sim- 
ilar numbers (such as "tribonacci nunlbers," ~vhich are sulrls of 
the preceding thwe numbers), but the journal is also devoted "to 
the study of integers ~\,itll special properties." 



FIGURE 68 

The first 40 Fibonacci and Lucas numbers 
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Surely the most remarkable property of the Fibonacci series 
(which holds for the generalized series too) is that the ratio 
between two consecutive numbers is alternately greater or 
smaller than the golden ratio and that, as the series continues, 
the differences become less and less; the ratios approach the 
golden ratio as a limit. The golden ratio is a famous irrational 
number, 1.61803 . . . , that is obtained by halving the sum of 
1 and the square root of 5. There is a considerable literature, 
some of it crankish, about the appearance of the golden ratio 
and the closely related Fibonacci sequence in organic growth 
and about their applications to art, architecture, and even po- 
etry. George Eckel Duckworth, professor of classics at Princeton 
University, maintains in his book Structural Patterns and Pro- 
portions in VergiL's Aeneid (University of Michigan Press, 
1962) that the Fibonacci series was consciously used by Vergil 
and other Roman poets of the time. I dealt with such matters 
in an earlier column on the golden ratio, which is reprinted in 
The Second Scientific American Book of Mathematical Puzzles 
and Diuersions. 

The most striking appearance of Fibonacci numbers in plants 
is in the spiral arrangement of seeds on the face of certain 
varieties of sunflower. There are two sets of logarithmic spirals, 
one set turning clockwise, the other counterclockwise, as indi- 
cated by the two shaded spirals in Figure 69. The numbers of 
spirals in the two sets are different and tend to be consecutive 
Fibonacci numbers. Sunflowers of average size usually have 34 
and 55 spirals, but giant sunflowers have been developed that 
go as high as 89 and 144. In  the letters department of The  Sci- 
entific Monthly (November 1951), Daniel T. O'Connell, a ge- 
ologist, and his wife reported having found on their Vermont 
farm one mammoth sunflower with 144 and 233 spirals! 

The intimate connection between the Fibonacci series and the 
golden ratio can be seen in the following formula for the nth 
Fibonacci number: 



This equation gives the nth Fibonacci number exactly (the 
f l ' s  cancel out), but it is cumbersome to use for high F-num- 
bers, although good approximations can be obtained with loga- 

FIGURE 69 

Giant sunflower with 55 counterclockwise and 89 clockwise spirals 
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rithms. A much simpler formula for the nth F-number is the 
golden ratio raised to the power of n and then divided by the 
square root of 5. When this result is rounded off to the nearest 
integer, it too provides the exact number sought. Both formulas 
are nonrecursive because they compute the nth F-number di- 
rectly from n. A "recursive procedure" is a series of steps each 
of which is dependent on previous steps. If you compute the nth 
F-number by summing consecutive F-numbers until you reach 
the nth, you are computing it recursively; a definition of the 
nth F-number as the sum of the preceding two numbers is a 
simple example of a recursive formula. 

The formula that gives the nth number of the Lucas sequence 
exactly is 

but as in the case with Fibonacci numbers, there is a much 
simpler way to find the nth Lucas number. Simply raise the 
golden ratio to the power of n and round to the nearest integer. 

Given any Fibonacci number greater than 1, you don't need 
to know its subscript to calculate the next Fibonacci number. 
Call the given number A. The next Fibonacci number is 

where the brackets indicate rounding down to the nearest in- 
teger. The same formula gives the next Lucas number for any 
Lucas number greater than 3.  

In a generalized Fibonacci sequence the sum of the first n 
terms is F.+B minus the second term of the series. This is the 
basis of a pleasant lightning-calculation trick. Have someone 
put down any two starting numbers, then write down as many 
terms as he likes in a generalized Fibonacci sequence. Let him 



draw a line between any two numbers and you can quickly 
give the sum of all the terms up to the line. All you need do is 
note the second term past the line and subtract from it the sec- 
ond term of the sequence. If it is a standard Fibonacci sequence, 
you subtract 1 ; if it is a Lucas sequence, you subtract 3. 

Here are some well-known properties of the standard Fibo- 
nacci sequence. Most of them are not difficult to prove, and of 
course all of them follow as special cases of theorems for the 
generalized sequence. 

1. The square of any F-number differs by 1 from the prod- 
uct of the two F-numbers on each side. The difference is alter- 
nately plus or minus as the series continues. (For Lucas num- 
bers the constant difference is 5.) See Chapter 8 of my 
Mathematics, Magic and Mystery for a famous geometrical 
dissection paradox in which this theorem plays a fundamental 

, role. Ln a generalized Fibonacci sequence, the constank differ 
ence is 5 (F2  - F12 - F1F2). 

2. The sum of the squares of any two consecutive F-numbers, 
F2, and F2, + 1, is Fzn I I. Since the last number must have an odd 
subscript, it follows from this theorem that if you write in se- 
quence the squares of the F-numbers, sums of consecutive 
squares will produce in sequence the F-numbers with odd sub- 
scripts. 

3. For any four consecutive F-numbers, A, B, C, D, the fol- 
lowing formula holds: C" B2 = A X D. 

4. The sequence of final digits of the Fibonacci sequence re- 
peats in cycles of 60. The last two digits repeat in cycles of 300. 
The repeating cycle is 1,500 for three final digits, 15,000 for 
four digits, 150,000 for five, and so on for all larger numbers of 
digits. 

5. For every integer m there is an infinite number of F-num- 
bers that are evenly divisible by m, and at least one can be 
found among the first 2m numbers of the Fibonacci sequence. 
This is not true of the Lucas sequence. No L-number, for in- 
stance, is a multiple of 5. 
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6. Every third F-number is divisible by 2, every fourth num- 
ber by 3, every fifth number by 5, every sixth number by 8, 
and so on, the divisors being F-numbers in sequence. Consecu- 
tive Fibonacci numbers (as well as consecutive Lucas numbers) 
cannot have a common divisor other than 1. 

7. With the exception of 3, every F-number that is prime 
has a prime subscript (for example, 233 is prime and its sub- 
script, 13, is also prime). Put another way, if a subscript is com- 
posite (not prime), so is the number. Unfortunately the con- 
verse is not always true: a prime subscript does not necessarily 
mean that the number is prime. The first counterexample is 
F19,4,181. The subscript is prime but 4,181 is 37 times 113. 

If the converse theorem held in all cases, it would answer the 
greatest unsolved question about Fibonacci numbers: Is there 
an infinity of Fibonacci primes? We know that the number of 
primes is infinite, and therefore if every F-number with a prime 
subscript were prime, there would be an infinity of prime F- 
numbers. As it is, no one today knows if there is a largest Fibo- 
nacci prime. The same question is also open for the Lucas se- 
quence. The largest known F prime is F,,,, a number of 119 
digits. The largest known L prime is LSs3, a number of 74 digits. 

8. With the trivial exceptions of 0 and 1 (taking 0 to be Fo), 
the only square F-number is F12, 144-which, surprisingly, is 
the square of its subscript. Whether or not there is a square F- 
number greater than 144 was an open question until the matter 
was finally settled, as recently as 1963, by John H. E. Cohn of 
Bedford College in the University of London. He also proved 
that 1 and 4 are the only squares in the Lucas sequence. 

9. The only cubes among the Fibonacci numbers are 1 and 8, 
and the only cube among the Lucas numbers is 1. (See "On 
Fibonacci and Lucas Numbers Which Are Perfect Powers," 
Hymie London and Raphael Finkelstein, in The Fibonacci 
Quarterly, Vol. 77, December 1969, pages 476-81.) 

10. The reciprocal of 89, the 11th F-number, can be gener- 
ated by writing the Fibonacci sequence, starting with 0, and 
then adding as follows: 



This list of properties could be extended to fill a book. One 
could do the same with instances of how the series applies to 
physical and mathematical situations. Leo Moser studied the 
paths of slanting light rays through two face-to-face glass plates. 
An unreflected ray goes through the plates in only one way 
[see Figure 701. If a ray is reflected once, there are two paths; 
if it is reflected twice, there are three paths, and if three times, 
there are five paths. As n, the number of reflections, increases, 
the numbers of possible paths fall into the Fibonacci sequence. 
For n reflections the number of paths is Fn+% 

The sequence can be applied similarly to the different paths 
that can be taken by a bee crawling over hexagonal cells [see 
Figure 711. The cells extend as far as desired to the right. As- 
sume that the bee always moves to an adjacent cell and always 
moves toward the right. It is not hard to prove there is one path 
to cell 0, two paths to cell 1, three to cell 2, five to cell 3 and so 
on. As before, the number of paths is Fn+2, where n is the num- 
ber of cells involved. 

A male bee, or drone, by the way, has no father. As C. A. B. 
Smith has pointed out, a drone has 1 parent (its mother), 2 
grandparents (its mother's parents), 3 great-grandparents (be- 
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NUMBER 
OF REFLECTIONS 

NUMBER OF 
DIFFERENT PATHS 

FIGURE 70 

There are F,+z paths b y  which a ray can be reflected n times 
through two panes of glass. 

FIGURE 71 

There are paths by which  the bee can crawl to cell n. 



cause its mother's father had no father), 5 great-great-grandpar- 
ents, and so on into the Fibonacci sequence. 

David Klarner has shown how the Fibonacci numbers count 
the number of ways that dominoes (1 x 2 rectangles) can be 
packed into 2 x k rectangles. There is 1 way to pack the 2 x 1 
rectangle, 2 ways to pack the 2 x 2 rectangle, 3 ways to pack 
the 2 x 3 rectangle, 5 ways to pack the 2 x 4 rectangle, and 
SO on. 

Consider Fibonacci nim, a counter-removal game invented a 
few years ago by Robert E. Gaskell. The game begins with a 
pile of n counters. Players take turns removing counters. The 
first player may not take the entire pile, but thereafter either 
player may remove all the remaining counters if these rules 
permit: at least one counter must be taken on each play, but a 
player may never take more than twice the number of counters 
his opponent took on his last play. Thus if one player takes 
three counters, the next player may not take more than six. The 
person who takes the last counter wins. 

It turns out that if n is a Fibonacci number, the second 
player can always win; otherwise the first player can win. If 
a game begins with 20 counters (not an F-number), how many 
must the first player take to be sure of winning? 

A second problem concerns a little-known lightning-calcula- 
tion trick. Turn your back and ask someone to write down any 
two positive integers (one below the other), add those two num- 
bers to get a third, put the third number below the second, add 
the last two numbers to get a fourth, and continue in this way 
until he has a column of 1 0  numbers. In  other words, he writes 
10 numbers of a generalized Fibonacci sequence, each the sum 
of the preceding two numbers except for the first two, which are 
picked at random. You turn around, draw a line below the last 
number and immediately write the sum of all 10 numbers. 

The secret is to multiply the seventh number by 11. This can 
easily be done in your head. Suppose the seventh number is 
928. Put down the last digit, 8, as the last digit of the sum. Add 
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8 and 2 to get 10. Put 0 to the left of 8 in the sum, carrying the 
1. The sum of the next pair of digits, 9 and 2, is 11. Add the 
carried 1 to get 12. Put 2 to the left of 0 in the sum, again car- 
rying I .  Add the carried 1 to 9 and put down 10 to the left of 2 
in the sum. The completed sum is 10,208. In brief, you sum the 
digits in pairs, moving to the left, carrying 1 when necessary, 
and ending with the last digit on the left. 

Can you prove that the sum of the first 10 numbers in a 
generalized Fibonacci sequence is always 11 times the seventh 
number? 

A D D E N D U M  

THE TRIBONACCI NUMBERS (1, 1, 2, 4, 7, 13, 24, 44, 81 . . .) 
were so-named by a brilliant young mathematician, Mark Fein- 
berg, who contributed an article about them to T h e  Fibonacci 
Quarterly (October 1963) when he was 14. His career at the 
University of Pennsylvania was cut short in 1967, his sopho- 
more year, when he was killed in a motorcycle accident. 

In his article on tribonacci numbers, Feinberg showed how 
the ratio between adjacent numbers, as the sequence grows, 
converges on .5436890126 . . . , the root of x3 + x2 + x - 1 = 
0. We can generalize to sequences formed by summiiig four 
terms (tetranacci numbers), five terms, six terms, and so on. 
In  all such sequences the ratio of adjacent terms converges on 
a limit. As the number of terms to be summed increases, the 
limiting ratio gets smaller, approaching .5 as a limit. This gen- 
eralization had been published about 1913 by Mark Barr. (See 
my Second Scientific American Book of Mathematical Puzzles 
and Diversions, page 101.) 

"Fibonacci notation" (introduced in the answer to the first 
problem), in which integers are uniquely expressed as sums of 
Fibonacci numbers, plays an important role in computer sort- 
ing techniques. See my Scientific American column for April 
1973 for a way in which "Napier's abacus" (a little-known cal- 



culating device invented by the man 1vho invented "Napier's 
bones") can be used for calculating in Fibonacci notation. On the 
role of Fibonacci notation in the strateu of playing I'i'ythoff's 
game (a nim-like game), see rny column f o ~  March 1977. Foi the 
appeasance of the Fibonacci seqrlence in Pascal's tsiangle, see 
Chapter 13 of illy ~Wcrtlzen~nticrtl Crtrnivnl. 

The Fibonacci and Lucas numbers are related by dozens of 
sirrlple formulas. For examples: the nth Lucas nurnber is equal to 
F ,,+, + FI7+,. The product of FII and L,( is equal to FZII. The fol- 
lo~ving Diophantine equation, 

has a solution in integers only when x. is a Fibonacci number and 
J is the corresponding Lucas nrunbel: 

The Fil>onacci sequence and the Ltlcas sequence ha\,e in corn- 
nlon the digits 1 and 3. Are there any larger numbers conlrllon to 
both seq~lences? The answer is no. See h/Iartin D. Hirsch's note 
on ';\dditive Sequences," in ~l/lnthenzcrtic.s ~l/lngrtzint., Tiol. 50, 
Noverliber 1977, page 264. 

As pointed out earlier, the outstanding unsolved problerli 
about the Fibonacci sequence is n.hether it contains a finite or 
infinite number of primes. In a generalized Fibonacci sequence, 
if the first two iluillbers are divisible by a prime, all its liuil~bers 
are divisible by the saille priiiie, and it is not hard to show that 
the sequence ~vill contain a finite number of primes. If the first 
two nuillbers are coprii1le (have no cornillon divisor), is there a 
generalized sequence that contains no primes? 

This lvas first anslvered by R. L. Graharrl in ''A Fibonacci-like 
Seq~lence of Composite Numbers," in :VIcithe~nntics hIag(isine, Vol. 
57, Koveniber 1964, pages 322-24. There are infinitely many 
such sequences, but the one with l~erllaps the sirlallest t~uo start- 
ing numbers begins with: 



ANSWERS 

T H ~  FIRSI. PKOBLEILI is to find the  inning move in Fibonacci 
nirn \\;hen the game begins \\;it11 a pile of 20 countess. Since 20 
is not a Fibonacci nurnbei; the first player has a sure \\;in. To 
deterrllirle his first move he expresses 20 as the sun1 of 
Fiborlacci numbers, starting ~vith the largest possible F-nuill- 
bei-, 13, adding the next largest possible, 5 ,  then the next, 2.  
Thus 20 = 13 + 5 + 2. Every positive integer can be expressed 
as a urlique sun1 in this way. No two co~isec~tive F-11~11llbel-s will 
appear in the expression. An F-nunlber is expressed by one 
~lulrlber only: itself. 

The last number, 2, is the number of' counters the first play- 
er nlust take to ~vin. The secoild player is f'orbidclen by the 
rules of Fibonacci nirn to take rnore than twice 2, and therefore 
he cannot redrlce the pile (~vhich no\v has 18 counters) to the 
Fiborlacci number 13. Assume that he takes four counters. The 
pile now corltairls 14. This is equal to F-nunlbers 13 + 1 ,  and 
so the first player takes one counter. By coiltiiluing this strate- 
gy he is sure to obtain the last counter and win. 

If the initial i lu i~~ber  of couilters is a Fibonacci nurnbei-, say 
144, the seco~ld player can ahvays win. True, the first player 
can take 55 counters to leave 89, the next highest F-number, 
but then the second player call immediately win by taking all 
89 counters because 89 is less than twice 55. The first player is 
forced, therefore, to leave a 11011-Fibonacci nurnber of counters 
and the second player wills by the strategy that I have just ex- 
plained. (See Donald E. Knuth, Fullclci,mentcrl Algol-ithms, Ad- 
dison-T\:esley, 1968, page 493, exercise No. 37, and "Fibonacci 
Nirn," by R/Iichael J.  T\~hinihan in The FiOorlcrcri Qu,cr~~terlj, Vol. 1, 
No. 4, Deceirlber 1963, pages 9-1 3 . )  

To prove that the sum of the first 10 ilunlbei-s in a geileralized 
Fibonacci series is always 11 times the se\.enth number, call the 



FIGURE 72  

Answer to Fibonacci problem 

first two numbers a and b. The 10 numbers and their sum can 
be represented as shown in Figure 72. The sum obviously is 11 
times the seventh number. Note that the coefficients of a and b 
form Fibonacci sequences. 
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Fulfilling absolute decree 
In  casual simplicity. 

-EMILY DICKINSON 

Ms. DICKINSON'S LINES are about a small brown stone in a road, 
but if we view the stone as part of the universe, fulfilling na- 
ture's laws, all sorts of intricate and mysterious events are tak- 
ing place within it on the microlevel. The concept of "simplic- 
ity," in both science and mathematics, raises a host of deep, 
complicated, still unanswered questions. Are the basic laws of 
nature few in number, or many, or perhaps infinite, as Stanis- 
law Ulam and others believe? Are the laws themselves simple or 
complex? Exactly what do we mean when we say one law or 
mathematical theorem is simpler than another? Is there any ob- 
jective way to measure the simplicity of a law or a theory or a 
theorem? 

Most biologists, especially those who are doing research on 
the brain, are impressed by the enormous complexity of living 
organisms. In contrast, although quantum theory has recently 
become more complicated with the discovery of hundreds of un- 
expected particles and interactions, most physicists retain a 
strong faith in the ultimate simplicity of basic physical laws. 

This was especially true of Albert Einstein. "Our experi- 
ence," he wrote, "justifies us in believing that nature is the 



realization of the simplest conceivable mathematical ideas." 
When he chose the tensor equations for his theory of gravita- 
tion, he picked the simplest set that would do the job, then pub- 
lished them with complete confidence that (as he once said to 
the mathematician John G. Kemeny) "God would not have 
passed up  an  opportunity to make nature that simple." I t  has 
even been argued that Einstein's great achievements were intel- 
lectual expressions of a psychological compulsion that Henry 
David Thoreau, in Walden,  expressed as follows: 

"Simplicity, simplicity, simplicity1 I say. let your affairs be 
as two or three, and not a hundred or a thousand; instead of a 
million count half a dozen, and keep your accounts on your 
thumb nail." 

