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Introduction

Ten years ago the writer of a mathematics
textbook would have been considered
frivolous by his colleagues if his book in-
cluded puzzles and other entertaining
topics. This is no longer true. Exercises in
the first two volumes of Donald E. Knuth’s
monumental work in progress, The Art
of Computer Programming (Reading:
Addison-Wesley, 1968, 1969), are filled
with recreational material. There are even
textbooks in which a recreational emphasis
is primary. A delightful instance is Harold
R. Jacobs’s Mathematics: A Human En-
deavor, subtitled A Textbook for Those
Who Think They Don’t Like the Subject
(San Francisco: W. H. Freeman and Co.,
1970). Richard Bellman, Kenneth L. Cooke,
and Jo Ann Lockett, authors of Algorithms,
Graphs, and Computers (New York: Aca-
demic Press, 1970), write in their preface,
“The principal medium we have chosen to
achieve our goals is the mathematical
puzzle.”

The trend is not hard to understand. It
is part of the painfully slow recognition by

educators that students learn best who are
motivated best. Mathematics has never
been a dreary topic, although too often it
has been taught in the dreariest possible
way. There is no better way to relieve the
tedium than by injecting recreational top-
ics into a course, topics strongly tinged
with elements of play, humor, beauty, and
surprise. The greatest mathematicians al-
ways looked upon their subject as a source
of intense intellectual delight and seldom
hesitated to pursue problems of a recre-
ational nature. If you flip the leaves of
W. W. Rouse Ball’s classic British work,
Mathematical Recreations and Essays
(first published by Macmillan in 1892 and
soon to be issued in a twelfth revised edi-
tion), you will find the names of celebrated
mathematicians on almost every page.

Euclid himself, among the earliest of
the mathematical giants, wrote an entire
book (unfortunately it did not survive) on
geometrical fallacies. This is a topic cov-
ered in standard works on recreational
mathematics but curiously avoided in most
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geometry textbooks. One of these days high
school teachers of geometry will discover
that an excellent way to impress their stu-
dents with the need for rigor in deduction
is to “prove” on the blackboard that, say,
a right angle equals an obtuse angle, then
challenge the class to explain where the
reasoning went wrong.

The value of recreational mathematics is
not limited to pedagogy. There are endless
historical examples of puzzles, believed
to be utterly trivial, the solving of which
led to significant new theorems, often with
useful applications. I cite only one recent
instance. Edward F. Moore writes, in an
important paper on ‘“The Shortest Path
through a Maze”: “The origin of the present
methods provides an interesting illustra-
tion of the value of basic research on puz-
zles and games. Although such research is
often frowned upon as being frivolous, it
seems plausible that these algorithms might
eventually lead to savings of very large
sums of money by permitting more eflicient
use of congested transportation or com-

munication systems.” (Reprinted in Annals
of the Computation Laboratory of Harvard
University, Vol. 30, 1959; pages 285-292.)
Need I remind readers that the maze is a
topological puzzle older than Euclid’s
geometry, and that topology itself had its
origin in Leonhard Euler’s famous analysis
of a route-tracing puzzle involving the
seven bridges of Konigsberg?

This is the sixth anthology of my arti-
cles for the Scientific American department
called Mathematical Games. As in previous
collections, the articles have been ex-
panded, errors corrected, bibliographies
added. I am grateful to the magazine for
the great privilege of contributing regu-
larly to its pages, to my wife for unfailing
help in proofing, and as always to the hun-
dreds of Scientific American readers whose
suggestions have added so much to the
value of the original articles.

MARTIN GARDNER
February, 1971



1. The Helix

Rosy’s instant acceptance of our model at first amazed me. | had feared that
her sharp, stubborn mind, caught in her self-made antihelical trap, might dig
up irrelevant results that would foster uncertainty about the correctness of
the double helix. Nonetheless, like almost everyone else, she saw the appeal
of the base pairs and accepted the fact that the structure was too pretty

not to be true.

A STRAIGHT SWORD will fit snugly into a
straight scabbard. The same is true of a
sword that curves in the arc of a circle: it
can be plunged smoothly into a scabbard
of the same curvature. Mathematicians
sometimes describe this property of straight
lines and circles by calling them “self-
congruent” curves; any segment of such a
curve can be slid along the curve, from one
end to the other, and it will always “fit.”

Is it possible to design a sword and its
scabbard that are not either straight or
curved in a circular arc? Most people, after
giving this careful consideration, will an-
swer no, but they are wrong. There is a
third curve that is self-congruent: the cir-

James D. Watson, The Double Helix

cular helix. This is a curve that coils around
a circular cylinder in such a way that it
crosses the “elements” of the cylinder at a
constant angle. Figure 1 makes this clear.
The elements are the vertical lines that
parallel the cylinder’s axis; A is the constant
angle with which the helix crosses every
element. Because of the constant curvature
of the helix a helical sword would screw its
way easily in and out of a helical scabbard.

Actually the straight line and the circle
can be regarded as limiting cases of the
circular helix. Compress the curve until
the coils are very close together and you
get a tightly wound helix resembling a
Slinky toy; if angle A increases to 90 de-



1. Circular helix (colored) on cylinder

grees, the helix collapses into a circle. On
the other hand, if you stretch the helix
until angle A becomes zero, the helix is
transformed into a straight line. If parallel
rays of light shine perpendicularly on a
wall, a circular helix held before the wall
with its axis parallel to the rays will cast
on the wall a shadow that is a single circle.
If the helix is held at right angles to the
rays, the shadow is a sine curve. Other kinds

of projections produce the cycloid and other
familiar curves.

Every helix, circular or otherwise, is an
asymmetric space curve that differs from
its mirror image. We shall use the term
“right-handed” for the helix that coils clock-
wise as it “goes away,” in the manner of an
ordinary wood screw or a corkscrew. Hold
such a corkscrew up to a mirror and you
will see that its reflection, in the words of
Lewis Carroll’s Alice, “goes the other way.”
The reflection is a left-handed corkscrew.
Such a corkscrew actually can be bought as
a practical joke. So unaccustomed are we to
left-handed screw threads that a victim may
struggle for several minutes with such a
corkscrew before he realizes that he has to
turn it counterclockwise to make it work.

Aside from screws, bolts, and nuts, which
are (except for special purposes) standard-
ized as right-handed helices, most man-
made helical structures come in both right
and left forms: candy canes, circular stair-
cases, rope and cable made of twisted
strands, and so on. The same variations in
handedness are found in conical helices
(curves that spiral around cones), including
bedsprings and spiral ramps such as the
inverted conical ramp in Frank Lloyd
Wright's Guggenheim Museum in New
York City.

Not so in nature! Helical structures
abound in living forms, from the simplest
virus to parts of the human body, and in
almost every case the genetic code carries
information that tells each helix precisely
“which way to go.” The genetic code it-
self, as everyone now knows, is carried by



2. Helical horns of the Pamir sheep have opposite handedness

a double-stranded helical molecule of DNA,
its two right-handed helices twining around
each other like the two snakes on the staff
of Hermes. Moreover, since Linus Pauling’s
pioneer work on the helical structure of
protein molecules, there has been increas-
ing evidence that every giant protein mole-
cule found in nature has a “backbone” that
coils in a right-handed helix. In both nu-
cleic acid and protein, the molecule’s back-
bone is a chain made up of units each one
of which is an asymmetric structure of the
same handedness. Each unit, so to speak,
gives an additional twist to the chain, in
the same direction, like the steps of a helical
staircase.

Larger helical structures in animals that
have bilateral symmetry usually come in
mirror-image pairs, one on each side of the
body. The horns of rams, goats, antelopes,
and other mammals are spectacular ex-
amples [see Figure 2]. The cochlea of the
human ear is a conical helix that is left-
handed in the left ear and right-handed in

the right. A curious exception is the tooth
of the narwhal, a small whale that flourishes
in arctic waters. This whimsical creature
is born with two teeth in its upper jaw.
Both teeth remain permanently buried in
the jaw of the female narwhal, and so does
the right tooth of the male. But the male’s
left tooth grows straight forward, like a
javelin, to the ridiculous length of eight or
nine feet—more than half the animal’s
length from snout to tail! Around this giant
tooth are helical grooves that spiral forward
in a counterclockwise direction [see Figure
3]. On the rare occasions when both teeth
grow into tusks, one would expect the right
tooth to spiral clockwise. But no, it too is
always left-handed. Zoologists disagree on
how this could come about. Sir D’Arcy
Thompson, in his book On Growth and
Form, defends his own theory that the
whale swims with a slight screw motion
to the right. The inertia of its huge tusk
would produce a torque at the base of the
tooth that might cause it to rotate counter-



3. Helical grooves of the narwhal tooth are always left-handed

clockwise as it grows (see “The Horn of
the Unicorn,” by John Tyler Bonner; Sci-
entific American, March, 1951).

Whenever a single helix is prominent in
the structure of any living plant or animal,
the species usually confines itself to a helix
of a specific handedness. This is true of
countless forms of helical bacteria as well
as of the spermatozoa of all higher animals.
The human umbilical cord is a triple helix
of one vein and two arteries that invariably
coil to the left. The most striking instances
are provided by the conical helices of the
shells of snails and other mollusks. Not
all spiral shells have a handedness. The
chambered nautilus, for instance, coils on
one plane; like a spiral nebula, it can be
sliced into identical left and right halves.
But there are thousands of beautiful mol-
luscan shells that are either left- or right-
handed [see Figure 4]. Some species are
always left-handed and some always right-
handed. Some go one way in one locality
and the other way in another. Occasional
“sports” that twist the wrong way are prized
by shell collectors.

A puzzling type of helical fossil known
as the devil’s corkscrew (Daemonelix) is

found in Nebraska and Wyoming. These
huge spirals, six feet or more in length,
are sometimes right-handed and sometimes
left-handed. Geologists argued for decades
over whether they are fossils of extinct
plants or helical burrows made by ancestors
of the beaver. The beaver theory finally
prevailed after remains of small prehistoric
beavers were found inside some of the
corkscrews.

In the plant world helices are common
in the structure of stalks, stems, tendrils,
seeds, flowers, cones, leaves—even in the
spiral arrangement of leaves and branches
around a stalk. The number of turns made
along a helical path, as you move from one
leaf to the leaf directly above it, tends to be
a number in the familiar Fibonacci series:
1, 2,3,5,8, 13 . .. (Each number is the
sum of the preceding two numbers.) A
large literature in the field known as “phyl-
lotaxy” (leaf arrangement) deals with the
surprising appearance of the Fibonacci
numbers in botanical phenomena of this
sort.

The helical stalks of climbing plants are
usually right-handed, but thousands of
species of twining plants go the other way.



4. Three molluscan shells that are right-handed conical helices

The honeysuckle, for instance, is always
left-handed; the bindweed (a family that
includes the morning glory) is always right-
handed. When the two plants tangle with
each other, the result is a passionate, vio-
lent embrace that has long fascinated En-
glish poets. “The blue bindweed,” wrote
Ben Jonson in 1617, “doth itself enfold with
honeysuckle.” And Shakespeare, in A Mid-
summer Night’s Dream, has Queen Titania
speak of her intention to embrace Bottom
the Weaver (who has been transformed into
a donkey) by saying: “Sleep thou, and I
will wind thee in my arms./ . . . So doth

the woodbine the sweet honeysuckle/
Gently entwist.” In Shakespeare’s day
“woodbine” was a common term for bind-
weed. Because it later came to be applied
exclusively to honeysuckle many commen-
tators reduced the passage to absurdity
by supposing that Titania was speaking of
honeysuckle twined with honeysuckle.
Awareness of the opposite handedness of
bindweed and honeysuckle heightens, of
course, the meaning of Titania’s metaphor.

More recently, a charming song called
“Misalliance,” celebrating the love of
the honeysuckle for the bindweed, has been



MISALLIANCE

The fragrant Honeysuckle spirals clockwise to the sun
And many other creepers do the same.
But some climb counterclockwise, the Bindweed does, for one,
Or Convolvulus, to give her proper name.

Rooted on either side a door, one of each species grew,
And raced toward the window ledge above.
Each corkscrewed to the lintel in the only way it knew,
Where they stopped, touched tendrils, smiled and fell in love.

Said the right-handed Honeysuckle
To the left-handed Bindweed:
“Oh, let us get married,

If our parents don’t mind. We'd
Be loving and inseparable.
Inextricably entwined, we’d
Live happily ever after,”
Said the Honeysuckle to the Bindweed.

To the Honeysuckle’s parents it came as a shock.
“The Bindweeds,” they cried, “are inferior stock.
They’re uncultivated, of breeding bereft.

We twine to the right and they twine to the left!”

Said the counterclockwise Bindweed
To the clockwise Honeysuckle:
“We’d better start saving—

Many a mickle maks a muckle—
Then run away for a honeymoon
And hope that our luck’ll
Take a turn for the better,”

Said the Bindweed to the Honeysuckle.

A bee who was passing remarked to them then:
“T've said it before, and I'll say it again:
Consider your offshoots, if offshoots there be.
They’ll never receive any blessing from me.”

Poor little sucker, how will it learn
When it is climbing, which way to turn?
Right—left—what a disgrace!

Or it may go straight up and fall flat on its face!

Said the right-hand-thread Honeysuckle
To the left-hand-thread Bindweed:
“It seems that against us all fate has combined.
Oh my darling, oh my darling,
Oh my darling Columbine,
Thou art lost and gone forever,
We shall never intertwine.”

Together they found them the very next day.
They had pulled up their roots and just shriveled away,
Deprived of that freedom for which we must fight,
To veer to the left or to veer to the right!

MicHAEL FLANDERs




written by the British poet and entertainer
Michael Flanders and set to music by his
friend Donald Swann. With Flanders’ kind
permission the entire song is reproduced
on the opposite page. (Readers who would
like to learn the tune can hear it sung by
Flanders and Swann on the Angel recording
of At the Drop of a Hat, their hilarious two-
man revue that made such a hit in London
and New York.) Note that Flanders” honey-
suckle is right-handed, his bindweed left-
handed. It is a matter of convention whether
a given helix is called left- or right-handed.
If you look at the point of a right-handed
wood screw, you will see the helix moving
toward you counterclockwise, so that it
can just as legitimately be called left-
handed. Flanders simply adopts the con-
vention opposite to the one taken here.

The entwining of two circular helices
of opposite handedness is also involved in
a remarkable optical-illusion toy that was
sold in this country in the 1930’s. Itis easily
made by twisting together a portion of two
wire coils of opposite handedness [see
Figure 5]. The wires must be soldered to
each other at several points to make a rigid
structure. The illusion is produced by
pinching the wire between thumb and fore-
finger of each hand at the left and right
edges of the central overlap. When the

The Helix

hands are moved apart, the fingers and
thumbs slide along the wire, causing it to
rotate and create a barber’s-pole illusion
of opposite handedness on each side. This
is continuously repeated. The wire seems to
be coming miraculously out of the inex-
haustible meshed portion. Since the neu-
trino and antineutrino are now known to
travel with screw motions of opposite
handedness, I like to think of this toy as
demonstrating the endless production of
neutrinos and their mirror-image particles.

The helical character of the neutrino’s
path results from the fusion of its forward
motion (at the speed of light) with its
“spin.” Helical paths of a similar sort are
traced by many inanimate objects and living
things: a point on the propeller of a moving
ship or plane, a squirrel running up or down
a tree, Mexican free-tailed bats gyrating
counterclockwise when they emerge from
caves at Carlsbad, New Mexico. Conically
helical paths are taken by whirlpools, wa-
ter going down a drain, tornadoes, and thou-
sands of other natural phenomena.

Writers have found helical motions useful
on the metaphorical level. The progress of
science is often likened to an inverted
conical spiral: the circles growing larger
and larger as science probes further into
the unknown, always building upward on

5. Helical toy that suggests the production of neutrinos
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the circles of the past. The same spiral, a
dark, bottomless whirlpool into which an
individual or humanity is sliding, has also
been used as a symbol of pessimism and
despair. This is the metaphor that closes
Norman Mailer’s book Advertisements for
Myself. “Am 1 already on the way out?”
he asks. Time for Mailer is a conical helix
of water flushing down a cosmic drain,
spinning him off “into the spiral of star-lit
empty waters.”

And now for a simple helix puzzle. A ro-
tating barber’s pole consists of a cylinder
on which red, white, and blue helices are
painted. The cylinder is four feet high. The
red stripe cuts the cylinder’s elements
(vertical lines) with a constant angle of 60
degrees. How long is the red stripe?

The problem may seem to lack sufficient
information for determining the stripe’s
length; actually it is absurdly easy when
approached properly.

Answer

If a right triangle is wrapped around any
type of cylinder, the base of the triangle
going around the base of the cylinder, the
triangle’s hypotenuse will trace a helix on
the cylinder. Think of the red stripe of the
barber’s pole as the hypotenuse of a right

<

triangle, then “‘unwrap” the triangle from
the cylinder. The triangle will have angles
of 30 and 60 degrees. The hypotenuse of
such a triangle must be twice the altitude.
(This is easily seen if you place two such
triangles together to form an equilateral
triangle.) In this case the altitude is four
feet, so that the hypotenuse (red stripe)
is eight feet.

The interesting part of this problem is
that the length of the stripe is independent
not only of the diameter of the cylinder but
also of the shape of its cross section. The
cross section can be an irregular closed
curve of any shape whatever; the answer
to the problem remains the same.
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2. Klein Bottles and Other Surfaces

Three jolly sailors from
Blaydon-on-Tyne
They went to sea in a bottle by Klein.
Since the sea was entirely inside
the hull
The scenery seen was exceedingly dull.

Frederick Winsor,
The Space Child’s Mother Goose

TO A TOPOLOGIST a square sheet of paper
is a model of a two-sided surface with a
single edge. Crumple it into a ball and it is
still two-sided and one-edged. Imagine
that the sheet is made of rubber. You can
stretch it into a triangle or-circle, into any
shape you please, but you cannot change
its two-sidedness and one-edgedness. They
are topological properties of the surface,
properties that remain the same regardless
of how you bend, twist, stretch, or compress
the sheet.

Two other important topological invari-
ants of a surface are its chromatic number

and Betti number. The chromatic number is
the maximum number of regions that can
be drawn on the surface in such a way that
each region has a border in common with
every other region. If each region is given
a different color, each color will border on
every other color. The chromatic number
of the square sheet is 4. In other words, it
is impossible to place more than four differ-
ently colored regions on the square so that
any pair has a boundary in common. The
term “chromatic number” also designates
the minimum number of colors sufficient
to color any finite map on a given surface.
It is not yet known if 4 is the chromatic
number, in this map-coloring sense, for
the square, tube, and sphere, but for all
other surfaces considered in this chapter,
it has been shown that the chromatic num-
ber is the same under both definitions.

The Betti number, named after Enrico
Betti, a nineteenth-century Italian physi-
cist, is the maximum number of cuts that
can be made without dividing the surface
into two separate pieces. If the surface has
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edges, each cut must be a “crosscut’”: one
that goes from a point on an edge to another
point on an edge. If the surface is closed
(has no edges), each cut must be a “loop
cut”: a cut in the form of a simple closed
curve. Clearly the Betti number of the
square sheet is 0. A crosscut is certain to
produce two disconnected pieces.

If we make a tube by joining one edge
of the square to its opposite edge, we cre-
ate a model of a surface topologically dis-
tinct from the square. The surface is still
two-sided but now there are two separate
edges, each a simple closed curve. The
chromatic number remains 4 but the Betti
number has changed to 1. A crosscut from
one edge to the other, although it eliminates
the tube, allows the paper to remain in one
piece.

A third type of surface, topologically the
same as the surface of a sphere or cube, is
made by folding the square in half along a
diagonal and then joining the edges. The
surface continues to be two-sided but all
edges have been eliminated. It is a closed
surface. The chromatic number continues
to be 4. The Betti number is back to 0: any
loop cut obviously creates two pieces.

Things get more interesting when we
join one edge of the square to its opposite
edge but give the surface a half-twist before
doing so. You might suppose that this can-
not be done with a square piece of paper,
but it is easily managed by folding the
square twice along its diagonals, as shown
in Figure 6. Tape together the pair of edges
indicated by the arrow in the last drawing.
The resulting surface is the familiar Mo-

10

6. Mébius surface constructed with a square

bius strip, first analyzed by A. F. Mobius,
the nineteenth-century German astronomer
who was one of the pioneers of topology.
The model will not open out, so it is hard to
see that it is a Mobius strip, but careful
inspection will convince you that it is. The
surface is one-sided and one-edged, with a
Betti number of 1. Surprisingly, the chro-
matic number has jumped to 6. Six regions,
of six different colors, can be placed on the



7. Torus surface folded from a square

surface so that each region has a border in
common with each of the other five.

When both pairs of the square’s opposite
edges are joined, without twisting, the
surface is called a torus. It is topologically
equivalent to the surface of a doughnut or
a cube with a hole bored through it. Figure
7 shows how a flat, square-shaped model
of a torus is easily made by folding the
square twice, taping the edges as shown by

the solid gray line in the second drawing
and the arrows in the last. The torus is
two-sided, closed (no-edged) and has a
chromatic number of 7 and a Betti number
of 2. One way to make the two cuts is first
to make a loop cut where you joined the
last pair of edges (this reduces the torus to
a tube) and then a crosscut where you
joined the first pair. Both cuts, strictly
speaking, are loop cuts when they are

11
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marked on the torus surface. It is only be-
cause you make one cut before the other
that the second cut becomes a crosscut.
It is hard to anticipate what will hap-
pen when the torus model is cut in vari-
ous ways. If the entire model is bisected
by being cut in half either horizontally
or vertically, along a center line parallel
to a pair of edges, the torus surface receives
two loop cuts. In both cases the resulting
halves are tubes. If the model is bisected
by being cut in half along either diagonal,
each half proves to be a square. Can the
reader find a way to give the model two
loop cuts that will produce two separate
bands interlocked like two rings of a chain?
Many different surfaces are closed like
the surface of a sphere and a torus, yet one-
sided like a Mobius strip. The easiest one
to visualize is a surface known as the Klein
bottle, discovered in 1882 by Felix Klein,
the great German mathematician. An ordi-
nary bottle has an outside and inside in the
sense that if a fly were to walk from one side
to the other, it would have to cross the edge
that forms the mouth of the bottle. The
Klein bottle has no edges, no inside or out-
side. What seems to be its inside is con-
tinuous with its outside, like the two appar-
ent “sides” of a Mobius surface.
Unfortunately it is not possible to con-
struct a Klein bottle in three-dimensional
space without self-intersection of the sur-
face. Figure 8 shows how the bottle is tra-
ditionally depicted. Imagine the lower end
of a tube stretched out, bent up and plunged
through the tube’s side, then joined to the
tube’s upper mouth. In an actual model

12

8. Klein bottle: a closed surface
with no inside or outside

made, say, of glass there would be a hole
where the tube intersects the side. You
must disregard this defect and think of the
hole as being covered by a continuation
of the bottle’s surface. There is no hole,
only an intersection of surfaces. This self-
intersection is necessary because the model
is in three-space. If we conceive of the sur-
face as being embedded in four-space, the
self-intersection can be eliminated entirely.
The Klein bottle is one-sided, no-edged
and has a Betti number of 2 and a chro-
matic number of 6.

Daniel Pedoe, a mathematician at Pur-
due University, is the author of The Gentle
Art of Mathematics. 1t is a delightful book,
but on page 84 Professor Pedoe slips into
a careless bit of dogmatism. He describes



9. Folding a Klein bottle from a square

the Klein bottle as a surface that is a chal-
lenge to the glass blower, but one “which
cannot be made with paper.” Now, it is
true that at the time he wrote this appar-
ently no one had tried to make a paper
Klein bottle, but that was before Stephen
Barr, a science-fiction writer and an ama-
teur mathematician of Woodstock, New
York, turned his attention to the problem.
Barr quickly discovered dozens of ways to
make paper Klein bottles. Here 1 will de-
scribe only one of Barr’s Klein bottles; one
that enables us to continue working with a
square and at the same time follows closely
the traditional glass model.

The steps are given in Figure 9. First,
make a tube by folding the square in half

and joining the right edges with a strip of
tape as shown [Step 1]. Cut a slot about a
quarter of the distance from the top of the
tube [Step 2], cutting only through the
thickness of paper nearest you. This cor-
responds to the “hole” in the glass model.
Fold the model in half along the broken
line A. Push the lower end of the tube up
through the slot [Step 3] and join the edges
all the way around the top of the model
[Step 4] as indicated by the arrows. It is
not difficult to see that this flat, square
model is topologically identical with the
glass bottle shown in Figure 8. In one way
it is superior: there is no actual hole. True,
you have a slot where the surface self-
intersects, but it is easy to imagine that

13
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the edges of the slot are joined so that
the surface is everywhere edgeless and
continuous.

Moreover, it is easy to cut this paper
model and demonstrate many of the bottle’s
astonishing properties. Its Betti number of
2 is demonstrated by cutting the two loops
formed by the two pairs of taped edges. If
you cut the bottle in half vertically, you
get two Mobius bands, one a mirror image
of the other. This is best demonstrated by
making a tall, thin model [see Figure 10]

10. Bisected bottle makes two Mbbius strips

———— ————— —— —————— ———

\>
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from a tall, thin rectangle instead of a
square. When you slice it in half along the
broken line (actually this is one long loop
cut all the way around the surface), you will
find that each half opens out into a Mobius
strip. Both strips are partially self-inter-
secting, but you can slide each strip out of
its half-slot and close the slot, which is
not supposed to be there anyway.

If the bottle can be cut into a pair of
Mobius strips, of course the reverse pro-
cedure is possible, as described in the fol-
lowing anonymous limerick:

A mathematician named Klein
Thought the Mobius band was divine.
Said he: “If you glue
The edges of two,
You’'ll get a weird bottle like mine.”

Surprisingly, it is possible to make a
single loop cut on a Klein bottle and pro-
duce not two Mobius strips but only one.
A great merit of Barr’s paper models is that
problems like this can be tackled empir-
ically. Can the reader discover how the
cut is made?

The Klein bottle is not the only simple
surface that is one-sided and no-edged. A
surface called the projective plane (because
of its topological equivalence to a plane
studied in projective geometry) is similar
to the Klein bottle in both respects as well
as in having a chromatic number of 6. As in
the case of the Klein bottle, a model cannot
be made in three-space without self-inter-
section. A simple Barr method for folding
such a model from a square is shown in
Figure 11. First cut the square along the



f 1. Folding a cross-cap and pfojective plane from a square

solid black lines shown in Step 1. Fold the
square along the diagonal A-A’, inserting
slot C into slot B [Steps 2 and 3]. You must
think of the line where the slots interlock
as an abstract line of self-intersection. Fold
up the two bottom triangular flaps E and F,
one on each side [Step 4], and tape the
edges as indicated.

The model is now what topologists call
a cross-cap, a self-intersecting Mobius strip
with an edge that can be stretched into a
circle without further self-intersection. This
edge is provided by the edges of cut D,

originally made along the square’s diagonal.

Note that unlike the usual model of a Mo-

bius strip, this one is symmetrical: neither
right- nor left-handed. When the edge of the
cross-cap is closed by taping it [Step 5],
the model becomes a projective plane. You
might expect it to have a Betti number of 2,
like the Klein bottle, but it does not. It has
a Betti number of 1. No matter how you
loop-cut it, the cut produces either two
pieces or a piece topologically equivalent
to a square sheet that cannot be cut again
without making two pieces. If you remove a
disk from anywhere on the surface of the
projective plane, the model reverts to a
cross-cap.

Figure 12 summarizes all that has been
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12. Topological invariants
of seven basic surfaces
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said. The square diagrams in the first col-
umn show how the edges join in each
model. Sides of the same color join each to
each, with the direction of their arrows
coinciding. Corners labeled with the same
letter are corners that come together. Bro-
ken lines are sides that remain edges in the
finished model. Next to the chromatic num-
ber of each model is shown one way in
which the surface can be mapped to ac-
commodate the maximum number of colors.
It is instructive to color each sheet as
shown, coloring the regions on both sides
of the paper (as though the paper were
cloth through which the colors soaked), be-
cause you must think of the sheet as having
zero thickness. An inspection of the final
model will show that each region does in-
deed border on every other one.

Answers

The torus-cutting problem is solved by
first ruling three parallel lines on the un-
folded square [see Figure 13]. When the
square is folded into a torus, as explained,
the lines make two closed loops. Cutting
these loops produces two interlocked
bands, each two-sided with two half-twists.

How does one find aloop cut on the Klein
bottle that will change the surface to a
single Mobius strip? On both left and right
sides of the narrow rectangular model de-
scribed you will note that the paper is
creased along a fold that forms a figure-
eight loop. Cutting only the left loop trans-
forms the model into a Mobius band;

Klein Bottles

13. Solution to the torus-cutting problem

cutting only the right loop produces an
identical band of opposite handedness.

What happens if both loops are cut? The
result is a two-sided, two-edged band with
four half-twists. Because of the slot the band
is cut apart at one point, so that you must
imagine the slot is not there. This self-
intersecting band is mirror-symmetrical,
neither right- nor left-handed. You can
free the band of self-intersection by sliding
it carefully out of the slot and taping the
slot together. The handedness of the re-
sulting band (that is, the direction of the
helices formed by its edges) depends on
whether you slide it out to the right or the
left. This and the previous cutting prob-
lems are based on paper models that were
invented by Stephen Barr and are described
in his Experiments in Topology.
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3. Combinatorial Theory

“AMID THE ACTION and reaction of so dense
a swarm of humanity,” Sherlock Holmes
once remarked in reference to London,
“every possible combination of events may
be expected to take place, and many a little
problem will be presented which may be
striking and bizarre. . . .” Substitute “math-
ematical elements” for “humanity” and
the great detective’s remark is not a bad
description of combinatorial mathematics.

In the language of set theory, combina-
torial analysis is concerned with the ar-
rangement of elements (discrete things)
into sets, subject to specified conditions.
A person playing chess is faced with a
combinatorial problem: how best to bring
about an arrangement of elements (chess
pieces) on an eight-by-eight lattice, sub-
ject to chess rules, so that a certain element
(his opponent’s king) will be unable to
avoid capture. A composer of music faces
a combinatorial problem: how to arrange
his elements (tones) in such a way as to
arouse aesthetic pleasure. In the broadest
sense, combinatorial tasks abound in daily

life: seating guests around a table, solving
crossword puzzles, playing card games,
making out schedules, opening a safe,
dialing a telephone number. When you put
a key in a cylinder lock, you are using a
mechanical device (the key) to solve the
combinatorial problem of raising five little
pins to the one permutation of heights
that allows the cylinder to rotate. (This
basic idea, by the way, goes back to wooden
cylinder locks of ancient Egypt.)
Combinatorial number problems are as
old as numbers. In China a thousand years
before Christ mathematicians were explor-
ing number combinations and permutations.
The Lo Shu, an ancient Chinese magic
square, is an exercise in elementary combi-
nations. How can the nine digits be placed
in a square array to form eight intersecting
sets of three digits (rows, columns, and main
diagonals), each summing to the same num-
ber? Not counting rotations and reflections,
the Lo Shu [see Figure 18, page 24] is the
only answer. It is a pleasant exercise in
combinatorial thinking to see how simply
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14. Two of Ramon Lull’'s combinatorial wheels

you can prove the Lo Shu pattern to be
unique. (A good proof is given by Maurice
Kraitchik in his Mathematical Recreations;
New York: Dover, 1953; pages 146-147.)

In the thirteenth century Ramén Lull, an
eccentric Spanish theologian, built a flour-
ishing cult around combinatorial thinking.
It was Lull’s fervid conviction that every
branch of knowledge could be reduced to a
few basic principles and that by exploring
all possible combinations of these princi-
ples one could discover new truths. To aid
the mind in such endeavors Lull used con-
centric disks mounted on a central pin.
Around the rim of each disk he placed
letters symbolizing the basic ideas of the
field under investigation; by turning the
wheels one could run through all combi-
nations of ideas. [see Figure 14]. Even today
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there are survivals of Lullism in techniques
developed for “creative thinking.”