In Peter Michelmore's biography of Einstein, he tells us that 
"Einstein's bedroom was monkish. There were no pictures on 
the wall, no carpet on the floor. . . . He shaved roughly with 
bar soap. He often went barefoot around the house. Only once 
every few months he would allow Elsa [his wife] to lop off 
swatches of his hair. . . . Most days he did not find underwear 
necessary. He also dispensed with pajamas and. later, with 
socks. 'What use are socks?' he asked. 'They only produce 
holes.' Elsa put her foot down when she saw him chopping off 
the sleeves of a new shirt from the elbow down. He explained 
that cuffs had to be buttoned or studded and washed frequently 
-all a waste of time." 

"Every possessiotl," Einstein said. "is a stone around the leg." 
The statement could have come straight out of Walden.  

Yet nature seems to have a great marly stones around her 
legs. Basic laws are simple only in first approximations; they 
become increasingly complex as they are refined to explain 
new observations. The guiding motto of the scientist, Alfred 
North Whitehead wrote, should be: "Seek simplicity and dis- 
trust it." Galileo ~ i c k e d  the simplest workable equation for fall- 
ing bodies, but it did not take into account the altitude of the 
body and had to be modified by the slightly more complicated 
equations of Newton. Newton too had great faith in simplicity. 
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"Nature is pleased with simplicity," he wrote, echoing a passage 
in Aristotle, "and affects not the pomp of superfluous causes." 
Yet Newton's equations in turn were modified by Einstein, and 
today there are physicists, such as Robert Dicke, who believe 
that Einstein's gravitational equations must be modified by still 
more complicated formulas. 

I t  is dangerous to argue that because many basic laws are 
simple, the undiscovered laws also will be simple. Simple first 
approximations are obviously the easiest to discover first. Be- 
cause the "aim of science is to seek the simplest explanations of 
complex facts," to quote Whitehead again (Chapter 7 of T h e  
Concept of Nature), we are apt to "fall into the error" of think- 
ing that nature is fundamentally simple "because simplicity is 
the goal of our quest." 

This we can say. Science sometimes simplifies things by pro- 
ducing theories that reduce to the same law phenomena previ- 
ously considered unrelated-for example, the equivalence of 
inertia and gravity in general relativity. Science equally often 
discovers that behind apparently simple phenomena, such as 
the structure of matter, there lurks unsuspected complexity. 
Johannes Kepler struggled for years to defend the circular or- 
bits of planets because the circle was the simplest closed curve. 
When he finally convinced himself that the orbits were ellipses, 
he wrote of the ellipse as "dung" he had to introduce to rid as- 
tronomy of vaster amounts of dung. It is a perceptive statement 
because it suggests that the introduction of more complexity on 
one level of a theory can introduce greater overall simplicity. 

Nevertheless, at each step along the road simplicity seems to 
enter into a scientist's work in some mysterious way that makes 
the simplest workable hypothesis the best bet. "Simplest" is 
used here in a strictly objective sense, independent of human 
observation, even though no one yet knows how to define it. 
Naturally there are all sorts of ways one theory can be simpler 
than another in a pragmatic sense, but these ways are not rele- 
vant to the big question we are asking. As philosopher Nelson 
Goodman has put it, "If you want to go somewhere quickly, 



and several alternate routes are equally likely to be open, no 
one asks why you take the shortest." I n  other words, if two 
theories are not equivalent-lead to different predictions-and 
a scientist considers them equally likely to be true, he will test 
first the theory that he considers the "simplest" to test. 

I n  this pragmatic sense, simplicity depends on a variety of 
factors: the kind of apparatus available, the extent of funding, 
the available time, the knowledge of the scientist and his assist- 
ants, and so on. Moreover, a theory may seem simple to one sci- 
entist because he understands the mathematics, and complicated 
to another scientist less familiar with the math. A theory may 
have a simple mathematical form but predict complex phenom- 
ena that are difficult to test, or it may be a complicated theory 
that predicts simple results. As Charles Peirce pointed out, cir- 
cumstances may be such that it is more economical to test first 
the least plausible of several hypotheses. 

These subjective and pragmatic factors obviously play roles 
in research, but they fail to touch the heart of the mystery. The 
deep question is: Why, other things being equal, is the simplest 
hypothesis usually the most likely to be on the right track-that 
is, most likely to be confirmed by future research? 

Consider the following "simple" instance of a scientific in- 
vestigation. A physicist, searching for a functional relationship 

FIGURE 73 

Observed data (a), 
a possible function curve (b), 

most likely function (c) 
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between two variables, records his observations as spots on a 
graph. Not only will he draw the simplest curve that comes 
close to the spots, he even allows simplicity to overrule the ac- 
tual data. If the spots fall near a straight line, he will not draw 
a wavy curve that passes through every spot. He will assume 
that his observations are probably a bit off, pick a straight line 
that misses every spot, and guess that the function is a simple 
linear equation such as x = 2y [see Figure 731. If this fails to 
predict new observations, he will try a curve of next-higher de- 
gree, say a hyperbola or a parabola. The point is that, other 
things being equal, the simpler curve has the higher probability 
of being right. A truly astonishing number of basic laws are 
expressed by low-order equations. Nature's preference for ex- 
trema (maxima arid minima) is another familiar example of 
simplicity because in both cases they are the values when the 
function's derivative equals zero. 

Simplicity sometimes overrules data in evaluating even the 
most complex, high-level theories, such as the theory of rela- 
tivity or theories about elementary particles. If a theory is suffi- 
ciently simple and beautiful, and has great explanatory power, 
these facts often count more for it than early experiments, which 
seem to falsify the theory, count against it. 

This raises some of the most perplexing questions in the phi- 



losophy of science. How can this particular kind of simplicity- 
the kind that adds to the probability that a law or theory is true 
-be defined? If it car1 be defined, can it be measured? Scientists 
tend to scorn both questions. They make intuitive judgments of 
simplicity without worrying about exactly what it is. Yet it is 
conceivable that someday a way to measure simplicity may 
have great practical value. Consider two theories that explain 
all known facts about fundamental particles. They are equal in 
their power to predict new observations, although the predic- 
tions are different. Both theories cannot be true. Both may be 
false. Each demands a different test and each test costs $1 mil- 
lion. If simplicity enters into the probability of a theory's being 
right, there is an obvious advantage in being able to measure 
simplicity so that the simplest theory can be tested first. 

No one today knows how to measure this liirld of simplicity 
or even how to define it. Something in the situation must be 
minimized, but what? It is no good to count the terms in a the- 
ory's mathematical formulation, because the number depends 
on the notation. The same formula may have 10 terms in one 
notation and three in another. Einstein's famous E = me2 looks 
simple only because each term is a shorthand symbol for con- 
cepts that can be written with formulas involving other con- 
cepts. This happens also in pure mathematics. The only way to 
express pi with integers is as the limit of an infinite series, but 
by writing .rr the entire series is squeezed into one symbol. 

Minimizing the powers of terms also is misleading. For one 
thing, a linear equation such as x = 2y graphs as a straight line 
only when the coordinates are Cartesian. With polar coordinates 
it graphs as a spiral. For another thing, minimizing powers is 
no help when equations are not polynomials. Even when they 
are polynomial, should one say that an equation such as w = 
132 + 23y + 1322 is "simpler" than x = y2? 

In  comparing the simplest geometric figures the notion of 
simplicity is annoyingly vague. In one of Johnny Hart's B.C. 
comic strips a caveman invents a square wagon wheel. Because 
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it has too many corners and therefore too many bumps, he goes 
back to his drawing board and invents a "simpler" wheel in the 
shape of a triangle. Corners and bumps have been minimized, 
but the inventor is still further from the simplest wheel, the 
circle, which has no corners. Or should the circle be called the 
most complicated wheel because it is a "polygon" with an  infin- 
ity of corners? The truth is that an equilateral triangle is sim- 
pler than a square in that it has fewer sides and corners. On the 
other hand. the square is simpler in that the formula for its 
area as a function of its side has fewer terms. 

One of the most tempting of many proposed ways to measure 
the simplicity of a hypothesis is to count its number of primi- 
tive concepts. This, alas, is another blind alley. One can artifi- 
cially reduce concepts by combining them. Nelson Goodman 
brings this out clearly in his famous "grue" paradox about 
which dozens of technical papers have been written. Consider a 
simple law: All emeralds are green. We now introduce the con- 
cept "grue." It  is the property of being green if observed, say, 
before January 1, 2001, and being blue if observed thereafter. 
W e  state a second law: All emeralds are grue. 

Both laws have the same number of concepts. Both have the 
same "empirical content" (they explain all observations). Both 
have equal predictive power. A single instance of a wrong color, 
when an emerald is examined at any future time, can falsify 
either hypothesis. Everyone prefers the first law because 
"green" is simpler than "gruen-it does not demand new theo- 
ries to explain the sudden change of color of emeralds on Janu- 
ary 1,2001. Although Goodman has done more work than any- 
one on this narrow aspect of simplicity, he is still far from final 
results, to say nothing of the more difficult problem of measur- 
ing the overall simplicity of a law or theory. The concept of 
simplicity in science is far from simple! I t  may turn out that 
there is no single measure of simplicity but many different 
kinds, all of which enter into the complex final evaluation of a 
law or theory. 



FIGURE 74 

A "simple" geometrical theorem 

Surprisingly, even in pure mathematics similar difficulties 
arise. Mathematicians usually search for theorems in a manner 
not much different from the way physicists search for laws. 
They make empirical tests. In pencil doodling with convex 
quadrilaterals-a way of experimenting with physical models- 
a geometer may find that when he draws squares outwardly on 
a quadrilateral's sides and joins the centers of opposite squares, 
the two lines are equal and intersect at 90 degrees [see Figure 
741. He tries it with quadrilaterals of different shapes, always 
getting the same results. Now he sniffs a theorem. Like a physi- 
cist, he picks the simplest hypothesis. H e  does not, for example, 
test first the corljecture that the two lines have a ratio of one to 
1.00007 and intersect with angles of 89 and 91 degrees, even 
though this conjecture may equally well fit his crude measure- 
ments. He tests first the simpler guess that the lines are always 
perpendicular and equal. His "test," unlike the physicist's, is a 
search for a deductive proof that will establish the hypothesis 
with certainty. 



FIGURE 75 

A combinatorial problcm 

Combinatorial theory is rich ill similar instances where the 
simplest guess is usually the best bet. .4s in the physical world. 
however. there are surprises. Consider the following problem 
discovered by Leo >loser. Two or more spots are placed any- 
where on a circle's circumference. Every pair is joined by a 
straight line. Given n spots. what is the maximum number of 
regions into which the circle can be divided? Figure 75 gives the 
answers for two. three, and four spots. The reader is asked to 
search for the answers for five and six spots and, if possible, 
find the general formula. 



A D D E N D U M  

THE BEAUTIFUL THEOREM about the squares on the sides of an 
arbitrary convex quadrilateral is known as Von Aubel's theo- 
rem. Many readers, disappointed that I did not provide a proof, 
sent exceller~t proofs of their own. I lack space for any here, 
but you will find a simple vector proof in "Von Aubel's Quadri- 
lateral Theorem," by Paul J. Kelly, Mathematics Magazine, 
January 1966, pages 35-37. A different proof based on sym- 
metry operations is in Geometric Transformations, by I .  M .  
Yaglom (Random House, 1962), pages 95-96, problem 2%. 

As Kelly points out, the theorem can be generalized in three 
ways that make it even more beautiful+ 

1. The quadrilateral need riot be convex. The lines joining 
the centers of opposite squares may not intersect, but they re- 
main equal and perpendicular. 

2. Any three or even all four of the quadrilateral's corners 
may be collinear. In  the first case the quadrilateral degener- 
ates into a triangle with a "vertex" on one side, in the second 
case into a straight line with two "vertices" on it. 

3. One side of the quadrilateral may have zero length. This 
brings two corners together at  a single point which may be 
treated as the center of a square of zero size. 

The second and third generalizations were discovered by a 
reader, W. Nelson Goodwin, Jr., who drew the four examples 
shown in Figure 76. Note that the theorem continues to hold if 
opposite sides of a quadrilateral shrink to zero. The resulting 
line may be regarded as one of the lines connecting midpoints 
of opposite squares of zero size, and of course it equals and is 
perpendicular to a line joining midpoints of two squares drawn 
on opposite sides of the original line. 



FIGURE 76 

Curious generalizations of  Von Aubel's theorem 



SPOTS 

FIGURE 77 

Solution to Lco Moscr's spot problem 

A N S W E R S  

LEO R ~ O S E R ' S  circle-and-spots problem is an amusing example 
of hom easily an empirical induction can go wrong in experi- 
menting n i th  pure mathematics. For one, two, three, four, and 
five spots on the circle, the mclximum number of regions into 
which the circle can be divided by joining all pairs of spots 
with straight lines is 1, 2, 4. 8, 16. . . . One might conclude 
that this simple doubling series corltiliues and that the maxi- 
mum number of regions for n spots is 2"-l. Unfortunately this 
formula fails for all subsequent numbers of spots. Figure 77 
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shows how six spots give a maximum of 31, not 32, regions. 
The correct formula is: 

A parenthetical expression ( ) is the number of ways rn 
objects can be combined, taken k at a time. [It  equals m!/k! 
( m  - k )  !] Moser has pointed out that the formul,~ gives the sum 
of the rows of numbers at the left of the diagonal line drawn on 
Pascal's triangle, as shown in the illustration. 

Written out in full. the formula is: 

When the positive integers are plugged into n, the formula 
generates the sequence: 1, 2, 4, 8, 16, 31, 57, 99, 163, 256, 386, 
562. . . . The problem is a delightful illustration of White- 
head's advice to seek simplicity but distrust it. 

I have been unable to determine where or when Moser first 
published this problem, but in a letter he says he thinks i t  was 
in Mathematics Magazine about 1950. I t  has since appeared in 
numerous books and periodicals. with varying methods of solu- 
tion. A partial list of references is given in the bibliography for 
this chapter. 
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T h  Rotating Round Table 
and Other Problems 

1 .  R O T A T I N G  R O U N D  TABLE 

IN 1969, after 10 weeks of haggling, the Vietnam peace nego- 
tiators in Paris finally decided on the shape of the conference 
table: a circle seating 24 people, equally spaced. Assume that 
place cards on such a table bear 24 different names and that on 
one occasion there is such confusion that the 24 negotiators take 
seats at random. They discover that no one is seated correctly. 
Regardless of how they are seated, is it always possible to rotate 
the table until at least two people are simultaneously opposite 
their place cards? 

A much more difficult problem arises if just one person finds 
his correct seat. Will it then always be possible to rotate the 
table to bring at least two people simultaneously opposite their 
cards? 

2 .  S I N G L E - C H E C K  CHESS 

T h e  British Chess Magazine, Vol. 36, No. 426, June 1916, re- 
ported that an  American amateur named Frank Hopkins had 
invented a variation of chess, which he called "Single Check" 
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or "One Check Wins." The game is played exactly like standard 
chess except that victory goes to the first player who checks 
(not checkmates) his opponent's king. The magazine, quoting 
from an article in The Brooklyn Daily Eagle, reported that "a 
suspicion that the white pieces had a sure win turned into a cer- 
tainty" when U.S. grand master Frank J. Marshall one day 
"laconically remarked that he could 'bust' the new game." Hop- 
kins was unconvinced until Marshall quickly won by moving 
only his two white knights. Marshall's strategy is m t  given, 
except for his opening move, nor does the account of the inci- 
dent give the number of white moves before he administered the 
fatal check. 

Since 1916 the idea of "single check" chess has occurred in- 
dependently to many players. I first heard of it from Solomon 
W.  Golomb, who knew it as "presto chess," a name given it by 
David L. Silverman after learning of the game from a 1965 
reinventor. Back in the late 1940's the game had been rein- 
vented by a group of mathematics graduate students a t  Prince- 
ton University. One of the students, William H.  Mills, had dis- 
covered then what was undoubtedly Marshall's strategy: a way 
in which White, moving only his knights, can win on or before 
his fifth move. In  1969 Mills and George Soules together found 
different five-move wins involving pieces other than knights. 
Can you duplicate Marshall's feat by solving the problem 
shown in Figure 78? How can White, moving only his knights, 
check the black king in no more than five white moves? 

FIGURE 78 

Whi te  to move knights 
and check in five 



Attempts have been made to make the game more even by 
imposing additional rules. Hopkins himself proposed beginning 
with each player's pawns on the third row instead of the sec- 
ond. Sidney Sackson, who told me of the 1916 reference, sug- 
gests that the winner be the first to check a specified number 
of times, say from 5 to 10, depending on how long one wants 
the game to last. Whether either proposal effectively destroys 
White's advantage I cannot say. 

3 .  W O R D  G U E S S I N G  G A M E  

ABOUT 1965 Anatol W. Holt, a mathematician who likes to in- 
vent new games, proposed the following word game. Two peo- 
ple each think of a "target word" with the same number of let- 
ters. Beginners should start with three-letter words and then 
go on to longer words as their skill improves. Players take turns 
calling out a "probe word" of the agreed length. The opponent 
must respond by saying whether the number of "hits" (right 
letter at the right position) is odd or even. The first to guess his 
opponent's word is the winner. To show how logical analysis 
can determine the word without guesswork, Holt has supplied 
the following example of six probe words given by one player: 

E uen Odd 
DAY SAY 

MAY DUE 

BUY TEN 

If you knew the target word and compared it letter by letter 
with any word on the even list, you would find that an even 
number of letters (zero counts as even) in each probe word 
would match letters at the same positions in the target word; 
words on the odd list would match the target word in an odd 
number of positions. Find the target word. 
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FIGURE 79 

How m u c h  of one circle is shaded? 

4 .  T R I P L E  B E E R  R I N G S  

I N  Problematical Recreations, No. 7 ,  a series of puzzle booklets 
issued annually by Litton Industries in Beverly Hills, Calif., 
the following problem appeared. A man places his beer glass on 
the bar three times to produce the set of triple rings shown in 
Figure 79. He does it carefully, so that each circle passes 
through the center of the other two. The bartender thinks the 
area of mutual overlap (shaded) is less than one-fourth of the 
area of a circle, but the customer says it is more than one- 
fourth. Who is right? 

The solution can be obtained the hard way by finding the 
area of an equilateral triangle inscribed in the shaded section 
and then adding the areas of the three segments of circles on 
each side of the triangle. A reader of this column, Tad Dunne 
of Willowdale in Ontario, sent me a beautiful graphical "look 
and see" solution that involves no geometrical formulas cnd 
almost no arithmetic, although it does make use of a repeating 
wallpaper pattern. Can the reader rediscover it? 



FIGURE 80 

What digits arc on thc cubes' hirldcn faccs? 

5 .  TWO-CUBE C A L E N D A R  

In- GRAND CENTRAL TERMINAL irl New York I saw in a store 
window ari unusual desk calendar [see Figure 801. The day was 
indicated simply by arranging the two cubes so that their front 
faces gave the date. The face of each cube bore a single digit, 0 
through 9, and one could arrange the cubes so that their front 
faces indicated ally date from 01,02, 03 . . . to 31. 

The reader should have little difficulty determining the four 
digits that cannot be seer1 oil the left cube and the three on the 
right cube, although it is a bit trickier than one might expect. 

6 .  UNCROSSED K N I G H T ' S  TOURS 

IN THE Journal of Recreational Mathematics for July 1968, 
L. D. Yarbrough introduced a new variant on the classic prob- 
lem of the knight's tour. In  addition to the rule that a knight 
touring a chessboard carinot visit the same cell twice (except 
for a final reentrant move that in certain tours allows the knight 
to return to the starting square), the knight is also not per- 
mitted to cross its own path. (The path is taken to be a series of 
straight lines joining the centers of the beginning and ending 
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squares of each leap.) The question naturally arises: What are 
the lollgest uncrossed knight's tours on square boards of various 
sizes? 

Figure 81 reproduces samples of the longest uncrossed tours 
Yarbrough found for square boards from order-3 through order- 

ORDER 3, LENGTH 2 ORDER 4, LENGTH 5 

ORDER 5, LENGTH 10 

i _ i $ l I j  

ORDER 6, LENGTH 16 

ORDER 7, LENGTH 24 ORDER 8, LENGTH 35 

FIGURE 81 

T r y  to lengthen the  order-6 knight's tour. 



8. The order-7 tour is particularly interesting. Seldom does a re- 
entrant tour have maximum length; this is one of the rare 
exceptions as well as a tour of pleasing fourfold symmetry. 

The idea of uncrossed knight's tours caught the interest of 
Donald E. Knuth. He wrote a "backtrack" computer program 
that, among other things. found every possible maximum- 
length urlcrossed knight's tour on square boards through order- 
8. Rotations and reflections are, as usual. not considered differ- 
ent. The computer found two tours for the order-3 board, fil-e 
for order-4, four for order-5, one for order-6. 14 for order-7, and 
four for order-8 (the standard chessboard). 

I t  is the unique tour on the 6-by-6 that is most surprising and 
that provides our problem. Only on the order-6 board did Yar- 
brough fail to find a maximum-length ul~crossed tour. His tour 
has 16 moves. but there is one uncrossed tour on this board 
that has 17 moves. The reader is invited to match his wits 
against the computer and see if he can discover the 17-move 
tour. 

7 .  T W O  U R N  P R O B L E M S  

PR~UABILITY THEORISTS are fond of illustrating theorems with 
problems about identical objects of different colors that are 
taken from urns, boxes, bags, a ~ l d  so on. Even the simplest of 
such problems car1 be confusing. Consider, for instance, the fifth 
of Lewis Carroll's Pillow Problems: "A bag contail~s one 
coui~ter, known to be either white or black. 4 white counter is 
put in. the bag shaken, and a counter drawn out. which proves 
to be white. What is llow the chance of drawing a white 
counter?" 

"At first sight," Carroll begins his answer. "it would appear 
that, as the state of the bag, after the operation, is necessarily 
identical with its state before it. the chance is just what it was, 
viz. 1/2. This: however, is an  error.'' 

Carroll goes on to show that the probability of a white 
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counter remaining in the bag actually is 2/3. His proof is a bit 
long-winded. Howard Ellis, a Chicago reader, has done it differ- 
ently. Let B and W ( l )  stand for the black or white counter that 
may be in the bag at the start and W ( 2 )  for the added white 
counter. After removing a white counter there are three equally 
likely states: 

In bag Outside bag 
W ( 1 )  W ( 2 )  
W ( 2 )  W ( 1 )  
B w (2)  

In two of these states a white counter remains in the bag, and so 
the chance of drawing a white counter the second time is 2 / 3 .  

A recent problem of this kind, with an  even more surprising 
answer, begins with a bag containing an unknown number of 
black counters and an  unknown number of white counters. 
(There must be a t  least one of each color.) The counters are 
taken out according to the following procedure. A counter is 
chosen at  random and discarded. A second counter is taken at  
random. If it is the same color as before, it too is discarded. A 
third is chosen. If it matches the two previously taken couliters, 
it is discarded. This continues, with the counters discarded as 
long as they match the color of the first counter. 

Whenever a counter is taken that has a different color from 
the previous one, it is replaced in the bag, the bag is shaken, 
and the entire process begins agaili. 

To make this crystal clear, here is a sample of how the first 
ten drawings might go: 

1. First counter is black. Discard. 
2. Next counter is black. Discard. 
3. Next is white. Replace and begin again. 
4. First is black. Discard. 
5.  Next is white. Replace and begin again. 



6. First counter is white. Discard. 
7. Next is white. Discard. 
8. Next is black. Replace and begin again. 
9. First counter is black. Discard. 

10. Next is white. Replace and begin again. 

I t  turns out, amazingly, that regardless of the ratio of white 
to black counters at the start. there is a fixed probability that 
the last counter left in the bag is black. What is that prob- 
ability? 

8 .  T E N  Q U I C K I E S  

1. With a 7-minute hourglass and an 11-minute hour- 
glass, what is the quickest way to time the boiling of an  egg for 
15 minutes? (From Karl Fulves.) 

2. A man traveled 5,000 miles in a car with one spare tire. 
He rotated tires at intervals so that when the trip ended each 
tire had been used for the same number of miles. For how many 
miles was each tire used? 

3. A standard deck of 52 cards is shuffled and cut and the cut 
is completed. The color of the top card is noted. This card is 
replaced on top, the deck is cut again, and the cut is completed. 
Once more the color of the top card is noted. What is the prob- 
ability that the two cards noted are the same color? 

4. Find a number base other than 10 in which 121 is a per- 
fect square. 

5. Draw six line segments of equal length to form eight equi- 
lateral triangles. 

6. Assuming that the angle cannot be trisected by compass 
and straightedge, prove that no number in the doubling series 
1, 2, 4, 8, 16, 32, . . . is a multiple of 3. (From Robert A. 
Weeks.) 

7. A farmer has 20 pigs. 40 cows, 60 horses. How many 
horses does he have if you call the cows horses? (From T. H. 
O'Beirne. ) 
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8. Translate: "He spoke from 2222222222222 people." 
9. A Greek was born on the seventh day of 40 B.C. and died 

on the seventh day of A.D.  40. How many years did he live? 
10. A woman either always answers truthfully, always an- 

swers falsely, or alternates true and false answers. How, in two 
questions. each answered by yes or no, can you determine 
whether she is a truther, a liar, or an  alternater? 

A N S W E R S  

1. IF A CIRCULAR table seats an even number of people, equally 
spaced, with place cards marking their spots, no matter how 
they seat themselves it is always possible to rotate the table un- 
til two or more are seated correctly. There are two initial situa- 
tions to be considered: 

a. No person sits correctly. The easy proof is based on what 
mathematicians call the "pigeonhole principle": If n objects 
are placed in n - 1 pigeonholes, at least one hole must contain 
two objects. If the table seats 24 people, and if every person is 
incorrectly seated, it clearly is possible to bring each person 
opposite his card by a suitable rotation of the table. There are 
24 people but only 23 remaining positions for the table. There- 
fore at least two people must be simultaneously opposite their 
cards at  one of the new positions. This proof applies regardless 
of whether the number of seats is odd or even. 

b. One person sits correctly. Our task is to prove that the 
table can be rotated so that at least two people will be correctly 
seated. Proofs of this can be succinctlp stated. but they are 
technical and require a kriowledge of special notation. Here is 
a longer proof that is easier to understand. It is based on more 
than a dozen similar proofs that were supplied by readers. 

Our strategy mill be the reductio ad absurdum argument. We 
first assume it is not possible to rotate the table so that two per- 
sons are correctly seated. then show that this assumption leads 
to a contradiction. 



If our assumption holds, at no position of the table will all 
persons be irlcorrectly seated because then the situation is the 
same as the orle treated above, and which we disposed of by the 
pigeonhole principle. The table has 24 positions, and there are 
24 people, therefore at each position of the table exactly one 
person must be correctly seated. 

Assume that only Anderson is at his correct place. For each 
person there is a "displacement7' number indicating how many 
places he is clockwise from his correct seat. Anderson's displace- 
ment is 0. One person will be displaced by 1 chair, another by 
2 chairs, another by 3, and so on, to one person who is dis- 
placed by 23 chairs. Clearly no two people can have the same 
displacement number. If they did it would be possible to rotate 
the table to bring them both simultaneously to correct positions 
-a possibility ruled out by our assumption. 

Consider Smith, who is improperly seated. We count chairs 
counterclockwise around the table until we get to Smith's place 
card. The count is equal, of course, to Smith's displacement 
number. Now consider Jones who is sitting where Smith is sup- 
posed to be. W e  continue counting counterclockwise until we 
come to Jones's place card. Again, the count equals Jones's dis- 
placement number. Opposite Jones's place card is Robinson. We 
count counterclockwise to Robinson's place card, and so on. 
Eventually, our count will return to Smith. If Smith and Jones 
had been in each other's seats, we would have returned to Smith 
after a two-person cycle that would have carried us just once 
around the table. If Smith, Jones, and Robinson are occupying 
one another's seats, we return to Smith after a cycle of three 
counts. The cycle may involve any number of people from 2 
through 23 (it cannot include Anderson because he is correctly 
seated), but eventually the counting will return to where it 
started after circling the table an  integral number of times. 
Thus the sum of all the displacement numbers in the cycle 
must equal 0 modulo 24-that is, the sum must be an  exact 
multiple of 24. 
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If the cycle starting with Smith does not catch all 23 incor- 
rectly seated persons, pick out another person not in his seat 
and go through the same procedure. As before, the counting 
must eventually return to where it started, after an  integral 
number of times around the circle. Therefore the sum of the 
displacements in this cycle also is a multiple of 24. After one 
or more of such cycles, we will have counted every person's dis- 
placement. Since each cycle count is a multiple of 24, the sum 
of all the cycle counts must be a multiple of 24. I n  other words, 
we have shown that the sum of all the displacement numbers is 
a multiple of 24. 

Now for the contradiction. The displacements are 0, 1, 2, 3 
. . . 23. This sequence has a sum of 276, which is not a mul- 
tiple of 24. The contradiction forces us to abandon our initial 
assumption and conclude that at least two people must have 
the same displacement number. 

The proof generalizes to any table with an even number of 
chairs. The sum of 0 + 1 + 2 + 3 + . . . + n is 

which is a multiple of n only when n is odd. Thus the proof 
fails for a table with an odd number of chairs. 

George Rybicki solved the general problem this way. We 
start by assuming the contrary of what we wish to prove. Let n 
be the even number of persons, and let their names be replaced 
by the integers 0 to n - 1 "in such a way that the place cards 
are numbered in sequence around the table. If a delegate d orig- 
inally sits down to a place card p, then the table must be rotated 
r steps before he is correctly seated, where r = p - d, unless this 
is negative, in which case r = p - d + n. The collection of val- 
ues of d (and of p) for all delegates is clearly the integers 0 to 
n - 1, each taken once, but so also is the collection of values of 
r, or else two delegates would be correctly seated at the same 



time. Summing the above equations, one for each delegate, gives 
S = S - S + n k  , ~vhere k is an integer ancl S = ~2 (11 - 1)12, the 
sui~l of' the integers fiom 0 to r2 - 1. It [the nuillber of times that 

2") - (1 was negative] follo\\;s [by algebra] that rz = 2 k  + 1 ,  an odd 
nrumbes." This conti.adicts the original assrumption. 

"I actually solved this problenl sollie years ago," Rybicki 
\\-rites, "for a different but conipletely ecluivalent problenl, a 
generalization of the nonattacking 'eight queens' pi-oblein for a 
cylindrical chessboard ~vhere diagonal attack is restricted to 
diagonals slanting in one direction only. I proved that this was 
insoluble for any board of even ordec The above is the transla- 
tion of 1111 proof ~ n t o  the language of the table probleirl 111~1- 
clentall~, the proof is somenhat easier if one is a l l o ~ ~ e d  to use 
congruences illodulo 11. " 

Donald E. Knuth al<o called attention to the eqtu\alence of 
the lound table and the queen< problem, and cited an earl1 ro- 
lutiorl b~ George P6lr a Several readers pointed out that \\hen 
the nuillber of pelsons is odd, a simple arrangement that pie- 
lent5 irlore than one person from being seated correctl~, 

of how the table is rotated, is to seat then1 counter- 
clock\\-ise to their place-card order. 

2. HOT\. can TZ'hite, using onh7 his knights, ~vin a game of "sin- 
gle check" chess in fix e or fener inovesi 

The opening move illust be N (knight) to QB3. Since this 
threatens several different n.ays of checking in tlvo ino\7es, Black 
is forced to advance a pawn that will allo~v his king to move. If 
he advances the queen's pa~z-11, N-N3 forces the black king to 
Q2, then N-KB3 leads to a check on T.\Thite's fourth move. If 
Black moves his king-bishop pa~vn, K-K5 leads to a check on 
the third move. Black must therefore advance his king's pa~vn. 
If he advances it txvo squares, N-Q5 prevents the black king 
froill moving and T\Thite wins on his third move. Black's only 
good response, therefore, is P-K3. 

T'Vhite's second move is N-K4. Black is forced to advance his 
king to K2. T\'hite's third move, N-KB3, can be met in many 
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ways but none prevents a check on or before White's fifth 
move. If Black tries such moves as P-Q3, P-KB3, Q-K1, P-Q4, 
P-QB4, or N-KB3, White responds N-Q4 and wins on his next 
move. If Black tries P-K4, P-QB4, or N-QB3, White's N-KR4 
wins on his next move. 

In  1969 William H. Mills discovered that White could also 
check in  five by opening N-QR3. Black must advance his king's 
pawn one or two squares. N-N5 forces Black's king to K2. 
White's third move. P-K4, is followed by White's Q-B3 or 
Q-R5, depending on Black's third move, and leads to a check 
on White's fifth move. 

Two other opening moves leading to five-move checks have 
since been found by Mills and Georg Soules. They are P-K3 
and P-K4. Against most of Black's replies Q-N4 leads to a three- 
move check. If Black's second move is N-KR3 or P-KR4, Q-B3 
leads to a check in four. If Black's second move is P-K3, White 
moves Q-R5. Black must respond P-KN3. Then Q-K5 does the 
trick. (Black's Q-K2 is met by Q takes QBP; B-K2 is met by 
Q-N7; N-K2 is met by Q-B6.) If Black's second move is N- 
KB3, White's N-QR3 forces Black to advance his king's pawn 
one or two squares, then N-N5 forces Black to advance his king, 
and Q-B3 leads to a check on the next move. 

David Silverman has suggested still another way to make 
single-check chess a playable game. The winner is the first to 
check with a piece that callnot be taken. So far as I know it is 
not known which player can always win if both sides play their 
best. 

3. To determine the target word, label the six probe words 
as follows: 

Even Odd 
E l  DAY 0 1  SAY 

E2 MAY 0 2  DUE 

E3 BUY 0 3  TEN 



El and E2 show that the target word's first letter is not D or 
M, otherwise the parity (odd or even) would not be the same 
for both words. El and 01 sho\v that the target word's first letter 
is either D or s, otherwise the parity could not be different for 
the two words. The first letter cannot be D and therefore must 
be s. 

Since s is the first letter, E2 and E3 are wrong in their first 
letters. Both end in Y, therefore the second letter of the target 
word cannot be A or U, otherwise E2 and E3 could not have the 
same parity. Knowing that u is not the second letter and D not 
the first, 0 2  shows that E is the third letter. Knowing that the 
target word begirls with s and ends with E, 0 3  shows that E is 
the second letter. The target word is SEE. 

4. Three intersecting circles, each passing through the ten- 

ters of the other two, can be repeated on the plane to form the 
wallpaper pattern shown in Figure 82. Each circle is made up of 
six delta-shaped figures (D) and 12 "bananas" (B) .  One-fourth 
of a circle's area must therefore equal the sum of one and a half 
deltas plus three bananas. The area common to three mutu- 
ally ir~tersectiiig circles (shown shaded in the illustration) con- 
sists of three bananas and one delta, and therefore it is smaller 
than one-fourth of a circle by an amount equal to half a delta. 
Computation shows that the mutual overlap is a little more 
than .22 of the circle's area. 

5. Each cube must bear a 0, 1. and 2. This leaves only six 
faces for the remaining seven digits, but fortunately the same 
face can be used for 6 and 9, depending on how the cube is 
turned. The picture shows 3, 4, 5 on the right cube, and there- 
fore its hidden faces must be 0. 1 ,  and 2. 0x1 the left cube one 
can see 1 and 2, and so its hidden faces must be 0. 6 or 9, 7, 
and 8. 

John S. Singleton wrote from England to say that he had pat- 
ented the two-cube calendar in 1957/8 (British patent number 
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FIGURE 82 

Solut ion to intersecting-circles problem 

831572), but allowed the patent to lapse in 1965. For a varia- 
tion of this problem, in which three cubes provide abbreviations 
for each month, see my  Scientific American column for Decem- 
ber 1977. 



FIGURE 83 

Maximum-length knight's tour o n  order-6 board 

6. Figure 83 shows the unique maximum-length uncrossed 
knight's tour on the 6-by-6 board. For similar tours on higher- 
order square boards and on rectangular boards, see the Journal 
of Recreational Mathematics, Vol. 2, July 1969, pages 154-57. 

7. I t  was stated that if counters are drawn according to a 
certain procedure from a bag containing an  unknown mixture 
of white and black counters, there is a fixed probability that 
the last counter will be black. If this is true, it must apply 
equally to each color. Therefore the probability is 1/2. 

Although this answers the problem as posed, there remains 
the task of proving that the probability is indeed fixed. This can 
be done by induction, starting with two marbles and then going 
to three, four, and so on, or it can be done directly. unfortu- 
nately both proofs are too long to give, so that I content myself 
with referring the reader to "A Sampling Process," by B. E. 
Oakley and R. L. Perry, in The Mathematical Gazette for Feb- 
ruary 1965, pages 42-44, where a direct proof is given. 
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One might hastily conclude that the solution generalizes; 
that is, if the bag contains a mixture of n colors, the probability 
that the last counter in the bag is a specified color is l /n .  Un- 
fortunately, this is not the case. As Perry pointed out in a letter, 
if there are 2 red, 1 white, and 1 blue counters, the probabilities 
that the last counter is red, white, or blue are, respec~ively, 
26/72, 23/72, and 23/72. 

8. The answers to the 10 quickies are as follows: 
(1) Start the 7- and I I-minute hourglasses when the egg is 

dropped into the boiling water. When the sand stops running 
in the 7-glass, turn it over. When the sand stops in the 11-glass, 
turn the 7-glass again. When the sand stops again in the 7-glass, 
15 minutes will have elapsed. 

The above solution is the quickest one, but requires two turns 
of hourglasses. When the problem first appeared, I thought- 
lessly asked for the "simplest" solution, having in mind the 
shortest one. Several dozen readers called attention to the fol- 
lowing solution which is longer (22 minutes) but "simpler" in 
the sense of requiring only one turn. Start the hourglasses to- 
gether. When the 7-minute one runs out, drop the egg in the 
boiling w7ater. When the 11-minute hourglass runs out, turn it 
over. When it runs out a second time, the egg has boiled for 15 
minutes. 

If you enjoyed that problem, here is a slightly harder one of 
the same type. from Howard P. Diiiesman's Superior .%lathe- 
matical Puzzles (London: Allen and Unwin, 1968). What is the 
quickest way to measure 9 minutes with a 4-minute hourglass 
and a 7-minute hourglass? 

(2) Each tire is used 4/5 of the total time. Therefore each 
tire has been used for 4/5 of 5,000 miles, or 4,000 miles. 