Until the nineteenth century most combi-
natorial problems were, like magic squares,
studied as either mystical lore or mathe-
matical recreations. To this day they pro-
vide a large share of puzzle problems,
some of which are trivial brain teasers:
A drawer contains two red socks, two green
socks, and two blue socks. What is the
smallest number of socks you can take from
the drawer, with your eyes closed, and be
sure you have a pair that matches?

There are moderately difficult questions
such as: In how many different ways can a
dollar be changed with an unlimited sup-
ply of halves, quarters, dimes, nickels,
and pennies?

And there are problems so difficult they



have not yet been solved: Find a formula
for the number of different ways a strip of
n postage stamps can be folded. Think of
the stamps as being blank on both sides.
Two ways are not “different” if one folded
packet can be turned in space so that its
structure is the same as the other. Two
stamps can be folded in only one way,
three stamps in two ways, four in five ways
[see Figure 15]. Can the reader give the
number of different ways a strip of five
stamps can be folded?

It was not until about 1900 that combi-
natorial analysis began to be recognized
as an independent branch of mathematics,
and not until the 1950’s that it suddenly
grew into a vigorous new discipline. There
are many reasons for this upsurge of in-
terest. Modern mathematics is much con-
cemed with logical foundations, and a
large part of formal logic is combinatorial.
Modern science is much concerned with
probability, and most probability problems
demand prior combinatorial analysis. Al-
most everywhere science looks today it
discovers not continuity but discreteness:
molecules, atoms, particles, the quantum
numbers for charge, spin, parity, and so on.
Wolfgang Pauli’s “exclusion principle,”
which finally explained the structure of the
periodic table of elements, was the outcome
of combinatorial thinking.

The great revolution that is now under
way in biology springs from the sensational
discovery that genetic information is carried
by a nucleic acid code of four letters taken
three at a time in a way that recreational
mathematicians have been exploring for

15. Ways of folding two, three, and four stamps
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more than a century. Perhaps it is no acci-
dent that the first suggestion the genetic
code consisted of triplets of four symbols
was made by the physicist George Gamow,
who always had a keen interest in mathe-
matical puzzles. (For the story of this re-
markable insight, see the afterword of
Gamow’s autobiography, My World Line.)
Information theory with its bits and code
words, computers with their yes and no
circuits raise a myriad of combinatorial
questions. At the same time the computer
has made possible the solution of combina-
torial problems that had previously been too
complex to solve. This too has surely been
a factor in stimulating interest in combi-
natorial mathematics.

The two main types of combinatorial
problem are “existence” problems and
“enumeration” problems. An existence
problem is simply the question of whether
or not a certain pattern of elements exists.
It is answered with an example or a proof
of possibility or impossibility. If the pat-
tern exists, enumeration problems follow.
How many varieties of the pattern are there?
What is the best way to classify them? What
patterns meet various maxima and minima
conditions? And so on.

We can illustrate both types of problem
by considering the following simple ques-
tion: Is it possible to arrange a set of posi-
tive integers from 1 to n in a hexagonal
array of n cells so that all rows have a con-
stant sum? In short: Is a magic hexagon
possible?

The simplest such array of cells is shown
in Figure 16. Can the digits from 1 to 7 be
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16. “Order 2’ magic hexagon impossibility proof

placed in those seven cells in such a way
that each of the nine rows has the same
sum? The sum, called the magic constant,
is easily determined. We have only to add
the digits from 1 to 7 and then divide by
3 —the number of rows that are parallel in a
given direction. The sum is 28, but it is not
evenly divisible by 3. Since the magic
constant must be an integer, we have
proved that an “order 27 magic hexagon
(the order is the number of cells on a side)
is impossible. For an even simpler im-
possibility proof consider corner-cell A.
It belongs to two rows that contain only
two cells. If both rows have the same sum,
cells B and C will have to contain the same
digit, but this violates a condition of the
problem that was given.

Turning attention to the next largest array,
an order-3 hexagon with 19 cells, we find
that the numbers sum to 190—which is
divisible by 5, the number of parallel rows
in one direction. The magic constant is 38.



The previous impossibility proof has failed,
but of course this does not guarantee that
an order-3 magic hexagon exists.

In 1910 Clifford W. Adams, now living in
Philadelphia as a retired clerk for the Read-
ing Railroad, began searching for a magic
hexagon of order 3. He had a set of hexag-
onal ceramic tiles made, bearing the num-
bers 1 to 19, so that he could push them
around and explore patterns easily. For
forty-seven years he worked at the task in
odd moments. In 1957, convalescing from
an operation, he found a solution [see Fig-
ure 17]. He jotted it down on a sheet of
paper but mislaid the sheet, and for the next
five years he tried in vain to reconstruct

17. The only possible magic hexagon

©
N
N
\D
b
L
O

\N

Combinatorial Theory

his solution. In December 1962 he found
the paper, and early the following year he
sent me the pattern. Each of the 15 rows
sums to 38. The colored lines connect con-
secutively numbered cells in sets of twos
and threes to bring out the pattern’s curious
bilateral symmetry. (A similar symmetry
is displayed by the Lo Shu if it is tipped so
cell 2 is at the top, cell 8 is at the bottom,
and triplets (1, 2, 3), (4, 5, 6), and (7, 8, 9)
are joined by lines.)

When 1 received this hexagon from
Adams, I was only mildly impressed. I
assumed that there was probably an ex-
tensive literature on magic hexagons and
that Adams had simply discovered one of
hundreds of order-3 patterns. To my sur-
prise a search of the literature disclosed
not a single magic hexagon. I knew that
there were 880 different varieties of magic
squares of order 4, and that order-5 magic
squares have not yet been enumerated be-
cause their number runs into the millions.
It seemed strange that nothing on magic
hexagons had been published.

I sent the Adams hexagon to Charles
W. Trigg, a mathematician at Los Angeles
City College who is an expert on combina-
torial problems of this sort. A post-card
reply confirmed the hexagon’s unfamiliar-
ity. A month later I was staggered to receive
from Trigg a formal proof that no other
magic hexagon of any size is possible.
Among the infinite number of ways to place
integers from 1 to n in hexagonal arrays,
only one pattern is magic!

Trigg’s proof of impossibility for orders
above 3 calls on Diophantine analysis,
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the obtaining of integral solutions for equa-
tions. Trigg first worked out the formula for
the magic constant in terms of order n:
9(n* —2n*+2n*—n) + 2
22n —1)

This is easily changed to an equation in
which 5/(2n—1) is an integral term. To be
integral, n must be either 1 or 3. A magic
hexagon of one cell is of course trivial.
Adams had found one pattern for order 3.
Are there other arrangements of the 19
integers (not counting rotations and reflec-
tions) that are magic? Trigg’s negative
answer was obtained by combining brute
force (he used a ream and a half of sheets
on which the cell pattern had been re-
produced six times) with clever short cuts.
His result was later verified by numerous
computer programs. (Trigg explained his
proof, and discussed curious properties
of the hexagon, in “A Unique Magic Hexa-
gon,” Recreational Mathematics Magazine,
January, 1964.)

As an elementary exercise the reader
is invited to see if he can rearrange the
19 digits in Adams’ hexagon so that the
pattern is magic in the following way: each
3-cell row adds to 22, each 4-cell row to 42,
each 5-cell row to 62. Magic hexagons of
this type have been explored before and
there are large numbers of them. (The prob-
lem is solved easily with the right insight.
Hint: The new pattern can be obtained by
applying the same simple transformation
to each number.)

A pattern of integers arranged in a unique,
elegant manner usually has many bizarre
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properties. Even the ancient Lo Shu still
harbors surprises. A few years ago Leo
Moser of the University of Alberta dis-
covered an amusing paradox that arises
when the Lo Shu is regarded as a chart
of the relative strengths of nine chess
players [see Figure 18]. Let row A be a team
of three chess experts with the playing
strengths of 4, 9, and 2 respectively. Rows
B and C are two other teams, with playing
strengths as indicated. If teams A and B
play a round-robin tournament, in which
every player of one team plays once against
every player of the other team, team B
will win five games and team A will win
four. Clearly team B is stronger than A.
When team B plays team C, C wins five
games and loses four, so that C is obviously
stronger than B. What happens when C, the

18. The Lo Shu, ancient Chinese magic square




strongest team, plays A, the weakest? Work
it out yourself. Team A is the winner by
five to four! Which, then, is the strongest
team? The paradox brings out the weak-
ness of round-robin play in deciding the
relative strengths of teams. Moser has
analyzed many paradoxes of this sort, of
which this is one of the simplest. The para-
dox also holds if teams A, B, and C are the
columns of the Lo Shu instead of the rows.
Similar paradoxes, Moser points out,
arise in voting. For example, assume that
one person’s preference for three candi-
dates is in the order A, B, C. A second per-
son prefers B, C, A and a third prefers C,
A, B. It is easy to see that a majority of the
three voters prefers A to B, a majority pre-
fers B to C, and (confusingly) a majority
also prefers C to A! This simple paradox
was apparently first discussed in 1785 by
the French mathematician, the Marquis de
Cordorcet, and first rediscovered by Lewis
Carroll who published several remarkable
pamphlets on voting procedures. The para-
dox was independently rediscovered later
by many others. (For a history of the para-
dox, and a listing of important recent works
in which its implications for group decision
theory are analyzed, see ‘“Voting and the
Summation of Preferences,” by William
H. Riker, The American Political Science
Review, December, 1961. On the applica-
tion of the paradox to the scores of com-
peting teams, see “A Paradox in the Scoring
of Competing Teams,” by E. V. Huntington,
Science, Vol. 88, 1938, pages 287-288.)
The arrangement of elements in square
and rectangular matrices provides a large

Combinatorial Theory

portion of modern combinatorial problems,
many of which have found useful applica-
tions in the field of experimental design. In
Latin squares the elements are so arranged
that an element of one type appears no
more than once in each row and column.
Here is a pretty combinatorial problem
along such lines that is not difficult but
conceals a tricky twist that may escape
many readers:

Suppose you have on hand an unlimited
supply of postage stamps with values of
one, two, three, four, and five cents (that
is, an unlimited supply of each value). You
wish to arrange as many stamps as possible
on a four-by-four square matrix so that no
two stamps of the same value will be in the
same row, column, or any diagonal (not
just the two main diagonals). In other
words, if you place a chess queen on any
stamp in the square and make a single
move in any direction, the queen’s path
will not touch two stamps of like value.
There is one further proviso: the total value
of the stamps in the square must be as large
as possible. What is the maximum? No cell
may contain more than one stamp, but one
or more cells may, if you wish, remain
empty.

Addendum

After my publication of the magic hexagon,
John R. A. Cooper called my attention to a
prior publication without commentary by
Tom Vickers in The Mathematical Gazette,
December, 1958, page 291. So far as I know,
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this was the first appearance of the hexa-
gon in print. Karl Fabel sent me a letter
he had received from Martin Kiihl, of Han-
over, Germany, showing that Kiihl, too, had
independently discovered the hexagon
(about 1940) but had not published it.

A feature story by Karl Abraham on
Clifford W. Adams’ discovery of the pat-
tern appeared in the Philadelphia Evening
Bulletin, July 19, 1963, page 18; a follow-up
story giving the solution (which readers
had been asked to find) appeared in the
July 30 issue.

Answers

The combinatorial questions are answered
as follows:

Four socks guarantee a matching pair.

A dollar can be changed in 292 distinct
ways. For a full solution, using recursive
computation, see the last two pages of
George Polya’s How to Solve It; Second
edition; New York: Doubleday, 1957.

A strip of five stamps, blank on both
sides, can be folded in 14 distinct ways
[see Figure 19]. (If the stamps are printed
on one side, you might think the number of
ways would double, but it increases only
to 25. Why?)

The problem of finding a formula for n
stamps remains unsolved, but recursive
procedures by which the number of differ-

19. Answer to the stamp-folding problem
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ent folds can be calculated easily with
computers have been developed. This prob-
lem was first posed by S. M. Ulam. In 1961
Mark B. Wells, using a computer at Los
Alamos Scientific Laboratory, found the
number of distinct foldings for six, seven,
eight, and nine stamps to be 38, 120, 353,
and 1,148 respectively. More recent re-
sults will be found in “A Map-folding
Problem,” by W. F. Lunnon, in Mathe-
matics of Computation, January, 1968;
and in “Folding a Strip of Stamps,” by
John E. Koehler, in Journal of Combinato-
rial Theory, September, 1968. The problem
of finding a nonrecursive formula is more
difficult, and also unsolved, if one asks for
different ways of folding square sheets into
a packet of unit squares.

To change the magic hexagon to a hexa-
gon with 22 as the sum of each three-cell
row, 42 as the sum of each four-cell row,
and 62 as the sum of each five-cell row,
replace the number in each cell with the
difference between that number and 20.

The problem of placing stamps with
values of one, two, three, four, and five
cents in a four-by-four square, with no two
stamps of the same value in any row, col-
umn, or diagonal (including the smaller
diagonals), can be answered with a maxi-
mum value of 50 cents [see Figure 20, which
shows one of many solutions]. This is
probably two cents more than most readers
were able to achieve if they used four
fours and left two cells empty. The trick is
to use only three four-cent stamps. “The
reader will probably find, when he sees
the solution,” wrote Henry Dudeney in

Combinatorial Theory

20. A solution to the stamp-placing problem

Amusements in Mathematics (Problem 308),
“that, like the stamps themselves, he is
licked.”

Donald E. Knuth found that Dudeney’s
solution could be enlarged to a remarkable
five-by-five square, satisfying all the con-
ditions and giving the maximum total value
of 75 cents. Simply add a top row of 2, 1,
4, 3, 5, and a right border (reading down-
ward) of 5, 1, 3, 2, 4. Each value appears
five times in the square. This is equivalent
to the problem of superimposing five solu-
tions to the problem of the non-attacking
queens on the order-5 board. (See Chapter
16 of my Unexpected Hanging; New York:
Simon and Schuster, 1969.)
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4. Bouncing Balls in

Polygons and Polyhedrons

THROUGHOUT recorded history the bounc-
ing ball has been indispensable equip-
ment for a dazzling variety of indoor and
outdoor sports. Games exploiting it range
from the child’s simple bouncing of a rub-
ber ball (“One, two, three O’Lary . . .”) to
sports such as tennis, handball, and bil-
liards in which the ability to judge angles
of incidence and reflection is essential to
a player’s skill.

The balls
shine round and clear, quick blobs
of color on faultless fields,
where rapid vengeance rolls
and clicks, returns
or poorly judged, deflects
to pass and spend itself in motion
rebounding gingerly from cushions . . .

Herman Spector,
“B.A. (Billiard Academy)”

Mathematicians and physicists are no-
toriously fond of pool and billiards. It is
easy to understand why. The gingerly re-

bounds within faultless fields can be pre-
cisely calculated. Lewis Carroll, who taught
mathematics at the University of Oxford,
enjoyed playing billiards, particularly on
a circular table he had made for himself.
A much prized collector’s item is the first
edition of a two-page leaflet, published by
Carroll in 1890 and never reprinted, that
explains his rules for this game.

Hundreds of recreational problems con-
cern the rebounds of elastic balls within
perimeters of various shapes. Consider,
for example, the following old puzzle:
You have two vessels with respective ca-
pacities of 7 and 11 pints. Beside you is a
large tub of water. Using only the two ves-
sels (and excluding all dodges such as mark-
ing the containers or tilting them to obtain
fractional amounts), how can you measure
exactly two pints?

The question can be answered by trial
and error or by applying various algebraic
procedures. What has all this to do with
bouncing balls? Surprisingly, liquid-mea-
suring puzzles of this type can be solved
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easily by graphing the paths of balls bounc-
ing inside rhomboidal tables! (The method,
using what topologists call a “directed
graph,” was first explained by M. C. K.
Tweedie in The Mathematical Gazette of
July, 1939.) The cushions of such tables
are best drawn on isometric graph paper:
paper with a lattice of equilateral triangles.
In this case the sides of the table are 7 and
11 units [see Figure 21]. Readings on the
horizontal axis represent the amount of
water in the 11-pint vessel at any time and

readings on the vertical axis tell how much
water is in the 7-pint vessel.

To use the graph, imagine a ball at point
0 in the lower left corner. It travels to the
right along the base of the rhomboid until
it strikes the right-hand cushion at a point
labeled 11 on the base line: the 11-pint
vessel has been filled and the 7-pint con-
tainer remains empty. After bouncing off
the right-hand cushion the ball travels up
and to the left until it hits the top cushion
at point 4 on the horizontal co-ordinate

21. Graph and 18-step solution of a liquid-pouring problem
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22. Graph of Tartaglia’'s puzzle

and on the seventh line on the side co-
ordinate. This plot indicates that 7 pints
have been transferred from the 11-vessel
to the T7-vessel, leaving 4 pints in the
larger vessel.

If you continue to follow the bouncing
ball until it strikes a point marked 2, keep-
ing a record of each step, you will obtain the
18-step answer shown below the graph.
Slanting arrows indicate that water is poured
from one vessel into another. The vertical
arrows show either that the 7-vessel is being
emptied into the tub or that the 11-vessel is
being filled.

Is this the shortest answer? No; an alter-
native procedure is to begin by filling the
7-vessel. This is graphed by starting the ball
at the 0 point and rolling it up along the
table’s left side. If the reader traces the
ball’s path until it strikes a 2 point, keeping
a record of the steps, he will find that his

ball computer bounces out a solution in 14
steps —the minimum.

With a little ingenuity one can devise
ball-bounce computers for any liquid-pour-
ing puzzle in which no more than three
vessels are involved. Consider the oldest of
all three-vessel problems, which goes back
to Nicola Fontana, the sixteenth-century
Italian mathematician who called himself
Tartaglia (“The Stammerer”). An eight-pint
vessel is filled with water. By means of two
empty vessels that hold five and three pints
respectively, divide the eight pints evenly
between the two larger vessels. The graph
for this problem is shown in Figure 22. Here
the eight-pint vessel is represented by a line
paralleling a main diagonal of the rhomboid.
The ball begins as before in the 0 corner. It
is easy to trace a path that computes the
minimum solution, which requires seven
operations.
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23. Graph for vessels
of volumes 7, 9, and 12

When the two smaller vessels have no
common divisor and the third vessel is
equal to or greater than the sum of the
smaller vessels, it is possible to measure
out any whole number from 1 to the capac-
ity of the middle-sized vessel. For example,
with vessels of 15-, 16-, and 31-pint capac-
ities one can measure any quantity from 1 to
16. This is not possible if the two smaller
vessels have a common divisor. A graph for
vessels of 4, 6, 10 will not bounce the ball to
any odd number, and vessels of 3, 9, 12 will
measure only the quantities 3, 6, 9. (In both
cases only multiples of the common divisor
can be measured.) If the largest vessel is
smaller than the sum of the other two, there
are further limitations. For example, vessels
of 7,9, 12 require that a corner of the rhom-
boidal graph be sliced off [see Figure 23].
The bouncing ball will measure any quan-
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tity from 1 to 9 except 6. Although 7 and 9
have no common divisor, the smallness of
the third vessel makes it impossible to
obtain 6.

When the largest vessel is larger than the
sum of the other two, the graph continues
to be applicable. The reader may enjoy
applying it to the following variation of
Tartaglia’s problem, as posed by Sam Loyd
on page 304 of his famous Cyclopedia of
Puzzles. (This is one of the puzzles for
which the Cyclopedia fails to furnish an
answer, a fact that may explain why the puz-
zle has never been reprinted.)

Some U.S. soldiers managed to “capture”
a 10-gallon keg of beer. “They naturally
sampled a part of it,” writes Loyd, making
use of 3-gallon and 5-gallon containers. The
rest of the beer was carried back to camp in
three equal portions—one in the keg and



the other two in the two containers. How
much did they drink and how did they mea-
sure the remainder into three equal (non-
zero) parts? The best solution is the one
with the fewest steps for the entire pro-
cedure. Each step, including the drinking
operation, involves an integral number of
gallons, and it is assumed that no beer is
wasted by being tossed out.

You may find it entertaining to experi-
ment with vessels of various sizes, using the
ball computer to explore all that can be
done with them. For more information
about the technique, including its exten-
sion to four vessels by means of tetrahedral
graphs, the interested reader is referred to
the book by T. H. O’Beirne listed at the
close of this chapter.

A different type of ball-bouncing prob-
lem is that of finding cyclic paths along
which a ball can bounce forever inside a
polygon, always tracing the same path and
hitting each side only once in each cycle.
Such problems can be solved by using the
powerful technique of mirror reflection. A
table in the shape of a square provides a
simple example. Figure 24 shows a square
reflected along three different sides, and the
colored line is its only cyclic path with seg-
ments of equal length. Folding the four
squares into a unit-square packet trans-
forms the straight line into the cyclic path.

At this point two interesting questions
arise. Are there cyclic paths with equal seg-
ments inside the solid analogues of the
square and equilateral triangle: the cube
and tetrahedron? The ball is assumed to be
an idealized elastic particle (or a light ray

D C
D C
A B A
D C
A B

24. Equal-segment path in a square

inside a solid with interior mirror surfaces),
taking straight paths in zero gravity and
bouncing off the sides in the usual manner:
with equal angles of incidence and reflec-
tion on a plane perpendicular to the side
against which it bounces. The ball must
strike each face only once during the cycle
and travel the same distance between each
consecutive pair of bounces. (Striking an
edge or corner is not regarded as striking
the faces meeting at that edge or corner;
otherwise the cube problem would be
solved by a ball moving back and forth be-
tween two diagonally opposite corners.)

Warren Weaver, in one of his many arti-
cles on Lewis Carroll, has disclosed that the
cube problem is found among Carroll’s un-
published and mathematical notes. It is the
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sort of problem that would appeal to the
inventor of circular billiards. Actually the
notion of playing billiards inside a cubical
“table” is not as farfetched as it might seem.
With gigantic space stations perhaps only a
few decades away it takes no great prophetic
ability to foresee a variety of three-dimen-
sional sports that will take advantage of
zero gravity. Pool adapts neatly to a rectan-
gular room with cushion walls, floor and
ceiling, corner pockets, and balls numbered
from 1 to 35 that are initially arranged in
tetrahedral formation. Of course, there
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25. Solution to Lewis Carroll's
cube-and-ball problem

would be difficulties. Air resistance offers
much less friction than the felt surface of a
pool table does. If the tetrahedron were
broken by a fast cue ball, entropy would
increase at a rapid rate. It would be hard to
keep out of the way of balls flying about in
random directions like the molecules of a
gas in thermal equilibrium!

But back to Carroll’s problem. The reflec-
tion technique used with squares can be
applied to cubes. Five reflections are re-
quired and the colored line in Figure 25
traces the desired path. It is one of four



different paths, identical in shape, that
solve the problem. (If all six faces of the
cube are ruled into nine smaller squares,
each path touches every face at one corner
of the central square.) Figure 26 shows a
cardboard model that demonstrates the
path after the six cubes have been “folded”
into one another. The cord is held in place
by passing loops through small holes and
securing them on the outside with pegs
made of wood. If you think of the cube as
being formed of 27 smaller cubes, you will
see that every segment of the path is a diag-
onal of a small cube. Each segment there-
fore has a length of 1/V3 on a unit cube. The
path’s total length is 2V3.

26. Model showing path inside a cube

Bouncing Balls

As far as I know, Hugo Steinhaus was the
first to find this path. (See his One Hun-
dred Problems in Elementary Mathematics;
New York: Basic Books, 1964, Problem 33.
The book is a translation of the 1958 Polish
edition.) The solution was later redis-
covered by Roger Hayward, who published
it in Recreational Mathematics Magazine,
June, 1962. The shape of the path, he writes,
is known to organic chemists as a “chair-
shaped hexagon.” It occurs often in car-
bon compounds, such as cyclohexane, in
which six carbon atoms are single-bonded
in a ring with other atoms attached outside
the ring. “It is interesting to note,” writes
B. M. Oliver of the Hewlett-Packard Com-
pany in Palo Alto, California, “that the path
appears as a 1 X 2 rectangle in all projec-
tions of the cube taken perpendicular to a
face, as a rhombus in three of the isometric
projections taken parallel to a diagonal of
the cube, and as a regular hexagon in the
fourth isometric view. A queer figure, but
that’s the way the ball bounces!”

A similar cyclic path inside a tetrahedron
was discovered by John H. Conway and
later, independently, by Hayward in 1962.
It is easy to reflect a tetrahedron three times
[see Figure 27] and find a cyclic path that
touches each side once. The difficult trick
is to find a cyclic path with equal segments.
One is shown by the colored line. There are
three such paths, all alike, touching each
face of the solid at one corner of a small
equilateral triangle in the center of the face.
The side of this small triangle is a tenth of
the edge of a tetrahedron with an edge of 1.
Each segment of the ball’s path has a length
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27. Solution to the problem of a ball
in the tetrahedron

of V10/10, or .31622777+, giving the path a
total length of 1.2649+.

Hayward made a handsome acetate model
in which nylon thread traces the path of the
bouncing ball (or light ray) after the four
tetrahedrons have been “folded” together
[see Figure 28]. He cut the sides from sheets
of acetate and cemented them along their
edges after drilling four small holes at the
proper points. Before cementing the last
side he looped the thread through the holes
of three faces and held it with pieces of tape
on the outside. The two free ends were
drawn through the hole in the fourth face,
which was then cemented to the other
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28. Acetate model of a path in the tetrahedron

three. After tightening the thread by pull-
ing on the loops he sealed each hole with a
drop of acetone mixed with Duco household
cement and trimmed the outside loops and
ends. A similar acetate model can be made
of the cube. In both models threads of dif-
ferent colors can be used to show all possible
paths.

Addendum

G. de Josselin de Jong of Holland gener-
alized Lewis Carroll’s ball-in-cube problem
to hypercubes of all higher dimensions. He
wrote out his analysis for me in 1963 and I
do not know if he has since published it.
The length of the ball’s path is given by the
simple formula 2Vn, where n is the number
of dimensions. Therefore, the ball’s path
inside a unit four-space hypercube has a



length of exactly four units. In all higher
spaces the path is unique except, of course,
for rotations and reflections.

Answer

Given a ten-gallon keg filled with beer and
two vessels of three-gallon and five-gallon
capacity, how can one (in the minimum
number of operations) drink a quantity of
beer and leave equal (nonzero) amounts in
each of the three vessels? Since the vessels
measure only integral amounts, the beer to
be divided into thirds must be a multiple of

29. Solution to Sam Loyd’s problem

Bouncing Balls

three: three, six or nine gallons. The first
two amounts can be eliminated because in
both cases a third of the amount is less than
the capacity of each vessel. (After any pour-
ing operation at least one vessel must be
either empty or full. Neither situation
would obtain if each vessel contained less
than its capacity.) We conclude, therefore,
that one gallon must be drunk, leaving nine
to be divided into thirds.

The ball-bouncing computer traces a min-
imum path that measures one gallon [see
Figure 29]. After the gallon (in the three-
gallon vessel) is drunk, four gallons remain

10-GALLON KEG 0 7 7 4 4
5-GALLON VESSEL 0\ 0 3\3 5
A A
3-GALLON VESSEL 0 3 0 3 1
v
(DRINK)
10-GALLON KEG 4 1 6 6 3
° \ g \
5GALLON VESSEL  5\5 0 _3 \ 3
S
3-GALLON VESSEL 0 3 3 0 3
(OR)

10-GALLON KEG 4 _9 6 6 3
To\e o\
5-GALLON VESSEL 5 0 \ O
A

3-GALLON VESSEL o 0 38 0 3
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in the ten-gallon keg, five in the five-gallon
vessel. The three-gallon vessel is empty.
This new situation is diagramed as shown in
the lower graph. The ball must now reach a
point that marks three gallons in each con-
tainer. The minimum path is shown in color,
with two alternative steps in a lighter shade.
Counting the drinking of the gallon as an
“operation,” the complete solution involves
nine operations, which are shown below the
two graphs.
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5. Four Unusual Board Games

DURING the 1960’s there was a remarkable
upsurge of interest in mathematical board
games. Today more people than ever before
are playing the traditional games such as
chess and experimenting with the new
games that keep turning up in the stores.
More mathematicians are analyzing the
strategies of such games and more com-
puters are being programed to play them. In
this chapter we examine four excellent but
little-known board games, two new and two
old. Their playing fields can easily be
drawn on paper or cardboard, the rules of
play are quite simple and everyone in the
family will find the contests great fun.

The Military Game, as it is called in
France, is a splendid example of a two-
player game that combines extreme sim-
plicity with extraordinary strategic sub-
tlety. According to Edouard Lucas, who
describes the game in Volume III (pages
105-116) of his celebrated Récréations
Mathématiques, the game was popular in
French military circles during and after the
Franco-Prussian War of 1870-1871. It is a

pity that it has since been so completely
forgotten; not one of the standard histories
of board games even mentions it.

The board for the Military Game is shown
in Figure 30 with the positions labeled to
facilitate description. One player—we will
call him White —has three men that are
initially placed on the colored spots. A, 1,
and 3. Black, his opponent, has only one
man, which he places on spot 5 in the cen-
ter. (Chess pawns can be used for men, or
three pennies and a nickel.) White moves
first and the game proceeds with alternate
turns. Black may move in any direction
along a line from one spot to a neighboring
spot. White moves similarly, but only left,
right or forward (straight ahead or diago-
nally), never backward. There are no cap-
tures. White wins if he can pin Black’s
piece so that it cannot move. This usually
occurs with Black on spot B, but it can also
occur with Black on spot 4 or 6. Any other
outcome is a win for Black. He wins if he
slips behind “enemy lines,” making it im-
possible for White to pin him, or if a situa-



30. The French Military Game

tion develops in which the same moves are
endlessly repeated.

The game is as simple to learn as ticktack-
toe, but it is more exciting to play and more
difficult to analyze. Lucas is able to show
that White, if he plays rationally, can always
win, but there is no simple strategy and the
game abounds in traps and surprises. Often
the best move is the move that seems to be
the worst. An experienced Black has little
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difficulty escaping from an inexperienced
White.

Suppose we increase Black’s freedom by
permitting him to place his piece, at the
start of the game, on any spot he chooses?
Who now wins if both sides play rationally?

Topological board games, on which play-
ers construct paths that twist about over the
field, are recent developments. Hex, Bridg-
it, Zig-Zag, Roadblock, Pathfinder, Squirt,
Twixt: these are trade names of some of the
games of this type that have been marketed
during the past thirty years. In 1960 Wil-
liam L. Black, then an undergraduate at the
Massachusetts Institute of Technology,
made a study of Hex and Bridg-it, two games
discussed in earlier collections of my col-
umns. An outcome of this study was a novel
topological game his friends called Black.

Although marked tiles can be used, Black
is easily played as a pencil-and-paper game
on a checkered field. The size of the field is
optional; the standard eight-by-eight field
seems ideal, but it is simpler to explain the
game on the smaller four-by-four. After the
field is drawn the first player starts the game
by making a cross in the upper left corner
cell as shown in Figure 31. The second
player continues the path by making one of
three permissible marks in a cell adjacent
to the first cell marked. The three marks,
shown at the bottom of the illustration, are
each composed of two lines. One line repre-
sents one of the three ways in which the
path can be joined to an open side of the
square; the second is added to connect the
remaining two sides.

The players alternate moves. Each move
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must extend the path into a neighboring
cell. Each player tries to avoid running the
path to a border of the field. If he is forced
to carry the path to the border, he loses the
game. He wins if he succeeds in extending
the path into (not just to the border of) the
lower right corner cell [shown shaded]. The
illustration shows successive moves of a
typical short game. The first player wins by
forcing his opponent to play in the upper
right corner cell, where any mark will carry
the path to the edge of the field. (Note that
the cross extends the path only along one of
its arms, although the other arm may be-
come part of the path as the result of a later
play.)

The game of Black is of special interest
because soon after it was conceived a friend
of Black’s, Elwyn R. Berlekamp, hit on an
elegant strategy that guarantees a win for
one of the players. The strategy applies to
rectangular fields of any size or shape.
Since knowledge of the strategy destroys
all interest in actual play, I urge you to play
the game and see if you can match Berle-
kamp’s brilliant insight before checking the
answer section.

One of the best of many medieval board
games is a game that seems to have been
first played in Scandinavian countries as
early as the fourth and fifth centuries, when
it was called tafl. In later centuries it was
known as hnefatafl. The Norsemen intro-
duced the game to Britain, where it was the
only board game played by the early Saxons
until it began to be replaced by chess in the
eleventh and twelfth centuries. H. J. R.
Murray, in his History of Board-Games
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Other than Chess, gives reasons for think-
ing that this is essentially the same game
that was still being played in the sixteenth
century in Wales, under the name of tawl-
bwrdd, and in the eighteenth century in
Lapland, where it was known as tablut.

It was Murray who discovered that the
great Swedish botanist Carolus Linnaeus
included a full description of tablut in an
extensive diary he kept during his explora-
tion of Lapland in 1732. An English transla-
tion of the diary, by Sir James Edward
Smith, was published in London in 1811
with the title Lachesis Lapponica: or a
Tour of Lapland. Figure 32 is a reproduc-
tion of the tablut board as it is shown on
page 55 of Volume II of that edition.

32. The game of tablut

o n m 4 M N (o]
1] k i h H I K| L
gl tf|e|]d D|E|F]|G
c b a 7 A | B C -
= =5\ = [
I 2
7 c 4 @ SN AB | C R
Jo D) ‘
g Zﬂ e | & g E | F| &L
. \!
L4 2 | 4 BN I I\ L
—
o n|m ) NN O




White pieces, representing light-haired
Swedes, include a single king and 8 war-
riors. Black pieces, 16 in number, represent
Muscovite warriors. (It is convenient to use
a white chess king and 8 white pawns for
the Swedes. Black chessmen can be used
for the Muscovites, but all must be regarded
as identical pieces.) Each black and white
piece, including the king, moves like a rook
in chess, that is, an unlimited distance
along vacant cells in a straight line paral-
leling a side of the board.

The game begins with the Swedish king
occupying the center square, which is
known as the castle. Only the king is per-
mitted to stand in the castle, although any
piece may move through it when it is vacant.
Surrounding the king, on the 8 shaded
squares, are his eight warriors. The Musco-
vites occupy the 16 decorated squares at the
four sides of the board.

Either player may open the game. Enemy
pieces are captured by a pincer move that
consists of occupying adjacent cells on op-
posite sides of a piece, the three pieces
being in the same row or column. For ex-
ample, if Black makes the indicated move,
he captures the three white pieces simul-
taneously [see Figure 33, top drawing]. If
a piece moves between two enemy pieces,
however, it is not captured by them. The
king may take part in capturing enemy
pieces, but he himself is captured only if he
is surrounded on all four sides by four
enemy pieces or by three enemy pieces and
the castle square [middle drawing]; he can-
not move from his castle into such a forma-
tion without being captured.
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33. Methods of capture in tablut

Linnaeus adds that when the king is in his
castle, with three enemy warriors on three
sides, and one of his own men on the fourth
side, the Swedish warrior is taken if a Mus-
covite moves to the cell next to the Swede
on the side opposite the king [bottom draw-
ing].

Black’s objective is to capture the king.
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If this occurs, the Muscovites win. White’s
objective is to allow the king to flee the
country by reaching any cell on the perim-
eter of the board. Whenever there is an
unobstructed path along a row or column by
which the king can reach the border, White
must warn Black by saying “Raichi!” (a
remark similar in function to “Check!” in
chess). If there are two escape paths, White
calls out “Tuichu!” Of course “Tuichu!”
announces a win for White because there is
no way Black can block two escape routes
with a single move.

Sidney Sackson, a New York City engi-
neer who makes a hobby of collecting board
games, knows of only one occasion on
which tablut has been made and sold in
this country. In 1863 it was issued as a
Civil War game called Freedom’s Contest,
or the Battle for the Union. This game is
identical with tablut except that the king
is called the “Rebel chief” and the pieces
are Rebel and Union soldiers. The Rebel
chief is limited to a maximum move of four
spaces. The traditional game seems to favor
White, so perhaps this restriction was in-
tended to redress the balance. (Breakthru,
Minnesota Mining and Manufacturing’s
Bookshelf Game currently on sale, is based
on tablut.)

Sackson is himself the inventor of many
unusual board games, one of the best of
which he calls Focus. It is played with 36
counters, half of them one color and half
another. Small poker chips of the interlock-
ing variety make excellent pieces. They are
placed initially on an eight-by-eight board
from which three cells at each corner have
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34. Sidney Sackson’s game of Focus

been removed. Figure 34 shows how the
pieces (black and colored in this case) are
arranged.

Either side may move first. A move con-
sists of moving a “pile” of pieces (at the out-
set all piles are one chip high) as many
spaces as there are pieces in the pile. Moves
are vertical or horizontal, never diagonal.
The four possible moves of one colored
piece at the start of a game are shown in
Figure 34. If the piece moves up, it lands on
a vacant square. A move to the right puts it
on top of another colored piece, to the left
or down puts it on top of a black piece. The
last three moves form two-high piles. Such
piles may be moved two spaces in any direc-
tion. Piles of three, four, and five pieces
move three, four, and five spaces respec-
tively. A pile is controlled by the player who
owns the piece on top. In moving it does
not matter whether the intervening cells
are empty or occupied by piles controlled
by either player. Passed-over pieces are not



affected in any way. A move may end on a
vacant cell or on another pile. Figure 35
shows the possible moves of a two-high pile.

Piles may not contain more than five
pieces. If a move produces a pile of more
than five, all pieces in excess of five are
taken from the bottom of the stack. If they
are enemy pieces, they are considered cap-
tured and are removed from the game. If
they belong to the player making the move,
they are placed aside as reserves. At any
time during the game a player may, if he
wishes, take one of his reserve pieces and
place it on any cell of the board, empty or
otherwise. It has the same effect as a moved
piece: if it goes on a pile, the pile belongs
to the player who placed it. Using a reserve
piece substitutes for a move on the board.

A player may, if he wishes, make a move
of fewer spaces than the number of pieces
in the pile being moved. He does this by
taking from the top of the pile as many
pieces as the number of spaces he wishes

35. Moves in the game of Focus

Unusual Board Games

to move. The rest of the pieces stay where
they are. For example, a player may take
the top three pieces of a five-high pile and
move them three spaces. The pile that
remains after such a move belongs to the
player who owns the piece on top.

When a player is unable to move (that is,
controls no piles and has no reserves), the
game is over and his opponent wins.

One additional rule is needed. As Paul
Yearout, a mathematician at Brigham Young
University, pointed out, the second player
can always achieve at least a draw by sym-
metry play; that is, after each move by the
first player, he duplicates the move by a
symmetrically opposite play. To prevent
this, Sackson suggests either of the follow-
ing alternatives: (1) A draw is declared a
win for the first player, (2) Before the game
begins each player switches one of his
pieces for one of his opponent’s pieces (the
second player must make an exchange that
does not restore symmetry to the pattern)
and the game then proceeds as described.

Focus was marketed by Whitman Pub-
lishing Company in 1965, the first of Sack-
son’s many marketed games. For amore de-
tailed account of the game as well as
suggestions for strategic play, see pages
125-134 of Sackson’s Gamut of Games.

Answers

Which side wins the French Military Game
if Black is given the privilege of starting his
piece on any vacant cell? The question was
first answered by the Dutch mathematician
Frederik Schuh in his book Wonderlijke
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Problemen, published in Holland in 1943.
White can always trap Black if he plays
rationally. A complete analysis cannot be
given here, but the following table shows
White’s winning responses to Black’s six
different opening plays.

Black White

A35
A15(orA35)
123
A15(orA35)
AlS
123

(or 6)

(or 9)

0 00 =1 Ut W= O

For a complete analysis of the game see
F. Gobel’s translation of Schuh’s book, The
Master Book of Mathematical Recreations,
edited by T. H. O'Beirne (New York: Dover,
1968; pages 239-244). Schuh also analyzes
variants of the game. For a good suggestion
on how to program a computer to play the
game see Donald E. Knuth’s Fundamental
Algorithms (New York: Addison-Wesley,
1968; page 546). Richard Sites, a computer
scientist at Stanford University, proved in
1970 that White, regardless of where Black
starts, can always trap Black on the board’s
B cell.

The topological game of Black is won on
square boards by the first player if the total
number of cells is odd, by the second player
if the number of cells is even.

When the play is on an odd-celled board,
say a five-by-five, the first player’s strategy
is to suppose the board, except for the lower
right corner cell, is completely covered
with dominoes [see Figure 36]. The way the
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36. Strategy for five-by-five game of Black

dominoes are placed is immaterial. Each
move by the second player starts the path
on a new domino. The first player then
plays so that the path remains on that
domino. This forces the second player to
complete the domino and start the path on
another one. It is obvious that the second
player eventually will be forced to the
border or to an edge of the lower right cor-
ner cell.

On even-celled square boards the strategy
by which the second player wins is more
complicated. The board is thought of as
being covered with dominoes except for the
upper left and lower right corner cells.

Since the two missing cells are the same
color, however (supposing that the board is
colored like a checkerboard), it is clearly
impossible to cover the remaining cells
completely with dominoes: there will
always be two uncovered cells of the same
color. Elwyn R. Berlekamp, who cracked



37. Strategy for four-by-four game of Black

the game, calls these two uncovered cells
a “split domino.” The split domino is taken
care of by the following clever maneuver:
The second player makes his first move as
shown in Figure 37, top drawing. This
forces the first player to play in the second
cell of the main diagonal, and his three
possible plays are shown. In each case the
unused line of his play will connect two
cells of the same color. These two cells,
labeled S in the drawings, are regarded as
the split domino. The remaining cells (ex-
cluding the lower right corner cell) can now
be covered with dominoes. Again, the pat-
tern is arbitrary. The second player wins by
the domino method previously explained.
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6. The Rigid Square and
Eight Other Problems

1. The Rigid Square

Raphael M. Robinson, a mathematician at
the University of California at Berkeley, is
known throughout the world for his solu-
tion of a famous minimum problem in set
theory. In 1924 Stefan Banach and Alfred
Tarski dumfounded their colleagues by
showing that a solid ball can be cut into a
finite number of point sets that can then be
rearranged (without altering their rigid
shape) to make two solid balls each the same
size as the original. The minimum number
of sets required for the “Banach-Tarski
paradox” was not established until twenty
years later, when Robinson came up with an
elegant proof that it was five. (Four are
sufficient if one neglects the single point
in the center of the ball!)

Here, on aless significant but more recrea-
tional level, is an unusual minima problem
recently devised by Robinson for which the
minimum is not yet known. Imagine that
you have before you an unlimited supply of
rods all the same length. They can be con-

nected only at their ends. A triangle formed
by joining three rods will be rigid but a
four-rod square will not: it is easily dis-
torted into other shapes without bending or
breaking a rod or detaching the ends. The
simplest way to brace the square so that it
cannot be deformed is to attach eight more

38. Bracing a square in three dimensions



rods [see Figure 38] to form the rigid skele-
ton of a regular octahedron.

Suppose, however, you are confined to
the plane. Is there a way to add rods to the
square, joining them only at the ends, so
that the square is made absolutely rigid?
All rods must, of course, lie perfectly flat on
the plane. They may not go over or under
one another or be bent or broken in any way.
The answer is: Yes, the square can be made
rigid. But what is the smallest number of
rods required?

2. A Penny Bet

Bill, a student in mathematics, and his
friend John, an English major, usually spun
a coin on the bar to see who would pay for
each round of beer. One evening Bill said:
“Since I've won the last three spins, let me
give you a break on the next one. You spin
two pennies and I'll spin one. If you have
more heads than I have, you win. If you
don’t, I win.”

“Gee, thanks,” said John.

On previous rounds, when one coin was
spun, John’s probability of winning was, of
course, 1/2. What are his chances under the
new arrangement?

3. Three-dimensional Maze

Three-dimensional mazes are something of
ararity. Psychologists occasionally use them
for testing animal learning, and from time to
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time toy manufacturers market them as
puzzles. A two-level space maze through
which one tried to roll a marble was sold in
London in the 1890’s; it is depicted in
Puzzles Old and New by “Professor Hoff-
mann” (London, 1893). Currently on sale in
this country is a cube-shaped, four-level
maze of a similar type. Essentially it is a
cube of transparent plastic divided by trans-
parent partitions into 64 smaller cubes. By
eliminating various sides of the small cubi-
cal cells one can create a labyrinth through
which a marble can roll. Itis a simple maze,
easily solved.

Robert Abbott, author of the book Abbott’s
New Card Games (New York: Stein and
Day, 1963), recently asked himself: How
difficult can a four-by-four-by-four cubical
space maze, constructed along such lines,
be made? The trickiest design he could
achieve is shown in Figure 39. The reader
is asked not to make a model but to see how
quickly he can run the maze without one.

On each of the four levels shown at the
left in the illustration, solid black lines
represent side walls. Color indicates a floor;
no color, no floor. Hence a small square cell
surrounded on all sides by black lines and
uncolored is a cubical compartment closed
on four sides but open at the bottom. To
determine if it is open or closed at the top it
is necessary to check the corresponding cell
on the next level above. The top level (A) is
of course completely covered by a ceiling.

Think of diagrams A through D as floor
plans of the four-level cubical structure
shown at the right in the illustration. First
see if you can find a path that leads from the
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39. A three-dimensional maze

entrance on the first level to the exit on the
top level. Then see if you can determine the
shortest path from the entrance to the exit.

4. Gold Links

Lenox R. Lohr, president of the Museum of
Science and Industry in Chicago, was kind
enough to pass along the following decep-
tively simple version of a type of combina-
torial problem that turns up in many fields
of applied mathematics. A traveler finds
himself in a strange town without funds; he
expects a large check to arrive in a few
weeks. His most valuable possession is a
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gold watch chain of 23 links. To pay for a
room he arranges with a landlady to give
her as collateral one link a day for 23 days.

Naturally the traveler wants to damage
his watch chain as little as possible. Instead
of giving the landlady a separate link each
day he can give her one link the first day,
then on the second day take back the link
and give her a chain of two links. On the
third day he can give her the single link
again and on the fourth take back all she has
and give her a chain of four links. All that
matters is that each day she must be in pos-
session of a number of links that corresponds
to the number of days.



The traveler soon realizes that this can
be accomplished by cutting the chain in
many different ways. The problem is: What
is the smallest number of links the traveler
needs to cut in order to carry out his agree-
ment for the full 23 days? More advanced
mathematicians may wish to obtain a gen-
eral formula for the longest chain that can
be used in this manner after n cuts are made
at the optimum places.

5. Word Squares

Word puzzlists have long been fascinated
by a type of puzzle called the word square.
The best way to explain this is to provide an
example:

M E R G E R S
E T E R N A L
R E G AT T A
G R AV I TY
ENT I T L E
R AT T L E R
S L AY ER S

Note that each word in the above order-7
square appears both horizontally and ver-
tically. The higher the order, the more diffi-
cultitis to devise such squares. Word square
experts have succeeded in forming many
elegant order-9 squares, but no order-10
squares have been constructed in English
without the use of unusual double words
such as Pango-Pango.

The Rigid Square

Charles Babbage, the nineteenth-century
pioneer in the design of computers, ex-
plains how to form word squares in his
autobiography, Passages from the Life of a
Philosopher, and adds: “The various ranks
of the church are easily squared; but it is
stated, I know not on what authority, that
no one has succeeded in squaring a bishop.”
Readers of Eureka, a mathematics journal
published by students at the University of
Cambridge, had no difficulty squaring
bishop when they were told of Babbage’s
remarks. The square shown below (from the
magazine’s October 1961 issue) was one of
many good solutions received:

B | H O P
I L Uu M E
S L I D E S
H U D D L E
OMEL E T
P E S E T A

As far as T know, no one has yet suc-
ceeded—perhaps even  attempted—to
square the word “circle.” Only words found
in an unabridged English dictionary may be
used. The more familiar the words, the more
praiseworthy the square.

6. The Three Watch Hands
Assume an idealized, perfectly running

watch with a sweep second hand. At noon
all three hands point to exactly the same
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spot on the dial. What is the next time at
which the three hands will be in line again,
all pointing in the same direction? The
answer is: Midnight.

The first part of this problem —much the
easiest—is to prove that the three hands are
together only when they point straight up.
The second part, calling for more ingenuity,
is to find the exact time or times, between
noon and midnight, when the three hands
come closest to pointing in the same direc-
tion. “Closest” is defined as follows: two
hands point to the same spot on the dial,
with the third hand a minimum distance
away. When does this occur? How far away
is the third hand?

It is assumed (as is customary in prob-
lems of this type) that all three hands move
at a steady rate, so that time can be regis-
tered to any desired degree of accuracy.

7. Three Cryptarithms

Of the three remarkable cryptarithms in
Figure 40 the first [top] is easy, the second
[middle] is moderately hard, and the third
[bottom] is so difficult that I do not expect
any reader to solve it without the use of
a computer.

Problem 1: Each dot represents one of
the ten digits from 0 to 9 inclusive. Some
digits may appear more than once, others
not at all. As you can see, a two-digit num-
ber multiplied by a two-digit number yields
a four-digit product, to which is added a
three-digit number starting with 1. Replace
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o o
o o
+ 1

X
+
°
X °
°
° °

40. Three cryptarithms



each dot with the proper digit. The solution
is unique.

Problem 2: As in the first cryptarithm, a
multiplication is followed by an addition.
In this case, however, each dot is a digit
from 1 to 9 inclusive (no 0) and each digit
appears once. The answer is unique.

Problem 3: Each dot in this multiplica-
tion problem stands for a digit from 0 to 9
inclusive. Each digit appears exactly twice.
Again, the answer is unique.

8. Maximizing Chess Moves

When the eight chess pieces of one color
(pawns excluded) are placed alone on the
board in the standard starting position, 51
different moves can be made. Rooks and
bishops can each make 7 different moves,
knights and the king can each make 3, the
queen can make 14. By changing the posi-
tions of the pieces it is easy to increase the
number of possible moves. What is the
maximum? In other words, how can the
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eight pieces of one color be placed on an
empty board in such a way that the largest
possible number of different moves can be
made?

The two bishops should be placed on
opposite color squares to conform with
standard chess practice, and the move of
castling is not considered. Actually neither
qualification is necessary because in both
cases a violation would only restrict the
freedom of pieces to move.

9. Folding a Mobius Strip

Stephen Barr’s method of folding a Mébius
strip from a square sheet of paper was ex-
plained in chapter 2. The square [at left in
Figure 41] is simply folded in half twice
along the dotted lines, then edge B is taped
to B'. The result is a band with a half-twist,
one-sided and one-edged; it is a legitimate
model of a Mobius surface even though it
cannot be opened out for easy inspection.

Suppose instead of a square we use a
paper rectangle twice as long as it is high

B’ B’
41. Mobius-strip problem N
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[at right in Figure 41]. 1s it possible to fold
this into a Mobius surface that joins B to B'?
One can fold or twist the paper in any way,
but of course it must not be torn. Assume
that the paper can be made as thin as de-
sired. The surface must be given a half-
twist that allows the entire length of edge
B to be joined to the entire length of edge
B’. It would not be difficult to make the strip
by joining A to A'; the problem is to find a
way to do it by connecting the pair of longer
edges.

Once the reader has either found a way to
do it or concluded that it is impossible, a
more interesting question arises: What is
the smallest value for A/B that will allow a
Mobius strip to be folded by the joining of
B to B'?

Answers

1.

Raphael M. Robinson’s best solution to his
problem of bracing a square on the plane
with the minimum number of rods, all equal
in length to the square’s side, calls for 31
rods in addition to the 4 used for the square.
Figure 42 shows two of several equally
good patterns.

This answer was reduced to 25 rods [see
Figure 43] by 57 Scientific American read-
ers. As I was recovering from the shock of
this elegant improvement seven readers—
G. C. Baker, Joseph H. Engel, Kenneth J.
Fawcett, Richard Jenney, Frederick R.
Kling, Bernard M. Schwartz, and Glenwood
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43. 25-rod solution for square-bracing




44. 23-rod solution

Weinert—staggered me with the 23-rod
solution shown in Figure 44. Later, about a
dozen more readers sent the same solution.
The rigidity of the structure becomes ap-
parent when one realizes that points A, B,
and C must be collinear.

All solutions with fewer than 23 rods
proved to be either nonrigid or geometri-
cally inexact. For example, many readers
sent the pattern shown in Figure 45, top,
which is not rigid, or the pattern shown at
the bottom, which, although rigid, unfor-
tunately includes line A, a trifle longer than
one unit. .

The problem obviously can be extended
to other regular polygons. The hexagon is
simply solved with internal braces (how
many?), but the pentagon is a tough one.
T. H. O’Beirne managed to rigidify a regu-
lar pentagon with 64 additional rods, but it
is not known if this number is minimal.

45. Two incorrect solutions to square-bracing
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2.

Bill spins one penny, John two. John wins
if he has more heads than Bill. A tabulation
of the eight equally probable ways 3 coins
can fall shows that John wins in four cases
and loses in four, so his chances of winning
are 1/2, which is what they would be if a
single coin were spun. His probability of
winning remains the same whenever he has
one more coin than Bill. Thus if he has 51
coins and Bill has 50, each man still has an
equal chance of winning. This problem ap-
peared in the Canadian magic magazine
Ibidem; December, 1961, page 24; it was
contributed by “Ravelli,” pen-name of
chemist Ronald Wohl.

3.

The simplest paper-and-pencil way to
solve Robert Abbott’s three-dimensional
maze is to place a spot in each cell and then
draw lines from spot to spot to represent all
open corridors. Since a maze involves only
topological properties of the pattern, it does
not matter how these lines twist and turn as
long as they connect the spots properly.

The next step is to erase all blind-alley
lines and all loops that do no more than take
one from spot to spot in a roundabout way
when a shorter path is available. Eventually
only the shortest route remains. This path
is shown in Figure 46. Note that two loops

46. Three-dimensional maze solution
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near the top offer two different routes of
equal length. Each of the long curved lines
connecting the spots is, of course, only one
unit in length in the actual maze, therefore
the entire maze can be run by a path 19
units long.

An alternate method of finding the short-
est path in any type of maze is to make a
model of the network out of string. Each
segment of string must have a length that is
in the same proportion to the length of the
corridor it represents, and it must be labeled
in some way so that the corridor can be
identified. After the model is completed,
pick up the “start” of the network with one
thumb and finger and the “end” of the net-
work with the other thumb and finger. Pull
the string taut. Roundabout loops and blind
alleys hang loose. The taut portion of the
model traces the path of minimum length!

A third method is to label the starting cell
with “1”. Put “2” in all cells that can be
reached in one step. Put “3” in all cells that
can be reached in one step from each 2-cell.
Continue in this manner, numbering every
cell once. If you return to a cell already
labeled, do not give it a larger number.
After all cells are labeled, start at the final
cell and move backward through the num-
bered cells, taking them in reverse order,
to trace out a minimal-length path.

There is now a large literature on these
and other algorithms for finding shortest
routes in mazes or on graphs. Recent refer-
ences follow; readers will find many earlier
articles on the topic listed in them:

“The Shortest Path through a Maze.” E. F. Moore.

In Proceedings of an International Symposium
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on the Theory of Switching, Part 11, April
2-5, 1957. (Reprinted in Annals of the Compu-
tation Laboratory of Harvard University,
Vol. 30, 1959. Pages 285-292.)

“An Algorithm for Path Connections and Its
Applications.” C. Y. Lee. I. R. E. Transactions
on Electronic Computers, Vol. EC-10; Sep-
tember, 1961. Pages 346-365.

“All Shortest Routes in a Graph.” G. B. Dantzig.
Operations Research Technical Report 66-3,
Stanford University; November, 1966.

“Shortcut in the Decomposition Algorithm for
Shortest Paths in a Network.” T. C. Hu and
W. T. Torres. IBM Journal of Research and
Development, Vol. 13, No. 4; July, 1969.
Pages 387-390.

Algorithms, Graphs, and Computers. Richard
Bellman, Kenneth L. Cooke, and Jo Ann
Lockett. New York: Academic Press, 1970.
Pages 94-100.

4.

The traveler with a 23-link gold chain can
give his landlady one link a day for 23 days
if he cuts as few as 2 links of the chain. By
cutting the fourth and eleventh links he
obtains two segments containing one link
and segments of 3, 6, and 12 links. Combin-
ing these segments in various ways will
make a set of any number of lengths from
1to23.

The formula for the maximum length
of chain that can be handled in this way
with n cuts is

[(n+ 1)2"1] — 1.

Thus one cut (link 3) is sufficient for a chain
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of 7 links, three cuts (links 5, 14, 31) for a
chain of 63 links, and so on.

5.

I confess that what I thought was a new
problem turns out, as Dmitri Borgmann in-
formed me, to be one of the first English
word squares ever published! In a letter to
the British periodical Notes and Queries
for July 21, 1859, a reader signing himself
“W. W.” spoke of the word-squaring game
“which has of late been current in society”
and proceeded to give the following ex-
ample: Circle, Icarus, Rarest, Create, Lustre,
Esteem. “There are very probably,” he
wrote, “other ways of squaring the circle.”

Yes, when I published the problem in
Scientific American about 1,000 readers
found more than 250 different ways of doing
it. I despair of summarizing the variations.
The most popular choice for a second word
was Inures, with Iberia, Icarus, and Isohel
following in that order. The square com-
posed by the most (227) people was: Circle,
Inures, Rudest, Crease, Lesser (or Lessor),
Esters. Almost as many (210) sent essen-
tially the same square, with Lessee and
Esteem as the last two words. “This was
done with ease,” wrote Allan Abrahamse,
in punning reference to the fact that a main
diagonal of this square consists entirely of
E’s. Fifty-six readers found Circle, Inures,
Rumens, Create, Lenten, Essene.

The most popular square with Iberia as
the second word was Circle, Iberia, Recent
(or Relent, Repent, and so on), Create,
Linter, Eaters (or Eatery). The most popu-
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lar with Icarus second: Circle, Icarus,
Rarest, Create, Luster, Esters. With Isohel
second: Circle, Isohel, Roband (or Roland),
Chaise (or Chasse), Lenses, Eldest. Each
of these three squares was arrived at by
more than a hundred readers.

Of some 40 other words chosen for the
second spot, Imaret was the favorite. More
than 40 readers used it, mostly as follows:
Circle, Imaret, Radish, Crissa, Lesson,
Ethane. Many squares with unusual words
were found by one reader only; the follow-
ing are representative:

Circle, Imoros, Romist, Crimea, Losest,
Estate (Frederick Chait).

Circle, Isolux, Rosace, Claver, Lucent,
Exerts (Ross and Otis Schuart).

Circle, Iterum, Refine, Cringe, Lunger,
Emeers (Ralph Hinrichs).

Circle, Isaian, Rained, Cingle, Laelia,
Endear (Robert Utter).

Circle, Ironer, Rowena, Cnemis, Lenite,
Eraser (Ralph Beaman).

Circle, Inhaul, Rhymed, Camise, Lueses,
Eldest (Riley Hampton).

Circle, Irenic, Regime, Cnidus, Limuli,
Ecesis (Mrs. Barbara B. Pepelko).

A number of readers tried the more diffi-
cult task of squaring the square. All to-
gether about 24 different squared squares
came in, all with esoteric words such as
Square, Quaver, Uakari, Avalon, Rerose,
Erinea (Mrs. P. J. Federico). Several read-
ers tried to square the triangle, but without
success. Edna Lalande squared the ellipse:
Ellipse, Lienees, Lecamas, Inagile, Pemi-
can, Sealane, Essenes.

Four readers (Quentin Derkletterer,



47. “Cube” cubed
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Solomon Golomb, John MecClellan, and
James Topp) independently hit on this

delightful squared cube:
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Derkletterer took off from this square, along
a third co-ordinate, and managed to cube
the cube: Cube, Ugly, Blue, Eyes; Ugly,
Glue, Lull, Yelp; Blue, Lull, Ulus, Else;
Eyes, Yelp, Else, Sped [see Figure 47].
Patrick O’Neil and Charles Keith cubed the
cube this way: Cube, Upon, Bold, Ends;
Upon, Pole, Olio, Neon; Bold, Olio, Liar,
Dora; Ends, Neon, Dora, Snap. Benjamin
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F. Melkun and Glenn A. Larson found still
another cubed cube, then vanished along
a fourth co-ordinate and came back with
hypercubes for the words Pet and Eat. They
were unable to cube the sphere. R. J. Rea
was able to cube eggs; and H. M. Thomas
and H. P. Thomas cubed root, dice, beef,
and ice, but were unable to cube sugar.
Leigh Mercer, the London expert on word

play, sent me the best-known squares in
which the words, taken in order, form sen-
tences:

Just, Ugly, Slip, Type.

Might, Idler, Glide, Hedge, Trees?

Crest, Reach, Eager (Scene Three).

Leave, Ellen, Alone, Venom, Enemy.

6.

A quick way to prove that all three hands of
a watch with a sweep second hand are to-
gether only when they point to 12 is to
apply elementary Diophantine analysis.
When the hour hand coincides with one of
the other hands, the difference between the
distances traveled by each must be an in-
tegral number of hours. During the 12-hour
period the hour hand makes one circuit
around the dial. Assume that it travels a
distance x, less than one complete circuit,
to arrive at a position with all three hands
together. After the hour hand has gone a
distance of x, the minute hand will have
gone a distance of 12x, making the differ-
ence llx. In the same period of time the
second hand will have gone a distance of
720x, making the difference 719x. All three
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hands can be together only when x has a
value that makes both 719x and 1lx in-
tegral. But 719 and 11 are both prime num-
bers, therefore x can take only the values of
0 and 1, which it has at 0 and 12 o’clock
respectively.

Aside from the case in which all three
hands point straight up, the closest the
hands come to pointing in the same direc-
tion (defining “closest” as the minimum
deviation of one hand when the other two
coincide) is at 16 minutes 16 and 256/719
seconds past 3, and again at 43 minutes 43
and 463/719 seconds after 8.

The two times are mirror images in the
sense that if a watch showing one time is
held up to a mirror and the image is read as
though it were an unreversed clock, the
image would indicate the other time. The
sum of the two times is 12 hours. In both
instances the second and hour hands co-
incide, with the minute hand separated
from them by a distance of 360/719 of one
degree of arc. (The distance is 5 and 5/719
seconds if we define a second as a sixtieth
of the distance of a clock minute.) In the
first instance the minute hand is behind the
other two by this distance, in the second
instance it leads by the same distance.

Another simple proof that the three hands
are never together except at 12 was found
by Henry D. Friedman, of Sylvania Elec-
tronic Systems. The hour and minute hands
meet eleven times, with periods of 12/11
hours that divide the clock’s circumference
into eleven equal parts. The minute and
second hands similarly divide the circum-
ference into 59 equal parts. All three hands



can meet only at a point where r/11 = s/59,
r and s being positive integers with r less
than 11 and s less than 59. Since 11/59 can-
not be reduced to a lower fraction, /s,
there can be no meeting of the three hands
except at 12 o’clock.

7.

The three cryptarithms have the unique
solutions shown in Figure 48. The top one
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was devised by Stephen Barr, the lower left
one is the work of the English puzzlist
Henry Ernest Dudeney; the lower right one
is from Frederik Schuh’s Wonderlijke
Problemen. For a translation of Schuh’s
analysis see pages 287-291 in F. Gobel’s
Master Book of Mathematical Recreations.

The third cryptarithm, which I thought no
one could solve without a computer, was
solved with pencil and paper by no fewer
than 53 Scientific American readers. Few
of the solvers went on to show that no other

9 9 48. Solutions to cryptarithms
X 9 9
g8 9 1
g8 9 1
9 8 0 1
+ 1 9 9
10 0 0 O
1 7
17 X 2 2
X 4 T 6
8 3 b5 8
+ 5 3 8
9 3 4 0 0 9 6
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solution was possible. Six readers, however,
programed computers to check all possi-
bilities, and they confirmed the uniqueness
of the answer.

8.

If eight chess pieces of one color are placed
on the board as shown in Figure 49, a total
of exactly 100 different moves can be made.
According to T. R. Dawson, the English
chess problemist, this question was first
asked in 1848 by a German chess expert,
M. Bezzel. His solution, the one shown
here, was published the following year. In

1899 E. Landau, in Der Schachfreund,
September, 1899, proved that 100 moves is
the maximum and that Bezzel’s solution is
unique except for the trivial fact that the
rook, on the seventh square of the fourth
row from the top, could just as well be
placed on the first square of that same row.