(3) Whatever the color of the first card cut, this card cannot 
be the top card of the second cut. The second cut selects a card 
randomly from 51 cards of which 25 are the same color as the 
first card, and therefore the probability of the two cards' match- 
ing in color is 25/51. a bit less than 1/2. 



FIGURE 84 

S ix  lines make eight triangles. 

(4) 121 is a perfect square in any number notation with a 
base greater than 2. A quick proof is to observe that 11 times 11, 
in any system, has a product (in the same system) of 121. 
Craige Schensted showed that, with suitable definitions of "per- 
fect square," 121 is a square even in systems based on negative 
numbers, fractions, irrational numbers, and complex numbers. 
"Although the bases may not be exhausted, I am and I assume 
you are, so I will stop here," he concluded. 

( 5 )  Figure 84 left shows how I answered the question. On 
the right is a second solution found independently by readers 
Harry Kemmerer and Gary Rieveschl. 

(6) Any angle can be bisected with a compass and straight- 
edge. By repeated bisections we can divide any angle into 2, 4, 
8, 16, . . . equal parts. If any number in this series is a multi- 
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ple of 3, then repeated bisection obviously would allow trisec- 
tion of the angle with compass and straightedge. Since this has 
been proved impossible, no number in the doubling series is 
evenly divisible by 3. 

(7) The farmer has 60 horses. C a l l i ~ i ~  a cow a horse doesn't 
make it a horse. 

John Appel and Daniel Rosenblum were the first to tell me 
that this is a \-ersion of a joke attributed to Abraham-Lincoln. 
He once asked a man who had been arguing that slavery was 
not slavery but a form of protection how many legs a dog would 
have if you called its tail a leg. The answer. said Lincoln, is four 
because calling a tail a leg does not make it a leg. 

(8) The answer I gave to this was, "He spoke from 22 to 2 
to 2:22 to 2,222 people." Readers sent other interpretations. 
David B. Eisendrath, Jr., wrote that if the speaker had been 
called a colonel it would have implied military time and the 
translation "He spoke from 22 to 22 to 22:22 to 22 people." 

(9) The Greek lived 79 years. There was no year 0. 
(10) Ask the woman "Are you an  alternater?" twice. Two 

no answers prove she is a truther, two yes answers prove she is 
a liar, and a yes-no or no-yes response proves she is an  alter- 
nater. 

After the above answer appeared, several readers sent the 
following solution. I quote from a letter from Joseph C. Crow- 
ther, Jr.: 

You can discouer the inclination of the lady if you simply ask 
two questions about an obvious truth, such as "Do you have 
two ears?" or "IS water wet?" A truther will answer yes both 
times, and a liar will answer no. A n  alternater will not only 
say one of each, but the order in which she says them will de- 
termine which alternation she happens to be on, a fact which 
may prove useful i n  further conversation. 

Ralph Seifert, Jr., sent a one-question solution that he attrib- 



uted to his friend M. A. Zorn. "If someone asked you the same 
question twice, would you falsely answer 'no' exactly once?" 
The truther will say no, the liar yes, and the alternater will be 
so hopelessly befuddled that she won't be able to answer at all. 



C H A P T E R  1 6  

Solar System Oddities 

Around the  ancient track marched, rank o n  rank, 
T h e  a rmy  of unalterable law. 

-GEORGE MEREDITH, Lucifer i n  Starlight 

ASTRONOMY, like every other science, has curious bypaths 
where one may stumble over mathematical problems with rec- 
reational aspects. Irr this chapter we take a quick look at the 
solar system, about which so many startling new discoveries are 
now being made, and consider some amusing mathematical 
questions that have arisen in  the history of speculation about 
the structure of the sun's family of orbiting bodies. 

First a bit of historical background. I t  is a common error to 
suppose all the ancients believed the earth to be flat ancl the 
center of the universe. The Greek Pythagoreans, for instance, 
taught that the earth was both round and rotating. The system's 
center was not the sun but a brilliant central fire that the sun 
reflected just as our moon (as we now know) "snatches" its 
"pale fire" (in Shakespeare's phrasing) from the sun. The 
earth, sun, moon, and the five other known planets circled the 
central fire. Since the earth always kept its uninhabited side 
toward the fire during its 24-hour revolution, the fire could 



never be seen. Aristotle suggested that it was the Pythagorean 
cult's obsession with the triangular number 10 (the sum of 1, 2, 
3, 4) that led its members to add a 10th body called antichthon 
(counter-earth). I t  too was al~vays invisible because its orbit 
lay between the earth and the central fire. Aristarchus of Sa- 
mos, a third-century-B.C. Greek astronomer, actually proposed a 
helioceiitric model, with all planets circling the sun, although 
his treatise on this was lost and is known orlly through com- 
ments by Archimedes. 

The model that dominated Greek astronomy, howeyer, as 
well as medieval science was the geocentric model of Aristotle: 
an unmoving spherical earth at the core of the universe with 
all other hearenly bodies, including the stars, going around it. 
Aristotle defended an earlier and excellent argument for the 
earth's roundness. During a lunar eclipse the earth's shadow 
on the moo11 has a rounded edge that can best be explained 
if the earth is a ball. The Ptolemaic model of the second cen- 
tury 4 . ~ . ,  a rcfinemei~t of Aristotle's, was designed to account 
for the erratic paths of the five visible planets as they cross our 
sky. The trick was done by having the planets move in smaller 
circles, called epicycles, as theS travel larger circular orbits 
around the earth. The model mas quite adequate to explain the 
apparent motions of heavenly bodies, including irregular move- 
ments of plaiiets and moons caused by elliptical orbits, provided 
that enough epicycles were posited and bodies were allowed to 
move aloilg them at nonuniform speeds. 

We all know how, after a long controversy culminating in 
Galilee's persecution, the heliocentric model of the 16th-century 
Polish astronomer Nicolaus Copernicus finally won out. I t  is 
sometimes argued that it wall only because it was simpler and 
more elegant. Thomas S. Kuhn has gone even further, and de- 
nied that the Copernican model was either simpler or more ob- 
servationally accurate. ". . . The real appeal of sun-centered 
astronomy." he writes in The Copernicarz Reuolution, was aes- 
thetic rather thali pragmatic. To astronomers the initial choice 
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between Copernicus' system a r ~ d  Ptolemy's could only be a 
matter of taste. . . ." 

But Kuhn is wrong. There were many astronomical observa- 
tions, pointed out by Copernicus himself, for which his theory 
provided a much simpler explanation than did Ptolemy's, thus 
providing his theory with a superiority that was more than just 
"taste." Later, of course, it explained an  enormous variety of 
astronomical phenomena, such as the bulging of the earth's 
equator, that the Ptolemaic theory could not account for. (On 
this see "Kuhn and the Copernican Revolution," by Richard J. 
Hall, in the British Journal for the  Philosophy of Science, May 
1970, pages 196-97.) 

The final twist to this vacillating history came with Ein- 
stein's general theory of relativity. If this theory is correct, 
there are no absolute motions with respect to a fixed space arid 
therefore no "preferred frame of reference." One can assume 
that the earth is fixed-not even rotating-and the tensor equa- 
tions of relativity will account for everything. The earth is fat 
around its waist not because of inertial forces but because the 
rotating cosmos produces a gravitational field that causes the 
bulge. Since all motion is relative. the choice of a sun-centered 
model over an earth-centered one for the solar system is one of 
convenience. We say the earth rotates because it is enormously 
simpler to make the cosmos a fixed inertial frame of reference 
than to say it is rotating and shifting around in peculiar ways. 
It  is not that the heliocentric theory is "truer." Indeed, the sun 
itself is moving and is in no sense the center of the cosmc~s, if 
indeed the cosmos has a center. The only "true" motion is the 
relative motion of the earth and the cosmos. 

This arbitrariness about the frame of reference is involved in 
a funny argumei~t that still pops up in parlor conversations. 
The moon circles the earth. as the earth circled the central fire 
in the Pythagorean model, so that it always keeps the same face 
toward the earth. This has intrigued poets, major and minor, as 
well as astronomers. Robert Browning's "One Word More" 



likens the moon's two sides to the two "soul-sides" of every 
man: "one to face the world with, one to show a woman when 
he loves her!" Edmund Gosse claimed that his housekeeper 
penned the following immortal quatrain: 

0 moon, when I gaze on thy beautiful face, 
Careering along through the boundaries of space, 
The thought has often come into my mind 
If I ever shall see thy glorious behind. 

The moon's habit of concealing its backside raises the follow- 
ing trivial question. Does the moon "rotate" as it goes around 
the earth? An astronomer would say yes, once for each revolu- 
tion. It is hard to believe, but intelligent men have been so in- 
censed by this assertion that they have published (usually at 
their own expense) lengthy pamphlets arguing that the moon 
does not rotate at all. (Several such treatises are discussed in 
Augustus De Morgan's Budget of Paradoxes.) Even the great 
Johannes Kepler preferred to think of the moon as nonrotating. 
He compared it to a ball fastened to a thong and whirled around 
the head. The sun rotates, he reasoned, to impart motion to its 
planets, and the earth rotates to impart motion to its moon. 
Since the moon has no smaller moon of its own, there is no need 
for it to rotate. 

The problem of the moon's rotation is basically the same as a 
penny paradox described in Chapter 2 of my Mathematical 
Carnival. If you roll one penny around a fixed penny, keeping 
the rims together to prevent sliding, the rolling penny rotates 
twice during one round trip. 

Or does it? Joseph Wisnovsky, an editor of Scientific Ameri- 
can, has called my attention to a furious controversy over this 
question that raged in the letters department of this magazine 
for almost three years. In 1866 a reader asked: "How many rev- 
olutions on its own axis will a wheel make in rolling once around 
a fixed wheel of the same size?" "One," the editors replied. A 
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torrent of correspondence followed from readers who disagreed. 
In Volume 18 (1868), pages 105-06, Scientific American printed 
a selection from "half a bushel" of letters supporting the double- 
rotation view. For the next three months the magazine pub- 
lished correspondence from both "oneists" and "dualists," in- 
cluding engravings of elaborate mechanical devices they had 
made and had sent to establish their case. 

"If you swing a cat around your head," wrote oneist H. Bluf- 
fer (March 21, 1868), attacking the moon's rotation, "would his 
head, eyes and vertebrae each revolve on its own axis . . . ? 
Would he die at the ninth turn?" 

The volume of mail reached such proportions that in April 
1868 the editors announced they were dropping the topic but 
would continue it in a new monthly magazine, The Wheel, de- 
voted to the "great question." At least one issue of this periodi- 
cal appeared, because Scientific American readers were told in 
the May 23 issue that they could obtain The Wheel at news- 
stands br by mail for 25 cents. Perhaps the controversy was a 
put-on by the editors. Obviously it is no more than a debate over 
how one chooses to define the phrase "rotates on its own axis." 
To an observer on the fixed penny the moving coin rotates once. 
To an observer looking down from above it rotates twice. The 
moon does not rotate relative to the earth; it does rotate relative 
to the stars. Can the reader decide, without making a model, 
how many times the outside coin will rotate per one revolution 
(relative to you as the observer) if its diameter is half that of 
the fixed coin? 

The same ridiculous question about lunar rotation could have 
been asked from 1890 to 1965 about Mercury. The Italian as- 
tronomer Giovanni Schiaparelli (the man who started all the 
nonsense about Martian irrigation canals by drawing maps of 
straight lines he imagined he saw crisscrossing the planet) an- 
nounced in the late 1880's that his observations proved that 
Mercury always kept the same face towarh the sun. In  other 
words, it rotated once for every revolution of 88 days. For the 



next 75 years hundreds of observations by other eminent as- 
tronomers confirmed this. Because Mercury lacks an atmosphere 
to transfer heat it was assumed that its illuminated side was 
perpetually sizzling at 700 to 800 degrees Fahrenheit and that 
its dark side was perpetually close to absolute zero. "Mercury 
has the distinction," wrote Fred Hoyle as late as 1962, "of pos- 
sessing not only the hottest place but also the coldest place in 
the whole planetary system." 

Between Mercury's hot and cold sides there would of course 
be a girdle of everlasting gloaming, ~ r e s u m a b l ~  with a climate 
mild enough to support life. The notion long intrigued writers 
of science fiction. "Twilight. Always twilight," says a visitor 
to Mercury in Arthur Jean Cox's 1951 story "The Twilight 
Planet." "The days pass, or so the clocks, the calendars tell you. 
But time, subjective time, is frozen delicately in midflight. The 
valley is an ocean of shadows; shade-tides lap upon the shores 
of mountains." In Robert Silverberg's "Sunrise on Mercury" 
(1957), astronauts land on Mercury's "Twilight Belt" between 
"the cold, ice-bound kingdom of Dante's deepest pit" and "the 
brimstone empire." The belt is a region where fire and frost 
meet, "each hemisphere its own kind of hell." When the story 
appeared in the 1969 Dell paperback anthology First Step Out- 
ward, editor Robert Hoskins had to append a note saying it had 
now passed from science fiction into the realm of fantasy. 

The first hint that something was wrong came in 1964 when 
radio-telescope observations by Australian astronomers indicated 
that the supposed frozen side of Mercury has a temperature of 
about 60 degrees Fahrenheit! Could the planet, they wondered, 
have an atmosphere after all? In  1965 Gordon H. Pettengill and 
Rolf B. Dyce. using radar reflections from opposite edges of the 
planet, discovered the real reason. Schiaparelli had been as 
wrong about Mercury's spin as he had been about Mars's ca- 
nals. Mercury rotates once every 59 days, exactly two-thirds of 
its orbital period. Apparently the little planet has a lopsided 
mass, like our moon, or a tidal bulge that allowed its capture by 
the sun in a stable 3/2 "resonance lock." For every two orbits it 
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spins three times. One reason astronomers had been wrong for 
75 years was that they usually looked at Mercury at a favorable 

same time that occurs once a year. Because they always saw thc 
dusky markings, they assumed that, since Mercury had made 
four orbits, it had rotated four times when actually it had ro- 
tated six. Although such rationalizatiorls can be made, wrote Ir- 
win I. Shapiro [see "Radio Observations of the Planets," by Ir- 
win I .  Shapiro. in Scientific American, July 19681, it rs still 
"unsettling to contemplate this persistence of self-deception." 
How Charles Fort, that eccentric iconoclast of science, would 
have gloated over such a gigantic goof! 

Still more astonishing was the discovery made in 1962 about 
the spin of Venus. Its slow spin was believed to be so close to its 
orbital period of about 225 earth days that many astronomers 
(Schiaparelli for one) were convinced that, like Mercury and 
our moon, Venus had identical rotational and orbital periods. I n  
1962 astronomers using the Goldstone radar of California's Jet 
Propulsion Laboratory established two incredible facts. Venus 
spins slowly backward with respect to all other planets. (Ura- 
nus's direction of spin is ambiguous. Its axis is so close to being 
parallel to the plane of the ecliptic that either pole car1 be 
called north.) Venus is the oldy planet on which the sun rises 
(very slowly) in the west. Moreover, its spin period of 243.16 
days-making its day longer than its year-is just such that, 
whenever Venus is closest to the earth, it always presents the 
same face toward us! In  Don Juan Lord Byron speaks of "a rosy 
sky, with one star [Venus] sparkling through it like an eye." 
Why Venus should keep her eye on the earth in such a curious 
fashion is still a mystery. Presumably. like Mercury, it either is 
asymmetric in mass or has a large enough tidal bulge to have 
allowed capture by the earth in this unexpected resonance lock. 

The story of Venus's nonmoon is another Keystone Cops epi- 
sode in astronomical history. In  1645 an Italian astronomer, 
Francesco Fontana, asserted he had seen a moon of Venus. His 
observation was substantiated in  1672 by Jean Dominique Cas- 
sini, tvho had discovered t ~ t o  satellites of Saturn and was later 



to find two more. Venus's moon was also seen by many leading 
astronomers of the 18th century. The famous German mathe- 
matician, physicist, and astronomer Johann Heinrich Lambert 
published in 1773 a treatise on Venus's moon in which he even 
calculated its orbit. Frederick the Great honored Jean Le Rond 
d'Alembert by naming the moon after him, although the great 
French mathematician politely refused the honor. Of course 
there never was such a moon or it would have been visible as 
a black speck when Venus crossed the sun's disk. The astrono- 
mers had either seen nearby stars or ghost images produced by 
lens refraction or, as in the case of those astronomers who 
"saw" Martian canals, their hopes and beliefs were playing 
psychological tricks on their vision. Similar explanations surely 
account for many 18th- and 19th-century "observations" of 
Vulcan, a planet supposedly inside Mercury's orbit. 

How did the solar system evolve? No one is sure. The most 
popular view at present is the one first advanced by Immanuel 
Kant. Somehow the planets condensed from gases and dust par- 
ticles in a whirling disklike cloud that once surrounded the sun. 
The courlterclockwise spin of this cloud, when viewed from 
above north poles, would explain why all the planets and most 
of their moons revolve in the same direction. Why, though, are 
the ancient tracks spaced the way they are? Is it mere hap- 
penstance or are their distance ratios governed by a mathemati- 
cal law? 

I t  was Kepler who dreamed up the most fantastic explanation. 
He first tried inscribing arid circumscribing regular polygons, 
then spheres and cubes, but he failed to hit on a pattern that 
gave the right ratios. Suddenly an inspiration struck him. There 
are six planets, therefore five spaces between them. Are there 
not five and only five regular convex solids? By nesting the five 
Platonic solids inside one another in a certain order, with shells 
between them to take care of eccentricities in the planets' ellipti- 
cal paths, he arrived at a structure that corresponded roughly 
with what were then believed to be the maximum and mini- 
mum distances of each planet from the sun [see Figure 851. I t  
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FIGURE 85 

Keplcr's m o d e l  of t h e  solar s?.stcm 



was a crazy theory, even in Kepler's time, but Kepler was a re- 
markable blend of stuperldous scientific intuitior~ a r ~ d  occult be- 
liefs (iricluding astrology) that led him to expect such geomet- 
ric harmonies. "The intense pleasure I have received from this 
discovery," he wrote, "carl ]lever be told in words." Ironically, 
his correct co~~victioris that the planets move in ellipses, not 
circles, and that tides are caused by the moon seemed so equally 
~x-eposlerous that evt.11 Galilee dismissed hot11 views as more 
Kepleriarl fantasy. 

In 1772 Johann Daniel Titius of Wittenberg announced a 
simple riumher scquerlce that seemed to fit the planetary orbits. 
It  soor1 became known as "Rode's law" because four years later 
a more famous German astrorlomer, Johanrl Elert Bode, pub- 
lished the sequence in n textbook. To obtain the numbers, start 
with 0, 3, 6. 12, 24, 48, 96, 192, . . . Every number is half the 
next one except for 0, which really should be 1 %. To each num- 
ber atld 4. The resulting sequence-4, 7, 10, 16,28, 52, 100, 196 
. . . --gives the ratios of the mean distances of the planets 
from the suti. If we take the earth's distance as our "astronomi- 
cal unit," the third i~umber, 10, becomes 1. Dividing the other 
llumbers by 10 then gives the mean distances of the planets in 
astronomical units. The chart in Figure 86 shows these dis- 
tances alongside the actual olles. Note that the mean distances 
of the first six planets, still the orily planets kr~owri when Bode 
published his paper, are in remarkably close agreement with 
values giver1 by the Rode series. Not only that, but Bode's law 
succceded ill making two excellent predictions. 