Among the many readers who solved this
chess problem, fourteen supplied detailed
proof that 100 moves is indeed the maxi-
mum.

For a way of placing the eight pieces so
that a minimum number of moves (ten) are
possible, see Figure 38, page 88, of my book
Unexpected Hanging.

49. Board setup for maximum
chess moves
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50. Mébius-strip solution

9.

What is the smallest value of A/B that al-
lows one to join the B edges of the paper
rectangle into a Mobius band? The surpris-
ing answer is that there is no minimum. The
fraction A/B can be made as small as one
pleases.

Proof is supplied by a folding technique
explained in Stephen Barr’s Experiments in
Topology (New York: T. Y. Crowell, 1964).
The strip is pleated as shown in Figure 50
to form a narrow strip with ends that show
two-fold symmetry. After this narrow strip
is given a half-twist the ends are joined.
Voila!
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7. Sliding-Block Puzzles

“THE OLDER INHABITANTS of Puzzleland,”
wrote Sam Loyd in his Cyclopedia of Puz-
zles, “will remember how in the early
seventies 1 drove the entire world crazy
over a little box of movable blocks which
became known as the 14-15 Puzzle.” Fif-
teen numbered blocks were placed in a
square box as shown in Figure 51. The ob-
ject was to slide the blocks about, one at a
time, until the 14-15 error was corrected
and all blocks were in serial order with the
empty space in the lower right-hand corner
as before.

The craze spread rapidly to Britain and
Europe. “People became infatuated with
the puzzle,” Loyd continued, “and ludi-
crous tales are told of shopkeepers who
neglected to open their stores; of a distin-
guished clergyman who stood under a street
lamp all through a wintry night trying to
recall the way he had performed the feat.
. . . A famous Baltimore editor tells how he
went for his noon lunch and was discovered
by his frantic staff long past midnight push-
ing little pieces of pie around on a plate!”

Interest in the puzzle abated after several
mathematicians published articles proving
it could not be done. Today the puzzle
(still on sale in a variety of forms) is some-
times cited by computer experts as a minia-
ture model of what is now called a sequential

51. Sam Loyd’s 14—-15 Puzzle




machine. Each movement of a block is an
input, each arrangement, or “state,” of the
blocks is an output. It turns out that exactly
half of the 15! (1 X 2 X 3 ... X 15), or
1,307,674,368,000, possible states of the
machine are achievable outputs. The math-
ematical theory of the 14-15 Puzzle applies
to all sliding-block puzzles in which the
pieces are unit squares confined to rectangu-
lar fields.

But not to sliding-block puzzles in which
the pieces are not unit squares! The success
of Loyd’s puzzle brought a rash of sliding-
block puzzles, with differently shaped
pieces, that have sold all over the world for
the past eighty years. These puzzles are
very much in want of a theory. Short of trial
and error, no one knows how to determine
if a given state is obtainable from another
given state, and if it is obtainable, no one
knows how to find the minimum chain of
moves for achieving the desired state. These
entertaining puzzles provide all sorts of
challenges for computer programmers. For
the rest of us they are engrossing solitaire
games that can be constructed in a few min-
utes with only a pair of scissors and a supply
of cardboard.

A puzzle of this type — perhaps the earliest
and certainly the most widely sold—is
shown in Figure 52. The reader is urged to
stop reading and cut the nine pieces from a
sheet of thin cardboard. The diagram is
easily copied by drawing a four-by-five
rectangle, ruling it lightly into unit squares,
then outlining the nine pieces. Number
them as indicated, cut them out and place
them on a four-by-five rectangle drawn on

52. Dad’s Puzzle

a sheet of paper or cardboard of contrast-
ing color. The problem: By sliding the
pieces one at a time, keeping them flat on
the paper and inside the rectangle, bring
the large square from corner A to corner C.

It is easy to bring the square to corner B.
Move the pieces in order as follows: 5, 4, 1,
2, 3; 4 (up and right), 1,6, 7, 8;9,5,4, 1, 6;
7 (halfway), 9, 5, 4, 8; 6, 2, 3, 1. This is a
minimum-move solution in 24 steps for
which I am indebted to Edward E. Roderick,
Alfred C. Collins, Jan-Henrik Johansson,
and Michel Hénon. (Sliding a piece “around
a corner” is counted as one move.) To bring
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the large square to corner D requires 29
moves. The first 19 are the same as before,
then continue with: 1, 3,2,6,7;8,9,4, 5, 1.

It is not possible to slide the large square
from corner A to corner C in fewer than 59
moves. Readers are urged to see if they can
achieve this minimum before the moves are
disclosed. Cardboard pieces are quite satis-
factory, although handsomer and more
permanent models can be cut from sheets of
wood, plastic, linoleum, Vinylite, and so on.
The restraining border can be made by
gluing strips on a wooden board. The board
should be sandpapered for smooth sliding,
and it is best to round off the corners of the
pieces and bevel their edges slightly.

The origin of this excellent puzzle is un-
known. The earliest version in the puzzle
collection of the late Lester Grimes of New
Rochelle, New York, is called the Pennant
Puzzle and was copyrighted in 1909 by
L. W. Hardy and made by the O.K. Novelty
Company in Chicago. Cardboard pieces
bear the names of major cities. The large
square, which represents the home team, is
to be brought to the corner, which symbol-
izes first place in the league. In 1926 a
wooden version was marketed under the
name of Dad’s Puzzler, and most later ver-
sions have been called Dad’s Puzzle. An
inexpensive version currently on sale has
the trade name Moving Day Puzzle (a pic-
ture of a piano is on the large square), and
there is an elegant version called Magnetic
Square Puzzle with large wooden pieces
(containing magnets) that cling to a metal
field.

If one of the two-by-one rectangles in
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Dad’s Puzzle is cut in half to make two unit
squares, the resulting ten pieces provide
the sliding blocks for a more difficult puz-
zle [see Figure 53] that has long been popu-
lar in France under the name of L’Ane
Rouge (The Red Donkey). The object of the
puzzle is to move the large square with the
red donkey’s picture to the bottom of the
border so that it can be slid out of the box
through the opening. A correspondent in
Scotland recalls seeing an English version
on sale in the early 1930’s. More recently it
has been sold in this country under such
trade names as Intrigue, Mov-it Puzzle and
Hako. The minimum-move solution re-

53. L’Ane Rouge puzzle




START

54. Line Up the Quinties puzzle

quires 81 moves. It was worked out by
Thomas B. Lemann, a New Orleans attor-
ney; and it was proved minimal in 1964 by
John Larmouth of Cambridge University,
and later by Michel Hénon, both men using
computers.

In 1934, when the Dionne quintuplets
were born, the event was celebrated by the
appearance of an unusual sliding-block

FINISH

puzzle called Line Up the Quinties. (The
box bears the imprint of the Embossing
Company of Albany, New York, and states
that the puzzle was created by Richard W.
Fatiguant.) In the schematic drawings of
this puzzle [Figure 54] the five circles are
the faces of the five quintuplets. The prob-
lem is to start with the pieces arranged as
shown in the first drawing and move them
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to the pattern shown at the bottom. A 30-
move solution, the best I have found, is
given in the answer section.

It was inevitable that someone would
think of complicating this sort of puzzle by
introducing nonrectangular pieces. In 1927
Charles L. A. Diamond of Newburgh, New
York, obtained patent No. 1,633,397 for the
puzzle shown in Figure 55. It was manu-
factured under the name of Ma’s Puzzle (in
obvious competition with Dad’s) by the
Standard Trailer Company of Cambridge
Springs, Pennsylvania. Piece No. 2 was
labeled “Ma,” No. 5 “My Boy.” (The other
seven pieces bore the labels “No Work,”
“Danger,” “Broke,” “Worry,” “Trouble,”
“Homesick,” and “Ill.”) The object of the
puzzle is to unite Ma with My Boy to form a
single three-by-two rectangle in the upper
right-hand corner of the box. (This rec-
tangle may be either wider than high or vice
versa.) I give a 23-move solution in the
answer section. More complicated puzzles,
some all rectangular, others with L-shaped
pieces, have been marketed here and
abroad. Sliding block puzzles with tri-
angular pieces have been explored, chiefly
by T. H. O’Beirne of Glasgow, but none
have so far been manufactured.

The latest innovation in this curious and
unchronicled field has been supplied by
Sherley Ellis Stotts, a piano tuner who lives
in Denver. Stotts, who holds a master’s
degree in psychology from the University
of Colorado (his thesis was on the reli-
ability of the Seashore music tests), has
been blind since the age of seven. In re-
cent years he has invented and made a
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55. Ma’s Puzzle

variety of unusual puzzles out of wire,
wood and plastic. A patent application is
now pending for what he calls his Tiger
series of sliding-block puzzles.

Each tiger puzzle is based on a diagram
often used by algebra teachers as a visual
display of the square of a polynomial. I shall
describe only the simplest Tiger puzzle,
which exploits the diagram [Figure 56] for
the square of a + b + c. The three terms are
represented by the horizontal and vertical
line segments on the sides of the square.
When the expression is multiplied by it-
self, the result is a®> + b* + ¢* + 2ab + 2ac +
2bc. Each term, of course, is represented in
the figure: there are three squares with
sides, respectively, of a, b, and ¢, two rec-
tangles with sides ab, two with sides ac,
and two with sides bc. Stotts converted this
dissection to the charming puzzle shown at
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56. Stotts’s Tiger puzzle

the right in the illustration. On the large
square he glued a replica of a tiger. At the
upper right-hand corner he attached to the
frame two segments of a fence (shown in
color). Three other fence segments were
glued to pieces 1, 4, and 6 as shown. (Read-
ers who wish to try the puzzle may simply
draw the fences on cardboard pieces.) The
ratios of a:b:c must be 3:2:1.

The puzzle starts with the pieces ar-
ranged as indicated, except that piece 9 is
removed from the field. The problem is to
slide the pieces so that the tiger square is
moved to the upper right-hand corner and
completely surrounded by a square fence.
Unlike all previous sliding-block puzzles,
the open space is large enough to allow, at
times, the 90-degree rotation of a rectangu-
lar piece. This is permitted, of course, only
when the rotation is geometrically possible

within the space, keeping all pieces flat on
the field. In the answer section I give a 48-
move solution.

At the moment there is no practical appli-
cation for a theory of sliding-block puzzles
with differently shaped pieces, but it would
be foolhardy to say that none will ever be
found. As automation advances, complex
problems arise in connection with the effi-
cient storage and retrieval of goods. The day
may come when a housewife will dial an
order to a department store and machines
will find the items and deliver them to a
post office or truck. If the items are kept in
rectangular packages, it is not inconceivable
that a certain amount of package-shifting,
within confined areas, will be called for.
Something of this sort actually goes on con-
stantly in big-city garages and parking lots
where it is necessary to park as many cars
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as possible within the available space and to
retrieve the cars with maximum efficiency.
In fact, in Britain sliding-block puzzles are
often called ‘“garage puzzles” because
several British versions have presented the
pieces as cars confined to a garage. The
problem, of course, is to maneuver a cer-
tain car to the garage’s entrance without
taking any of the other cars outside.

As the reader will quickly discover if he
tries to solve any of these puzzles, there is
an almost hypnotic fascination in pushing
the pieces about in search of a minimum
chain of inputs that will produce the de-
sired state. It is by no means all trial and
error. The mind soon “sees” that certain
lines of play lead to blind alleys whereas
other lines of play are promising.

Answers

Dad’s Puzzle: 59 moves. 5, 4, 1, 2, 3, 4
(up, right). 1,6,7,8, 9,5. 4,1,6,7,8,9
5 (left, up), 9, 8, 5,4, 1. 3,2,7,6, 4 (up
left), 6. 7,4,5,6,7,5 (right, up). 3,2,5
4,3,2. 4 (down, right), 2,3,6,7,1. 4,5
2,3,6,7. 1,4 (left, up), 9, 8, 1.

L’Ane Rouge: 81 moves. 9 (halfway), 4,
5, 8 (down), 6. 10 (halfway), 8, 6, 5, 7 (up,
left). 9,6, 10 (left, down), 5,9. 7.4, 6, 10,
8. 5,7 (down, right), 6,4, 1. 2,3,9,7,6.
3,2,1,4,8. 10 (right, up), 5,3,6,8. 2.9
7 (up, left), 8, 6. 3, 10 (right, down), 2, 9

6
1

>

(down, right), 1. 4, 2,9, 7 (halfway), ,8 ’
3,10,9 (down),2. 4,1,8,7,6. 3,2,7,8

>

>
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4, 7 (left, up), 5, 9, 10.
left). 2.

Line Up the Quinties: 30 moves. 9,8, 1,
2,3. 6,8 (up, left), 2, 5 (right, down), 3. 6,
8 (up, left),9,2,8. 6,3, 1 (right, down), 6, 3.
5 (up, right), 1 (right, down), 7,1 (left),8. 5
(down), 3, 6 (halfway), 4, 9.

Ma’s Puzzle: the 32-move solution 1
originally published in the pages of Sci-
entific American was reduced by more than
a dozen readers to 23. 9 (left), 8, 7, 6, 5.
9 (up), 8,7,6,4. 2,1,3 (up), 9 (up, right),
5 (left, up). 6, 4 (down, right), 9 (down all
the way), 5,3. 1,2, 5.

Tiger Puzzle: 48 moves. Letters stand for
up, down, left, right, and turn (90 degrees).
8d, 5d, 6d, 4r, 1d. 2l, 31, 4u, Ir, 7u. 81, 5d,
6d, 1d, 4d. 3r, 2r, 7u, 11, 5u. 6u, 8r, 1d,
51, 61. 4d, 2dtr, 7r, 5u, 61. 41, 2d1, 3d, 7r, 5r.
6u, 4lu, 1u, 81, 3d. 2td, 1lru, 8ur, 4d, 6dr.
51, 6u, 4u. This solution, with one less than
the number of moves in the solution I
originally presented, was provided by
Charles Clapham, John Harris, and Thomas
Kew.

2.8, 7,5, 10 (up,
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8. Parity Checks

She took me to her elfin grot,
And there she wept and sigh’d
full sore,
And there | shut her wild, wild eyes
With kisses four.

>

“WHY FOUR KISSES, you will say . ..
wrote John Keats in a letter, commenting
on the above stanza from his well-known
poem La Belle Dame sans Merci. “1 was
obliged to choose an even number that both
eyes might have fair play. . . . I think two
a piece quite sufficient. Suppose I had said
seven; there would have been three and a
half a piece —a very awkward affair.”

If we had been told that Keats’s pale
knight kissed the lady’s eyes 37 times,
would it be necessary to make an empirical
test to determine if each eye could receive
the same number of kisses? No, 37 is an odd
number, not evenly divisible by 2. We know
at once that one eye must have been kissed
at least one more time than the other.

An old joke along similar lines tells of a
graduate student in mathematics who was
on a spring outing with his girl. She plucked
a daisy and began to pull off the petals
while she recited “He loves me, he loves
menot . . .7
“You are really going to a great deal of
unnecessary trouble,” said the young man.
“All you have to do is count the petals. If
the total is even, the answer is negative. If
itis odd, the answer is affirmative.”

We have here two trivial applications of
what mathematicians sometimes call a
parity check. It is one of the most powerful
tools in mathematics. Whenever a problem
involves odd and even, or two mutually
exclusive sets that can be identified with
odd and even numbers, a parity check often
furnishes a quick, elegant proof for some-
thing that might otherwise be extremely
difficult to establish.

The classic instance in number theory is
provided by Euclid’s proof, which may go
back to the Pythagoreans, that the square
root of 2 cannot be expressed as a common
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fraction (a fraction with an integer above
and an integer below the line). Since the
diagonal of a unit square has a length equal
to the square root of 2, this means that no
ruler, however finely graduated, that ac-
curately measures the side of the square
will accurately measure the diagonal.

The proof is easy to follow. Assume that
there is such a common fraction, n/m,
which has been reduced to its lowest terms.
Since the square of this fraction is 2, we
can write the equation

2 = n?/m? (1)
and then rearrange the terms to
n?=2m?. (2)

The right side of this equality is an even
number (because it is a multiple of 2);
therefore the left side, n? is even. Only an
even number gives an even product when
multiplied by itself; therefore n also is even.
We turn our attention to m. Is it odd or
even? It cannot be even because n and m
would then both be even and we would be
able to simplify the fraction n/m by dividing
both terms by 2. This, however, would
contradict our original assumption that
n/m had already been reduced to its lowest
terms. We must assume, then, that m is odd.

Since n is even, we can express n in the
form 2a, letting a stand for another integer.
Substituting 2a for n in equation (2), we
have

40> =2m?, (3)
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which reduces to
2a® = m?> . (4)

By the same argument used above, m can-
not be odd because its square equals the
even number expressed by the left side of
the equation. We previously saw that m
cannot be even. Now we see that it also
cannot be odd. Since every integer must be
even or odd, m cannot be an integer. Our
initial assumption must be false; there is
no common fraction n/m that is the square
root of 2. The number we seek is irrational,
a term that reflects the shock of the dis-
covery of such numbers by the ancient
Greeks. Note also that equation (2) has been
shown to be one that cannot be satisfied by
integers. In other words, no square integer
is exactly twice another square integer.
This too is an important theorem that would
be hard to prove without the astonishing
power of a simple parity check.

In every branch of mathematics an odd-
even check often supplies an efficient,
short-cut proof. The following problem in
topology is typical. Draw as many circles as
you like, of any size, wherever you wish on
a sheet of paper. Can such a “map” always
be colored with two colors in such a way
that no two regions with a common border
are the same color? One way to prove that
the answer is yes is to consider any pair of
adjacent regions, A and B. They will be
divided by an arc of a circle, which we will
call X. One of the regions will be inside X,
the other outside. Aside from X, A and B
will be inside either no circles or the same



number of circles; therefore one of the two
regions is sure to be inside one more circle
than the other. If we label each region with
the number of circles it is within [see Figure
571, one of every pair of adjacent regions is
sure to be even and its partner is sure to be
odd. We color the even-numbered regions
one color and the odd regions another
color and the job is done. (For a different

Parity Checks

way of confirming the yes answer see my
book New Mathematical Diversions from
Scientific American; New York: Simon and
Schuster, 1966; chapter 10.)

In the physical world things frequently
have a mathematical pattern to which the
familiar properties of odd and even num-
bers apply. An amusing instance is supplied
by a parlor trick with three empty drinking

57. A two-color map
theorem
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58. Setup for the glass trick

glasses. Place the glasses as shown in
Figure 58. The puzzle, you explain to your
audience, is to turn over two glasses simul-
taneously, one with each hand, and in three
such “moves” bring all the glasses upright.
To demonstrate: Turn glasses I and 2,
then I and 3, then 1 and 2 again. All three
glasses will then be right side up. (Actually,
you can get them all up in two moves, or
even one move, but you do it in three to
confuse your spectators.) Now comes the
sneaky part. Casually invert the center
glass and invite someone to try. Few people
will notice that the starting position is no
longer the same as before. A simple parity
check shows that from this new position the
problem cannot be solved in any number of
moves.

The proof is as follows. Whenever an
even number of glasses (zero or two) are
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upright, we say that the “system” has even
parity. When an odd number are upright,
the system has odd parity. It is easy to see
that turning any two glasses cannot change
the system’s parity. No amount of turning in
pairs will convert the initial state of even
parity (two up) to the desired state of odd
parity (three up). If a spectator follows your
moves exactly, he will bring all the glasses
down. Should he accidentally set them up
properly for a new attempt, step in quickly,
make another fast demonstration of how it is
done and leave him again with the incorrect
starting position.

If there are ten glasses (or any even num-
ber not divisible by 4) arranged alternately
up and down, is it possible to make a se-
quence of moves that will bring all the
glasses up or all down? No, because in
either case an impossible change in the



system’s parity (from, say, an odd five to an
even ten) is demanded.

As long as the glasses behave politely,
according to our notion of their structure,
it is inconceivable that this parity-conserva-
tion law would be violated. But nature,
particularly on the subatomic level, is under
no obligation to conform to our notions of
structure. In 1957 a parity law that for thirty
years had been found applicable to the
wave functions of quantum mechanics
turned out not to hold in the case of the
weak interactions of particles. Physicists
are still recovering from the shock. It was as
if someone had stepped up to ten alternating
glasses, turned them in pairs and brought all
ten upright!

An entertaining coin trick of the extra-
sensory-perception variety exploits the
same underlying principle as the glass trick.
Someone is asked to take a handful of coins

from his pocket and toss them on the table.

While you look away, ask him to turn over
the coins at random but always two coins
simultaneously. He continues as long as he
pleases, doing it silently so that you have no
idea how many turns he makes. He then
covers one coin with his hand. You turn
around, glance at the other coins and im-
mediately tell him whether the concealed
coin is heads or tails.

The method (explained by Al Thatcher
in the October, 1962, issue of a magician’s
periodical, The New Phoenix) could not be
simpler. At the outset an even number of
heads indicates even parity; an odd num-
ber, odd parity. If coins are turned in pairs,
parity must be conserved. For example,

Parity Checks

suppose five heads show at the beginning.
At the finish, when one coin is hidden, the
parity of the system must still be odd. Thus
if you see an even number of heads, you
know the concealed coin is a head. If you
see an odd number of heads, the concealed
coin must be a tail.

As a variation, let a spectator cover two
coins and then tell him whether they match
or not. Another variant is to let him turn first
one coin, then two, then three, and repeat
this triplet of changes as long as he wishes.
Since 1 + 2+ 3 =6, an even number, parity
will be conserved as before.

Sometimes the underlying parity struc-
ture of a system is so well camouflaged that
only the most alert mathematician is able to
spot it. A sterling example is provided by
the following unusual problem adapted
from Unterhaltsame Mathematik, a brilliant
collection of puzzles by the German Math-
ematician Roland Sprague. (An English
translation by T. H. O’Beirne was pub-
lished in London in 1963 by Blackie and
Son Ltd.) Five alphabet blocks, all exactly
alike and each with the letter A on one face
only, are first placed on a checkerboard in
the cross formation shown in Figure 59,
upper left corner of the board. The A sides
of all five blocks are uppermost. The blocks
are now moved from square to square by
being tipped over along one edge, as one
might move a large, heavy cubical box. In
other words, each block is moved by a series
of quarter turns each of which tips it from
one square to an adjacent square. It is im-
possible, if one moves the blocks in this
fashion, to arrange them in a row, anywhere
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on the board, with the A faces uppermost
and all with the same orientation. It is pos-
sible to arrange them as shown in the row at
the bottom of the board. Which block in this
row started out as the center block of the
cross formation?

One could, of course, obtain five alphabet
blocks and find by actual test which block
it must be, but with the right insight into the
odd-even structure of the system the cor-
rect block can be identified simply by study-
ing the picture. Moreover, the parity check
provides a proof the empirical test does not.
The test merely shows that one block in the
row could have been the center one; it does
not prove that no other block could have
been if the right sequence of turns had been
made.

Perhaps an easier odd-even problem con-
cerns the work of an eccentric U.S. archi-
tect, Frank Lloyd Wrong. To annoy a
wealthy client, Wrong designed a house
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59. A problem for parity analysis

shaped like an enormous shoe box. It was
divided by floors into three levels, and on
each level the floors were divided by verti-
cal walls into seven rectangular rooms.
There were no hallways, staircases, or
closets, there was no basement or attic. The
house consisted entirely of 21 rectangular,
box-shaped rooms.

The doors of the house were of two types:

1. Conventional doors that enabled one
to go from one room to a neighboring room,
or from a first-floor room to the grounds out-
side.

2. Trap doors that allowed one, with the
aid of ladders, to go from one room to a room
directly above or below.

The doors were placed at random. One
room might contain a dozen or more doors
or (like the Other Professor’s room in Lewis
Carroll’s Sylvie and Bruno) as few as no
doors at all. Wrong was careful, however, to
see that each room had an even number of
doors. (Zero is considered even.) The prob-
lem is to prove that the number of outside
doors, leading from first-floor rooms to the
grounds, is even.

Answers

Which one of the five alphabet blocks in a
row on a chessboard had been the center
olock in the previous formation before the
blocks were moved by tipping them over an



edge from square to square? It is obvious
that if a block is moved an even number of
times, it will rest on a square that is the
same color as the square on which it started.
An odd number of moves puts it on a square
of opposite color. Not so obvious is the way
in which odd and even apply to the orienta-
tions of each block.

Imagine a block painted red on three
sides that meet at one corner and placed so
you can see three of its sides. There are four
possibilities: you see no red side, one red
side, two red sides, or three red sides. If you
see one or three red sides, we say the block
has odd parity; otherwise, it has even parity.
Whenever the block is given a quarter-turn
in any direction, it is sure to change parity
as shown in Figure 60. (This follows from
the fact that opposite sides of the block are
different colors. Each quarter-turn takes one
side out of your line of vision and brings its
opposite side into view. Thus a quarter-turn
always alters one of the visible colors.)

Parity Checks

Think of a block as a die instead of a block
with colored sides. In this case its parity is
indicated by whether the sum of the three
visible faces is odd or even.

Because each move of the block gives it a
quarter-turn, it changes its parity with each
move. After an even number of moves it
will be on a square of the same color as the
square from which it started, and it will
have the same parity. After an odd number
of moves it will have changed both color of
square and parity. The center block origi-
nally rested on white. If it moved an odd
number of times, it will be in the second
formation on a black square, its parity al-
tered. But all the blocks on black squares in
the second formation have the same parity,
therefore the center block is not among
them. It must have moved an even number
of times. This would put it on a white
square, with its parity the same as before.
Of the two blocks on white squares, only
the second from the right has unaltered

60. How a quarter-turn changes the parity of a cube

obD

obD EVEN
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parity. Therefore it is the block we seek.

Actually, the blocks can be moved ran-
domly to any final spots on the board and
you can always identify the block that was
originally at the center of the cross. It will
be either the only block on a white cell with
unaltered parity, or the only block on a
black cell with altered parity.

To prove that Frank Lloyd Wrong’s shoe-
box house has an even number of outside
doors, we consider first the fact that every
door has two sides. If there are n doors, the
total number of sides is 2n, an even number.
We are told that every room has an even
number of doors. Assume that all doors are
closed. An even number of sides will face
into each room, therefore the total number
of sides facing into rooms will be even. We
subtract this even number from the total
number of sides, also even, to obtain
another even number: the number of sides
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not facing into a room. These sides must, of
course, be on the exterior doors. Therefore
the number of doors leading to the grounds
is even.
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9. Patterns and Primes

NO BRANCH of number theory is more satu-
rated with mystery and elegance than the
study of prime numbers: those exasperating,
unruly integers that refuse to be divided
evenly by any integers except themselves
and 1. Some problems concerning primes
are so simple that a child can understand
them and yet so deep and far from solved
that many mathematicians now suspect they
have no solution. Perhaps they are “un-
decidable.” Perhaps number theory, like
quantum mechanics, has its own uncer-
tainty principle that makes it necessary, in
certain areas, to abandon exactness for
probabilistic formulation.

The central difficulty is that the primes
are scattered along the series of integers in
a pattern that clearly is not random and yet
defies all attempts at precise description.
What is the 100th prime? The only way a
mathematician can answer is by obtaining a
list of primes and counting to the 100th.
How is such a list obtained initially? The
simplest method is to go through the inte-
gers and cross out all the composite (not

prime) numbers. Of course a computer can
do this with great speed, but it still must use
essentially the same simple-minded proce-
dure that Eratosthenes, the Alexandrian
geographer-astronomer and friend of Archi-
medes, devised two thousand years ago.

There is no better way to become familiar
with the primes than by using Eratosthenes’
Sieve (as his procedure is called) for sifting
out all primes under 100. Kenneth P. Swal-
low of Monterey, California, has proposed
an efficient way to do this. Write the num-
bers from 1 to 100 in the rectangular array
shown in Figure 61. Cross out all multiples
of 2, except 2 itself, by drawing vertical
lines down the second, fourth and sixth col-
umns. Eliminate the remaining multiples of
3 by drawing a line down the third column.
The next integer not crossed out is 5. Multi-
ples of 5 are removed by a series of diagonal
lines running down and to the left. Remain-
ing multiples of 7 are eliminated by lines
sloping the other way. The integers 8, 9,
and 10 are composite: their multiples have
already been crossed out. Our job is now
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61. The Sieve of Eratosthenes

finished because the next prime, 11, is
larger than the square root of 100, the high-
est number in the table. Had the table been
longer, larger multiples of 11 would have
been removed by diagonal lines of steeper
slope.

All but 26 numbers (shown in color) have
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fallen through the sieve. These are the first
26 primes. Mathematicians prefer to say 25
primes, because various important theorems
are simpler to express if 1 is not called a
prime. For example, the ‘“fundamental
theorem of arithmetic” states that every
integer greater than 1 can be factored into
a unique set of prime numbers. Thus 100 is
the product of four primes: 2 X 2 X5 X 5. No
other set of positive primes has a product
of 100. If 1 were called a prime, we could
not say this. There would be an infinite
number of different sets of prime factors,
suchas2X2xX5x5x1X1.

Much can be learned about the primes by
studying Figure 61. You see at once that all
primes greater than 3 are either one less or
one more than a multiple of 6. Also, it is
clear why there are so many “twin primes”:
pairs of primes that have a difference of 2,
such as 71 and 73, 209,267 and 209,269, or
1,000,000,009,649 and 1,000,000,009,651.
After eliminating multiples of 2 and 3, all
remaining numbers are twin-paired. Subse-
quent sievings simply remove one or both
partners of a pair, but they leave many un-
touched. Twin primes get scarcer as the
numbers get bigger. It is conjectured that
an infinity of them continue to sift through
the sieve, but no one knows for certain. The
chart also shows at a glance that 3,5, 7 is the
only possible triplet of primes.

If the integers are differently placed, the
primes will of course form a different geo-
metrical pattern. In 1963 Stanislaw M.
Ulam, of the Los Alamos Scientific Labora-
tory, attended a scientific meeting at which
he found himself listening to what he de-



scribes as a “long and very boring paper.”
To pass the time he doodled a grid of hori-
zontal and vertical lines on a sheet of paper.
His first impulse was to compose some chess
problems, then he changed his mind and
began to number the intersections, starting
near the center with 1 and moving out in
a counterclockwise spiral. With no special
end in view, he began circling all the prime
numbers. To his surprise the primes seemed
to have an uncanny tendency to crowd into
straight lines. Figure 62 shows how the

Patterns and Primes

primes appeared on the spiral grid from 1 to
100. (For clarity the numbers are shown in-
side cells instead of on intersections.)
Near the center of the spiral the lining up
of primes is to be expected because of the
great “density”” of primes and the fact that
all primes except 2 are odd. Number the
squares of a checkerboard in spiral fashion
and you will discover that all odd-numbered
squares are the same color. If you take 17
checkers (to represent the 17 odd primes
under 64) and place them at random on the

62. Ulam’s square spiral
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32 odd-numbered squares, you will find
that they form diagonal lines. But in the
higher, less dense areas of the number
series one would not expect many such
lines to form. How would the grid look,
Ulam wondered, if it was extended to thou-
sands of primes?

The computer divison at Los Alamos has
a magnetic tape on which 90 million prime
numbers are recorded. Ulam, together with
Myron L. Stein and Mark B. Wells, pro-
gramed the MANIAC computer to display the
primes on a spiral of consecutive integers
from 1 to about 65,000. The picture of the
grid presented by the computer is shown in
Figure 63. Note that even near the picture’s
outer limits the primes continue to fall
obediently into line.

The eye first sees the diagonally compact
lines, where odd-number cells are adjacent,
but there is also a marked tendency for
primes to crowd into vertical and hori-
zontal lines on which the odd numbers
mark every other cell. Straight lines in all
directions (once they have been extended
beyond the consecutive numbers on a seg-
ment of the spiral) bear numbers that are
the values of quadratic expressions begin-
ning with 4x2. For example, the diagonal
sequence of primes 5, 19, 41, 71 is given by
the expression 4x* 4+ 10x + 5 as x takes the
values 0 through 3. The grid suggests that
throughout the entire number series expres-
sions of this form are likely to vary markedly
from those “poor” in primes to those that
are ‘‘rich,” and that on the rich lines an
unusual amount of clumping occurs.

By starting the spiral with numbers higher
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than 1 other quadratic expressions form the
lines. Consider a grid formed by starting
the spiral with 17 [see Figure 64, left].
Numbers in the main diagonal running
northeast by southwest are generated by
4x* + 2x + 17. Plugging positive integers
into x gives the diagonal’s lower half; plug-
ging negative integers give the upper half.
If we consider the entire diagonal, rear-
ranging the numbers in order of increasing
size, we find—pleasantly enough—that all
the numbers are generated by the simpler
formula x* + x + 17. This is one of many
“prime-rich” formulas discovered by Leon-
hard Euler, the eighteenth-century Swiss
mathematician. It generates primes for all
values of x from O through 15. This means
that if we continue the spiral shown in the
illustration until it fills a 16-by-16 square,
the entire diagonal will be solid with
primes.

Euler’'s most famous prime generator,
x? + x +41, can be diagramed similarly on a
spiral grid that starts with 41 [see Figure 64,
right]. This produces an unbroken se-
quence of 40 primes, filling the diagonal of
a 40-by-40 square! It has long been known
that of the first 2,398 numbers generated by
this formula, exactly half are prime. After
testing all such numbers below 10,000,000,
Ulam, Stein, and Wells found the proportion
of primes to be .475 . . . Mathematicians
would like to have a formula expressing a
function of n that would give a different
prime for every integral value of n. It has
been proved that no polynomial formula
of this type exists. There are many nonpoly-
nomial formulas that will generate only
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64. Diagonals generated by the formula x* + x + 17 (left)

and x2 + x + 41 (right)

primes, but they are of such a nature that
they are of no use in computing primes
because the sequence of primes must be
known in order to operate with the formu-
las. (See “History of a Formula for Primes,”
by Underwood Dudley, The American
Mathematical Monthly, January, 1969.)

Ulam’s spiral grids have added a touch of
fantasy to speculations about the enigmatic
blend of order and haphazardry in the dis-
tribution of primes. Are there grid lines
that contain an infinity of primes? What is
the maximum prime density of a line? On
infinite grids are there density variations
between top and bottom halves, left and
right, the four quarters? Ulam’s doodlings
in the twilight zone of mathematics are not
to be taken lightly. It was he who made the
suggestion that led him and Edward Teller
to think of the “idea” that made possible the
first thermonuclear bomb.

Although primes grow steadily rarer as
numbers increase, there is no highest prime.
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The infinity of primes was concisely and
beautifully proved by Euclid. One is
tempted to think, because of the rigidly
ordered procedure of the sieve, that it
would be easy to find a formula for the exact
number of primes within any given interval
on the number scale. No such formula is
known. Early nineteenth-century mathe-
maticians made an empirical guess that the
number of primes under a certain number
n is approximately n/natural log of n, and
that the approximation approaches a limit
of exactness as n approaches infinity. This
astonishing theorem, known as the “prime-
number theorem,” was rigorously proved in
1896. (See ‘“‘Mathematical Sieves,” by
David Hawkins, Scientific American, De-
cember, 1958, for a discussion of this
theorem and its application to other types of
numbers, including the “lucky numbers”
invented by Ulam.)

It is not easy to find the mammoth primes
isolated in the vast deserts of composite



numbers that blanket ever larger areas of
the number series. At the moment the larg-
est known prime is 2'¥%7 — 1 a number of
6,002 digits. It was discovered in 1971 by
Bryant Tuckerman, at IBM’s research center,
Yorktown Heights, New York. Before the
advent of modern computers, testing a num-
ber of only six or seven digits could take
weeks of dreary calculation. Euler once
announced that 1,000,009 was prime, but
he later discovered that it is the product of
two primes: 293 and 3,413. This was a con-
siderable feat at the time, considering that
Euler was 70 and blind. Pierre Fermat was
once asked in a letter if 100,895 598,169 is
prime. He shot back that it is the product of
primes 898,423 and 112,303. Feats such as
these have led some to think that the old
masters. may have had secret and now-lost
methods of factoring. As late as 1874 W.
Stanley Jevons could ask, in his Principles
of Science: “Can the reader say what two
numbers multiplied together will produce
the number 8,616,460,799? I think it un-
likely that anyone but myself will ever
know; for ‘they are two large prime num-
bers.” Jevons, who himself invented a
mechanical logic machine, should have
known better than to imply a limit on future
computer speeds. Today a computer can
find his two primes (96,079 and 89,681)
faster than he could multiply them together.

Numbers of the form 2» — 1, where p is
prime, are called Mersenne numbers after
Marin Mersenne, a seventeenth-century
Parisian friar (he belonged to a humble
order known as the Minims —an appropriate
order for a mathematician), who was the
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first to point out that many numbers of this
type are prime. For some 200 years the
Mersenne number 2%7 — 1 was suspected of
being prime. Eric Temple Bell, in his book
Mathematics, Queen and Servant of Sci-
ence, recalls a meeting in New York of the
American Mathematical Society in October,
1903, at which Frank Nelson Cole, a Colum-
bia University professor, rose to give a
paper. “Cole—who was always a man of
very few words —walked to the board and,
saying nothing, proceeded to chalk up the
arithmetic for raising 2 to the sixty-seventh
power. Then he carefully subtracted 1.
Without a word he moved over to a clear
space on the board and multiplied out, by
longhand,

193,707,721 X 761,838,257,287.

The two calculations agreed. . . . For the
first and only time on record, an audience of
the American Mathematical Society vigor-
ously applauded the author of a paper
delivered before it. Cole took his seat with-
out having uttered a word. Nobody asked
him a question.” Years later, when Bell
asked Cole how long it took him to crack
the number, he replied, “Three years of
Sundays.”

The British puzzle expert Henry Ernest
Dudeney, in his first puzzle book (The
Canterbury Puzzles, 1907), pointed out that
11 was the only known prime consisting
entirely of 1’s. (Of course, a number formed
by repeating any other digit would be com-
posite.) He was able to show that all such
“repunit” numbers, from 3 through 18 units,
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are composite. Are any larger “repunit’
chains prime? Oscar Hoppe, a New York
City reader of Dudeney’s book, took up the
challenge and actually managed to prove,
in 1918, that the 19-“repunit’” number,
1,111,111,111,111,111,111 is prime. Later
it was discovered that 23 repeated 1’s is
also prime. There the matter rests. No one
knows if the “repunit” primes are infinite,
or even if there are more than three. It is
easy to see that no repunit number is prime

unless the number of its units is prime.

(For example, if its number of digits has a
factor of, say, 13, then clearly it is divisible
by arepunit of 13 digits.) As of 1970 repunits
have been tested through 373 digits without
finding a fourth prime.

Can a magic square be constructed solely
of different primes? Yes; Dudeney was the
first to do it. Figure 65 shows such a square.
It sums in all directions to the “repunit”
number 111: the lowest possible constant
for a prime square of order 3. (Curiously,
an order-4 square is possible with the lower
magic constant of 102. See Dudeney’s
Amusements in Mathematics; New York:
Dover, 1917; problem 408.)

Can a magic square be made with con-
secutive odd primes? (The even prime, 2,
must be left out because it would make the
odd or even parity of its rows and columns
different from the parity of all other rows
and columns, thereby preventing the array
from being magic.) In 1913 J. N. Muncey of
Jessup, lowa, proved that the smallest
magic square of this type is one of order 12.
This remarkable curiosity is so little known
that I reproduce it in Figure 66. Its cells
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67| 1 |43
1337 61
3173 | 7

65. Prime magic square with lowest
order-3 constant

hold the first 144 consecutive odd primes,
starting with 1. All rows, columns and the
two main diagonals sum to 4,514.

Readers may test their familiarity with
primes by answering the following ele-
mentary questions:

1. Identify the four primes among the
following six numbers. (Note: The second
number is the first five digits in the decimal
of pi.)

10,001
14,159
76,543
77,377
123,456,789

909,090,909,090,909,090,-
909,090,909,091
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66. Smallest possible magic square of consecutive odd primes
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67. A gear problem

2. Two gear wheels, each marked with an
arrow, mesh as shown in Figure 67. The
small wheel turns clockwise until the ar-
rows point directly toward each other once
more. If the large wheel has 181 teeth, how
many times will the small wheel have ro-
tated? (Contributed by Burris Smith of
Greenville, Mississippi.)

3. Using each of the nine digits once, and
only once, form a set of three primes that
have the lowest possible sum. For example,
the set 941, 827, and 653 sum to 2,421, but this
is far from minimal.

4. Find the one composite number in the
following set:

31 331 3331 33331 333331 3333331
33333331 333333331

5. Find a sequence of a million consecu-
tive integers that contains not a single
prime.
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Addendum

Many Scientific American readers experi-
mented with triangular and hexangular
arrays of integers and found that the primes
cluster along straight lines in the same man-
ner as in Stanislaw Ulam’s square spiral
grids. Laurence M. Klauber of San Diego,
California, sent me a copy of a paper he had
read to a meeting of the Mathematical Asso-
ciation of America in 1932, discussing his
search for prime-rich polynomial formulas
in such an array. Ulam has also used the Los
Alamos computer for investigating a variety
of other types of grid, including the triangu-
lar, and in every case he found that signifi-
cant departures from random distributions
of primes were at once apparent. This is
hardly surprising, because any orderly
arrangement of consecutive integers in a
grid will have straight lines that are gen-
erated by polynomial expressions. If the



expression is factorable, the line cannot
contain primes; this fact alone can account
for a concentration of primes along certain
other lines.

All diagonals of even numbers are ob-
viously prime-empty, and other lines are
empty because they are factorable by other
numbers. Many readers noticed that the
diagonal line extending down and to the
right from 1 on Ulam’s spiral grid contains
in sequence the squares of odd integers,
and the diagonal line extending up and to
the left from 4 gives the squares of even
integers. Both diagonals are, of course,
prime-empty. Conversely, other lines are
prime-rich because they are generated by
formulas that act as sieves, removing num-
bers that are multiples of low primes. The
significance of Ulam’s spiral grids lies not
in the discovery that primes are nonran-
domly distributed, which is to be expected
in any orderly arrangement of integers, but
in the use of a computer and scope to extend
such grids quickly so that photographs pro-
vide, so to speak, a bird’s-eye view of the
pattern from which hints can be obtained
that may lead to new theorems.

Several readers called my attention to
W. H. Mills’s formula in the Bulletin of the
American Mathematical Society; June,
1947, page 604, which contains an irra-
tional number between 1 and 2. When posi-
tive integers are substituted for n in the
formula, the expression gives prime values;
but since the irrational number is not
known, the formula is of no value in comput-
ing primes. In fact, it is easy to write irra-
tional numbers that generate every prime in
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sequence, for example .2030507011013017-
0190230. . . . To be sure, one has to know
the sequence of primes before computing
the number. There are many ways of writing
complicated functions of n so that integral
values of n produce distinct primes, but the
catch is that the function itself requires the
introduction of the prime-number sequence,
making the formula valueless for finding
primes. Readers interested in formulas of
this type will find a nontechnical discus-
sion of them in Oystein Ore’s excellent
book Number Theory and Its History (New
York: McGraw-Hill, 1948).

Answers

1. The two composite numbers are
10,001 (the product of primes 73 and 137)
and 123,456,789, which is evenly divisible
by 3. The other numbers are primes.

2. Two meshed gear wheels of different
sizes cannot return to the same position
until a certain number of teeth, k, have
passed the point of contact on both wheels.
The number k is the lowest common mul-
tiple of the number of teeth on each wheel.
Let n be the number of teeth on the small
wheel. We are told that the large wheel has
181 teeth. Since 181 is a prime number, the
lowest common multiple of n and 181 is
181n. Therefore the small wheel will have
to make 181 rotations before the two wheels
will return to their former position.

3. How can the nine digits be arranged
to make three primes with the lowest pos-
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sible sum? We first try numbers of three
digits each. The end digits must be 1, 3, 7,
or 9 (this is true of all primes greater than
5). We choose the last three, freeing 1 for
a first digit. The lowest possible first digits
of each number are 1,2, and 4, which leaves
5, 6, and 8 for the middle digits. Among the
11 three-digit primes that fit these specifi-
cations it is not possible to find three that
do not duplicate a digit. We turn next to
first digits of 1, 2, and 5. This yields the
unique answer

149
263
587
999

4. The last number, 333333331, has a
factor of 17. (The problem is based on a re-
sult obtained by Andrzej Makowski of
Poland, which was reported in Recreational
Mathematics Magazine for February, 1962.)

5. It is easy to find as large an interval as
we please of consecutive integers that are
not prime. For an interval of a million inte-
gers, consider first the number 1,000,001!
The exclamation mark means that the num-
ber is “factorial 1,000,001,” or the product
of I X2x3x4 ...Xx1,000001. The first
number of the interval we seek is 1,000,001!
+ 2. We know that 1,000,001! is divisible by
2 (one of its factors), so that if we add an-
other 2 to it, the resulting integer must also
be divisible by 2. The second number of the
interval is 1,000,001! + 3. Again, because
1,000,001! has a factor of 3, it must be divis-
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ible by 3 after we add 3 to it. Similarly for
1,000,001! + 4, and so on up to 1,000,001!
+ 1,000,001. This gives a consecutive se-
quence of one million composite numbers.

Are these the smallest integers that form
a sequence of one million nonprimes? No,
as Ted L. Powell pointed out in The
Graham Dial for April, 1960; we can obtain
a lower sequence just as easily by sub-
tracting: 1,000,001! — 2; 1,000,001! — 3;
and so on to 1,000,001! —1,000,001.
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10. Graph Theory

AN ENGINEER draws a diagram of an elec-
trical network. A chemist makes a sketch to
show how the atoms of a complex molecule
are joined by chemical bonds. A genealogist
draws an intricate family tree. A military
commander plots a network of supply lines
on a map. A sociologist traces in an elabo-
rate diagram the power structure of a giant
corporation.

What do all these patterns have in com-
mon? They are points (representing elec-
trical connections, atoms, people, cities,
and so on) connected by lines. In the 1930’s
the mathematician Dénes Konig made the
first systematic study of all such patterns,
giving them the generic name ‘“graphs.”
(The confusion of this term with the
“graphs” of analytic geometry is regret-
table, but the term has stuck.) Today graph
theory is a flourishing field. It is usually
considered a branch of topology (because
in most cases only the topological proper-
ties of graphs are considered), although it
now overlaps large areas of set theory,
combinatorial mathematics, algebra, geom-

etry, matrix theory, game theory, logic,
and many other fields.

Konig’s pioneer book on graphs (pub-
lished in Leipzig in 1936) has yet to be
translated, but an English edition of a later
French book, The Theory of Graphs and
Its Applications, by Claude Berge, was
published in England in 1962. Oystein
Ore’s elementary introduction, Graphs and
Their Uses, was issued as a paperback
(New York: Random House, 1963). Both
books are of great recreational interest.
Hundreds of familiar puzzles, seemingly
unrelated, yield readily to graph theory.
In this chapter we center our attention on
“planar graphs” and some of their more
intriguing puzzle aspects.

A planar graph is a set of points, called
vertices, connected by lines, called edges,
in such a way that it is possible to draw the
graph on a plane without any pair of edges
intersecting. Imagine that the edges are
elastic strings that can be bent, stretched,
or shortened as we please. Is the graph
shown in Figure 68 planar? (Its four ver-



68. Three ways to draw a complete graph for four points

tices are indicated by spots. The crossing
point at the center is not a vertex; think of
one line as passing under the other.) Yes,
because we can easily remove the intersec-
tion by shifting the position of a vertex, as
shown in the middle graph, or stretching an
edge as shown in the one at the right. All
three of these diagrams are “isomorphic™:
each represents a different way of drawing
the same planar graph. The edges of any
solid polyhedron, such as a cube, are planar
graphs because we can always stretch the
solid’s “skeleton” until it lies on a plane,
free of intersections. The skeleton of a
tetrahedron is isomorphic with the three
graphs of Figure 68.

It is not always easy to decide if a graph
is planar. Consider the problem depicted
at the left in Figure 69, one of the oldest
and most frustrating of all topological
teasers. Since the English puzzlist Henry
Emest Dudeney gave it this form in 1917
ithas been known as the “utilities problem.”
Each house must receive gas, water and
electricity. Can lines be drawn to connect
each house with each utility in such a way
that no line intersects another? In other
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words, is the resulting graph planar?

The answer is no, and it is not difficult
to give a rough proof. Assume that only
houses A and B are to be connected to the
three utilities. To do this without having
any line cross another you must divide the
plane into three regions as shown at the
right in Figure 69. Your lines need not be
as pictured, but however you draw them
your graph will be isomorphic with the one
shown. House C must go in one of the three
regions. If it goes in X, it is cut off from
electricity. If it goes in Y, it is cut off from
water. At Z, it is cut off from gas. The same
argument holds if the graph is drawn on a
sphere, but not if it is drawn on certain other
surfaces. For example, the graph is easily
drawn without intersections on the surface
of a doughnut.

When every vertex of a graph is connected
to each of the other vertices, the graph is
said to be “complete.” We saw in Figure 68
that the complete graph for four points is
planar. Is the complete graph for five points
planar? Again an informal proof (the reader
may enjoy working it out for himself) shows
it is not. This proof is equivalent to a proof
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69. Problem of the three utilities (left) and the impossibility
proof for the utilities problem (right)

/\/\% | 7

70. Simplest nonplanar graphs

that it is not possible to draw five regions
in such a way that every pair shares a com-
mon border segment, a theorem often
confused with the famous four-color map
theorem. The two simplest nonplanar
graphs are shown in Figure 70. At the leftis

the utilities graph (known as a Thomsen
graph), at the right is the complete graph
for five points.

The fact that a complete graph can be
planar only if it has four or fewer points is
not without philosophical interest. Many
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philosophers and mathematicians have
tried to answer the question: Why does
physical space have three dimensions? In
his book The Structure and Evolution of the
Universe (New York: Harper Torchbooks,
1959) the British cosmologist G. J. Whitrow
argues that intelligent life as we know it
could not have evolved in a space of more
than three dimensions because such spaces
do not allow stable planetary orbits around
a sun. How about spaces of one or two di-
mensions? Intelligent Linelanders and
Flatlanders are ruled out, says Whitrow, by
graph theory. A brain requires an immense
number of nerve cells (points), connected
in pairs by nerves (edges) that must not
intersect. In three dimensions there is no
limit to the number of cells that can be so
connected, but in a Flatland the maximum
number, as we have seen, would be four.
“Thus,” Whitrow writes, “we may con-
clude that the number of dimensions of
physical space is necessarily three, no more
and no less, because it is the unique natural
concomitant of the evolution of the higher
forms of terrestrial life, in particular of
Man, the formulator of the problem.”
Devising planar graphs is an essential
task in many fields of technology. Printed
circuits, for instance, will short-circuit if
any two paths cross. The reader may wish to
test his skill in planar graph construction
by considering the two printed-circuit
problems shown in Figure 71. In the upper
problem five nonintersecting lines must be
drawn within the rectangle, each connect-
ing a pair of spots bearing the same letter
(A with A, B with B, and so on). The two
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lines AD and BC are barriers of some sort
that may not be crossed. In the lower prob-
lem five lines are to be drawn —connecting
pairs of spots, labeled with the same letter,
as before —but in this case all lines must
follow the grid. Of course there must be no
crossings. The solution is unique.

Another well-known type of graph puzzle
is the one that calls for drawing a given
planar graph in one continuous line without
taking a pencil from the paper or going over
any edge twice. If such a line can be drawn
as a closed loop, returning to the vertex from
which it started, the graph is said to be an
“Euler graph” and the line an “Euler line.”
In 1736 the Swiss mathematician Leonhard
Euler solved a famous problem involving a
set of seven bridges in the East Prussian
town of Konigsberg (now Kaliningrad). Was
it possible to walk over each bridge once
and only once and return to where one had
started? Euler found that the problem was
identical with that of tracing a simple graph.
He showed, in the first paper ever written
on graph theory, that if every vertex of a
graph is of “even degree” (has an even
number of lines meeting it), it can be traced
in one round-trip path. If there are two ver-
tices of odd degree, no round trip is possible,
but the graph can be drawn by a line begin-
ning at one odd vertex and ending at the
other. If there are 2k vertices of odd degree
(and the number of odd vertices must al-
ways be even), it can be traced by k separate
paths, each starting and ending at an odd
vertex. The graph for the bridges of Konigs-
berg has four odd vertices, therefore it re-
quires a minimum of two paths (neither of



71. Two printed-circuit problems
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them closed circuits) to traverse all edges.
Any Euler graph can be traversed by an
Euler line that makes the entire round trip
without intersecting itself. Lewis Carroll, we
are told in a biography by his nephew, was
fond of asking little girls to draw, with one
Euler line, the graph in Figure 72. It is easily
done if lines are allowed to intersect, but it is
not so easy if intersections an forbidden. A
quick way to solve such puzzles has been pro-
posed by T. H. O’Beirne of Glasgow. One col-
ors alternate regions as shown in the middle
drawing, then breaks them apart at certain
vertices in any way that will leave the colored
areas “simply connected” (connected without
enclosing noncolored areas). The perimeter
of the colored region is now the Euler line we
seek [at bottom, right]. The reader can try this
method on the Euler graph shown in Figure
73 (proposed by O’Beirne) to see how pleas-
ingly symmetrical an Euler line he can obtain.
An entirely different and, strangely, much
more difficult type of graph-traversing puzzle is
that of finding a route that passes through each
vertex once and only once. Any route that pass-
es through no vertex twice is known in graph
theory as a single path, if it returns to the start-
ing point it is called a circuit. And a circuit that
visits every vertex once and only once is called
a Hamiltonian line, after Sir William Rowan
Hamilton, the nineteenth-century Irish mathe-
matician, who was one of the first to study

72. Lewis Carroll’s three-square problem
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73. O’Beirne’s four-circle problem

such paths. He showed that a Hamiltonian
line could be traced along the edges of each
of the five regular solids, and he even sold
a toy manufacturer a puzzle based on find-
ing Hamiltonian tours along the edges of
the dodecahedron.

It might be supposed that, as in the case
of Euler lines, there would be simple rules
for determining if a graph is Hamiltonian;
the fact is that the two tasks are surprisingly
dissimilar. An Euler line must trace every

edge once and only once, but it may go
through any vertex more than once. A Hamil-
tonian line must go through each vertex
once and only once, but it need not trace
every edge. (In fact, it traverses exactly two
of the edges that meet at any one vertex.)
Hamiltonian paths are important in many
fields where one would not expect to find
them. In operations research, for example,
the problem of obtaining the best order in
which to carry out a specified series of
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operations can sometimes be diagramed as
a graph on which a Hamiltonian line gives
an optimum solution. Unfortunately there
is no general method for deciding if a graph
is Hamiltonian, or for finding all Hamil-
tonian lines if it is.

Many semiregular polyhedrons, but not
all, have Hamiltonian skeletons. An excep-
tion is the rhombic dodecahedron shown in
Figure 74, a form often assumed by crystals
of garnet. Even if the path is not required to
be closed, there is no way to traverse the
skeleton so that each vertex is visited once
and only once. The proof, first given by
H. S. M. Coxeter, is a clever one. All ver-
tices of degree 4 are shown as black spots,
all of degree 3 as colored spots. Note that
every black spot is completely surrounded
by colored spots and vice versa. Therefore
any path through all 14 spots must alternate

74. The skeleton of a rhombic dodecahedron
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colored and black. But there are six black
spots and eight colored ones. No path of
alternating color is possible, either closed or
open at the ends.

An ancient chess recreation that at first
seems far removed from Hamiltonian paths
is the reentrant knight’s tour. It consists of
placing the knight on a square of the chess-
board, then finding a path of continuous
knight’s moves that will visit every square
once and only once, the knight thereupon
returning in one move to the square from
which it started. Suppose each cell of the
board to be represented by a point and
every possible knight's move by a line join-
ing two points. The result is, of course, a
graph. Any circuit that visits each vertex
once and only once will be a Hamiltonian
line, and every such line will trace a re-
entrant knight’s tour.

Such a tour is impossible on any board
with an odd number of cells. (Can the reader
see why?) The smallestrectangle on which a
closed tour is possible is one with an area
of 30 square units (3 X 10, or 5 X 6). The
six-by-six is the smallest square. No tours,
not even open-ended ones, are possible on
rectangles with one side less than three.
No one knows how many millions of differ-
ent reentrant knight’s tours can be made on
the standard eight-by-eight chessboard. In
the enormous literature on the topic the
search has usually been confined to paths
that exhibit interesting symmetries. Thou-
sands of elegant patterns, such as those
shown in Figure 75 have been discovered.
Paths with exact fourfold symmetry (un-
changed by any 90-degree rotation) are not



75. Reentrant knight's tours
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possible on the eight-by-eight board, al-
though five such patterns are possible on
the six-by-six.

As an introduction to this classic pastime
you are invited to search for a reentrant
knight’s tour on a simple 12-cell board
[see Figure 76]. After it has been found, a
seemingly more difficult question arises:
Is it possible to move the knight over this
board in one chain of jumps and make every
possible knight's move once and only once?
There are 16 different knight’s moves. A
move is considered “made” whenever a
knight connects the two cells by a jump in
either direction. Of course, the knight may
visit any cell more than once, but it must not
make the same move twice. The path need
not be reentrant.

76. A knight's-tour problem
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The reader will soon convince himself
that such a path is not possible; but what is
the smallest number of separate paths that
will cover all 16 of the possible moves?
This can be answered in just a few minutes
by applying one of the graph theorems dis-
cussed earlier in this chapter.

Answers

The two printed-circuit problems are solved
in the manner shown in Figure 77. A sym-
metrical, non-self-intersecting Euler line
for the four-circle puzzle is shown in Figure
78, obtained by the coloring method ex-
plained on page 96. The path at the left in
Figure 79 traces a reentrant knight’s tour
on the cross-shaped board. To determine
if there is a single path that will go over
every possible knight’s move, we first draw
a graph [at right in illustration] showing
every move. Note that eight of the vertices
are meeting points for an odd number of
edges. In accordance with one of Euler’s
theorems, a minimum of 8/2, or 4, paths are
required to trace every edge once and only
once. Each path must begin at one odd ver-
tex and end at another.

To prove that no reentrant knight’s tour
is possible on a board with an odd number
of cells, first color the cells alternately,
checkerboard fashion. Every knight’s move
carries the piece from a cell of one color to
a cell of another, so that if the path is a
closed circuit, half the cells in the path
must be one color and half another color.



77. Solutions to printed-circuit problems
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78. Solution to four-circle problem

79. Graphs for reentrant knight’s tour (right) and for all knight's moves (left)

102



But if a board has an odd number of cells,
regardless of its shape there will be more
cells of one color than of the other.
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11. The Ternary System

Somewhere in the darkness a woman sang in a high wild voice and the tune
had no start and no finish and was made up of only three notes which went

on and on and on.

NOW AND THEN a cultural anthropologist,
eager to push mathematics into the folk-
ways, will point to the use of different num-
ber systems in primitive societies as
evidence that laws of arithmetic vary from
culture to culture. But of course the same
old arithmetic is behind every number
system. The systems are nothing more than
different languages: different ways of utter-
ing, symbolizing, and manipulating the
same numbers. Two plus two is invariably
four in any notation, and it is always pos-
sible to translate perfectly from one number
language to another.

Any integer except 0 can furnish the base,
or radix, of a number system. The simplest
notation, based on 1, has only one symbol:
the notches an outlaw cuts in his gun or the

Carson McCullers,
The Ballad of the Sad Café

beads a billiard player slides along a wire
to record his score. The binary system has
two symbols: 0 and 1. The decimal system,
now universal throughout the civilized
world, uses ten symbols. The larger the
base, the more compactly a large number
can be written. The decimal number 1,000
requires ten digits in binary notation
(1111101000) and 1,000 digits in the 1-
system. On the debit side, a large base
means more digits to memorize and larger
tables of addition and multiplication.

From time to time reform groups, fired
with almost religious zeal, seek to over-
throw what has been called the “tyranny of
10” and replace it with what they believe
to be a more efficient radix. In recent years
the duodecimal system, based on 12, has



been the most popular. Its chief advantage
is that all multiples of the base can be
evenly halved, thirded, and quartered. (The
unending decimal fraction .3333 ...,
which stands for 1/3, becomes a simple .4
in the 12-system.) There have been advo-
cates of a 12-base since the sixteenth
century, including such personages as
Herbert Spencer, John Quincy Adams, and
George Bernard Shaw. H. G. Wells has the
system adopted before the year 2100 in his
novel When the Sleeper Wakes. There is
even a Duodecimal Society of America. (Its
headquarters are at 20 Carleton Place,
Staten Island, New York 10304.) It pub-
lishes The Duodecimal Bulletin and Man-
ual of the Dozen System and supplies its
“dozeners” with a slide rule based on a
radix of 12. The society uses an X symbol
(called dek) for 10 and an inverted 3 (called
el) for 11. The first three powers of 12 are
do, gro, mo; thus the duodecimal number
111X is called mo gro do dek.

Advocates of radix 16 have produced the
funniest literature. In 1862 John W. Ny-
strom published privately in Philadelphia
his Project of a New System of Arithmetic,
Weight, Measure, and Coins, Proposed to
Be Called the Tonal System, with Sixteen
to the Base. Nystrom urges that numbers 1
through 16 be called an, de, ti, go, su, by,
ra, me, ni, ko, hu, vy, la, po, fy, ton. Joseph
Bowden, who was a mathematician at
Adelphi College, also considered 16 the
best radix but preferred to keep the familiar
names for numbers 1 through 12, then con-
tinue with thrun, fron, feen, wunty. In
Bowden’s notation 255 is written &¢ and

The Ternary System

pronounced ‘“feenty feen.” (See Chapter 2
of his Special Topics in Theoretical Arith-
metic, privately published; Garden City,
New York: 1936.)

It seems unlikely that the “tyranny of 10”
will soon be toppled, but that does not pre-
vent the mathematician from using what-
ever number system he finds most useful
for a given task. If a structure is rich in two
values, such as the on-off values of com-
puter circuits, the binary system may be
much more efficient than the decimal sys-
tem. Similarly, the ternary, or 3-base,
system is often the most efficient way to
analyze structures rich in three values. In
the quotation that opens this chapter Carson
McCullers is writing about herself. She is
the woman singing in the darkness about
that grotesque triangle in which Macy loves
Miss Amelia, who loves Cousin Lymon,
who loves Macy. To a mathematician this
sad, endless round of unrequited love sug-
gests the endless round of a base-3 arith-
metic: each note ahead of another, like the
numbers on an eternally running three-hour
clock.

In ternary arithmetic the three notes are
0, 1, 2. As you move left along a ternary
number, each digit stands for a multiple of
a higher power of 3. In the ternary number
102, for example, the 2 stands for 2 X 1. The
0 is a “place holder,” telling us that no
multiples of 3 are indicated. The 1 stands
for 1 X 9. We sum these values, 2+ 0+ 9, to
obtain 11, the decimal equivalent of the
ternary number 102. Figure 80 shows the
ternary equivalents of the decimal numbers
1 through 27. (A Chinese abacus, by the
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DECIMAL TERNARY
NUMBERS NUMBERS
33323 3
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1

2

10

11

12

2 0

2 1

2 2

100

10 1

10 2

110

T 11

11 2

120

121

1.2 2

2 00

2 01

2 0 2
21 210
22 2 11
23 2 1 2
24 220
25 2 21
26 2 2 2
27 , 0 00

80. Ternary numbers 1 through 27

way, is easily adapted to the ternary sys-
tem. Just turn it upside down and use the
two-bead section.)