The first ~jrediction was that a planet should be at  a distance 
of 10.G astro~~omical units. When Uranus was discovered ill 
1781, it was found to have a distance of 19.2, a fact that con- 
vincecl most astronomers of the soundness of Rode's law. The 
second prcdictioil was that there ought to be a planet ill the 

enormous gap between the orbits of Mars and Jupiter, at about 
2.8 units from the sun. Irr 1801, on the first day of the new 
century, Cercs, th t  largest of the asteroids, was discovered at 
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Planet 
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M A R S  

1 S A T U R N  1 10 1 9.57 1 
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1 
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1 
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2.8 
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U R A N U S  

NEPTUNE 

FIGURE 86 

Bode's lauj for t h e  spacing of planetary orbits 

2*77 5.20 4 

P L U T O  

2.77 units from the sun! Thousands of smaller planetoids were 
later observed in this region. Defenders of Bode's law argued 
plausibly that the planetoids were remnants of an  ex1,loded 
planet that had once orbited the sun at a spot close to where 
Bode's law said it should be. 

Alas, the law failed for Neptune and Pluto, persuading many 
astronomers that the law's earlier successes had been accidental. 
Other astronomers ha\-e recently suggested that Pluto may be 
an escaped moon of Neptune and that before the two bodies 
separated Neptune could have been near the spot predicted by 
Bode's law. It has also been argued that Bode's law may apply 
to all planets except those at the inner and outer fringes of the 
solar system, where irregularities would be more likely. Since 
Mercury and Pluto have orbits much more eccentric and more 
inclined to the plane of the ecliptic than those of the other 
planets, it is not unreasonable to suppose fringe conditions 1%-ould 
make them exceptions to a general rule. 

19.6 

38.8 

19.15 

29.95 

77.2 39.39 



Is Bode's law a numerological curiosity, as irrelevant as Kep- 
ler's nested polyhedrons, or does it say something of value that 
eventually will be explained by a theory of the solar system's 
origin? The question is still undecided. Defenders of the law 
usually cite the number sequence, announced in 1885 by the 
Swiss mathematician Johann Jakob Balmer, that fitted the fre- 
quencies of the spectrum lines of hydrogen. This series was 
pure numerology until decades later, when Niels Bohr found 
the explanation for "Balmer's series" in quantum mechanics. 

"The question is," writes Irving John Good in a recent paper 
on Bode's law that is listed in this book's bibliography, "whether 
a piece of scientific numerology unsupported by a model is suf- 
ficiently striking to make us say that ~eop le  ought to look for a 
scientific model in order to explain it." From my layman's seat 
I hesitate even to guess how Bode's law will fare in future 
years. 

I conclude with another tricky problem. As the earth goes 
around the sun, its moon traces a wavy path with respect to the 
sun. How many sections of that wavy path, during 12 lunar or- 
bits around the earth, are concave in the sense that their convex 
sides are toward the sun? 

A N S W E R S  

THE ANSWER to the first problem is that a wheel rotates three 
times in rolling once around a fixed wheel with twice the diam- 
eter of the rolling wheel. Since the circumference of the rolling 
wheel is half that of the larger one, this produces two rotations 
with respect to the fixed wheel, and the revolution adds a third 
rotation with respect to an observer from above. The general 
formula, where a is the diameter of the fixed wheel and b is the 
diameter of the rolling wheel, is ( a / b )  + 1. This gives the num- 
ber of rotations for one revolution. Thus if the rolling wheel has 
a diameter twice that of the fixed wheel, it rotates 1% times. 
The rolling wheel, as it gets larger, approaches a limit of one 
rotation per revolution-a limit that is achieved only when it 
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rolls around a degenerate "circle" of zero diameter, namely a 
point. Suppose the diameter of the fixed coin equals the circum- 
ference of the revolving coin. How many times does the outside 
coin rotate per revolution? 

The answer to the question about the number of concave sec- 
tions in the moon's wavy path around the sun is that at no time 
is the path concave. The moon is so close to the earth and the 
earth's speed is so great in relation to the moon's speed around 
the earth that the moon's path (in relation to the sun) is at all 
points convex. 



C H A P T E R  1 7  

Mascheroni Constructions 

IT IS OFTEN SAID that the ancient Greek geometers, following a 
tradition allegedly started by Plato, constructed all plane fig- 
ures with a compass and a straightedge (an unmarked ruler). 
This is not true. The Greeks used many other geometric instru- 
ments, including devices that trisected angles. They did believe, 
however, that compass-and-straightedge constructioris were 
more elegant than those done with other instruments. Their 
persistent efforts to find compass-and-straightedge ways to tri- 
sect the angle, square the circle, and duplicate the cube-the 
three great geometric coiistruction problems of antiquity-were 
not proved futile for almost 2,000 years. 

In later centuries geometers amused themselves by imposing 
even more severe restrictions on instruments used in construc- 
tion problems. The first systematic effort of this kind is a work 
ascribed to the 10th-century Persian mathematician Abul Wefa, 
in which he described constructions possible with the straight- 
edge and a "fixed compass," later dubbed the "rusty compass." 
This is a compass that never alters its radius. The familiar 
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Mascheroni Constructions 

FIGURE 87 

How to bisect a line of any  length wi th  a "rusty compass" 

methods of bisecting a line segment or an angle are simple ex- 
amples of fixed-compass-and-straightedge constructions. Figure 
87 shows how easily a rusty compass can be used for bisecting a 
line more than twice the length of the compass opening. Many 
of Abul Wefa's solutions-in particular, his method of con- 
structing a regular pentagon, given one of its sides-are ex- 
tremely ingenious and hard to improve on. 

Figure 88 shows how a rusty compass can be used for draw- 
ing a line parallel to line AB and through any point P outside 

FIGURE 88 

A rusty-compass construction of a parallel line 



the line. This is done by constructing the corners of a rhombus 
in three steps, and is so simple that you can figure it out just by 
looking at the picture. The method goes back at least to 1574, 
yet it is still being rediscovered and written up as new. (See, 
for example, Mathematics Teacher, February 1973, page 172.) 

Leonardo da Vinci and numerous Renaissance mathematicians 
experimented with fixed-compass geometry, but the next impor- 
tant treatise on the subject was Compendium Euclidis Curiosi, 
a 24-page booklet published anonymously in Amsterdam in 
1673. It was translated into English four years later by Joseph 
Moxon, England's royal hydrographer. This work is now known 
to have been written by a Danish geometer, Georg Mohr, whom 
we shall meet again in a moment. In 1694 a London surveyor, 
William Leybourn, in a whimsical book called Pleasure with 
Profit, treated rusty-compass constructions as a form of mathe- 
matical play. Above his section on this topic he wrote: "Shew- 
ing How (Without Compasses), having only a common Meat- 
Fork (or such like Instrument, which will neither open wider, 
nor shut closer), and a Plain Ruler, to perform many pleasant 
and delightful Geometrical Operations." 

In the 19th century the French mathematician Jean Victor 
Poncelet suggested a proof, later rigorously developed by Jacob 
Steiner, a Swiss, that all compass-and-straightedge constructions 
are possible with a straightedge and a fixed compass. This con- 
clusion follows at once from their remarkable demonstration 
that every construction possible with a compass and a straight- 
edge can be done with a straightedge alone, provided that a sin- 
gle circle and its center are given on the plane. Early in the 
20th century it was shown that not even the entire "Poncelet- 
Steiner circle," as it is called, is necessary. All that is needed is 
one arc of this circle, however small, together with its center! 
(In such constructions it is assumed that a circle is constructed 
if its center and a point on its circumference are determined.) 

Many well-known mathematicians studied constructions that 
are possible with such single instruments as a straightedge, a 
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straightedge marked with two points, a ruler with two parallel 
straightedges, a "ruler" with straightedges meeting perpendicu- 
larly or at other angles, and so on. Then in 1797 an Italian ge- 
ometer, Lorenzo Mascheroni, amazed the mathematical world 
by publishing Geometria del compasso, in which he proved that 
every compass-and-straightedge construction can be done with 
a movable compass alone. Since straight lines cannot of course 
be drawn with a compass alone, it is assumed that two points, 
obtained by arc intersections, define a straight line. 

Compass-only constructions are still called Mascheroni con- 
structions even though it was discovered in 1928 that Mohr had 
proved the same thing in an obscure little work, Euclides Da- 
nicus, published in 1672 in Danish and Dutch editions. A Dan- 
ish student who had found the book in a secondhand bookstore 
in Copenhagen showed it to his mathematics teacher, Johannes 
Hjelmslev of the University of Copenhagen, who instantly rec- 
ognized its importance. Hjelmslev published it in facsimile, 
with a German translation, in Copenhagen in 1928. 

Today's geometers have little interest in Mohr-Mascheroni 
constructions, but because they present so many problems of a 
recreational nature, they have been taken over by puzzle enthu- 
siasts. The challenge is to improve on earlier constructions by 
finding ways of doing them in fewer steps. Sometimes it is pos- 
sible to improve on Mohr's or Mascheroni's methods, sometimes 
not. Consider, for example, the simplest of five solutions by 
Mascheroni to his problem No. 66, that of finding a point mid- 
way between two given points A and B [see Figure 891. 

Draw two circles of radius AB, their centers at A and B. 
Keeping the same compass opening, with C and D as centers, 
mark points D and E. (Readers may recall that this is the be- 
ginning of the well-known procedure by which a circle is di- 
vided into six equal arcs, or three equal arcs if alternate points 
are taken.) Point E will lie on an extension of line A B  to the 
right, and A E  will be twice AB. (This procedure obviously can 
be repeated rightward to double, triple, or produce any multiple 



FIGURE 89 

Maschcroni's method of finding point H ,  midway betuzcn 
A and B, using a compass alone 

of length A B . )  Open the compass to radius AE and draw an 
arc. its center at E, that intersects the left circle at F and G. 
Close the compass to radius A B  once more. With centers at  F 
and G, draw the two arcs that intersect at H .  

H is midway between A and B. This is easily proved by 
noting that the two isosceles triangles marked by corners AFH 
and AFE share the base angle F A E  and therefore are similar. 
AF is half of A E ;  corlsequently A H  is half of AB. For readers 
acquainted with inversion geometry, H is the inverse of E with 
respect to the left circle. A simple proof of the construction, by 
way of inversion geometry, is in What  Is Mathematics?, by 
Richard Courarit and Herbert Robbins (Oxford, 1941 ) , page 
145. Note that if line segment A B  is drawn at the outset, and 
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the problem is to find its midpoint with compass alone, only 
one of the last two arcs need be drawn, reducing the number of 
steps to six. I know of no way to do this with fewer steps. 

Another famous problem solved by Mascheroni is locating 
the center of a given circle. His method is too complicated to re- 
produce here, but forturlately a simplified approach, of unknown 
origin, appears in many old books and is given in Figure 90. A  
is any point on the circle's circumference. With A as the center, 
open the compass to a radius that will draw an arc intersecting 
the circle at B and C. With radius AB and centers B and C, 
draw arcs that intersect at D. ( D  may be inside or below the 
circle, depending on the length of the first compass opening.) 
With radius AD and center D, draw the arc giving intersections 

FIGURE 90 

HOW to find a circle's center, using the compass alone, i n  six steps 



E and F. With radius AE and centers E and F, draw arcs inter- 
secting at G. G is the circle's center. As before, there is an easy 
proof that starts by observing that the two isosceles triangles 
marked by DEA and GEA share the base angle EAG and are 
therefore similar. For the rest of the proof, as well as a proof by 
inversion geometry, see L. A. Graham's The  Surprise Attack in 
Mathematical Problems (Dover, 1968), problem No. 34. 

A third well-known problem in Mascheroni's book has be- 
come known as "Napoleon's problem" because it is said that 
Napoleon Bonaparte originally proposed it to Mascheroni. It is 
not generally known that Napoleon was an enthusiastic ama- 
teur mathematician, of no great insight but particularly fasci- 
nated by geometry, which of course had great military value. 
He was also a man with unbounded admiration for the creative 
French mathematicians of his day. Gaspard Monge (known to 
recreational mathematicians mainly for his youthful analysis 
of the "Monge shuffle," in which cards are pushed one at a time 
off the deck by the left thumb to go alternately above and be- 
low the cards in the right hand) seems to have been the only 
man with whom Napoleon had a permanent friendship. "Monge 
loved me as one loves a mistress," Napoleon once declared. 
Monge was one of several French mathematicians who were 
made counts by Napoleon. Whatever Napoleon's ability as a ge- 
ometer may have been, it is to his credit that he so revolution- 
ized the teaching of French mathematics that, according to sev- 
eral historians of mathematics, his reforms were responsible 
for the great upsurge of creative mathematics in 19th-century 
France. 

Like Monge, young Mascheroni was an ardent admirer of 
Napoleon and the French Revolution. In addition to being a 
professor of mathematics at the University of Pavia, he also 
wrote poetry that was highly regarded by Italian critics. There 
are several Italian editions of his collected verse. His book Prob- 
l e m  for Surveyors (1793) was dedicated in verse to Napoleon. 
The two men met and became friends in 1796, when Napoleon 
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invaded northern Italy. A year later, when Mascheroni pub- 
lished his book on constructions with the compass alone, he again 
honored Napoleon with a dedication, this time a lengthy ode. 

Napoleon mastered many of Mascheroni's compass construc- 
tions. It is said that in 1797, while Napoleon was discussing ge- 
ometry with Joseph Louis Lagrange and Pierre Simon de La- 
place (famous mathematicians whom Napoleon later made a 
count and a marquis respectively), the little general surprised 
them by explaining some of Mascheroni's solutions that were 
completely new to them. "General," Laplace reportedly re- 
marked, "we expected everything of you except lessons in ge- 
ometry." Whether this anecdote is true or not, Napoleon did in- 
troduce Mascheroni's compass work to French mathematicians. 
A translation of Geometriu del compusso was published in Paris 
in 1798, a year after the first Italian edition. 

"Napoleon's problem" is to divide a circle, its center given, 
into four equal arcs, using the compass alone. In other words, 
find the four corners of an inscribed square. A beautiful six-arc 
solution is shown in Figure 91. With the compass open to the 
circle's radius, choose any point A, then mark spots B, C, and 
D, using A, B, and C as centers. Open the compass to radius AC. 
With centers A and D, draw the arcs intersecting at E. With 
center A and radius OE, draw the arc that cuts the original cir- 
cle at F and G. A, F, D, and G are the corners of the inscribed 
square. I do not know if this is Mascheroni's solution (his book 
has not been translated into English and I have not had access 
to the Italian or French editions) or a later discovery. Henry 
Ernest Dudeney gives it without proof in Modern Puzzles 
(1926). A simple proof can be found in Charles W. Trigg's 
Mathematical Quickies (McGraw-Hill, 1967 ) , ~rob lem No. 248. 

Two related and less well-known Mascheroni problems are: 
(1) Given two adjacent corner points of a square, find the other 
two, and (2) Given two diagonally opposite corner points of a 
square, find the other two. An eight-arc solution to the first 
problem was separately sent to me by readers Don G. Olmstead 



FIGURE 91 

Six-step solution to "Napoleon's problem" 



FIGURE 92 

A n  eight-step way  to construct the  corners of a square, 
given adjacent corners A and B 

and Paul White and can be found, with a proof, in M. H. 
Greenblatt's Mathematical Entertainments (Crowell, 1965), 
page 139. Figure 92 shows the procedure. A and B are the two 
given points. After drawing the two circles, each with radius 
AB, keep the same opening and mark points D and E, with cen- 
ters at C and D. Open the compass to radius CF. With A and 
E as centers, draw the two arcs that intersect at  G. With radius 
GB and centers A and B, draw the arcs that cut the circles at  H 
and I. H and I are the two corner points sought. 

The best solution I know for the second and more difficult 
problem requires nine arcs. Readers are invited to search for it, 
or a better one. 



A D D E N D U M  

MANNIS CHAROSH called my attention to the surprising, little- 
known theorem that all points obtainable by straightedge and 
compass can also be obtained by using nothing more than an 
unlimited supply of identical toothpicks. The picks model rigid 
line segments which can be moved about on the plane. 

This curious construction method was invented by T. R. 
Dawson, editor of the Fairy Chess Review, and written up by 
him in a paper called " 'Match-Stick' Geometry," in Mathe- 
matical Gazette, Volume 23, May 1939, pages 161-68. Dawson 
proves the general theorem given above, and also shows that the 
sticks cannot construct points not also constructable by compass 
and straightedge. He gives methods for bisecting a line segment, 
bisecting an angle, dropping a perpendicular, laying a parallel 
to a given line through a given point, and other basic construc- 
tions that are sufficient to prove his case. 

The recreation raises innumerable unexplored challenges to 
find constructions using the minimum number of sticks. For 
example, Dawson's best method of constructing a unit square 
(one with a side equal to the length of a stick) is shown in Fig- 
ure 93, where AF is any line within the angle BAC. It uses 16 
sticks. 

Dawson asserts that 11 sticks are minimal for bisecting a 
given line of unit length, and 13 sticks for finding the midpoint 
between two given points a unit distance apart. He challenges 
the reader to find a 10-stick method of determining the mid- 
point between two points that are more distant than the unit 
length of a stick, but less distant than the square root of 3. 

Figure 94 shows a simple 5-stick method of bisecting any 
angle not greater than 120 degrees and not exactly 60 degrees. 
The method also constructs a perpendicular from C to line AB. 
Lines are extended, and parallel lines constructed, simply by 
extending a row of side-by-side equilateral triangles as far as 
desired. 
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FIGURE 93 

Constructing a square wi th  16 toothpicks 

FIGURE 94 

Bisecting a n  angle with  five toothpicks 



FIGURE 95 

Construction of a square, given diagonal corners A and R 

A N S W E R S  

FIGURE 95 shows a nine-arc method of solving the Mascheroni 
problem: Given two diagonally opposite corners of a square, find 
the other two corners using only a compass. A and B are the 
given corners. Draw the circle with radius A B  and B as center. 
Keeping the compass at  the same opening, draw arcs C, D, and 
E (centers at  A, C,  and D ) .  With radius C E  and centers at  A 
and E, draw the two arcs that intersect at  F. With radius BF and 
center at  E, draw the arc that intersects a previous arc at  G. 



Mascheroni Constructions 229 

With radius BG and centers at A and B, draw the arcs inter- 
secting at H and I. A ,  H,  B, and I are the corners of the desired 
square. Philip G. Smith, Jr., of Hastings-on-Hudson, N.Y., sent 
a simple proof of the construction, based on right triangles and' 
the Pythagorean theorem, but I leave it to interested readers 
to work out such proofs for themselves. 

After writing my  column on Mascheroni constructions I 
learned that the six-arc solution to "Napoleon's problem" is in- 
deed Mascheroni's. Fitch Cheney sent me his paper "Gan We 
Outdo Mascheroni?" (The Mathematics Teacher, Vol. 46, March 
1953, pages 152-56), in which he gives Mascheroni's solution 
followed by his own simpler solution using only five arcs. 