Perhaps the most common situation lend-
ing itself to ternary analysis is provided by
the three values of a balance scale: either
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one pan goes down or the other pan goes
down, or the pans balance. As far back as
1624, in the second edition of a book on
recreational mathematics, Claude Gasper
Bachet asked for the smallest number of
weights needed for weighing any object
with an integral weight of from 1 through
40 pounds. If the weights are restricted to
one side of the scale, the answer is six:
1,2, 4, 8, 16, 32 (successive powers of 2). If
the weights may go on either pan, only four
are needed: 1, 3,9, 27 (successive powers of
3).
To determine how weights are placed to
weigh an object of n pounds, we first write
n in the ternary system. Next we change the
form of the ternary number so that instead
of expressing its value with the symbols 0,
1, 2 we use the symbols, 0, 1,—1. To do this
each 2 is changed to —1, then the digit to the
immediate left is increased by 1. If this pro-
duces a new 2, it is eliminated in the same
way. If the procedure creates a3, we replace
the 3 with 0 and add 1 to the left. For in-
stance, suppose the weight is 25 pounds, or
221 in ternary notation. The first 2 is
changed to —1, then 1 is added to the left,
forming the number 1 —1 2 1. The remain-
ing 2 is now changed to —1, and 1 is added
to the left, making the number 1 0 —1 1.
This new ternary number is equivalent to
the old one (27 + 0 — 3 + 1 = 25), but now
it is in a form that tells us how to place the
weights. Plus digits indicate weights that
go in one pan, minus digits indicate weights
that go in the other pan. The object to be
weighed is placed on the minus side.
Figure 81 shows how the three weights are



81. How to weigh a 25-pound object

placed for weighing a 25-pound object.

The base-3 system using the symbols —1,
0, +1 is called the “balanced ternary sys-
tem.” A good discussion of it can be found
in Donald E. Knuth’s Seminumerical Algo-
rithms (New York: Addison-Wesley,1969;
pages 173-175). “So far no substantial ap-
plication of balanced ternary notation has
been made,” Knuth concludes, “but per-
haps its symmetric properties and simple
arithmetic will prove to be quite important
some day (when the ‘flip-flop” is replaced
by a ‘flip-flap-flop’).”

Suppose you wish to determine the
weight of a single object known to have an
integral weight of from 1 through 27 pounds.
What is the smallest number of weights
needed, assuming that they may be placed
on either pan? There is no catch, but the
question is tricky and the answer is not
what you are first likely to think.

The Ternary System

A more sophisticated balance-scale
problem (dozens of papers have discussed
it since it first sprang up, seemingly out of
nowhere, in 1945) is the problem of the 12
coins. They are exactly alike except for one
counterfeit, which weighs a bit more or a
bit less than the others. With a balance
scale and no weights, is it possible to iden-
tify the counterfeit in three weighings and
also know if it is underweight or over-
weight?

Although 1 constantly receive letters
asking about this problem, I have avoided
writing about it because it was so ably
discussed by C. L. Stong in “The Amateur
Scientist” column of Scientific American
for May, 1955. Now we shall see how one
solution (there are many others) is linked
with the ternary system.

First, list the ternary numbers from 1
through 12. To the right of each number
write a second ternary number obtained
from the first by changing each 0 to 2, each
2 to 0 [see Figure 82]. Next, find every num-

82. Ternary numbers for 12-coin problem

1 001 221
2 002 220
3 010 212
4 on 21
5 012 210
6 020 202
7 021 201
8 022 200
9 100 122
10 101 121
1 102 120
12 110 12
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ber that contains as the first unlike digits
one of the following pairs of adjacent digits:
01, 12, 20. Assign one of these 12 numbers
(shown in color) to each of the 12 coins.

For the first weighing the four coins with
a first digit of 0 go left, the four with a first
digit of 2 go right. If the pans balance, put
down 1 as the first digit of the counterfeit.
If the left pan goes down, the counterfeit’s
first digit is 0; if the right pan goes down, it
is 2.

For the second weighing the four coins
with a middle digit of 0 go left, the four with
a middle digit of 2 go right. The same pro-
cedure is followed to obtain the middle
digit of the counterfeit. On the third weigh-
ing, coins with final digits of 0 go left, those
with final digits of 2 go right, and the last
digit of the counterfeit is obtained as be-
fore. Figure 83 shows the three weighings
that identify the counterfeit as coin 201.
When the coin is overweight, as in this
case, the number given by the three weigh-
ings is the actual number of the coin. If the
three weighings give a number not assigned
to a coin, then the coin is underweight. Its
number is obtained by substituting a 0 for
each 2, and a 2 for each 0.

Scores of simplified versions of this pro-
cedure have been devised. The best I know
comes from W. Fitch Cheney, Jr., a mathe-
matician at the University of Hartford.
Label the coins with the letters of SILENT
COWARD. The three weighings are SCAN

83. Three weighings to identify
a counterfeit coin
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against WORD, SCAR against LINE, SLOT
against RAID. Put a ring around each word
that goes down. If a pair balances, mark out
all its letters from all six words. Inspect the
circled words. If there is a letter not crossed
out that appears in each word, it indicates
the false coin and the coin is overweight.
If there is no such letter, you are sure to
find one not crossed out in each of the un-
circled words. It then indicates an under-
weight counterfeit. Other key words can, of
course, be devised. L. E. Card, intrigued by
Cheney’s SILENT COWARD, found two
dozen sets, of which I cite only one: CRAZY
WEIGHTS: CITY-HAZE, GREW-HAZY, AND

WISH-TRAY. '

The problem has been generalized. In
four weighings one can identify the false
coin, and tell whether it is light or heavy,
among a maximum of 3' 432+ 3% =39 coins;
five weighings will take care of 3' + 3% +
3% + 3% = 120 coins, and so on. More com-
pactly, n weighings take care of Y2(3"—3)
coins. It is worth noting that a counterfeit
among 13 coins can be found in three weigh-
ings if one need not know whether it is
heavier or lighter (simply put the 13th
coin aside and if you fail to find the counter-
feit among the 12, the 13th coin is it); to
know whether the false coin is heavier or
lighter, three weighings also suffice for 13
coins if you add a 14th coin known to be
genuine.

Many card tricks are closely related to the
12-coin problem. One of the best is known
as Gergonne’s three-pile problem after the
French mathematician Joseph Diez Ger-
gonne, who first studied it early in the

The Ternary System

nineteenth century. Someone is asked to
look through a packet of 27 cards and fix one
in his mind. He holds the packet face down,
deals the cards face up into a row of three,
then continues dealing on top of these
cards, left to right, until all 27 have been
dealt into three face-up piles of nine cards
each. After telling the magician which pile
contains his chosen card, he assembles the
piles by placing them on top of one another,
in any order he wishes, turns the packet
face down and again deals them into three
face-up piles. Once more he indicates the
pile in which his card fell. This is repeated
a third time, then the assembled packet is
placed face down on the table. The magi-
cian, who has not touched the cards through-
out the entire procedure, names the position
of the chosen card.

The secret lies in observing, at each
pickup, whether the pile with the selected
card goes on the top, the bottom, or in the
middle of the assembled facedown packet.
These positions are designated O for the top,
1 for the middle, 2 for the bottom. The
ternary number expressed by the three
pickups, written from right to left, is the
number of cards above the chosen card
after the final pickup. For example, suppose
the first pickup puts the pile on the top (0),
the second on the bottom (2), the third in
the middle (1). These digits, written right
to left, give the ternary number 120, or 15
in the decimal scale. Fifteen cards are
therefore above the selected one, making
it the 16th card from the top. Of course, the
trick can be done just as easily in reverse.
The spectator chooses any number from 1
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through 27, then the magician, making the
pickups himself, brings the card to that
number from the top.

If in dealing into three piles one is per-
mitted to put each card on any pile, a
powerful sorting method results. At this
point the reader is asked to obtain eight
file cards and print on each card one of the
letters in the word DEMOCRAT. Arrange the
cards into a packet, letter sides down, that
spells DEMOCRAT from the top down [see
top illustration of Figure 84]. You wish to
rearrange the cards so that, from the top
down, they are in alphabetical order as
shown in Figure 84, bottom. It is easily
done in one deal. Turn the top card, D,
face up and place it as the first card of pile
1. The next three cards, E, M, O, go on top
of the D. C becomes the first card of pile 2,
R goes back on pile 1, A starts pile 3, and
T goes on pile 1. Assemble by putting pile 1
on 2 and those cards on 3; then turn the

packet face down. You will find the cards in
alphabetical order, top to bottom. A single
deal is also sufficient, as you can easily
discover, for changing the alphabetized
order back to DEMOCRAT.

Put the DEMOCRAT cards aside and make
a new set that spells REPUBLICAN. Can
this set be alphabetized in one operation?
No, it cannot. What is the smallest number
of operations necessary? Remember, the
initial packet of face-down cards must spell
the word from the top down. Each card is
dealt face up, the piles are picked up in any
order, then the packet is turned face down
to conclude one operation. After the last
operation the cards must be in the order
ABCEILNPRU, top to bottom. If you solve
this problem, see if you can determine the
minimum number of operations needed to
change the order back to REPUBLICAN. And
if both problems seem too easy, try a set of
cards that spell SCIENTIFIC AMERICAN. In

84. Original (top) and desired sorting of DEMOCRAT cards
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the answer section I explain how all sort-
ing problems of this type can be solved
quickly by a simple application of ternary
numbers, and I also answer the problem of
the weights.

Answers

The minimum number of weights needed to
weigh 27 boxes with integral weights of
from 1 through 27 pounds, assuming that
weights may be placed on either side of a
balance scale, is three: 2, 6, and 18 pounds.
(They represent doublings of successive
powers of 3.) These weights will achieve an
exact balance for every even number of
pounds from 1 through 27. The odd weights
are determined by checking the even
weights directly above and below; for ex-
ample, a box of 17 pounds is identified by
the fact that it weighs less than 18 and more
than 16 pounds. (Mitchell Weiss of Downey,
California, provided this pleasant twist on
an old problem.)

The task of alphabetizing the letters of
REPUBLICAN by dealing letter cards into
three piles can be solved in two operations.
First, write down the letters in alphabetical
order: ABCEILNPRU. A is the first letter, so
we place a 0 above the letter A in the word
REPUBLICAN. We move right along the word
in search of B, the second letter, but we do
not find it. Because we are forced to move
left to reach B, we put I above it. We con-
tinue to move right in search of C. This
time we find it on the right, so we label it
with 1 also. The next letter, E, forces us to

The Ternary System

move left again, therefore we label it 2. T is
to the right of E, so it gets 2 also, but L car-
ries us left again, so it gets 3. In short, we
raise the number only when we have to
move left to find the letter. This is how the
final result appears:

52 45132103
REPUBLI CAN

On each letter card write the ternary
equivalent of the decimal number assigned
to that letter. The cards are held in a face-
down packet, spelling REPUBLICAN from
the top down. Imagine that the three piles
are numbered, left to right, 0, 1, 2. Turn
over the top card, R. Its ternary number is
12. The last digit, 2, tells you to deal the
card to pile 2 (the end pile on the right). The
next card, E, has a ternary number of 02;
it also goes on the right end pile. Continue
in this way, dealing each card to the pile
indicated by the final digit. The piles are
always assembled from right to left by put-
ting the last pile (2) on the center pile (1),
then all those cards on the first pile (0).
Turn the packet face down and deal once
more, this time dealing as indicated by the
first digits of each ternary number. As-
semble as before. The cards are now alpha-
betized.

To put the cards back in their original
order a new analysis of the letters must be
made, assigning them a new set of numbers:

52 41325101
ABCEILNPRWU

Two operations will return the cards to
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their initial order, but the sorting procedure
is not the same as before. If the decimal
numbers assigned to the letters go above 8,
then a ternary number for a letter will re-
quire more than two digits, and the number
of required operations will be more than
two. Itis easy to see that the minimum num-
ber of operations is given by the number of
digits in the highest ternary number. To
alphabetize SCIENTIFIC AMERICAN the
letters are numbered:

6

1
S C

o 0O =

4
|
4

- w 4 o

3
|

4
N

m NN mnN
T o Z2 O
o= - &
> O T w

A M

Because the highest number, 6, has only
two digits in its ternary form, only two opera-
tions are called for. However, to reverse the
procedure, changing the alphabetized order
back to SCIENTIFIC AMERICAN, the highest
number is 10. This has three ternary digits,
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therefore three operations are necessary.
If the reader will test the system on longer
phrases or sentences, he will be astonished
at how few operations are required for what
seems to be an enormously difficult sorting
job. One can generalize the method to any
number of piles, n, simply by writing num-
bers in a system based on n.

References

“The Problem of the Pennies.” F. J. Dyson. The
Mathematical Gazette, Vol. 30, No. 291;
October, 1946. Pages 231-234.

“The Counterfeit Coin Problem.” C. A. B. Smith.
The Mathematical Gazette, Vol. 31, No. 293;
February, 1947. Pages 31-39.

“On Various Versions of the Defective Coin
Problem.” Richard Bellman and Brian Gluss.
Information and Control, Vol. 4, Nos. 2-3;
September, 1961. Pages 118-131.

Puzzles and Paradoxes. T. H. O’Beirne. New
York: Oxford University Press, 1965. Chap-
ters 2 and 3.



12. The Trip around the Moon
and Seven Other Problems

1. The Trip around the Moon

The year is 1984. A moon base has been
established and an astronaut is to make an
exploratory trip around the moon. Starting
at the base, he is to follow a great circle and
return to the base from the other side. The
trip is to be made in a car built to travel over
the satellite’s surface and having a fuel
tank that holds just enough fuel to take the
car a fifth of the way around the moon. In
addition the car can carry one sealed con-
tainer that holds the same amount of fuel as
the tank. This may be opened and used to
fill the tank or it may be deposited, un-
opened, on the moon’s surface. No fraction
of the container’s contents may be so de-
posited.

The problem is to devise a way of making
the round trip with a minimum consump-
tion of fuel. As many preliminary trips as
desired may be made, in either direction, to
leave containers at strategic spots where

they can be picked up and used later, but
eventually a complete circuit must be made
all the way around in one direction. Assume
that there is an unlimited supply of con-
tainers at the base. The car can always be
refueled at the base from a large tank. For
example, if it arrives at the base with a
partly empty tank, it can refill its tank
without wasting the fuel remaining in its
tank.

To work on the problem, it is convenient
to draw a circle and divide it into twen-
tieths as shown on the next page in Figure
85. Fuel used in preliminary trips must of
course be counted as part of the total amount
consumed. For example, if the car carried a
container to point 90, left it there and re-
turned to base, the operation would con-
sume one tank of fuel.

This operations-research problem is
similar in some respects to the well-known
problem of crossing a desert in a truck, but
it demands a quite different analysis.



2. The Rectangle and the Qil Well

An oil well being drilled in flat prairie
country struck pay sand at an underground
spot exactly 21,000 feet from one corner of a
rectangular plot of farmland, 18,000 feet
from the opposite corner, and 6,000 feet
from a third corner. How far is the under-
ground spot from the fourth corner? Read-
ers who solve the problem will discover a
useful formula of great generality and de-
lightful simplicity.
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85. A tour-of-the-moon problem
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3. Wild Ticktacktoe

A. K. Austin of Hull, England, has written
to suggest a wild variation of ticktacktoe. It
is the same as the standard game except that
each player, at each turn, may mark either
a naught or a cross. The first player to com-
plete a row of three (either three naughts or
three crosses) wins the game.

Standard ticktacktoe is a draw if both
sides play rationally. This is not true of the
unusual variant just described. Assuming



that both players adopt their best strategy,
who is sure to win: the first or the second
player?

4. Coins of the Realm

In this country at least eight coins are
required to make the sum of 99 cents: a
half-dollar, a quarter, two dimes and four
pennies. Imagine yourself the leader of a
small, newly independent nation. You have
the task of setting up a system of coinage
based on the cent as the smallest unit. Your
objective is to issue the smallest number of
different coins that will enable any value
from 1 to 100 cents (inclusive) to be made
with no more than two coins.

For example, the objective is easily met
with 18 coins of the following values: 1, 2,
3,4,5, 6,7, 8,9, 10, 20, 30, 40, 50, 60, 70,
80, 90. Can the reader do better? Every
value must be obtainable either by one coin
or as the sum of two coins. The two coins
need not, of course, have different values.

5. Bills and Two Hats

“No,” said the mathematician to his 14-year-
old son, “I do not feel inclined to increase
your allowance this week by ten dollars.
But if you’ll take a risk, I’ll make you a sport-
ing proposition.”

The boy groaned. “What is it this time,
Dad?”

“I happen to have,” said his father, “ten
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crisp new ten-dollar bills and ten crisp new
one-dollar bills. You may divide them any
way you please into two sets. We’ll put one
set into hat A, the other set into hat B. Then
I'll blindfold you. I'll mix the contents of
each hat and put one hat on the right and
one on the left side of the mantel. You pick
either hat at random, then reach into that
hat and take out one bill. If it’s a ten, you
may keep it.”

“And if it isn’t?”

“You’ll mow the lawn for a month, with
no complaints.”

The boy agreed. How should he divide
the 20 bills between the two hats in order
to maximize the probability of his drawing
a ten-dollar bill, and what will that prob-
ability be?

6. Dudeney’s Word Square

Charles Dunning, Jr., of Baltimore, Mary-
land, recently set himself the curious task
of placing letters in the nine cells of a
three-by-three matrix so as to form the
largest possible number of three-letter
words. The words may be read from left to
right or right to left, up or down and in
either direction along each of the two main
diagonals. Dunning’s best result, shown in
Figure 86, gives ten words: tea, urn, bay,
tub, but, era, are, any, try, bra.

How close it is possible to come in En-
glish to the theoretical maximum of 16
words? A letter may be used more than
once, but words must be different in order
to count. They should be dictionary words.
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86. Dunning’s 10-word square

I have on hand a specimen from one of H.
E. Dudeney’s puzzle books that raises the
number of words to 12 but perhaps readers
can do better.

7. Ranking Weights

Five objects, no two the same weight, are
to be ranked in order of increasing weight.
You have available a balance scale but no
weights. How can you rank the objects cor-
rectly in no more than seven separate
weighings?

For two objects, of course, only one
weighing is required. Three objects call for
three weighings. The first determines that
A is heavier than B. We then weigh B
against C. If B is heavier, we have solved
the problem in two weighings, but if C is
heavier, a third weighing is required to
compare C with A. Four objects can be
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ranked easily with no more than five weigh-
ings.

With five objects the problem ceases to be
trivial. As far as I know, no general method
for ranking n objects with a minimum num-
ber of weighings has yet been established.

8. Queen’s Tours

Hundreds of entertaining puzzles, known as
“chess tours,” involve the movements of
single chess pieces over the board. Chapter
10 of this book discussed knight’s tours and
their connection with graph theory. Here
is a choice selection of five queen’s-tour
problems. The reader does not have to be a
chess player to work them out; he need only
know that the queen moves an unlimited
distance horizontally, vertically, or diag-
onally. The problems are roughly in order
of increasing difficulty.

1. Place the queen on square A [see
Figure 87]. In four continuous moves tra-
verse all nine of the gray-shaded squares.

2. Place the queen on cell D (the white
queen’s starting square) and make the long-
est trip possible in five moves. (“Longest”
means the actual length of the path, not the
maximum number of cells traversed.) The
queen must not visit the same cell twice,
and she is not allowed to cross her own
path. Assume the path to be through the
center points of all cells.

3. Place the queen on cell B. In 15 moves
pass through every square once and only
once, ending the tour on cell C.



87. Board for queen’s-tour problems

4. Place the queen on a corner square.
In 14 moves traverse every cell of the
board, returning to the starting square on
the 14th move. Individual cells may be
visited more than once. This “reentrant
queen’s tour” was first published in 1867

by Sam Loyd, who always considered it one
of his finer achievements. The tour, whether
reentrant or open at the ends, cannot be
made in fewer than 14 moves.

5. Find a similar reentrant tour in 12
moves on a seven-by-seven board. That is,
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the queen must start and end on the same
cell and pass through every cell at least
once. As before, cells may be entered more
than once.

Answers

1.

The moon can be circled with a consump-
tion of 23 tankfuls of fuel.

1. In five trips, take five containers to

point 90, return to base (consumes five

tanks).

2. Take one container to point 85, return
to point 90 (one tank).

3. Take one container to point 80, re-
turn to point 90 (one tank).

4. Take one container to point 80, return
to point 85, pick up the container there and
take it to point 80 (one tank).

5. Take one container to point 70, return
to point 80 (one tank).

6. Return to base (one tank).

This completes all preliminary trips in
the reverse direction. There is now one

container at point 70, one at point 90. Ten
tanks have been consumed.

7. Take one container to point 5, return
to base (half a tank).

8. In four trips, take four containers to
point 10, return to base (four tanks).

9. Take one container to point 10, re-
turn to point 5, pick up the container there
and leave it at point 10 (one tank).
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10. In the next two trips take two con-
tainers to point 20, return to point 10 (two
tanks).

11. Take one container to point 25, return
to point 20 (one tank).

12. Take one container to point 30, re-
turn to point 25, pick up the container there
and carry it to point 30 (one tank).

13. Proceed to point 70 (two tanks).
14. Proceed to point 90 (one tank).
15. Proceed to base (half a tank).

The car arrives at base with its tank half
filled. The total fuel consumption is 23
tanks.

I found this problem, in the story form of
circling a mountain, as Problem 50 in H.
E. Dudeney’s Modern Puzzles (1926); it is
reprinted as Problem 77 in my edition of
Dudeney’s 536 Puzzles and Curious Prob-
lems (New York: Scribner’s, 1967). The
above solution, which was supplied in
variant forms by many readers, is essen-
tially the same as Dudeney’s.

It is not, however, minimal. Wilfred H.
Shepherd, Manchester, England, first re-
duced the fuel consumption to 22712 con-
tainers. This was further reduced by Robert
L. Elgin, Altadena, California, to 22%is
containers. His solution can be varied in
trivial ways, butitis believed to be minimal.

Elgin’s solution is best explained by di-
viding the circle into 80 equal parts. A
container is picked up every time you move
away from home base, and left on the
ground every time you turn to move toward
the base. Any available container is emptied
into the car’s tank every time the car runs



out of fuel. Assume that each container
holds 8%s = 16 units of fuel. The solution
follows:

1. Take one container to point 73, return to
base (consumes 14 units).

2. Two containers to 75, return to base (20
units).

3. Two containers to 72, return to base (32
units).

4. One container to 69%, back to 75 (16
units).

5. One container to 67%, back to 69%, for-
ward to 67%, back to 72 (16 units).

6. One container to 64, back to 67%, for-
ward to 66, back to 67%, forward to 66 (16
units).

7. One container to 57, back to 64 (16
units).

8. Return to base (16 units).

9. Five containers to 8, return to base (80
units).

10. One container to 10, back to 8, forward
to 10, back to 8 (16 units).

11. One container to 16, back to 8 (16 units).

12. One container to 16%, back to 16, for-
ward to 16%, back to 10 (16 units).

13. One container to 21%, back to 16% (16
units).

14. One container to 25, back to 21%, for-
ward to 25 (16 units).

15. One container to 41 (16 units).
16. Proceed to 57 (16 units).
17. Proceed to 73 (16 units).
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18. Proceed to base (7 units).

Total fuel consumption is 36Y16 = 22%:6
units.

2,

Consider first a spot p on the surface inside
the rectangle shown at the left of Figure 88.
Adding two broken coordinate lines pro-
vides a set of right triangles. Because e?
= a*+ ¢® and g* = b*> + d?, we can write the
equality

e+ g =a*+c*+b*+ d-

And since f?=a*+ d* and h*=b*+¢*, we
can write

f24+h=a+d*+ b+

The right sides of both equations are the
same, therefore

e+ g2=1*+h%

Exactly the same analysis applies to the
right diagram, in which point p is outside
the rectangle. If you think of p in either
diagram as belowground, this will lengthen
certain sides of the right triangles involved,
but the relations expressed by the equations
remain unchanged. In other words, regard-
less of where point p is located in space —
above, below or even on the edge or corner
of the rectangle itself—the sum of the
squares of its distances from two opposite
corners of the rectangle will equal the sum
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88. Solution to the oil-well problem

of the squares of its distances from the other
two corners. Applying this simple formula
to the three distances given yields 27,000
as the fourth distance. The sides of the rec-
tangle are not, of course, determined by the
given data.

3.

When ticktacktoe players are allowed to
play either a naught or a cross on each move,
the first player can always win by first tak-
ing the center cell. Suppose he plays a
cross. The second player has a choice of
marking either a corner or a side cell.
Assume that he marks a comer cell. To
avoid losing on the next move he must mark
it with a 0. The first player replies by put-
ting a 0 in the opposite corner, as in diagram
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a in Figure 89. The second player cannot
prevent his opponent from winning on his
next move.

What if the second player takes a side cell
on his second move? Again he must use a 0
to avoid losing on the next move. The first
player replies as shown in the next diagram
[b]. The second player’s next move is
forced [c]. The first player responds as
shown in the final diagram [d], using either
symbol. Regardless of where the second
player now plays, the first player wins on
his next move.

Wild ticktacktoe (as this game was called
by S. W. Golomb) immediately suggests
a variant: reverse wild ticktacktoe. The
rules are as before except that the first
player to get three like-symbols in a row
loses. Robert Abbott was the first to supply
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89. The ticktacktoe problem

a proof that the game is a draw when played
rationally. The first player cannot assure
himself a win, but can always tie by using
a symmetry strategy similar to his strategy
for obtaining a draw in ordinary (or “tame”)
reverse ticktacktoe. He first plays any sym-
bol in the center. Thereafter he plays
symmetrically opposite the second player,
always choosing a symbol different from
the one previously played.

As Golomb has pointed out, this strategy
gives at least a draw in reverse ticktacktoe
(wild or not) on all boards of odd-order. On
even-order boards the second player can
obtain at least a draw by a similar strategy.
With the order-3 cubical board, Golomb
adds, on which a draw is impossible, the
strategy assures a win for the first player
in reverse ticktacktoe, wild or tame.

4,

With as few as 16 different coins one can
express any value from 1 cent to 100 cents
as the sum of no more than 2 coins. The

coins are: 1, 3, 4, 9, 11, 16, 20, 25, 30, 34,
39, 41, 46, 47, 49, 50. This solution is given,
without proof that it is minimal, in Prob-
lem 19 of Roland Sprague’s Recreation in
Mathematics, translated from the German
by .-T. H. O’Beirne (London: Blackie and
Son, 1963).

Sprague’s solution has a range of only 100.
A 16-integer solution with the higher range
of 104 was provided by Peter Wegner of
the University of London: 1, 3, 4, 5, 8, 14,
20, 26, 32, 38, 44, 47, 48, 49, 51, 52.

5.

The boy maximizes his chance of drawing
a ten-dollar bill by putting a single ten-
dollar bill in one hat, the other 19 bills
(9 ten-dollar bills and 10 one-dollar bills)
in the other hat. His chance of picking the
hat with the ten-dollar bill is 1 in 2, and the
probability of picking a ten-dollar bill from
that hat is 1 (certain). If he picks the other
hat, there is still a probability of 9/19 that
he will draw a ten-dollar bill from it.
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90. Probabilities in the hat problem

This simple stochastic process is shown
in Figure 90. The probability that he will
draw a ten-dollar bill from hat A is 1/2 X 1,
or 1/2. The probability that he will draw a
ten-dollar bill from hat B is 1/2 X 9/19, or
9/38. The sum of the two probabilities,
14/19 (or almost 3/4), is his overall proba-
bility of getting a ten-dollar bill.

6.

Dudeney, in his posthumously published
A Puzzle-Mine, was able to achieve 12 good
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English words by placing letters on the
9-cell square like this:

G E T
A I A
S U P

The words are: get, teg, sup, pus, pat, tap,
gas, sag, pig, gip, sit, aia. If the contraction
“’tis” is permitted, the number is 13.

More than 50 readers sent in 12-word
squares, most of them superior to Dudeney’s
12-worder. Many readers showed how 12



words could be obtained from a cross of A’s
in the center of the square, as shown [num-
ber 1] in Figure 91. Twenty-six readers
sent in 13-word squares, in most cases with
words that could all be found in Webster’s
New Collegiate Dictionary. The typical
square [numbered 2 in the illustration]
was independently discovered by Vaughn
Baker, Mrs. Frank H. Driggs, William
Knowles, and Alfred Vasko.

Vaughn Baker, David Grannis, Horace
Levinson, H. P. Luhn, Stephen C. Root,
Hugh Rose, Frank Tysver, C. Brooke Worth,
and George Zinsmeister all produced 14-
word squares. Baker’s square [numbered
3 in the illustration] has only one word —
“wey”” —that is not usually found in short

91. Solutions to word-square puzzle: (1) 12-word,

(2) 13-word, (3) 14-word, (4-8) 16-word
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dictionaries. Frederick Chait, James Gar-
rels, B. W. Le Tourneau, Marvin Weingast,
and Arnold Zeiske devised 15-worders, but
none with more than 12 short dictionary
words.

Five readers hit the jackpot with 16
words: Dmitri Borgmann, L. E. Card, Mrs.
D. Harold Johnson, Peter Kugel, and Wylie
Wilson. The five squares [numbered 4
through 8] are reproduced in the order in
which the alphabetized names appear
above. There is no way to decide which
square is best, since all exploit obscure
words and even the meaning of “word” is
hazy.

Several readers experimented with or-
der-4 squares. L. E. Card, of Urbana,

M| A|R P I G S| T}|Y A| T|E

Al A A E|A ]| U U| A | E R| A | E

PlA | T RO | T P|O | W T|O| R
1 2 3 4

E R A A|T]|S S E| R E|] E|]L

L E E R I A T|A]O T|A|O

S| AN T|A | D A | R|D A|lR|T
5 6 7 8
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Illinois, achieved the maximum (20 dictionary
words), with:

S N AP
A E R A
R A Il L
T R AP

“Tras”is the plural of “tra,” a Malaysian coin.

7.

Five objects can be ranked according to weight
with no more than seven weighings on a bal-
ance scale:

1.  Weigh A against B. Assume that B is
heavier.

2. Weigh C against D. Assume that D is
heavier.

3. Weigh B against D. Assume that D is
heavier. We now have ranked three objects:

D>B>A.
4. Weigh E against B.

5. If E is heavier than B, we now weigh it
against D. If E is lighter than B, we weigh it
against A. In either case E is brought into the
series so that we obtain a rank order of four
objects. Assume that the order is D> B > E >
A. We already know (from step 2) how the
remaining object C compares with D. Therefore
we have only to find C’s place with respect to
the rank order of the other three. This can
always be done in two weighings. In this case:

6.  Weigh C against E.
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7. If C is heavier than E, weigh it against B.
If C is lighter than E, weigh it against A.

The general problem of ranking n weights
with a minimum number of weighings (or n
tournament players with a minimum number of
no-draw two-person contests) was first pro-
posed by Hugo Steinhaus. He discusses it
briefly in the 1950 edition of Mathematical
Snapshots and includes it as Problem 52 (with n
= b5) in One Hundred Problems in Elementary
Mathematics (New York: Basic Books, 1964). In
the latest revision of Mathematical Snapshots
(New York: Oxford University Press, 1968),
Steinhaus gives a formula that provides correct
answers through n = 11. (For 1 through 11 the
minimum number of weighings are 0, 1, 3, 5, 7,
10, 13, 16, 19, 22, 26.) The formula predicts 29
weighings for 12 objects, but it has been proved
that the minimum number is 30.

The general problem is discussed by Lester
R. Ford and Selmer M. Johnson, both of the
Rand Corporation, in “A Tournament
Problem,” in The American Mathematical Monthly;
May, 1959. For a more recent discussion of this
and closely related problems, see Section 5.3.1
of Donald Knuth’s Sorting and Searching
(Reading, Mass.: Addison-Wesley, 1971) or suc-
cessor editions.

8.

Answers to the five queen’s-tour problems are
shown in Figure 92. In the fourth and fifth
problems there are solutions other than those
shown, but none in fewer moves.



92. Solutions to queen’s-tour problems
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If you solved the second problem by going
first to the lower right corner, up to the
upper right corner, along a main diagonal
to the lower left corner, up to the upper
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left and then right seven squares, you found
a path almost (but not quite) as long as the
one shown.



13. The Cycloid: Helen of Geometry

Do THE TOPS of the tires on a moving car go
faster than the bottoms? This odd question
will start as many ferocious parlor debates
as the old problem about the man who walks
around a tree trying to see a squirrel on the
opposite side of the trunk. As he walks, the
squirrel scurries around the tree, keeping
its belly against the trunk so that it always
faces the man but with the trunk constantly
hiding it from view. When the man has
circled the tree, has he also gone around
the squirrel?