Cheney's solution is shown in Figure 96. Pick any point A 
on the given circle and draw a second circle with radius AO. 
With C as center and the same radius, draw a third circle. With 
D as center and radius D A ,  draw the arc intersecting the origi- 
nal circle at E. With F as center and radius FO, draw an  arc 
crossing the preceding arc at  G. With C as center and radius 
CG, draw the arc intersecting the original circle at  H and I. 
E, I ,  C ,  and H mark the corners of the desired square. 

Cheney calls attention in his article to the difference between 
a "modern compass," which retains its opening like a divider, 
and the "classical compass" of Euclid, which closes as soon as 
either leg is removed from the plane. Cheney's five-arc solution 
uses only classical arcs, in contrast to Mascheroni's. Cheney also 
gives in his article a seven-step classical method of inscribing a 
pentagon in a circle, two steps fewer than Mascheroni's modern- 
compass method. 

A large number of readers noticed that Mascheroni's com- 
pass-only method of constructing a point midway between two 
points can be reduced by one step. The distance between the 
intersections of the two circles of Figure 89 clearly is equal to 
CE. therefore point E can be found without the intermediate 
step of finding point D. This procedure, as many readers pointed 
out, automatically lowers by one the number of arcs required 



FIGURE 96 

Fitch Cheney's simpler solution for "Napoleon's problem" 

to bisect a line segment, to find the four corners of a square in- 
scribed in a given circle ("Napoleon's problem"), and, given 
adjacent corners of a square, to find the other two corners. 

The problem of finding the other two corners of a square 
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when given two diagonally opposite corners-a problem I an- 
swered with nine arcs-reduces to eight arcs by adopting the 
procedure just described. However, more than a dozen readers 
discovered a beautiful six-arc solution [see Figure 971. A and B 
are the given corners. After drawing the two circles through 
these two points, open the compass to CD, and with C as center 
draw arc EDF. With F as center and A F  as radius, draw arc 
GAH. With E and F as centers and EG as radius, draw the two 
arcs intersecting at X and Y. I t  is not hard to prove that AXBY 
are the corners of the desired square. 

FIGURE 97 

A six-arc solution to a Mascheroni problem 
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The A bacus 

THE WORD "ABACUS" has been applied to three dissimilar calcu- 
lating aids. The earliest and simplest, employed in many an- 
cient cultures, including that of the Greeks, was no more than 
a board dusted with a thin layer of dark sand on which one 
could trace numerals and geometric figures with a finger or 
stylus. Archimedes was said to have been calculating on such a 
"sand board" when he was killed by a Roman soldier. The 
Greek word abax, which meant in general a flat board or legless 
table, may have come from abaq, the Hebrew word for dust. 

A later type of abacus, known as early as the fourth century 
B.C. and still in use during the Renaissance, was the counting 
board. This was a true calculating instrument, as genuine a 
digital computer as the slide rule is an analogue computer. The 
board was marked with parallel lines representing the "place 
values" of a number system, usually a notation based on 10. 
The lines were drawn on parchment, etched on marble, carved 
in wood, or sometimes even stitched in cloth. Loose counters 
were moved back and forth on these lines to perform simple 
calculations. The Greeks called the board an abakion; the Ro- 
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mans called it an  abacus. The counters were round pebbles or 
similar objects that were moved along grooves, and the Latin 
word for pebble, calculus, is therefore the origin of such words 
as "calculate" and "calculus." Several pictures, one on a Greek 
vase, show the counting board in use, but only one Greek count- 
ing board survives: a marble rectangle measuring about five by 
six inches that was found on the island of Salamis. During the - 
Middle Ages checkered counting boards were in general use, 
and that explains the origin of such words as "check" and "ex- 
chequer." 

The device we now know as an abacus is essentially a count- 
ing board modified so that the counters are set in grooves or - 
slide along wires or rods. I t  is of unknown origin. The ancient 
Greeks probably did not have such instruments; the earliest ref- 
erences to them are in Roman literature. The counters, which 
the Romans called claviculi (little nails), moved up and down 
in grooves. The Romans had several forms of the device. A small 
bronze abacus used in Italy as late as the 17th century is of par- 
ticular interest because its basic structure is the same as today's 
Japanese abacus. Each vertical groove stands for a power of 10, 
the powers increasing serially to the left. Four counters in each 
groove below a horizontal bar represent unit multiples of the 
place value. One counter in each groove above the bar repre- 
sents five times the place value. 

Here we encounter a curious state of affairs stressed by Karl 
Menninger, the German mathematician, in his beautiful and 
encyclopedic work Number Words and Number Symbols. For 
more than 15 centuries the Greeks and Romans and then Euro- 
peans of the Middle Ages arid early Renaissance calculated on 
devices with authentic place-value systems in which zero was 
represented by an empty line or groove or by an  empty posi- 
tion on the line or groove. Yet when these same people calcu- 
lated without mechanical aids, they used clumsy notational sys- 
tems lacking both place values and zero. It  took a lorig time, as 
Menninger says, to realize that in writing numbers efficiently 



it is necessary to draw a symbol to indicate that a place in  the 
number symbolizes nothing. 

P e r h a ~ s  the main reason for this cultural mental block was 
1 

that papyrus and parchment were hard to come by. Because 
calculating was done almost entirely on abaci, there was no 
pressing need for a better written notation. I t  was the Italian 
Leonardo of Pisa, known as Fibonacci, who introduced the 
Hindu-Arabic notation to Europe in 1202 (see page 152). This 
led to an  acrimonious struggle between the "abacists," who - - 

clung to Roman numerals in written computation but calcu- 
lated on abaci, and the "algorists," who discarded Roman nu- 
merals altogether for the superior Hindu-Arabic notation. "Al- 
gorist" derives from the name of a ninth-century Arabic writer 
on mathematics, al-Khow$rizmi, and is the ancestor of the 
modern word "algorithm." ( In  Figure 98 an abacist is shown 
competing against an  algorist. The print is from a 16th-century 
book, Margarita Philosophica.) In some European countries 
calculating by "algorism" actually was forbidden by law, so 
that it had to be done in secret. There was opposition to it even 
in some Arabic countries. Not until paper became plentiful in 
the 16th century did the new notation finally win out, and soon 
after that the shapes of the 10 digits became standardized be- 
cause of printing. 

The abacus was discarded gradually in Europe and England. 
Remnants of it survive in the U.S. today only as colored beads 
on playpens, as devices for teaching decimal notation in the 
early grades, and in such counting aids as the rosary and the 
overhead sliding beads for recording billiard scores. I n  a way 
this is a pity because in recent centuries calculating with the 
abacus has been developed into an art in Eastern countries and 
in Russia. I t  is a multisensory experience: the abacist sees the 
beads move, hears them click, and feels them, all at once. Surely 
no digital computer has such high reliability in proportion to 
such low cost of purchase and maintenance. 

Three types of abacus are in constant use today. The Chinese 
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FIGURE 98 

A n  "abacist" ( r ight )  competes against a n  "algorist" 
i n  a 16th-century print. 



FIGURE 99 

Cl~inrsc suan  pan S J Z O U I S  t h ~  number 2,187 

suan pan [see Figure 991: also used in Korea, has beads shaped 
like tiny doughnuts that move almost frictionlessly along bam- 
boo rods. Each rod has five beads (ones) below the bar and two 
(fives) above. The Chinese symbol for suan, "calculate," is re- 

produced from Menninger7s book; it shows an  abacus held 
below by the symbol for "hands," and with the symbol for 
"bamboo" above the abacus. The suan pan's origin is unknown. 
Precise descriptions go back to the 16th century but it is surely 
centuries older. 

The Japanese soroban [see Figure 1001 also can be traced to 
the 16th century, when it was probably borrowed from China. 
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Its counters are sharp-edged: two cones joined at their bases. 
Each rod has only one bead above the bar in a region the Japa- 
nese call "heaven," and only four below in the "earth." (The 
device originally had five beads below, like its Chinese counter- 
part, but the fifth was dropped about 1920. The two extra beads 
on each rod of the suan pan are not essential for modern abacus 
calculating, and discarding them produced a simpler instru- 
ment.) Japan still has yearly abacus contests in which thou- 
sands participate, and the soroban is still used in shops and 
small businesses. although it is rapidly being replaced in banks 
and large firms by modern desk computers. 

There have been many contests in which a Japanese or Chi- 
nese abacist was pitted against an  American operator of a desk 
computer. The most publicized was in 1946 in  Tokyo, when 
Private Thomas Wood matched skills with Kiyoshi Matsuzaki. 
The abacist was faster in all calculations except the multiplica- 
tion of huge numbers. One reason for the great speed of Oriental 
abacists, it should be admitted, is that they do a lot of work in 
their head, using the abacus mainly to record stages of the 
process. 

The principal defect of abacus computation is that it preserves 
no record of past stages. If a mistake is made, the entire calcula- 
tion has to be repeated. Japanese firms often ensure agains~ this 
by having three abacists do the same problem simultaneously. 

FIGURE 100 

Modern Japanese soroban wi th  the  number 4,620 displayed 



If all answers agree, it is assumed, following the rule given by 
the Bellman in Lewis Carroll's The Hunting of the Snark, that 
"What I tell you three times is true." 

Russia's s'choty [see Figure 1011 is markedly different from 
Oriental abaci. The Russians probably acquired it from the 
Arabs, and it is still used in parts of India and in the Middle 
East, where Turks call it a coulba and Armenians a choreb. In 
modern Russia the situation is the same as it is in Japan: almost 
every shopkeeper still uses an abacus, although it is being re- 
placed in the accounting departments of large firms by modern 
desk calculators. The s'choty has horizontal wires or rods, most 
of them holding 10 beads; the two middle beads are of a differ- 

FIGURE 101 

A Russian s'choty 



The Abacus 239 

ent color to make it easy to see where to divide them. The four- 
bead rods on the one shown in the illustration are used for frac- 
tions of rubles and kopeks. 

In recent years the obvious value of the abacus for teaching 
arithmetic to blind children has been recognized and special 
abaci have been developed to reduce friction. Terrance V. Cran- 
mer devised a soroban with foarn rubber and felt under spher- 
ical beads that is available from The American Printing House 
for the Blind, 1839 Frankfort Avenue, Louisville, Ky. 40206. 
The firm also sells a manual in braille by Fred Gissoni. Victor 
E. Haas uses gravity to keep the beads of a soroban from acci- 
dentally sliding together by putting them on wire loops that 
curve upward in semicircles, a principle used in a less extreme 
way in some Russian abaci. 

The easiest kind of calculation to master on the abacus is 
addition. For readers who lack the time or interest to learn the 
finger movements for subtraction (abacus movements must be 
automatic reflexes; it will not do to stop and think how to make 
addition movements in reverse), there is an old method of sub- 
tracting on the abacus by adding. Instead of subtracting the 
smaller number you add the "complement" of each of the digits 
with respect to 9. For example, you wish to take 9,213 from 
456,789 on an Oriental abacus. Place 456,789 on the abacus. 
Mentally put two zeros in front of 9,213 to make it the same 
length as the other number. Then add pairs of digits in the 
usual manner, but from left to right (not the other way, as on 
paper), except that for each digit in 009,213 you substitute its 
difference from 9. In brief, to 456,789 you add 990,786. The 
result, 1,447,575, must now be given a final adjustment. Re- 
move the single bead on the left and add one bead to the end 
digit on the right. This gives 447,576, the correct answer. In 
actual practice this final adjustment is sidestepped by not push- 
ing up the bead on the left when you make the first addition 
and by raising an extra bead on the final addition. Supplying 
extra zeros at the left of a short subtrahend can also be avoided 



by remembering to remove a bead not from the extreme left but 
from the first digit to the left of the number of digits in the 
subtrahend. 

Subtracting by adding complements is the method used in 
Comptometers as well as in high-speed electronic computers. 
The method applies to any number system, provided, of course, 
that the complements are with respect to the system's base less 
one. Thus for a 12-base system you add complements with re- 
spect to 11. For a computer using the binary system, comple- 
mentation is simple because it is the same as changing every 1 
to 0 and every 0 to 1. It goes without saying that abaci can be 
constructed for any base notation. The Oriental abaci adapt 
easily to certain other bases. For the binary, use only the heaven 
portion of the soroban. Its earth region can be used for the 
5-base system. The suan pan can be similarly used for systems 
based on 3 or 6. For a 4-base system confine your attention to 
the top three beads below the bar of either device. For a 12-base 
system use the Chinese abacus, assigning a value of 6 instead 
of 5 to the beads above the bar. 

An excellent practice exercise for abacus addition is linked to 
an old number stunt sometimes used by grade school teachers. 
The "magic number" 12,345,679 (note the missing 8) is 
chalked on the blackboard. A child is asked to step forward and 
name any digit. Suppose he picks 7. The teacher writes 63 
below 12,345,679 and then asks the child to do the multiplica- 
tion. It turns out, one hopes to everyone's amusement, that the 
product consists entirely of 7's. (To determine the multiplier 
the teacher simply multiplies the chosen digit by 9.) 

To use this magic number as an abacus exercise, put 12,345,- 
679 on the abacus and add the same number to it eight times, 
the equivalent of multiplying it by 9. If your eight additions 
are done correctly, the abacus will show a row of 1's (single 
beads against the bottom of the bar). Add the magic number 
nine more times to produce a row of 2's. Nine more additions 
form a row of 3's, and so on until you finish, after 80 additions, 
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with a row of 9's. Every finger movement is called into play by 
this exercise. Moreover, you can easily check the accuracy of 
your work at nine stages along the way, and by timing each 
stage you can tell h o ~  your speed improves from day to day. 

An infinity of other magic numbers have the same property 
as 12,345.679 whell multiplied by a product of any digit, d, and 
a certain constant. The product of 37 and 3d colisists entirely 
of d's-for example, 37 x (3  x 8) = 888. For 7d the smallest 
magic rlumber is 15.873, for 13d it is 8,547, and for 99d it is 
1,122,334,455.667.789. It is not hard to find such numbers. As 
an easy question, what is the smallest magic number for 17d? 
In  other words. what number when multiplied by 174  where d 
is any digit, g i ~ e s  a number corlsisting entirely of d's? 

A N S W E R S  

THE PROBLEM was to find the smallest number that. whcln it is 
multiplied by 17d, where d is any digit, gives a product that 
consists entirely of d's. 

Such a number obviously must produce a string of 1's when 
multiplied by 17, therefore we divide 11 11 . . . by 17 to see if 
we reach a point where there is no remainder. Such a point is 
first reached by the quotient 65.359,477,124,183, the answer to 
the problem. Since 17 times this number is 1.1 11,111,111,111,- 
111, a multiplier of 17 x 2 = 34 will produce a row of 2's, and 
so on for the remaining digits. 

Because the infinite repeating decimal .I 11 1 . . . equals 1/9, 
or the reciprocal of 9. it can be shown that each integral magic 
number is the repeating portion of the decimal form of' a re- 
ciprocal of uneven m~tltiples of 9 that are not multiples of 5. In 
this case the magic number is the repetend in the decimal of 
1/153, the reciprocal of the product of 9 and 17. An example of 
a rloniiitegral magic number is 1.375. Multiplied by 8d. the 
product coilsists entirely of d's, provided that the zeros at the 
right of the product's decimal point are disregarded. 
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Palindromes: 
Words and Numbers 

A man, a plan, a canal-Suez! 
-ETHEL MERPERSON, 

a "near miss" palindromist, 
in Son of Giant Sea Tortoise, 

edited by Mary Ann Madden (Viking, 1975) 

A PALINDROME is usually defined as a word, sentence, or set of 
sentences that spell the same backward as forward. The term 
is also applied to integers that are unchanged when they are 
reversed. Both types of palindrome have long interested those 
who amuse themselves with number and word play, perhaps 
because of a deep, half-unconscious aesthetic pleasure in the 
kind of symmetry palindromes possess. Palindromes have their 
analogues in other fields: melodies that are the same backward, 
paintings and designs with mirror-reflection symmetry, the bi- 
lateral symmetry of animals and man [see Figure 1021 and 
so on. In this chapter we shall restrict our attention to number 
and language palindromes and consider some entertaining new 
developments in both fields. 

An old palindrome conjecture of unknown origin (there are 
references to i t  in publications of the 1930's) is as follows. Start 
with any positive integer. Reverse it and add the two numbers. 
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FIGURE 102 

Flying seagull: a visual palindrome 

This procedure is repeated with the sum to obtain a second sum, 
and the process continues until a palindromic sum is obtained. 
The conjecture is that a palindrome always results after a finite 
number of additions. For example, 68 generates a palindrome 
in three steps: 

For all two-digit numbers it is obvious that i f  the sum of their 
digits is less than 10, the first step gives a two-digit palindrome. 
If their digits add to 10, 11, 12, 13, 14, 15, 16, or 18, a palin- 
drome results after 2, 1, 2, 2, 3, 4, 6, 6 steps respectively. As 
Angela Dunn points out in Mathematical Bafflers (McGraw- 
Hill, 1964), the exceptions are numbers whose two digits add 
to 17. Only 89 (or its reversal, 98) meets this proviso. Starting 
with either number does not produce a palindrome until the 
24th operation results in 8,813,200,023,188. 

The conjecture was widely regarded as being true until re- 
cently, although no one had succeeded in proving it. Charles 
W. Trigg, a California mathematician well known for his work 
on recreational problems, examined the conjecture more care- 
fully in his 1967 article "Palindromes by Addition." He found 



249 integers smaller than 10,000 that failed to generate a palin- 
drome after 100 steps. The smallest such number. 196, was 
carried to 237,310 steps in 1975 by Harry J. Saal, at the Israel 
Scientific Center. No palindromic sum appeared. Trigg believes 
the conjecture to be false. (The number 196 is the square of 14, 
but this is probably an irrelevant fact.) Aside from the 249 ex- 
ceptions, all integers less than 10,000, except 89 and its reversal, 
produce a palindrome in fewer than 24 steps. The largest palin- 
drome, 16,668,488,486,661, is generated by 6,999 (or its re- 
versal) and 7,998 (or its reversal) in 20 steps. 

The conjecture has not been established for any number sys- 
tem, and has been proved false only in number notations with 
bases that are powers of 2. (See the paper by Heiko Harborth 
listed in the bibliography.) The smallest binary counterexample 
is 10110 (or 22 in the decimal system). After four steps the 
sum is 10u01@, after eight steps it is 1 0 ~ 0 1 ~ 0 ,  after 12 
steps it is 1 0 ~ 0 1 ~ 0 .  Every fourth step increases by one 
digit each of the two sequences of underlined digits. Brother 
Alfred Brousseau, in "Palindromes by Addition in Base Two," 
proves that this asymmetric pattern repeats indefinitely. He also 
found other repeating asymmetric patterns for larger binary 
numbers. 

There is a small but growing literature on the properties of 
palindromic prime numbers and conjectures about them. Ap- 
parently there are infinitely many such primes, although so 
far as I know this has not been proved. It is not hard to show, 
however, that a palindromic prime, with the exception of I? ,  
must have an odd number of digits. Can the reader do this be- 
fore reading the simple proof in the answer section? Norman 
T. Gridgeman has conjectured that there is an infinity of prime 
pairs of the form 30,103-30,203 and 9,931,399-9,932,399 in 
which all digits are alike except the middle digits, which differ 
by one. But Gridgeman's guess is far from proved. 

Gustavus J. Simmons has written two papers on palindromic 
powers. After showing that the probability of a randomly se- 
lected integer being palindromic approaches zero as the number 
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of digits in the integer increases, Simmons examines square 
numbers and finds them much richer than randomly chosen 
integers in palindromes. There are infinitely many palindromic 
squares, most of which, it seems, have square roots that also are 
palindromes. (The smallest nonpalindromic root is 26). Cubes 
too are unusually rich in palindromes. A computer check on all 
cubes less than 2.8 x lo1* turned up a truly astonishing fact. 
The only palindromic cube with a nonpalindromic cube root, 
among the cubes examined by Simmons, is 10,662,526,601. Its 
cube root, 2,201, had been noticed earlier by Trigg, who re- 
ported in 1961 that it was the only nonpalindrome with a palin- 
dromic cube less than 1,953,125,000,000. It is not yet known if 
2,201 is the only integer with this property. 

Simmons7 computer search of palindromic fourth powers, to 
the same limit as his search of cubes, failed to uncover a single 
pali~idromic fourth power whose fourth root was not a palin- 
drome of the general form 10 . . . 01. For powers 5 through 
10 the computer found no ~alindromes at all except the trivial 
case of 1. Simmons conjectures that there are no palindromes 
of the form X%rhere k is greater than 4. 

"Repunits," numbers consisting entirely of l's, produce palin- 
dromic squares when the number of units is one through nine, 
but 10 or more units give squares that are not palindrornic. It 
has been erroneously stated that only primes have palindromic 
cubes, but this is disproved by an infinity of integers, the smallest 
of which is repunit 11 1. It is divisible by 3, yet its cube, 1,367,- 
631, is a palindrome. The number 836 is also of special interest. 
It is the largest three-digit integer whose square, 698,896, is 
palindromic, and 698,896 is the smallest palindromic square 
with an even number of digits. (Note also that the number re- 
mains palindromic when turned upside down.) Such palin- 
dromic squares are extremely rare. The next-larger one with 
an even number of digits is 637,832,238,736, the square of 
798,644. 

Turning to language palindromes, we first note that no com- 
mon English words of more than seven letters are palindromic. 



Examples of seven-letter palindromes are reviver, repaper, 
deified and rotator. The word "radar" (for radio detecting and 
ranging) is  lota able because it \?-as coined to symbolize the re- 
flection of radio waves. Dmitri Borgmann, whose files contain 
thousands of sentence palindromes in  all major languages, 
asserts in his book Language on  Vacation that the largest non- 
hyphenated word palindrome is saippuakauppias, a Finnish 
word for a soap dealer. 

Arnong proper names in English, according to Borgmann, 
none is longer than Wassamassaw, a swamp north of Charles- 
ton, S.C. Legend has it, he writes, that it is an Indian word 
meaning "the worst place ever seen." Yreka Bakery has long 
been in business on West Miner Street in Yreka, Calif. Lon 
Nol, the former Cambodian premier. has a palindromic name, 
as does U Nu, once premier of Burma. Revilo P. Oliver, a clas- 
sics professor at the University of Illinois, has the same first 
name as his father and grandfather. I t  was originally devised 
to make the name palindromic. If there is anyone with a longer 
palindromic name I do not know of it, although Borgmann sug- 
gests such possibilities as Norah Sara Sharon, Edna Lala La- 
lande, Duane Rollo Renaud, and many others. 

There are thousands of excellent sentence palindromes in 
English, a few of which were discussed in a chapter on word 
play in my  Sixth  Book of Mathematical Games from Scientific 
American. The interested reader will find good collections in 
the Borgmann book cited above, and in the book by Howard 
Bergerson. Composing palindromes at night is one way for an  
insomniac to pass the dark hours, as Roger Angel1 so amusingly 
details in his article "Ainmosni" ("Insomnia" backward) in 
T h e  N e w  Yorker. I limit myself to one palindrome that is not 
well known, yet is remarkable for both its length and natural- 
ness: "Doc note, I dissent. A fast never prevents a fatness. I diet 
on cod." It  won a prize for James Michie in a palindrome con- 
test sponsored by the N e w  Statesman in England; results were 
published in the issue for May 5 ,  1967. Many of the winning 
palinclromes are much longer than Michie's, but, as is usually 
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the case, the longer palindromes are invariably difficult to 
understand. 

Palindromists have employed various devices to makc the 
unintelligibility of long palindromes more plausible: presenting 
them as telegrams, as one side only of a telephone conversation, 
alid so on. Leigh Mercer, a leading British palindromist (he is 
the inventor of the famous "A man, a plan, a canal-Pa- 
nama!"), has suggested a way of writing a palindrome as long 
as one wishes. The sentence has the form, " '- ,' sides re- 
versed, is '- .' " The first blank can be any sequence of 
letters, however long, which is repeated in reverse order in the 
second blank. 

Good palindromes involving the names of U.S. presidents are 
exceptionally rare. Rorgmann cites the crisp "Taft: fat!" as one 
of the shortest and best. Richard Nixon's name lends itself to 
"No 'x' in 'Mr. R. M. Nixon'?" although the sentence is a bit 
too contrived. A shorter, capitalized version of this palindrome, 
NO X IN NIXON, is also invertible. 

The fact that "God" is "dog" backward has played a role in 
many sentence palindromes, as well as in orthodox psycho- 
analysis. In Freud's Contribution to Psychiatry A. A. Brill cites 
a rather farfetched analysis by Carl Jung and others of a patient 
suffering from a ticlike upward movement of his arms. The 
analysts decided that the tic had its origin in an unpleasant 
early visual experience involving dogs. Because of the "dog- 
god" reversal, and the man's religious convictions, his uncon- 
scious had developed the gesture to symbolize a warding off of 
the evil "dog-god." Edgar Allan Poe's frequent use of the re- 
versal words "dim" and "mid" is pointed out by Humbert Hum- 
bert, the narrator of Vladimir Nabokov's novel Lolita. I n  the 
second canto of Pale Fire, in Nabokov's novel of the same title, 
the poet John Shade speaks of his dead daughter's propensity for 
word reversals: 

. . . She twisted words: pot, top, 
Spider, redips. And "powder" was "red wop." 



Such word reversals, as well as sentences that are different 
sentences when they are spelled backward, are obviously close 
cousins of palindromes, but the topic is too large to go into here. 

Palindrome sentences in which words, not letters, are the 
units have been a specialty of another British expert on word 
play, J. A. Lindon. Two splendid examples, from scores that he 
has composed, are: 

"You can cage a swallow, can't you, but you can't swallow a 
cage, can you?" 

"Girl, bathing on Bikini, eyeing boy, finds boy eyeing bikini 
on bathing girl." 

Many attempts have been made to write letter-unit palin- 
drome poems, some quite long, but without exception they are 
obscure, rhymeless, and lacking in other poetic values. Some- 
what better poems can be achieved by making each line a sepa- 
rate palindrome rather than the entire poem, or by using the 
word as the unit. Lindon has written many poems of both types. 
A third type of palindrome poem, invented by Lindon, employs 
lines as units. The poem is unchanged when its lines are read 
forward but taken in reverse order. One is allowed, of course, to 
punctuate duplicate lines differently. The following example is 
one of Lindon's best: 

A s  I was passing near the  jail 
I met  a m a n ,  but hurried by. 
His face was ghastly, gr imly  pale. 
H e  had a gun.  I wondered w h y  
H e  had. A gun? I wondered . . . w h y ,  
His face was ghastly! G r i m l y  pale, 
I met  a m a n ,  but hurried b y ,  
A s  I was passing near the  jail. 

This longer one is also by Lindon. Both poems appear in 
Howard W. Bergerson's Palindromes and Anagrams (Dover, 
1973) .  



Palindromes: W o r d s  and Numbers 

DOPPELGANGER 
Entering the lonely house wi th  my wife, 

I saw h i m  for the first t ime 
Peering furtirsely from behind a bush- 

Blackness that moved, 
A shape amid the shadows, 

A momentary  glimpse of gleaming eyes 
Revealed i n  the ragged moon. 

A closer look ( h e  seemed to t u r n )  might have 
Put him to flight forever- 

I dared not 
(For reasons that I failed to understand), 

Though  I knew I should act at once. 

I puzzled over i t ,  hiding a l o m ,  
Watching the  woman as she neared the  gate. 

H e  came, and I saw h i m  crouching 
Night  after night. 
Night after night 

H e  came, and I saw h i m  crouching, 
Watching the  woman as she neared the  gate. 

I puzzled oz3er it, hiding alone- 
Though  I knew I should act at once, 

For reasons that I failed to understand 
I dared not 

Put h i m  to flight forever. 

A closer look ( h e  seemed to t u r n )  might  h u e  
Revealed in the  ragged moon 

A momentary glimpse of gleaming eyes, 
A shape amid the shadows, 

Blackness that moved. 

Peering furtir,ely from behind a bush, 
I saw h im,  for the first t ime,  

Entering the  lonely house wi th  my  wife. 



Lindon holds the record for the longest word ever worked 
into a letter-unit palindrome. To understand the palindrome 
you must know that Beryl has a husband who enjoys running 
around his yard without any clothes on. Ned has asked him if 
he does this to annoy his wife. He answers: "Named undenom- 
inationally rebel, I rile Beryl? La, no! I tan. I'm, 0 Ned, nude, 
man!" 

A D D E N D U M  

A. Ross ECKLER, editor and publisher of Word Ways, a quar- 
terly journal on word play that has featured dozens of articles 
on palindromes of all types, wrote to say that the "palindromic 
gap" between English and other languages is perhaps not as 
wide as I suggested. The word "semitime" (in Webster's Sec- 
ond) can be pluralized to make a 9-letter palindrome, and "kin- 
nikinnik" is in Webster's Third. Dmitri Borgmann pointed out 
in Word Ways, said Eckler, that an examination of foreign dic- 
tionaries failed to substantiate such long palindromic words as 
the Finnish soap dealer, suggesting that they are artificially 
created words. 

Among palindromic towns and cities in the United States, 
Borgmann found the 7-letter Okonoko (in West Virginia). If 
a state (in full or abbreviated form) is part of the palindrome, 
Borgmann offers Apollo, Pa., and Adaven, Nevada. Some U.S. 
towns, Eckler continued, are intentional reversal pairs, such as 
Orestod and Dotsero, in Eagle County, Colorado, and Colver 
and Revloc, in Cambria County, Pennsylvania. Nova and Avon, 
he added, are Ohio towns that are an unintentional reversal 
pair. 

George L. Hart 111 sent the following letter, which was pub- 
lished in Scientific American, November 1970: 

Sirs: 
Apropos of your discussion of palindromes, I would like to 

offer an example of what I believe to be the most complex and 
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exquisite type of palindrome ever invented. I t  was devised by 
the Sanskrit aestheticians, who termed it saruatobhadra, that is, 
"perfect in every direction." The most famous example of it is 
found in the epic poem entitled ~i iu~a lauadha .  

sa - kii - ra - nFi - nii - ra - kii - sa - 
kii - ya - sii - da - da - sii - ya - kii 
ra - sa - ha - vii vii - ha - sii - ra - 
nii - da -va - da - da - vii - da - nii. 

(nii da va da da vii da nii 
ra SZ ha ~ i i  VZ ha sii ra 
ka ya SF, da da sa 
sa kii ra nii nii ra C a k" sa) 

Here hyphens indicate that the next syllable belongs to the 
same word. The last four lines, which are an inversion of the 
first four, are not part of the verse but are supplied so that its 
properties can be seen more easily. The verse is a description 
of an army and may be translated as follows: "[That army], 
which relished battle [rasahavii], contained allies who brought 
low the bodes and gaits of their various striving enemies [sakii- 
raniiniirakiisakiiyasiidadaskiyakii], and in it the cries of the best 
of mounts contended with musical instruments [viihasiiraniida- 
viidadaviidanii] ." 

Two readers, D. M. Gunn and Rosina Wilson, conveyed the 
sad news that the Yreka Bakery no longer existed. However, in 
1970 its premises were occupied by the Yrella Gallery, and Ms. 
Wilson sent a Polaroid picture of the gallery's sign to prove it. 
Whether the gallery is still there or not, I do not know. 

A N S W E R S  

READERS WERE ASKED to prove that no prime except 11 can be a 
palindrome if it has an eve11 number of digits. The proof ex- 
ploits a well-known test of divisibility by 11 (which will not be 
proved here): If the difference between the sum of all digits in 



even positions and the sum of all digits in odd positions is zero 
or a multiple of 11, the number is a multiple of 11. When a pal- 
indrome has an even number of digits, the digits in odd posi- 
tions necessarily duplicate the digits in even positions; therefore 
the difference between the sums of the two sets must be zero. 
The palindrome, because it has 11 as a factor, cannot be prime. 

The same divisibility test applies in all number systems when 
the factor to be tested is the system's base plus one. This proves 
that no palindrome with an even number of digits, in any num- 
ber system, can be prime, with the possible exception of 11. The 
number 11 is prime if the system's base is one less than a prime, 
as it is in the decimal system. 



C H A P T E R  2 0  

Dollar Bills 

A REMARKABLE VARIETY of small man-made objects lend them- 
selves to tricks and puzzles that are sometimes mathematical in 
character. Let's take a not-so-serious look at some puzzling as- 
pects of dollar bills. 

A curious folding stunt involving symmetry operations on 
the rectangular shape of a bill is well known to magicians. The 
performer holds the bill at each end, with the picture of Wash- 
ington upright [see Figure 1031. He folds the bill in half 
lengthwise, then in half to the left, and once again in half to 
the left. Then he unfolds the bill, apparently by reversing the 
three previous steps, but now Washington is upside down! 
When others try to do the same thing, the bill stubbornly re- 
fuses to invert. 

The secret lies in the second fold. Note that it is made by car- 
rying the right half of the bill behind the left half. The third 
fold is made the opposite way. When those two folds are un- 

done, they are both opened to the front. This has the effect of 
rotating the bill 180 degrees around a vertical axis, as you will 
see by comparing the bill at step 2 with the bill at step 6. Even 
so, the final inversion comes as a surprise. One must practice 
until the three folds can be made smoothly and quickly. The 
unfolding should be slow and deliberate while you assert (ma- 



FIGURE 103 

Inverting a dollar bill 
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gicians have the privilege of fibbing) that you are carefully re- 
peating the same three steps in reverse time sequence. 

Origami experts have devoted much time to devising ways of 
folding dollar bills into such things as a finger ring, bow tie, 
peacock, rabbit in hat; indeed, two treatises on this have been 
published by the Ireland Magic Company of Chicago: The 
Folding Money Book by Adolfo Cerceda (1963) and The Fold- 
ing Money Book Number Two by Samuel and Jean Randlett 
(1968). The folds described in those books are rather compli- 
cated, but here is a simple one that readers are invited to dis- 
cover for themselves. How can a dollar bill be given two creases 
in such a way that it makes the best possible picture of a mush- 
room? 

All bills have identifying eight-digit serial numbers, and of 
course those numbers can figure in many different kinds of 
mathematical diversion. Has the reader ever played dollar-bill 
poker? Each of two players takes a bill from his pocket and the 
two then alternate claims of a pair or better, using the digits of 
the serial number as if they were cards. No straights or full 
houses are allowed, but sets of like digits may go higher than 
four of a kind. At each turn a player must raise his claim or 
call. Bluffing is permitted. After a call both numbers are in- 
spected and the player who made the last claim is allowed to use 
the serial numbers on both bills to satisfy his claim. For exam- 
ple, if he had claimed six 3's and there are two 3's in his serial 
number and four or more in his opponent's, he wins his oppo- 
nent's dollar. Otherwise he loses his dollar. 

A trick that was a favorite of Royal V. Heath, a New York 
stockbroker and amateur magician who in 1933 wrote a book 
called Mathemagic, begins by someone's being asked to take a 
dollar bill from his pocket and look at the serial number. He 
calls out the sum of the first and second digits and then the sum 
of the second and third digits, the third and fourth, and so on to 
the end. For an eighth and final sum he adds the last and sec- 
ond digits. The performer jots down these eight sums as they 
are called. Without making any written calculations he imme- 
diately writes out the bill's serial number. 



The problem is one of solving quickly a set of eight simulta- 
neous equations. The solution goes back to Diophantus, a third- 
century algebraist who lived in Alexandria; the earliest presen- 
tation of it as a trick is in ProblBmes Plaisants et DLlectables, by 
Claude Gaspar Bachet (1612), Problem VII. There is a simple 
procedure for calculating the original number. Add the second, 
fourth, sixth, and eighth sums; subtract the sum of the third, 
fifth, and seventh sums; halve the result. This can be done eas- 
ily in the head as the sums are called out. Starting with the sec- 
ond sum, the numbers are alternately subtracted and added as 
shown schematically in Figure 104. Halving the filial result 
gives the second digit of the serial number. Instead of calling it 
out, however, the performer subtracts it from the first sum so 
that he can write and call out the serial number's first digit. I t  
is a simple matter to give the remaining digits in order. The sec- 
ond is already known. Subtracting it from the second sum gives 
the third digit of the serial number. The third digit subtracted 
from the third sum gives the fourth digit, and so on to the end. 

The trick is not limited to the digits of eight-digit numbers. 

m 

I L ~ J . J I J I &  
PAIR SUMS: 14 - 7 + 5 - 3 + 9 - 13 + 

==9 (SECOND DIGIT OF SERIAL NUMBER) 
2 

FIGURE 104 

A n  ancient formula solves a dollar-bill trick 
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It applies to any series of real numbers, positive or negative, 
rational or irrational. If there is an even number of numbers 
in the series, the procedure just explained is used. If there is an 
odd number of numbers, you ask that the final sum be that of 
the last and first numbers. Instead of ignoring the first sum, 
start with the first sum and alternately subtract and add. Halv- 
ing the final result then gives the first (not the second) number 
in the original series. Suppose, for instance, the series is 100, 
-27, 2/3, -1, 2,456. The five sums will be 73, -26%, -1/3, 
2,455, and 2,556. When these are alternately subtracted and 
added, the result is 200. Half of 200 is 100, the first number of 
the original series. (For a puzzle based on all this, see Knot IV 
of Lewis Carroll's A Tangled Tale.) 

Many tricks with serial numbers are based on what magi- 
cians call the "nine principle," which in turn derives from the 
fact that our number system is based on 10. For example, ask 
someone to take a bill from his pocket while you stand with 
your back turned. Have him jot down its serial number. Tell 
him to scramble the eight digits-that is, to write them down 
in any order-to make a second eight-digit number and then to 
subtract the smaller number from the larger. With your back 
still turned, ask him to cross out any digit (except zero) in the 
answer, then call out to you, in any order, the remaining digits. 
You immediately name the digit he crossed out. 

The secret lies in the fact that if any number is scrambled 
and the smaller number taken from the larger, the difference 
has a digital root of 9. An example will make this clear. Sup- 
pose the serial number is 06281377 and this is scrambled to 
87310267. The difference is 81028890. The digital root of this 
number is obtained by adding the digits in any order, casting 
out nines as you go along. Eight plus 1 plus 2 is 11, but in your 
mind you add the digits of 11 and remember only 2, which is 
the same as taking 9 from 11. Continue in this way, adding the 
digits whenever a partial sum has more than one digit. The sin- 
gle digit at the finish is the digital root. Since the number ob- 
tained by subtraction is certain to have a digital root of 9, it is 



easy to determine the missing digit. Merely add the digits as 
they are called, casting out nines as you go along. If the final 
digit is 9, your subject must have crossed out 9. Otherwise take 
the final digit from 9 to get the crossed-out digit. 