William James, considering this weighty
metaphysical problem in the second chap-
ter of his book Pragmatism, concludes
that it all depends on what one means by
“around.” Similarly, the tire question can-
not be answered without prior agreement
as to precisely what all the words mean. Let
us say that by “top” and “bottom” of the
tire we mean those points on the tire that
are at any given moment close to the top
or bottom, and that by “go faster” we refer
to the horizontal velocity of those points

in relation to the ground. Surprising as it
may seem, points near the top do move
faster than points near the bottom.

This can be demonstrated by a simple
experiment with a coffee can. Cover the
bottom of the can with white paper. Using
a dark crayon, draw about eight diameters,
like the spokes of a wheel, on the circular
sheet. Place the can on its side and roll it
back and forth past your line of vision. Do
not follow the can with your eyes; keep
your gaze fixed on a distant object so that
your eyes do not move as the can rolls by.
You will find that the black spokes are
visible only in the lower half of the wheel.
The upper half is a gray blur. The reason is
that the spokes in the upper half are ac-
tually moving past your eyes at a much
faster rate than the spokes in the lower
half. This was such a familiar phenomenon
in horse-and-buggy days that artists often
indicated the motion of wheels by showing
distinct spokes only below the axles.

Figure 93 traces the motion of a point on
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93. How a cycloid is generated by a point on a rolling circle

the circumference of a circle as it rolls with-
out slipping along a horizontal line for a
distance AB that is equal to the circum-
ference of the circle. The position of the
circle is shown after each quarter-turn.
Assume that the circle rolls with uniform
speed. It is easy to see that the point is
motionless for an instant on the ground at A,
gradually increases in speed, reaches its
maximum at the highest spot and then ac-
celerates negatively until it touches ground
again at B. If the wheel continues to roll,
the point will trace a series of arches, com-
ing to rest for an instant at the bottom of
each cusp. The velocity of the point along
the curve conforms to what physicists call
a simple harmonic motion. On wheels that
have flanges, such as the wheels of a train,
points on the flange actually move back-
ward while they execute a tiny loop below
the level of the track.

The generic name for a curve traced by a
point on any type of curve when it rolls
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without slipping along any other type of
curve is “roulette.” In this case a circle
rolls on a straight line to generate one of
the simplest of roulettes, the cycloid. It has
been called the “Helen of geometry,” not
only because of its beautiful properties but
also because it has been the object of so
many historic quarrels between eminent
mathematicians.

No one knows who first recognized the
cycloid as a curve worth studying. There
is no mention of it before 1500. The first
important treatise on the curve was written
in 1644 by the Italian physicist Evangelista
Torricelli, a student of Galileo’s. Fourteen
years later Blaise Pascal, who had aban-
doned mathematics for a life of religious
contemplation, found himself suffering from
a terrible toothache. To take his mind off
the pain he began thinking about the cy-
cloid. The pain stopped. Regarding this as
a sign that God was not displeased with his
thoughts, Pascal spent the next eight days



in furious research on the curve. His re-
markable results were issued first as a series
of challenges to other mathematicians and
then as a treatise on the cycloid.

One of the simplest questions to ask about
the cycloid—although by no means the
easiest to answer—is: How long is it? As-
sume that the generating circle has a diam-
eter of 1. The base line AB will, of course,
be pi, an irrational number. Everyone ex-
pected the length of the curve to be ir-
rational also. Sir Christopher Wren, the
distinguished English architect, apparently
was the first to show (in 1658) that the
length of the cycloidal arch, from cusp to
cusp, is precisely four times the diameter
of the circle.

The area below the arch had been mea-
sured previously and it too had been a
surprise. Galileo had guessed the area to
be pi times the area of the generating cir-
cle, an estimate obtained by the direct
method of cutting the arch from thin ma-
terial and comparing its weight with that
of the circle cut from the same material.
Torricelli astounded his colleagues in
Italy by proving that the area under the
arch is exactly three times the area of the
circle. Actually this had been shown earlier
by the French mathematician Gilles Per-
sonne de Roberval. Torricelli may or may
not have known this. Pascal accused Tor-
ricelli of deliberately stealing Roberval’s
proof, as did Roberval himself. In France,
René Descartes insisted that the entire
problem was trivial. He worked out a sim-
pler way to find the area and challenged
Roberval to construct tangents to the cy-

The Cycloid

cloid. This led to a long, bitter dispute
between the two men. Today all these prob-
lems are solved in first-year calculus classes
(where the curve is called the “student’s
curve” because the answers are so simple),
but in the seventeenth century calculus
was still primitive.

The mechanical properties of the cycloid
are as remarkable as its geometric ones.
In high school physics one learns that the
time it takes a pendulum to swing back
and forth is the same regardless of how wide
the swing is, but this is only approximate.
When the swings are wide, there are slight
deviations. In what path should a pendulum
swing so that its period is exactly the same
regardless of amplitude? Such a curve,
called an isochrone, was first discovered
by the Dutch physicist Christian Huygens,
who published his discovery in 1673. If we
turn two cycloidal arches upside down, as
shown in Figure 94, and let a pendulum on
a cord swing between them, the pendulum
will trace what is called the involute of the
cycloid. It turns out that the involute is
another cycloid of the same size, and that
the cycloidal pendulum is isochronal.

For small swings a circular arc is so nearly
the same as the central portion of a cycloid
that the circular pendulum is almost iso-
chronal, but if the swings vary even a small
amount, the “circular error” is cumulative.
For example, if a seconds pendulum has a
circular arc of two degrees, an increase to
three degrees will cause it to lose about .66
second per day. Huygens constructed a
pendulum clock —the firstever made — using
a flexible pendulum that swung between
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94. Isochronal pendulum between cycloidal cheeks traces a cycloid

two cycloidal cheeks. Unfortunately fric-
tion on the cheeks produced a greater error
than the cycloidal path corrected; clock-
makers found it more practical to arrange
things so that a circular pendulum would
keep a constant amplitude.

It was Huygens who also discovered that
the cycloid is the tautochrone, or curve of
equal descent. Imagine a marble rolling
without friction down an inverted cycloid.
No matter where you start it on the curve,
it will reach the bottom in the same length
of time. (Melville makes reference to this
property of the cycloid in an interesting
discussion of the structure of whaling ships
in Chapter 96 of Moby Dick.) Consider a
bowl with sides that curve in such a way
that any cross section through the center
of the bowl will be a cycloid. Marbles placed
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at various heights on the sides of the bowl
and released simultaneously will reach the
center of the bowl at the same instant. Each
marble moves with a simple harmonic mo-
tion, as does the isochronal pendulum.
The brachistochrone, or curve of quickest
descent, was not discovered for another
score of years. Suppose you are given two
points: A and B. B is lower than A but not
directly below it. The problem is to find a
curve connecting A and B such that a mar-
ble, rolling without friction, will travel from
A to B in the shortest possible length of
time. This problem was first posed in 1696
by Johann Bernoulli, the Swiss mathema-
tician and physicist, in Acta Eruditorum,
a famous scientific journal of the day. It was
first solved by Johann’s brother Jakob (with
whom Johann was feuding), but it was also



solved by Johann, Leibniz, Newton, and
others. Newton solved it, along with a re-
lated problem, in 12 hours. (The problem
reached him at 4:00 p.M.; he had the solu-
tion by 4:00 A.M. and sent it off in the
morning.) The brachistochrone turned out
to be, as the reader has no doubt guessed,
the cycloid. Johann Bernoulli’s proof has
become a classic of nonrigorous, intuitive
reasoning. He found the problem equiva-
lent to one concerning the path of a light
ray refracted by transparent layers of
steadily decreasing density. The interested
reader will find his elegant proof clearly
explained in What Is Mathematics? by
Richard Courant and Herbert Robbins
(New York: Oxford University Press, 1941),
as well as in Ernst Mach’s earlier work,
Science of Mechanics (Chicago: Open Court
Publishing Company, 1893).

The Cycloid

Suppose we are given two points, A and
B [see Figure 95], and we wish to find the
brachistochrone that connects them. What
we first find is the radius of the circle that,
when rolled against line AC, will generate
a cycloid starting at A and passing through
B. To do this we place a circle of any size
whatever under AC and mark a point on its
circumference at A. The circle is rolled
along AC until this point crosses AB. As-
sume that it crosses at D. Since all cycloids
have similar shapes, we know that AD is to
AB as the radius of the large circle we have
just used is to the radius of the smaller
circle we seek. This smaller circle, rolled
along AC, will generate a cycloid from A
to B.

Note that in this case the marble actually
rolls uphill to reach B. Nevertheless, it
reaches B in a shorter time than it would

=

95. Constructing the curve of quickest descent between A and B
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by rolling along a straight line, the arc of
a circle or any other curve. Even when A
and B are on the same horizontal level, a
frictionless marble rolls from A to B in the
shortest possible time. (On a straight
horizontal line, of course, it would not
roll at all.)

An industrious reader should have little
difficulty constructing a model for demon-
strating the brachistochrone. To draw a
large cycloid the coffee can mentioned
earlier can be used. A piece of string looped
once around it and fastened to the ends of a
plank will keep the can from slipping as it
rolls along the plank [see Figure 96]. A
black crayon is taped to the inside of the
can so that when the can is rolled along a
wall the crayon will trace a cycloid on a

96. Coffee-can device for drawing a cycloid

132

A

sheet of paper fastened to the wall. Using
this trace as a pattern, one can bend stiff
wire into a cycloid down which a heavy
nut will slide or a double cycloidal track
down which a marble will roll. The track
can also be formed by the cut edges of two
rectangular sheets of plywood or heavy
cardboard, mounted vertically, with small
strips of wood glued between them to keep
the edges separated just enough to carry
the marble. Similar tracks should be made
to carry a second marble down a circular
arc and a third marble down a straight line.
The three tracks are placed side by side so
that the marbles can be released simul-
taneously by a pencil held horizontally.
(Steel balls can be held by electromagnets
and released by pushing a button.) If the

%
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97. On what kind of curve will the car remain level?

three tracks lead into one horizontal track,
three differently colored marbles will in-
variably enter the single track in the same
order: the cycloid marble will lead, fol-
lowed by the marble traveling on the circu-
lar arc and then by the one on the straight
line.

The cycloid has other mechanical proper-
ties of interest. It is, as Galileo guessed,
the strongest possible arch for a bridge,
and for this reason many concrete viaducts
have cycloidal arches. Cogwheels are often
cut with cycloidal sides to reduce friction
by providing a rolling contact as the gears
mesh.

We have seen how a circle, rolled on a
straight line, generates a cycloid. Stanley
C. Ogilvy reverses this situation in one of
his books by asking: Along what kind of
curve can a circle be rolled so that a point

on its circumference traces a straight line?
To dramatize this question, imagine a
railroad car with each wheel attached at
its rim to the axle, as shown in Figure 97.
How shall we curve a track so that when
this curious car is rolled along the track it
will remain level at all times and never
bob up and down?

Answer

What kind of track will enable the car to
travel without bobbing up and down? Figure
98 supplies the surprising answer: a series
of semicircles! If a circle is rolled inside
a circular arc, points on its circumference
generate what are called hypocycloids.
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98. Solution to the car problem

When the radius of a semicircular track is
twice that of the rolling circle, as it is here,
the hypocycloid is a straight line.
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14. Mathematical Magic Tricks

MAGIC TRICKS that operate wholly or in
part by mathematical principles fascinate a
large segment of the conjuring fraternity.
Dozens of such tricks are published every
year in periodicals on magic or circulate
from magician to magician, only occasionally
finding their way into mathematical circles.
Royal V. Heath’s Mathemagic (1933) was
the first book in this hybrid field. My own
Mathematics, Magic and Muystery (1956)
was the second. In 1964 Scribner’s brought
out a third: Mathematical Magic, by Wil-
liam Simon, who is president of a New
Jersey firm that makes brake linings and
also one of the country’s most knowledge-
able card experts.

Most of the items in Simon’s fine collec-
tion will be unfamiliar to devotees of recre-
ational mathematics. An example is a
bewildering mind-reading trick discussed
in the author’s chapter on mental magic.
Invented by Robert Hummer, a magician
now living in Havre de Grace, Maryland,
this trick is not only an entertaining parlor
stunt but also such a puzzling exercise in

logic that many magicians who regularly
perform the trick are not sure themselves
just why it works.

One of the best presentations is as fol-
lows. Three identical coffee cups are in-
verted in a row on a table. The positions
(not the cups) are assumed to be one, two
and three as seen by the spectators [see
Figure 99]. The magician, standing across
the room with his back to the table, asks
that a spectator conceal a small object, say
a matchbook, under any one of the cups.
The spectator now scrambles the positions
of the cups by exchanging them in pairs,
calling out each time the positions of the
two cups involved. In making these ex-
changes the cups are slid across the table,
so that if the cup covers the object, the ob-
ject slides along with the cup. For example,
suppose the matchbook is placed under the
middle cup. If the spectator switches the
end cups, he calls out, “One and three.”
If he next switches the two cups on his left,
he calls out, “One and two.” As these cups
are slid the matchbook is carried along with



99. Hummer’s three-cup trick

its cup from position two to position one.
The spectator continues to switch pairs of
cups as long as he wishes. The magician
then turns around and immediately lifts
the cup covering the matchbook. The trick
can be repeated many times. Since the per-
former is never told which cup the object
was placed under initially, how does he
guess correctly?

The method is simple and subtle. Al-
though the three cups are alike, it is im-
possible for them to be exactly alike. Inspect
any three cups carefully and you are sure
to find some tiny distinguishing feature —a
small chip, a discoloration, and so on—on
one of them. Before you turn your back note
the position of this marked cup. After the
matchbook has been placed under a cup
explain the switching procedure to the spec-
tator, then ask him to make a practice
switch by exchanging the two empty cups.
Caution him not to tell you the two posi-
tions, since that would give away the loca-
tion of the matchbook. This practice switch
seems to have no bearing whatever on the
trick; in fact spectators usually forget it was
even made. Actually it is the key to the
trick, for a reason that I shall ask you to
deduce.

As the spectator proceeds with his switch-
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ing, calling out the positions of the cups
each time, you must secretly keep track of
one cup by using your left hand as a com-
puter. Fingers one, two, and three represent
positions one, two, and three. Start with the
tip of your left thumb pressed against the
finger tip that indicates the initial position
of the marked cup. Of course, you must as-
sume the marked cup is still in that position.
Suppose at the start this cupis in the middle.
You touch your second finger. If he calls one
and two, move your thumb from the second
to the first finger. If he next calls one and
three, shift to the third finger. If he now
calls one and two, you do not move your
thumb: the position of the cup you are fol-
lowing is not involved in the exchange.
When the spectator decides to stop, let us
say your thumb touches your third finger.

Turn around and inspect the cups. If the
marked cup is at position three, where your
thumb says it should be, you know that
this cup covers the matchbook. If the
marked cup is not at position three, the
object will be under the unmarked cup that
is not at position three. (Can you explain
why?)

Some magicians carry an artificial eye
in their pocket to use in this trick. The
performer uses the eye as the object placed



under one of the cups; he can then en-
courage the inference that the eye is some-
how able to provide him with a clue to its
own whereabouts. The eye also furnishes
an excuse for amusing chatter. The ma-
gician can say: “Yes, I see the evil eye
staring at me from inside this cup. . ..”

Harry Lorayne, a New York City mne-
monics expert (well known in entertain-
ment circles for his sensational memory
act), devised the following variation in
which three objects are used instead of
cups, and the magician is able to name the
thought-of object without turning around.
Three different objects —say a coin, a match-
book, and a finger ring —are placed in a row
and someone is asked to think of one of
them. He must also be able to recall the
order of the objects, or else he should jot
it down for future reference. The performer
turns his back and calls for a practice switch
with the two objects the spectator did not
think of. In this instance the spectator does
not say what switch he has made. The trick
then continues as with the three cups, the
spectator making exchanges and calling
out positions. When he finishes, the per-
former asks if the objects are by any chance
back in their original order. If not, the spec-
tator makes the one or two additional
switches needed to restore this order.
These exchanges are called out as before.
The performer seems to have no relevant
information —the objects have merely been
switched around and brought back to their
initial state —yet he can name the thought-of
object without turning around.

The method: Memorize the initial or-

Magic Tricks

der. Pick any object and follow it with
your thumb. You will not know, of course,
whether or not that object remained in its
original position after the practice ex-
change. Nonetheless, after the original
order has been restored, if your thumb
indicates that the object you are following
is back in its former position, you know
that it is the chosen object. Otherwise the
selected object is the one at the position
represented neither by where your thumb
started nor where it ended. Again can you
explain why?

Before writing this chapter I got in touch
with Robert Hummer and obtained his per-
mission to describe another of his curious
mind-reading tricks, here explained in
print for the first time. The trick uses a card-
board circle attached to a sheet of cardboard
by a paper fastener through the center. On
the rim of the circle, in any order, are
inscribed the values of the 26 red playing
cards. Outside the circle, on the backing
sheet, are the 26 letters of the alphabet.
They too may be in any order, but Hummer
arranges them as shown in Figure 100 on
the next page so that the 10 letters at the top
spell “Think a word.”

A spectator is asked to think of any word,
preferably a short word of four or five let-
ters. He also thinks of any red card. While
the magician turns his back, the spectator
rotates the wheel until his chosen card
indicates the first letter of his word. The
magician turns around, glances quickly at
the dial, then turns his back again while
the spectator moves the wheel so that his
card points to the second letter of his word.
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100. The “Think a word” trick

Again the magician glances at the dial.
Obviously he does not know the spectator’s
card, so the dial would seem to give him no
useful information. This procedure is re-
peated until the entire word is spelled.
The magician, after appearing to concen-
trate for a moment, names both the word
and the card.
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A mathematician working with combina-
torial mathematics, or a person skilled in
cryptography, should have little difficulty
devising a method for performing the wheel
trick. For others I give it as a puzzle. The
four positions of the dial in the illustration
are typical of what the performer may see
during the spelling of a four-letter word.



What word is being spelled there? It is not
hard to find the word by the laborious pro-
cedure of testing each of the 26 red cards,
but the problem is to devise a method that
will enable the performer to name the word
in a few seconds after seeing the dial’s
final position.

One of the best of many mathematical
tricks invented by Jack Yates, a British
magician, is his 12-penny trick, explained
by Simon in a chapter on tricks with or-
dinary objects. The 12 pennies are arranged
heads up in a circle to indicate the 12 hours
on a clock. The penny at 12 o’clock is marked
with a key as shown in Figure 101. While
the performer’s back is turned someone is
asked to turn over any six coins. The ma-
gician, keeping his back turned, now gives
directions for six more reversals. These
are likely to involve some of the pennies
reversed by the spectator; that is, some pen-
nies turned tails up by the first six reversals
may get turned back to heads by the second
six reversals.

“How many heads are now showing?”
the magician asks.

Suppose he is told: “There are two
heads.” Obviously the performer has no
way of knowing which coins are heads and
which are tails. Yet he is able to give di-
rections for dividing the coins into two sets
of six coins each so that the number of
heads (and tails) in each set is the same.
In this case each set would have one head
and five tails.

Surprisingly, the performer does not need
to be told the number of heads showing,
but his asking for this information throws

101. Yates’s 12-penny trick

spectators off the track of a solution of the
trick. When he directs the reversal of six
coins, he may pick any six he wishes, but
he must remember their numbers. For ex-
ample, he may ask for the reversal of coins
one, four, five, eight, nine and ten. To divide
the coins properly into the two final sets he
asks that the following six coins be slid to
one side: 2, 3, 6, 7, 11, and 12. These are
merely the six that are not in the previous
set. (In set theory they are said to form the
“complement” of the previous set.) To dis-
guise the nature of this second set the per-
former directs their removal in pairs
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indicated by the hour of day. Instead of
saying coins two and three, for instance,
he says: “Please slide to one side the coins
that mark ten minutes past three.”

The principles of set theory exploited in
this trick are the basis for numerous card
tricks. The following, contributed by the
British magician Norman MacCleod to a
magic magazine in the United States, The
New Phoenix (No. 328, August, 1955), is one
of the best. While someone deals the deck
into four bridge hands the performer writes
on a slip of paper: “There will be 22 face-up
cards.” This prediction is folded and placed
aside. A spectator takes two of the piles,
the magician takes the other two.

“I have selected a number from one to
ten,” says the performer. “I shall turn that
number of cards face up in each of my piles.”
He proceeds to turn some cards face up but
without letting anyone see how many.

The spectator is asked to do the same
with his two piles: choose a number from
one to ten and reverse that number of cards
in each pile. The four piles are assembled,
the deck spread and the face-up cards
counted. There are 22. The prediction is
unfolded and found to be correct.

" To perform this trick you must cheat a bit.
Any even number between 13 and 39 can
be written in your prediction. This number,
minus 13, tells you the total number of
cards to leave fuce down in your two pack-
ets. In this case 22 minus 13 is 9, so you
reverse, say, all but 5 cards in one pile and
all but 4 in the other. Put your two piles
together and one of the spectator’s piles
on top. Hold this large packet in your left
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hand and ask the spectator to cut his re-
maining pile into two parts. While attention
is focused on the cutting casually turn over
your left hand, thus secretly reversing all
its cards. This large pile is sandwiched
between the two halves of the cut pile.

All the cards are now together again and
presumably no one knows how many of
them are face up. Do you see why there
must be 22? The procedure reverses 13 cards
in the spectator’s two piles for the same rea-
son that Yates’s coin trick works. The 9
cards you left face down are now face up,
making 22 in all. The trick can be repeated
using other even numbers in the prediction.
Odd numbers should be avoided because
the procedure, if it is done legitimately,
could not produce an odd number of face-
up cards.

The magic linking and unlinking of rings
can, if one stretches the term a bit, be re-
garded as topological effects. I have space
for one quick trick invented by William
Bowman, a Seattle magician, and described
in Simon’s chapter on topological magic.
Attach two paper clips to a one-dollar bill
in the manner shown in Figure 102. If the
bill is held at the ends and pulled flat, the
clips pop off the bill linked together. (The
linking is puzzling enough, but why do the
clips hop from the bill with such force?)
Simon has a story of young love to provide
patter for all this, but I prefer to have the
spectator hold the bill so that the clips
point down. When the bill is pulled flat,
the clips drop to the floor. Bet even money
they will fall within one inch of each other.
Of course you can’t lose.



102. Bowman’s bill trick

Answers

In the illustration for the “Think a word”
trick the four-letter word being spelled is
“love” and the thought-of card is the jack
of hearts. To determine the word the ma-
gician uses a gimmick: a cylinder of five
disks that rotate around a pin as shown in
Figure 103. The 26 red cards are in the same
order around the rim of the first disk as
they are on the spelling wheel, and the 26
letters on each of the other disks are in
the same order as those that surround the
spelling wheel.

When the first letter of the word is spelled,
the magician glances at the wheel and notes
the letter opposite any card whatever, say
the ace of hearts. As soon as his back is
turned he rotates the second disk of his
gimmick until this letter touches the ace

of hearts. On his second glance at the wheel
he notes the new letter opposite the ace of
hearts. When his back is turned again,
he adjusts the third disk accordingly. Simi-
larly for the remaining two letters. In other
words, the performer himself picks a card
and uses it to spell four letters. He adjusts
his dials so that his card and these four let-
ters are in line. Then he turns the entire
cylinder until he sees a four-letter word.
It will be the word the spectator spelled.
There is, of course, a chance that more than
one word will turn up, but the odds are
heavily against it. If it should happen, the
magician simply makes more than one
guess.

The gimmick can be made small enough
to keep concealed in one hand. A similar
gimmick can be made by mounting four
concentric circles of graduated size on a
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103. Gimmick for the “Think a word”’ trick

square of cardboard. This can be kept in
the performer’s inside coat pocket, to be
pulled out and secretly adjusted each time
his back is turned. By adding more disks to
the cylinder, or circles to the cardboard,
one can do the trick with longer words.
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If the word is long, one is often able to
spot the only possible combination of letters
before the spelling is completed and so
guess the word. In such cases a final look
at the wheel will verify the guess, then
the performer can proceed to name the word
without turning his back again.

Some magicians omit the card symbols
entirely from the gimmick. This has no
effect on their ability to guess the word,
and if someone asks them if they also know
the selected card, they can answer, in com-
plete honesty, that they haven’t the slightest
idea what is is!
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15. Word Play

Was | clever enough? Was | charming? Did | make at least one good pun?

WORD PLAY — puns, anagrams, palindromes
and so on—is not discussed in any mathe-
matics book, yet it has about it a quasi-
mathematical air. Letters are symbols that
combine according to rules to form words;
words are symbols that combine according
to rules to form sentences. Perhaps this
combinatorial aspect is the reason so many
mathematicians are addicted to language
play.

The impulse to pun can persist even in
the face of imminent death. On March 22,
1963, a murderer named Frederick Charles
Wood was executed at Sing Sing. Accord-
ing to newspaper accounts, just before seat-
ing himself in the electric chair Wood said
to those present: “I have a speech to make
on an educational project. You will see the
effect of electricity on Wood.”

Less grim was the New York Times report

John Updike, Thoughts while Driving Home

a month later (April 28) that a gnu in the
Chessington Zoo in England had bitten a
zoo keeper. Odd, said the keeper, “most
gnus are good gnus.” I also find in my files
an Associated Press dispatch from Des
Moines, dated October 11, 1960, reporting
that a perfume-dispensing machine in the
women’s lounge of a local hotel had failed
to work. The management had hung a sign
on it that read “Out of order.” An unidenti-
fied patron, using lipstick, had crossed out
the first “r”” of “order.”

The last is not strictly speaking a pun
but rather a crude example of what word
puzzlists call a deletion: the changing of
one word into another by the removal of
a letter. An amusing deletion story is told
about Lord Kelvin, the British mathema-
tician and physicist. He once put a sign on
the door of a lecture hall stating that he
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would be unable to “meet my classes
today.” A student beheaded the word
“classes” by crossing out the “c.” Next
day, eager to observe the professor’s re-
action, the students found that he had one-
upped them by performing a second
beheading.

The following is unusual: “Show this
bold Prussian that praises slaughter,
slaughter brings rout. Teach this slaughter
lover his fall nears.” If each word is be-
headed, two entirely new sentences result.
It is startling to learn that “startling” can
be changed into eight other familiar words
by successive deletions (from different
places) of single letters. George Canning,
an early-nineteenth-century British states-
man, wrote the following verse about a
word that is subject to “curtailment,” that
is, a word that becomes a different word
when its last letter is removed. Can you
identify the word?

A word there is of plural number,
Foe to ease and tranquil slumber;
Any other word you take

And add an *s” will plural make.
But if you add an *’s” to this,

So strange the metamorphosis,
Plural is plural now no more,
And sweet what bitter was before.

Both decapitation and curtailment are
involved in the following old riddle:

From a number that’s odd,
cut off the head,

It then will even be;

Its tail I pray now take away,

Your mother then you’ll see.
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It would be interesting to know how
many technical books of recent years have
messages concealed in the text by playful
authors. One finds out about them by acci-
dent. Who would have guessed, for example,
that Transport Phenomena, a 780-page
textbook by R. Byron Bird, Warren E.
Stewart and Edwin N. Lightfoot (published
by John Wiley and Sons in 1960), had “On
Wisconsin” hidden on page 7127 (It is
spelled by the first letters of each para-
graph.) Or that the first letters of each
sentence in the preface spell “This book
is dedicated to O. A. Hougen” ?

Sometimes word play enters a technical
book fortuitously. Recently I had occasion
to look up something in Rudolf Carnap’s
great work on semantics, Meaning and
Necessity. On page 63 I came across a
stretch of text in which the views of Black
are sharply contrasted with those of White.
Surely these were hypothetical individuals
introduced to clarify an obscure point. No,
on closer inspection they turned out to be
the well-known philosophers Max Black
and Morton White!

A classic instance of accidental word play
is provided by the first (1819) edition of
William Whewell’s Elementary Treatise on
Mechanics. On page 44 the text can be
arranged in the following form:

There is no force, however great,
Can stretch a cord, however fine,
Into a horizontal line,

Which is accurately straight.

The buried poem was discovered by Adam
Sedgwick, a Cambridge geologist, who re-



cited it in an afterdinner speech. Whewell
was not amused. He removed the poem by
altering the lines in the book’s next printing.
Whewell actually published two books of
serious poetry, but this unintended dog-
gerel is the only “poem” by him that anyone
now remembers.

If you keep your ears tuned, accidental
meters turn up more often than you would
expect. Max Beerbohm’s eye caught the
unintended beat in the following lines on
the copyright page of the first English edi-
tion of one of his books:

London: John Lane, The Bodley Head
New York: Charles Scribner’s Sons

Beerbohm completed the quatrain by
writing

This plain announcement, nicely read,
Iambically runs.

“Quintessential light verse,” wrote John
Updike, commenting recently on the above
lines, “a twitting of the starkest prose into
perfect form, a marriage of earth with light,
and quite magical. Indeed, were I a high
priest of literature, I would have this qua-
train made into an amulet and wear it about
my neck, for luck.”

The spoonerism, in which parts of two
words (usually first syllables) are switched,
continues to flourish as a popular form of
wit. In 1960 Adlai Stevenson was campaign-
ing in St. Paul, Minnesota, when the clergy-
man Norman Vincent Peale made some
unfortunate political remarks. Stevenson
told the press that he found St. Paul appeal-
ing and Peale appalling, surely one of the
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finest of all topical spoonerisms. In 1962,
shortly after Rembrandt’s painting “Aris-
totle Contemplating the Bust of Homer”
had been bought by New York’s Metro-
politan Museum of Art for $2,300,000, it
seems that Aristotle Onassis, the Greek
shipping magnate, was shown Buster
Keaton’s house by a real estate agent.
It was widely reported that a photograph
in a Los Angeles newspaper was captioned
“Aristotle Contemplating the Home of
Buster,” although I cannot vouch for it

Ogden Nash’s verse abounds in splendid
spoonerisms:

... I am a conscientious man,
when I throw
rocks at sea birds
I leave no tern unstoned,
I am a meticulous man
and when I portray
baboons I leave no stern untoned.

No discussion of word play should fail
to mention James Joyce. Finnegans Wake
has, by a conservative estimate, 200 verbal
plays per page, or more than 125,000 all
together. The mathematical section of this
book, pages 284 to 308 of the edition pub-
lished by the Viking Press in 1947, contains
hundreds of familiar mathematical terms,
scrambled with metaphysics and sex. (The
geometric diagram on page 293 is discussed
mainly as a sex symbol.) The first footnote,
“Dideney, Dadeney, Dudeney,” refers to
Henry Emest Dudeney, the great English
puzzle expert of Joyce’s day. On page 302
“Smith-Jones-Orbison?” alludes to one of
Dudeney’s most popular puzzles, a logic
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problem involving three men named Smith,
Jones and Robinson. Another of Dudeney’s
puzzles turns up in a footnote on page 299:
“Pure chingchong idiotism with any way
words all in one soluble. Gee each owe tea
eye smells fish. That's U.”

The puzzle: If you pronounce “gh” as
in “tough,” “0” as in “women” and “ti”’
as in “emotion,” how do you pronounce
“ghoti” ? Was Joyce, in this footnote, speak-
ing of the book itself and calling his reader
a poor fish for biting the hook?

There are many references in Finnegans
Wake to Lewis Carroll, who, as everyone
knows, was a mathematician. In the mathe-
matics section we read (page 294): “One
of the most murmurable loose carollaries
ever Ellis threw his cookingclass.” (I
scarcely need to point out that the last
phrase puns on Alice Through the Looking-
Glass.)

The following excerpt is from page 284:
‘.. . palls pell inhis heventh glike noughty
times «, find, if you are not literally cooef-
ficient, how minney combinaisies and
permutandies can be played on the inter-
national surd! pthwndxrclzp!, hids cubid
rute being extructed, taking anan illit-
terettes, ififif at a tom. Answers, (for teasers
only).”

A partial explication: Pell was a mathema-
tician for whom the Pellian equation was
named, a number theorem often mentioned
by Dudeney. “Heventh” is a compression
of “seventh heaven.” “Pthwndxrclzp” is
one of the book’s many thunderclaps. “Tak-
ing anan illitterettes, ififif at a tom” is,
I suppose, “taking any letters, fifty at a

<
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time.” “For teasers only; is a play on “for
teachers only.”