Many other procedures also result in numbers with digital 
roots of 9. For instance, your subject can add the digits of the 
serial number, then subtract the sum from the serial number. 
Or he can add the digits, multiply by 8, and add the product 
to the original number. Instead of naming a number crossed out 
in the final result, you can calculate a person's age by asking 
him to add his age to the final result and call off, in any order, 
the digits in the sum. What you do is obtain the digital root of 
the numbers called out, then keep adding nines to it mentally 
until you reach what you estimate to be his age. Suppose a 
woman follows any of the above procedures that produce a 
number with a digital root of 9. She adds her age and gives you, 
in scrambled order, the digits in the sum. Assume they have 
a digital root of 4. In your mind you simply tick off: 4-13-22- 
31-40-49 and so on, picking the number that seems most likely 
to be her age. 

For another trick based on the nine principle, obtain a bill 
with a serial number that has a digital root of 9 and carry it 
with you. You ask someone to jot down eight random digits but, 
before he starts, you appear to have an afterthought. Take out 
your bill and tell him to use the digits of its serial number; it is 
a handy way, you explain, to obtain random digits. While your 
back is turned he can scramble the number and add the two 
eight-digit numbers, then you can proceed with any of the 
tricks described above. Indeed, he can form as many scrambled 
eight-digit numbers as he wishes; their sum will always have a 
digital root of 9. He can scramble and multiply by any number; 
the product will have a digital root of 9. If he suspects that your 
bill is a special one and insists on using one of his own, shift to 
one of the previously described procedures. 

A bit harder to puzzle out is the following serial-number stunt 
by Ben B. Braude that appeared in a magic periodical with the 
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unlikely name The Pallbearers Review (see October 1967, page 
127; December 1967, page 144). The subject writes down the 
serial number of his own bill, reverses it, and adds the two num- 
bers. He crosses out any digit and reads the result aloud, substi- 
tuting x for the missing digit. Suppose the serial number is 
30956714. The subject begins by adding this to its reversal, 
41765903. He crosses out 6 in the sum and reads aloud: 
72722x1 7. How can you figure the missing digit? 

Serial numbers serve, of course, to forestall various kinds of 
criminal activity, but there is at least one swindle in which a 
bill's serial number plays an essential role. The fraud pops up 
from time to time in American bars. A man at one end of the 
bar starts doing magic tricks for the bartender and customers 
seated nearby. After a few tricks he announces that he will per- 
form the most sensational trick he knows. It requires a $10 bill. 
He asks the bartender to lend him such a bill and, to make sure 
the identical bill is returned, asks him to copy down the bill's 
serial number. The magician folds this bill and apparently seals 
it in an envelope. Actually it is passed through a slot in the 
back of the envelope and palmed. The empty envelope is burned 
in an ashtray, seemingly destroying the bill. While the enve- 
lope burns, the magician secretly passes the bill to a confeder- 
ate as he walks by on his way to the other end of the bar. The 
confederate uses the bill to pay another bartender for a drink. 
After the envelope is burned the magician tells the bartender to 
look in his cash register, where he will find the original bill. 
The bill is found, its serial number is checked, everyone is flab- 
bergasted, and the two swindlers leave with a profit of about $9. 

Does the reader know how to use a dollar bill as a ruler? The 
distance from the right side of the shield below the eagle to the 
right margin of the bill is one inch. The width of "United 
States" at the top of the green side is two inches. The rectangle 
containing the words "Federal Reserve Note" at the top of the 
bill's face is three inches wide. The bill itself is three-sixteenths 
of an inch longer than six inches. Eliminate one margin and 
you come very close to six inches. 



I conclude with a series of puzzles, all concerning a $1 bill 
unless otherwise specified: 

1. The numeral 1 appears in 10 places on a dollar bill, not 
counting those numbers that vary from bill to bill but including 
the 1 starting the year of the series and the Roman numeral I 
below the pyramid. How many times does a word for 1 appear? 

2. How many times does the word "ten" appear on a $10 
bill? 

3. Find the date 1776 on a dollar bill. 
4. Find a picture of a door key. 
5. Find a word that is an anagram of "poetics." 
6. Find a word that is an anagram of "a night snow." 
7. Find these four-letter words: "sofa," "dose," "shin," 

"oral," "eats," "fame," "isle," "loft." 
8. Find "Esau" and "Iva." 
9. Find the phrase "at sea." 
10. Find a Spanish word printed upside down. 
11. Find a word with "0" as one of its letters, but an  "0" 

pronounced like a "W." 
12. What is the meanii~g of the eye above the pyramid and 

who suggested that it be put there? 
13. On a $5 bill find "New Jersey" and the number 172. 
14. If a $5 bill is tossed into the air, what is the probability 

that it will land with Lincoln's picture on the top side? 

A N S W E R S  

THE FIRST PROBLEM was to fold a bill twice and produce a 
mushroom. I t  is done as in Figure 105. 

The second problem concerned the sum of a bill's serial num- 
ber and its reversal. When any number with an even number 
of digits is added to its reversal, the sum is always a multiple of 
11. And all multiples of 11 have the following property: either 
the sum of the digits in the odd positions equals the sum of the 
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FIGURE 105 

How to fold a $1 bill to make a mushroom 

digits in the even positions or the sums differ by a multiple of 
11. This provides a technique for determining the digit omitted 
from the sum of the serial number and its reversal. Simply ob- 
tain the sum of the even-position digits and the sum of the odd- 
position digits, then give x (the omitted digit) a value that will 
make the difference between those two sums either 0 or a mul- 
tiple of l l .  In the example the spectator calls out 72722x1 7. The 
odd-position digits here add to 17, the even-position digits to 11. 
Since x belongs to the even set, x must have a value that will 
raise 11 to 17. Therefore x equals 6. If the set containing x has 
a sum greater than 17, say 19, you add 11 to 17, making 28, 
then subtract 19 to arrive at 9 for the missing digit. (Alter- 
natively, you could subtract 11 from 19 to get 8, then take 8 
from 17 to arrive at 9.) If the set containing x has a sum that is 
less than the other sum and differs from it by more than 11, add 
11 and subtract. If the sums of the two alternating sets are 
equal, the missing digit is 0. 

Answers to the short questions follow: 
1. A word for "1" appears nine times on a $1 bill. Did you 

overlook "unum"? 
2. The word "ten" appears 13 times on a $10 bill. Did you 

overlook "ten" in "tender" and "septent"? 



3. The date 1776 appears in Roman numerals at  the base of 
the pyramid. 

4. The door key is in the green seal on the bill's face. 
5.  The anagram of "poetics" is "coeptis" (above the pyra- 

mid). 
6. "Washington" is the anagram of "a night snow." 
7. "Sofa," appears in "United States of America," "dose" in 

the Latin phrase below the pyramid, "shin" in "Washington," 
"oral" in "for all debts." "eats" in "great seal," "fame" in 
"of America," "isle" in "is legal," "loft" in "great seal of the." 

8. "Esau7' is in "Thesaur" (in the green seal). "Ivan is in 
'Lprivate." 

9. "At sea" is in "great seal." 
10. The inverted Spanish word is "sin (in "This note is . . .") 

and elsewhere. Reader Scott Brown found four others: "0," 
"no," "ni," and " o s . ~ ~  

11. "One" contains "0" pronounced as a "W." 
12. The eye above the pyramid is the "Eye of Providence." I t  

was proposed by Benjamin Franklin to emphasize that the 
Union, symbolized by the 13-step pyramid, should always be 
under the watchful eye of God. 

13. On a $5 bill "New Jersey" is the state name above the 
third and fourth columns of the Lincoln Memorial. You'll need 
a magnifying glass to see it. The number 172 can be seen as 
large dark numerals in the foliage at the base of the memorial, 
on the left. The number can be taken as 3172, but the 3 is not as 
distinct as the other numerals are. 

14. The probability is 1. On the back of a $5 bill you will see 
Lincoln's statue inside the Lincoln Memorial. 



Postscript 

1. Optical Illusions 
A large number of radically new optical illusions have 

been discovered since this book was published. Some you 
will find in references added to the bibliography. For 
dramatic demonstrations of many recent illusions, I rec- 
ommend a few days in The Exploratorium, San Fran- 
cisco's fabulous science museum. 

2. Matches 
Of course there are hundreds, perhaps thousands, of 

match tricks and puzzles that could not be included in 
my chapter. Some appear in later book collections of my 
columns. However, I cannot resist adding here a perplex- 
ing, little-known puzzle, of unknown origin. It came to 
me by way of friend Me1 Stover, of Winnipeg. 

Arrange five matches to look like a giraffe facing west: 

It's best to remove the match heads, or use toothpicks, 
because the orientation of each match is considered irrel- 



evant. The problem is to change the position of just one 
match and leave the original figure. The second "giraffe" 
may be a rotation and/or reflection of the original. I t  
would spoil the fun to give the answer. Persons have 
been known to work on the puzzle for hours before the 
aha! hits them. 

3. Spheres and Hyperspheres 
Enormous progress has been made in the last two 

decades on finding the densest possible packings for 
spheres in dimensions of 3 or higher. The work has been 
stimulated by the fact that dense packings are closely 
related to the construction of error-correcting codes- 
ways of sending digital signals so as to minimize distor- 
tions caused by noise on the channels. For the best 
nontechnical account of how this works, see Neil Sloane's 
1984 Scientific American article listed in the biblio- 
graphy. In addition to this application of sphere close 
packings, there are also applications in the design of 
analogue-to-digital computer converters, as well as to the 
properties of liquids and solids. 

It is surprising that the densest packings have been 
proved only for "spheres" in one and two dimensions. In 
3-space, the face-centered cubic packing, which fills rJ18 
of space (a bit more than 74 percent), is undoubtedly 
best. Kepler, in a little treatise on snowflakes, called it 
the best, and Buckminister Fuller, in his book Synerget- 
i c ~ ,  does the same, though neither man gave a proof. In 
1988 it was shown that the density cannot exceed 77 + 
percent. Hilbert, in his famous 1900 list of major un- 
solved problems, included the task of proving the face- 
centered cubic packing to be the densest. In 1990 Wu-Yi 
Hsiang, at the University of California, Berkeley, an- 
nounced a proof, but it is long and complex, and at  the 
time I write has not been confirmed. 

In 1980 Noam Elkies, of Harvard, found a clever way 
to construct dense-packing lattices from elliptic curves. 
The technique has led to several improved packings, even 
though why it works is not fully understood. 
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The chart below gives the "kissing number" (number 
of spheres that touch each sphere) in the best known 
packings in spaces 4 through 13: 

In 4-space it is now known that the kissing number 
must be either 24 or 25. The 8-space and 12-space pack- 
i n g ~  are unusually dense, and almost surely the best. 

The most important recent discovery was Leech's 24- 
space packing in which each sphere touches 196,500 
others. In 1968 John Conway constructed the lattice's 
symmetry group. I t  has 8,315,553,613,086,720,000 ele- 
ments. In 1979 Neil Sloane and Andrew Odlyzko, both of 
Bell Labs, proved that no more than 196,560 hyper- 
spheres can touch a hypersphere in 24-space, but there is 
as yet no proof that some non-lattice arrangement might 
be denser. 

Slicing the Leech lattice in various ways provides the 
best known packings in all dimensions less than 24 
except for spaces of 10, 11, and 13 dimensions. Little is 
known about packings in spaces above 24. When the 
dimensions get close to 1,000, random packings do better 
than any known lattice patterns. 

9. Can Machines Think? 
A vigorous, at  times vicious, controversy now rages 

over whether computers of the sort we know how to 
make-that is, computers made of wires and switches- 
will ever develop consciousness, free will, and the ability 
to perform creative tasks that humans perform. Those 



who are convinced that computers will some day reach 
this goal include most leaders of A1 (Artificial Intelli- 
gence). Hans Moravic, in his book Mind Children, has 
even predicted that this goal will be reached within the 
next half-century. 

Among philosophers, John Searle is the leading oppo- 
nent of this view. His famous Chinese Room thought 
experiment, much debated these days, is designed to 
show that no matter how fast and sophisticated comput- 
ers are, they do nothing more than twiddle symbols 
which have no meaning to the machine. Computers play 
master chess, but do they "know" they are playing 
chess? Is a computer "aware" of anything it does any 
more than a vacuum cleaner knows it is cleaning a rug? 

The strongest attack on the notion that computers 
think in a manner analogous to the way humans think is 
The Emperor's New Mind, by the British mathematical 
physicist Roger Penrose. You must not suppose that 
Penrose defends a "ghost in the machine," or has aban- 
doned the view that mind is a function of a material 
brain. Penrose's central point is that we do not know 
enough about matter, especially about levels below quan- 
tum mechanics, to understand how our brain does what 
it does. Put  another way, we have no inkling of how 
complex a computer must be to cross a threshold at  
which it becomes aware of itself, has free will, can con- 
struct fruitful scientific theories, discover significant 
mathematical theorems, write good poetry, and so on. 

It is possible in principle to build a Turing machine 
with tinker toys that can do anything an electronic com- 
puter can do. Of course, it would be monstrously large 
and exceedingly slow. Nevertheless, nothing a computer 
made of wires and switches can do would be beyond its 
capability. Would such a tinker toy computer, sufficiently 
large and complex, become aware of itself? Or will, as 
Penrose thinks, such awareness require a computer based 
on laws of physics not yet known? 

According to a story in the Wall Street Journal (March 
19, 1991) plans are underway for Turing tests actually to 
begin. The first round will take place at  Boston's Com- 
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puter Museum, coordinated by psychologist Robert 
Epstein. Judges will include philosophers W. V. Quine 
and Daniel Dennett, and computer scientist Joseph 
Weizenbaum. Hugh Loebner, a New York businessman, 
philanthropist, and computer buff, is offering a $100,000 
prize to the first person who passes a Turing test, subject 
to careful provisos yet to be worked out. Smaller prizes 
will go to those who score highest on initial rounds. 

Two biographies of Turing, one a touching memoir by 
his mother, are listed in the bibliography. They tell of his 
sad, eccentric life that ended with a probable suicide at  
the age of 42. 

10. Cyclic Numbers 
Edward Kitchen, in Problem 1248 (Mathematics Mag- 

azine, Vol. 60, October 1987, page 245), noticed the 
curious fact that the six coordinate points (1,4) (:4,2) 
(2,s)  (€45) (5,7) and (7 , l )  lie on an ellipse. A group of 
solvers, investigating all period-6 reciprocals, found that 
eight others handled in this way are on ellipses, and 
those of 13 and 17 are on hyperbolas. All other period-6 
reciprocals that provide enough points to determine a 
unique conic curve do not lie on a conic. 

11. Eccentric Chess and Other Problems 
Two papers on the ten-digit number problem and its 

generalizations appeared in The Mathematical Gazette: 
" Self-Descriptive Strings," by Michael McKay and 
Michael Waterman, Vol. 66, March 1982, pages 1-4; and 
" Self-Descriptive Lists-a Short Investigation," by Tony 
Gardner, Vol. 68, March 1984, pages 5-10. 

14. Simplicity 
Almost no progress, if any, has been made in finding a 

way to measure the simplicity of a theory in a manner 
that would be useful to scientists. One recent suggestion, 
based on a technique for defining random numbers, is to 
translate a theory into a string of binary digits. The 



theory's simplicity is then defined by the length of the 
shortest computer program that will print the string. 
This isn't much help. Quite apart from the difficulty of 
finding the shortest algorithm for a long binary expres- 
sion, how is the string formed in the first place? How, for 
example, can you express superstring theory by a string 
of binary digits? 

Scientists all agree that somehow the simpler of two 
theories, each with the same explanatory and predictive 
power, has the better chance of being fruitful, but no one 
knows why. Maybe it's because the ultimate laws of 
nature are simple, but who can be positive there really 
are ultimate laws? Some physicists suspect there may be 
infinite levels of complexity. At each level the laws may 
get progressively simpler until suddenly the experi- 
menters open a trap door and another complicated sub- 
basement is discovered. 

20. Dollar Bills 
A Games column in Omni, by Scot Morris (see the 

bibliography's last entry) contains a wealth of new dollar 
bill recreations. You will learn how to crease a bill so that 
by tipping it you can make Washington smile or frown. 
How many eyes are on a dollar bill? There are two on 
George, one at the pyramid's apex, and another on the 
eagle. Morris shows how to fold the bill to make the faces 
of two bug-eyed monsters, raising the total of eyes to 
eight. 

I said the numeral 1 appears ten times on a dollar bill. 
Morris found an eleventh-in the date 1789 at the bot- 
tom of the green seal. "Saw nothing" is another ana- 
gram of "Washington." 

For dozens of other magic tricks, stunts, puzzles, and 
jokes using bills, see the second from last entry in the 
bibliography. 
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For more than two decades Martin Gardner's Mathematical 
Games columns in Scientific American have delighted a 
world-wide audience that has included mathematicians and 
dreamers, scientists and high-school kids, computer program- 
mers and poets. . . . Time magazine has noted that "W. H. 
Auden constantly quoted from Gardner's work." Vladimir 
Nabokov gives him a walk-on part in the novel Ada ,  introduc- 
ing a Martin Gardiner who is identified as an "invented 
philosopher." The real Mr. Gardner's book The  Relativity 
Explosion has been recognized as the clearest explanation of 
Einstein's theories-and his New Ambidextrous Universe as a 
masterly clarification of abstruse parity physics. His Anno- 
tated Alice (which long ago passed the half-million-copies mark) 
is beloved by Carrollians, as well as its sequel More Annotated 
Alice. He is a passionate partisan: Pro Oz! Anti pseudoscience 
-vide his many articles in defense of the rational and his book 
Fads and Fallacies i n  the Name o f  Science! He is an occasional 
critic for The New York Review of Books, and a redoubtable 
amateur magician. He is the author of a theological novel The  
Flight of Peter Fromm. And this is only a small glimpse into 
the work and world of Martin Gardner. 

Mr. Gardner was born in Tulsa, Oklahoma, was educated at 
the University of Chicago, and is now living in the mountains 
of western North Carolina. 



Here !s what reviewers have m!d about thir book. 

"A circus suggests fun and eqjoyment and 
them is plenty of both to be found here. 
The book should certainly be in the school 
Ifbrary. It will also be a valuable resource 
for the teacher. . . . It is impossible to 
come away from the book without a feeling 
for M n e s s  and fun In mathematics. . . 
that surely must be a good thing for both 
pupils and teachers." 
The Mathematical Garcldr 

"His puzzles and paradoxes, games and 
enkrtahments not only provide hoifrs of 
stimulation or relaxation, but also challenge 
one's ability to Chink log!calIy, and reason 
precisely. His puzzles ncKfrc the mind 
and not only f-inate puzzle fanatics but 
are also capable of amusing and intriguing 
serious pdkssional mathematicians. 
scientf.cr and astronomers." 
Science Reporkr 
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