The pangram, an ancient form of word
play, is an attempt to get the maximum num-
ber of different letters into a sentence of
minimum length. The English mathemati-
cian Augustus De Morgan tells (in his A
Budget of Paradoxes) of unsuccessful labors
to write an intelligible sentence using every
letter once and only once. “Pack my box
with five dozen liquor jugs™ gets all 26 let-
ters into a 32-letter sentence, and “Waltz,
nymph, for quick jigs vex Bud” cuts it to 28.
Dmitri Borgmann of Oak Park, Illinois, the
country’s leading authority on word play,
has devised a number of 26-letter pangrams,
but all require explanation. His best is
“Cwm, fjord-bank glyphs vext quiz.” A
“cwm’” is a circular valley, “quiz” is an
eighteenth century term for an eccentric,
a “glyph” is a carved figure. Borgmann’s
sentence thus states that an eccentric
person was annoyed by carved figures on
the bank of a fjord in a circular valley.
Can any reader supply a better 26-letter
pangram?

Another old and challenging word curios-
ity is the palindrome, a sentence that is
spelled the same backward and forward.
Borgmann’s collection, covering all major
languages, runs to several thousand. In my
opinion the finest English palindrome con-
tinues to be “A man, a plan, a canal — Pan-
amal!” It has recently been attributed to
James Thurber, but it was composed many
years ago by Leigh Mercer of London, one
of the greatest living palindromists. An un-
published Mercer palindrome, which is also



something of a tongue twister, is “Top
step’s pup’s pet spot.”

Another Mercer palindrome, remarkable
for both its length and naturalness, is
“Straw? No, too stupid a fad. I put sbot on
warts.” J. A. Lindon of Weybridge, England,
is another master palindromist who turns
them out by the hundreds. Who would sus-
pect a palindrome if, in a novel, he came on
the following Lindon sentence: “Norma is
as selfless as I am, Ron.” Lindon has also
composed a large number of palindromes in
which words rather than letters are the
units. For instance: “So patient a doctor to
try to doctor a patient so” and “Amusing is
that company of fond people bores people
fond of company that is amusing.”

Composing anagrams (a phrase or word
formed by rearranging the letters of an-
other) on the names of friends or prominent
people was once a fashionable literary sport.
De Morgan tells of a friend who composed
800 anagrams on ‘“Augustus De Morgan”
(sample: “O Gus! Tug a mean surd!”).
Lewis Carroll proudly recorded in his diary
for November 25, 1868, that he had sent to a
newspaper an anagram ‘“‘which I thought
out lying awake the other night: William
Ewart Gladstone: Wilt tear down all im-
ages? I heard of another afterwards, made
on the same name: ‘I, wise Mr. G., want to
lead all’—which is well answered by ‘Dis-
raeli: I lead, Sir”” When Grover Cleve-
land was president, someone turned his
name into “Govern, clever lad!” Theodore
Roosevelt anagrams to “Hero told to over-
see” and Dwight D. Eisenhower to “Wow!
He’s right indeed!” During the 1936 elec-
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tion, Borgmann also informs me, the letters
of Franklin Delano Roosevelt’s name were
permuted —by a Republican, no doubt—to
“Vote for Landon ere all sink!” It was said
during this campaign that the Republicans
avoided picking Styles Bridges, at that time
governor of New Hampshire, for Landon’s
running mate for fear the Democrats would
go about chanting “Landon-Bridges falling
down.”

What can readers do with the full names
of the two candidates for the 1964 election:
Lyndon Baines Johnson and Barry Morris
Goldwater?

For less ambitious readers Figure 104
on page 148 presents eight remarkable
English words, the missing letters to be
supplied. All letters omitted from the first
word are consonants. The second word con-
tains the first five letters of the alphabet in
order. The third word can be typed by using
only the top row of keys on a standard type-
writer. (The letters of this row, left to right,
are QWERTYUIOP.) The fourth and fifth
words contain four letters in adjacent alpha-
betical order. The sixth word contains the
five vowels in reverse order, the seventh the
five vowels plus Y in the usual order. In the
last word consonants and vowels alternate.

Addendum

The following letter appeared in the No-
vember 1964 issue of Scientific American:

Sirs:
Martin Gardner’s department ‘“Mathematical
Games” is the first thing we look at when we
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104. Eight curious words

pick up a copy of Scientific American. His Sep-
tember article on puns, palindromes, and other
word games was quite entertaining and of par-
ticular interest to us.

In connection with the concealed message in
the text Transport Phenomena by Bird, Stewart
and Lightfoot, you might be interested to know
that in the preface the first letters of the sen-
tences actually spell “This book is dedicated to

148

O. A. Hougen TTTM.” The TTTM means “This
terminates the message.” Furthermore, in the
forthcoming Spanish edition of our text (Fend-
menos de Transporte), to be published by Edito-
rial Reverté, the translator, Professor F. Mato
Vazquez of the University of Salamanca, has
oblingingly translated our preface so that the
hidden message is faithfully retained as “Este
libro estd dedicado a O. A. Hougen,” with no



letters such as TTTM left over. In the postface
we were faced with a problem, since “On Wis-
consin” would have little meaning to Spanish-
speaking readers and “w” does not occur in
Spanish. Hence we have requested the translator
to try to include the hidden message “Adids
amigos” instead.

You might also be interested to know that our
colleague Professor Daizo Kunii (Department of
Chemical Engineering, University of Tokyo)
published a book entitled Ryudo Kahyo several
years ago. The first characters of the paragraphs
in his preface spell out, in Japanese, a dedica-
tion to his wife.

R. BYRON BIRD
WARREN E. STEWART
EpwiIN N. LIGHTFOOT

Department of Chemical Engineering
University of Wisconsin
Madison, Wisconsin

Answers

The first of the two rhymed riddles is an-
swered by the word “caress,” the second by
the word “seven.” The six words in the
closing quiz are “strengths,” “absconder,”
“typewriter,” “gymnoplast,” “understudy,”
“unoriental,” “facetiously” and “verisimili-
tudes.”

A number of Scientific American readers
responded to the request for pangrams.
Walter G. Leight of the Franklin Institute’s
Center for Naval Analysis sent Cozy sphinx
waves quart jug of bad milk (32 letters),
Blowsy red vixens fight a quick jump (30)
and Quick jigs for waltz vex bad nymph
(28). The last is an improvement over the
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similar pangram given on page 146 be-
cause it eliminates the name “Bud.” Proper
nouns, abbreviations, initials and so on are
considered blots on pangrams.

John G. Fletcher of Pleasanton, Califor-
nia, sent the best 26-letter pangram, which
he says is due to the mathematician Claude
E. Shannon: Squdgy fez, blank jimp crwth
vox! A crwth is a stringed instrument of
Welsh origin. “Jimp” is a Scottish word for
“thin,” “slender,” “delicate.” (“I see thee
dancing on the green, thy waist sae jimp,/
Thy limbs sae clean,” wrote Robert Burns.)
The sentence is spoken by a man of the Near
East to his short, squat fez as he pulls it
down over his ears to blank out the thin,
delicate voice (notes) of a crwth being
played nearby. Vic Reid, Jr., of New York
City reports that while Caesar’s legions
were encamped one night by a northern
lake, they were approached by 15 mer-
maids who tried vainly to persuade the men
to dance with them on the water. A war cor-
respondent cabled 26 letters to his Roman
editor: XV quick nymphs beg fjord waltz.

Several readers called attention to other
answers to the quiz about eight curious
words. Absconded can, of course, be sub-
stituted for absconder. Dmitri Borgmann
writes that in addition to typewriter the fol-
lowing ten-letter words can also be typed
on the top row of letter keys: proprietor,
pepperwort, pepperroot and protopteri.
Others (from W. H. Shepherd of Man-
chester, England): perpetuity, repertoire,
perruquier, pewterwort and pirouetter.
Borgmann goes on to say that gymnopedia,
limnophile and somnopathy are other ten-
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letter words with mnop in the same spot as
in gymnoplast (although he prefers the
sentence I am no prude), and pareciously
and materiously are alternates for faceti-
ously in having the vowels and y in alpha-
betical order.

Stuart G. Schaeffer found another, more
timely solution to the “cares—caress” rid-
dle, which he expressed in what he calls
“shaggy doggerel”:

A century and more ago
Clairvoyant Englishmen did know
That in the twentieth century
Tranquillity would shattered be,
And so suggested bitter noise

Be changed to sweet and silent joys
By adding modest and conceitless
“S” to make the Beatles beatless.

The virtuosity of readers in finding ana-
grams on the full names of the two presi-
dential candidates makes it impossible to do
justice to the hundreds of ingenious ana-
grams received. Curiously each candidate’s
name involves a similar difficulty: taking care
of the five N’s in Lyndon Baines Johnson
and the five R’s in Barry Morris Goldwater.
Dmitri Borgmann’s best one for Johnson
is No ninny, he’s on job, lads. Essentially
the same anagram was submitted by Arthur
Schulman, James H. Cochrane, and Raphael
M. Robinson. Hands on only nine jobs was
independently devised by Mrs. H. A.
Morss, Jr., and Mr. and Mrs. Bruce D.
Hainsworth; virtually the same phrase
also came from Mrs. E. M. Cutler and many
others. The best anti-Johnson anagram is
from Walter 1. Cole, Jr.: None sin? Sly hand
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on job. I should add that Cole also sent the
following anti-Goldwater anagram: My star
error—a glib word.

The best anagram favorable to Goldwater
— Smart, bold, grey warrior — was submitted
by David Rabby, who also balanced it with
a favorable Johnson anagram. Most Gold-
water anagrams stressed a fear that his
policies would provoke war. Morbid story—
larger war was discovered by both Mrs.
Cutler and L. E. Card. Among 39 clever
anagrams contributed by Mr. and Mrs.
Gerald Dantzic are Wary world’s rarer
bigot; Orders big “moral war” try! Other
anagrams of similar import: Sorry brew,
Mr. Gladiator! (Mrs. Coburn A. Buxton),
Bald, raw, gory terrorism (Arthur Schul-
man), Sly orator bred grim war (James H.
Cochrane), Grab rest, moldy warrior (Alan
Wachtel, Phil Leslie). John de Cuevas sent
A great world! By mirrors? Mr. and Mrs.
Bruce D. Hainsworth: Red Star big moral
worry. Raphael Robinson, a well-known
mathematician, imagined the following
message signed with Barry’s first initial:
Glory! I storm rearward. B. To which Robin-
son added the following prayer for a Gold-
waterloo: Lord, bar grim worst year!
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16. The Pythagorean Theorem

Such a theorem as “‘the square of the hypotenuse of a right-angled triangle

is equal to the sum of the squares of the sides” is as dazzlingly beautiful

now as it was in the day when Pythagoras first discovered it, and celebrated
its advent, it is said, by sacrificing a hecatomb of oxen—a method of doing
honor to Science that has always seemed to me slightly exaggerated and
uncalled-for. Onhe can imagine oneself, even in these degenerate days,
marking the epoch of some brilliant scientific discovery by inviting a convivial
friend or two, to join one in a beefsteak and a bottle of wine. But a hecatomb .
of oxen! It would produce a quite inconvenient supply of beef.

THE FIRST CHAPTER of Arthur Schopen-
hauer’s great philosophical work The World
as Will and Idea contains a harsh attack on
Euclid’s method of proving propositions,
and on the famous forty-seventh proposi-
tion in particular. This is the familiar theo-
rem, usually called the Pythagorean
theorem, that states that the square on the
hypotenuse of a right triangle has an area
equal to the combined areas of the squares
on the other two sides. It is, of course, one
of the oldest and most indispensable theo-
rems in the whole of mathematics.

Lewis Carroll, A New Theory of Parallels

Euclid’s proof, as many readers will
recall from high school geometry textbooks,
is rather complicated. Construction lines
are drawn here and there, says Schopen-
hauer, for no apparent reason; then we are
dragged through a long chain of deductive
steps until suddenly the proof snaps shut
on us like a mousetrap. We are compelled to
admit that the conclusion is true, but we
feel somehow cheated. We do not “see” its
truth. According to Schopenhauer we are
like a doctor who knows both a disease and
its cure but has no understanding of why the



105. Ancient Greek proof of Pythagorean theorem

for the isosceles right triangle

cure works. The proof is a “brilliant piece of
perversity.” It sneaks its truth in by a back
door instead of giving it to us forthrightly,
as a direct intuition of spatial relations.

A much better understanding of the theo-
rem is obtained, Schopenhauer continues,
by contemplating a diagram such as the one

in Figure 105. We see at once that the
squares on the two legs of the shaded tri-
angle are composed of four congruent tri-
angles that fit together to form the square on
the hypotenuse. Essentially the same
diagram is used by Socrates (in Plato’s
Meno) to convince a slave boy of the truth
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of a theorem. How foolish, Schopenhauer
says, to toil over Euclid’s rough terrain
when we can get there directly by such a
“bright, firm road.”

Schopenhauer’s arguments are naive: the
proof he recommends concerns only a
special case, the isosceles right triangle, and
does not prove the theorem at all. Neverthe-
less, there is something to be said for the
pedagogic value of simple proofs that give a
maximum of intuitive insight. Consider the
figure at left in Figure 106. Clearly any
type of right triangle can be duplicated four
times and arranged in this pattern. The
tilted white square in the center — the square
on the hypotenuse —has an area equal to
that of the large square minus the com-
bined areas of the four shaded triangles.
Now we rearrange the four triangles inside

the same large square in the manner shown
in the figure at right in the illustration. The
two white squares are the squares on the
two legs. Since their combined area also is
that of the large square minus the four tri-
angles, we know it must equal the area of
the tilted white square in the figure at left
in the illustration.

No one knows who first thought of this
beautiful proof, but it may predate Pythag-
oras himself. The figure at the left in the
illustration appears in the Chou Pei, a Chi-
nese manuscript that goes back to the Han
period (202 B.C. to A.D. 220) but is believed
to contain much older mathematical ma-
terial. Although the manuscript gives no
actual proof, it does mention the right tri-
angle with integral sides of 3, 4, and 5, and
many scholars think that the figure played

106. A “look-see” proof of the theorem for any type of right triangle
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a part in a proof similar to the one just
explained. Pythagoras, who lived about
500 B.C., is believed to have proved the
theorem (legend has it that he sacrificed one
hundred oxen when he first discovered
the theorem), but no actual proof by him
has survived. Recent research has dis-
closed that the ancient Babylonians, more
than a thousand years before the time of
Pythagoras, knew the theorem as well as
many different kinds of right triangle with
integral sides. There is no evidence that
the Egyptians knew either the theorem
or the 3, 4, 5 triangle. The myth that they
did goes back to 1900, when Moritz Can-
tor, a German historian of mathematics,
knowing that Egyptian temple builders
used ropes in laying foundations, sug-
gested that perhaps they obtained accurate
right angles by using marked ropes that
could be stretched around stakes to form
a 3, 4, 5 triangle. Perhaps they did, but
there is not a single known document to
support this guess.

A delightful, dynamic proof of the theo-
rem, devised by a New York mathemati-
cian, Hermann Baravalle, was published
in 1945. Its five steps are shown in Figure
107. Only the fourth step calls for comment.
If a parallelogram is altered by a shearing
motion that preserves its base and altitude,
its area remains constant.

I know of no more intuitively satisfying
proofs of the theorem than these, but by
applying some elementary algebra still
simpler proofs are possible. Surely the
simplest is obtained by resting the triangle
on its hypotenuse, as shown in Figure 108,

The Pythagorean Theorem

then dropping a vertical line from the top
corner. The small shaded right triangle is
similar to the large triangle ABC because
both have the angle A in common. Similar
triangles have sides in the same ratio,
therefore b : x =c¢ : b, or b>=cx. The small
unshaded right triangle is similar to ABC
(they have angle B in common), therefore
a:c—x=c:da,ora=c>—cx. We add the
two equations
b
a
a*+ b?

cx

=2 —cx
)

:(/“

[

and obtain the theorem.

Hundreds of ingenious ways to prove the
theorem have been published. The second
(1940) edition of The Pythagorean Proposi-
tion, by Elisha S. Loomis, gives 367 differ-
ent proofs, neatly classified by types. Of
special interest—it is the only contribution
to mathematics ever made by a president
of the United States! —is an algebraic proof
based on the construction shown in Figure
109. The proof first appeared in a Boston
weekly called The New England Journal
of Education on April 1, 1876, with a note
by the editor saying it had been given to
him by James A. Garfield, then a Republi-
can congressman from Ohio. Garfield had
hit on it, says the note, during “some mathe-
matical amusements” with other congress-
men, and “we think it something on which
the members of both houses can unite with-
out distinction of party.” The basic right
triangle is shown shaded. On its hypotenuse
is drawn the right isosceles triangle CBE.
Line AC is extended, then from point E a
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107. Baravalle’s five-step dynamic proof
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108. Simplest algebraic proof of the theorem

109. President Garfield’s proof
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perpendicular is drawn to the extended
line, meeting it at D. The shaded triangle
is congruent with triangle DCE, therefore
AB = DC and AC = DE. I leave the proof
as a puzzle for the reader.

The theorem can be generalized in scores
of interesting ways. For instance, any fig-
ure can be drawn on the three sides —semi-
circles, hexagons, triangles and so on. As
long as the three figures are similar, with
corresponding sides on the triangle, the
area of the figure on the hypotenuse must
equal the sum of the areas of the other two.
Pappus of Alexandria, a Greek geometer
who lived about A.D. 300, proved a much
more remarkable generalization. One starts
with any triangle whatever [ABC in Figure
110]. On its legs one draws two parallelo-
grams [shown shaded] of any size or shape.
Sides of these two parallelograms are ex-
tended to meet at point P. We next draw a
line through P and C, extending it down-
ward until OR is equal to PC. If a paral-
lelogram is drawn on the hypotenuse of
the triangle, its sides equal to and parallel
with PR, its area will be the sum of the
areas of the other two parallelograms.

One proof is ridiculously easy. The
shaded parallelogram at left in the illus-
tration is equal in area to parallelogram
WPCA (for the reason given in connection
with Baravalle’s proof) and also (for the
same reason) equal to parallelogram AQRX.
At right, the same argument shows that the
shaded parallelogram has an area equal to
parallelogram QBYR. Since the large paral-
lelogram on the hypotenuse is made up of
AQRX and QBYR, its area is the sum of the
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areas of the two shaded parallelograms. It
is easy to see that the Pythagorean theorem
is a special case of Pappus’ theorem. It
obtains when angle C is the right angle and
the two shaded parallelograms are squares.
In this special case the proof just outlined
is essentially the same as Baravalle’s proof.

The simplest right triangle with integral
sides is the 3, 4, 5 triangle. Of course we can
get an infinity of other “Pythagorean trip-
les,” as these three numbers are called,
simply by multiplying each number by the
same integer. If we multiply by 2, we get
the Pythagorean triple 6, 8, 10. This is not
very exciting, because a triangle with such
sides is merely an enlarged version of the
3,4, 5. Much more interesting are the Pytha-
gorean triples that have no common factor,
that is, that have integers that are “co-
prime.” Such triples are called “primitive
Pythagorean triples,” which we abbreviate
to PP triples. Obviously no two PP triangles
will have the same shape.

Every Pythagorean triple, primitive or
not, is an integral solution of the equation
x*> + y> = z*. There is an infinite number of
primitive solutions. (If the exponent of the
three terms is any integer greater than 2,
there are believed to be no integral solu-
tions. This is Pierre de Fermat’s famous
“last theorem,” not yet proved true.) The
formula for finding primitive solutions
goes back to the Greeks and probably back
to ancient Babylonia:

x=a>—b?
y = 2ab
z=a*+ b?



110. Pappus’ generalization of the Pythagorean theorem

The letters x and y are the triangle’s legs,
z is the hypotenuse. Letters a and b stand
for integers called “generators.” They can
be any pair of positive integers, with the
restrictions that they be coprime (have no
common divisor), of opposite parity (one
even, one odd), and that a be greater than
b. For example, if b is 1 and « is 2 (the
smallest possible generators), we obtain
the 3, 4, 5 triangle. Generators of 3 and 2

(for @ and b respectively) give the next
simplest PP triple: 5, 12, 13. In this way
the formula generates all PP triples. There
are 16 PP triangles with sides less than 100
and exactly 100 such Pythagorean triangles
(including the primitives) if we count mir-
ror images as being different.

The study of Pythagorean triples has long
been a vigorous branch of recreational
number theory, with a literature that has
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reached awesome proportions. It is not
hard to prove that x and z must be odd and
that y is “doubly even” (divisible by 4).
Either x or y is sure to be a multiple of
3, and one of the three numbers must be a
multiple of 5. Since the factors 3, 4, 5 occur
somewhere in the triple, the product of
all three numbers must be a multiple of
60. The area of a PP triangle must be a
multiple of 6 and cannot be a perfect square.

Taking off from such simple properties,
students of Pythagorean triples have set
themselves an endless variety of bizarre
problems. How many PP triangles have a
certain integer as a leg? As a hypotenuse?
Find PP triangles with a perimeter that is a
square, or an area that equals the hypote-
nuse, or legs that differ by 1, or an area that
contains each of the nine digits once and
only once, and so on. It is difficult to invent
a problem along such lines that has not been
industriously worked on.

It is easy to prove, for instance, that only
two Pythagorean triangles—6, 8, 10 and
5, 12, 13 —have perimeters that equal their
areas. Is there a PP triangle whose hypote-
nuse is a perfect square, and with legs such
that their difference is also a square? Yes;
the smallest such triangle is 119, 120, 169.
Is there a PP triangle with a square hypot-
enuse and legs that sum to a square? Yes;
but now the smallest answer is 4,565,486, -
027,761, 1,061,652,293,520 and 4,687,298, -
610,289. (This last problem was posed and
solved by Fermat in 1643.) The PP triangle
with sides 693, 1,924, 2,045 has an area of
666,666.

No isosceles right triangle can be Pytha-
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gorean (its hypotenuse is incommensurable
with a leg), but one can get as close to
isosceles as one pleases. Albert H. Beiler,
in Recreations in the Theory of Numbers,
gives a PP triangle so nearly isosceles that
if the sides of one of its acute angles were
extended 100 billion light-years, the di-
vergence from a 45-degree angle would
still be (as Beiler points out) an inconceiv-
ably small fraction of the radius of a proton!
One leg in this mammoth Pythagorean tri-
angle is 21,669,693,148,613,788,330,547 -
979,729,286,307,164,015,202,768,699,465,-
346,081,691,992,338,845,992,696. The other
leg is that number plus 1.

Some of the most challenging problems
in the field concern PP triangles that have
the same area. Fermat showed how to find
a set of as many equiareal nonprimitive
Pythagorean triangles as desired. Some 20
years ago William P. Whitlock, Jr., worked
out a number of ingenious formulas for
finding pairs of equiareal primitive Pytha-
gorean triangles. So far, however, only one
example has been found of three equiareal
PP triangles: 1,380, 19,019, 19,069; 3,059,
8,580, 9,109; 4,485, 5852, 7,373. Their
common area is 13,123,110. (This triplet
was discovered in 1945 by Charles L. Shedd
of Arlington, Massachusetts.) Is there an-
other triplet? Are there four equiareal PP
triangles? No one knows.

You will want to leave these difficult
questions to the experts. Here are four
easy, although in some ways tricky, Pytha-
gorean triangle problems, all answered
in the answers section.

1. Which has the larger area, a triangle



with sides 5, 5, 6 or one with sides 5, 5, 8?

2. A 30, 40, 50 Pythagorean triangle has
a perimeter of 120. Find two other Pytha-
gorean triangles with the same perimeter.

3. What is the smallest number of
matches needed to form simultaneously,
on a plane, two different (noncongruent)
Pythagorean triangles? The matches repre-
sent units of length and must not be broken
or split in any way.

4. For all Pythagorean triangles the
diameters of inscribed and circumscribed
circles are integral. The diameter of the
inscribed circle is obtained by adding the
legs and then subtracting the hypotenuse
(for example, the diameter of the circle
inscribed in the 3, 4, 5 triangle is 2). Find
a formula for the diameter of the circum-
scribed circle.

Answers

What is President James Garfield’s proof
of the Pythagorean theorem? Referring to
the diagram on page 157, the area of the
entire figure —trapezoid ABED—is the
product of its base, x + y, and half the sum of
its sides, x and y. This can be written

(x+yx+ty)
—

The area of the trapezoid is also the sum
of the areas of the three triangles. The
largest triangle has an area of z%/2, and each
of the other two (congruent) triangles has
an area of xy/2. We express the trapezoid’s

The Pythagorean Theorem

area as

2 2(xy)
5t 75

The two expressions for area are equal, so
we have the equation

x+y)x+y)
2

2(xy)
2 b

_z

which simplifies to
x* 4yt =22

I. Carl Romer, Jr., pointed out that Gar-
field’s proof is essentially the same as the
“look-see” proof in Figure 106. Garfield’s
figure is exactly one half of the figure on the
left of the “look-see” illustration.

The four problems involving Pythagorean
triangles are answered as follows:

1. Triangles 5, 5, 6 and 5, 5, 8 have equal
areas because each can be split in half to
make two 3, 4, 5 triangles.

2. The smallest Pythagorean triangles
with the same perimeter are 30, 40, 50;
24, 45, 51, and 20, 48, 52. Each has a pe-
rimeter of 120. The three smallest primi-
tive Pythagorean triangles with equal
perimeters are 3,255, 5,032, 5993; 7,055,
168, 7,057, and 119, 7,080, 7,081.

3. Two noncongruent Pythagorean tri-
angles—3, 4, 5 and 6, 8, 10— can be formed
simultaneously on the plane with as few as
27 matches [see Figure 111].

4. The diameter of a circle circumscribed
about any right triangle is equal to the
triangle’s hypotenuse, as is evident from
Figure 112.
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111. Answer to the match problem 112. Circumscribing a right triangle
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17. Limits of Infinite Series

The Ball laughed. If you have never heard an india-rubber ball laugh you
won’t understand. It's the sort of quicker, quicker, quicker, softer, softer,
softer chuckle of a bounce that it gives when it's settling down when you’re

tired of bouncing it.

FOR A MATHEMATICS STUDENT about to
make the great leap from precalculus to cal-
culus, no asset is more valuable than a firm,
intuitive grasp of the concept of limit. The
derivative and the definite integral, the
fundamental tools of calculus, are both limits
of infinite series. Every irrational number,
such as pi, e, and the square root of 2, is the
limit of an infinite series. Perhaps an ap-
proach to the concept by way of recreation
will help to dispel some of the difficulties
that caused so much metaphysical confusion
in the early history of calculus and that are
still stumbling blocks in the path of a stu-
dent today.

It was Zeno of Elea, a Greek philosopher
of the fifth century B.c., who first demon-

E. Nesbit, Nine Unlikely Tales

strated, with a famous series of paradoxes,
how easily one falls into logical traps in talk-
ing about an infinite series. How, Zeno
asked, can a runner ever get from A to B?
First he must go half the distance. Then he
must go half the remaining distance, which
brings him to the 3/4 point. But before com-
pleting the last quarter he must again go
halfway, to the 7/8 point. In other words, he
goes a distance equal to the sum of the fol-
lowing series:

1/2+1/4+1/8+1/164+ . ..
The dots at the end mean that the series

continues forever. How can a runner tra-
verse an infinite series of lengths in a finite
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time? If you keep adding the terms of this
series, you will never reach the goal of 1;
you are always short by a distance equal to
the last fraction added.

Now, there is a simple way to design an
experiment so that in theory Zeno’s con-
tention is correct. Place a chess queen so
that the center of its circular base rests on
point A. The piece is to be pushed along a
straight line to point B in the following way.
First we push it a distance of 1/2, then pause
until one second has elapsed. Then we push
it a distance of 1/4 and again pause until the
end of the second. We continue in this man-
ner, beginning each push one second after
the start of the previous push. At what time
will the queen reach B? The answer is
never. Suppose, however, we give the
queen a constant velocity so that it covers
half the distance in half a second, a quarter
of the distance in a quarter of a second and
so on. Both time and distance are now de-
scribed by the same halving series. Both
simultaneously converge —or “choke off,”
as mathematicians say —at the number 1.
In one second, therefore, the queen reaches
B.

What does a mathematician mean when
he says that the “sum” of this halving series
is 1? Clearly it is not a sum in the sense that
one speaks of the sum of a finite series.
There is no way to sum an infinite series in
the usual sense of the word because there
is no end to the terms that must be added.
When a mathematician speaks of the sum—
more precisely the limit—of an infinite
series, he means a number that the value of
the series approaches, as the number of its
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terms increases without bound. By “ap-
proach” he means that the difference be-
tween the value of the series and its limit
can be made as small as one pleases. Here
we touch the heart of the matter. The value
of an infinite series sometimes reaches its
limit and sometimes goes beyond the limit.
A simple example of the latter is obtained
by changing alternate signs in the halving
series to minus signs: 1/2—1/4+1/8 —1/16
+ . . . . The partial sums of this series are
alternately more or less than its limit of
.3333 . .. (which, incidentally, is a way of
writing 1/3 as the limit of an infinite series
of decimal fractions). The important point
is that, in every case of an infinite series that
chokes off, one can always find a partial sum
that differs from the limit by an amount
smaller than any fraction one cares to name.

Finding the limit of a converging series
is often extremely difficult, but when the
terms decrease in a geometric progression,
as in the case of the halving series, there is a
simple dodge every reader should know.
First let x equal the entire series. Because
each term is twice as large as the next, mul-
tiply each side of the equation by 2:

2x=2(1/2+ 1/4+1/8+ 1/16 + . . )
2x=1+1/2+1/4+1/84+ . ..

The new series, beyond 1, is the same as
the original series x. So

2x=1+«x,

which reduces to x = 1.
Let us see how this applies to another of



Zeno’s paradoxes: the race of Achilles and
the tortoise. Assume that Achilles runs ten
times as fast as the tortoise, and that the
animal has a lead of 100 yards. After Achilles
has gone 100 yards the tortoise has moved 10.
After Achilles has run 10 yards the tortoise
has moved 1. If Achilles takes the same
length of time to run each segment of this
series, he will never catch the tortoise, but
if both move at uniform speed, he will. How
far has Achilles gone by the time he over-
takes the tortoise? The answer is the limit
of the series 100+ 10+ 1+ .1 + .01 + .001
+ . ... Here we see at once that the sum
is 111.111 . . . , or 111¥Ys yards. Suppose
Achilles runs seven times as fast as the tor-
toise, which has the same head start of 100
yards. How far must Achilles go to catch the
tortoise?

(We leave aside the question of whether
modern mathematics does or does not refute
Zeno. It all depends, of course, on what one
means in this context by “refute.” The in-
terested reader can find no better introduc-
tion to the difficult literature on this subject
than Bertrand Russell’s brief discussion in
Lecture 6 of Qur Knowledge of the External
World and his more advanced analysis on
pages 336-354 of Principles of Mathematics
(Second edition; New York: W. W. Norton
and Company, 1938). Zeno’s paradoxes
raise questions about space, time and mo-
tion that are too deep to be answered friv-
olously, as they once were by Diogenes the
Cynic: he stood up and walked from A to B.)

Bouncing-ball problems, found in many
puzzle books, also yield readily to the trick
just explained. Assume that an ideal ball is

Limits of Infinite Series

dropped from a height of one foot. It always
bounces to 1/3 of its previous height. If
each bounce takes a second, the ball will
bounce forever, but since the time for each
bounce also decreases by a converging
series, the ball eventually stops bouncing
even though it makes (in theory) an infinite
number of bounces. The reader should have
little difficulty determining how far this
ideal ball travels before it comes to rest.

Geometric examples of series of this type
are legion. If the largest square in Figure
113 has a side of 1 and the nesting continues
indefinitely, what is the area of the infinite
set of squares? Obviously it is 1 plus the
halving series previously considered, or a
total area of 2. Only a trifle more difficult is
the following problem, presented in 1905 in
a competition held annually in Hungary. A
unit square is divided into nine equal
squares, like a ticktacktoe board, and the
center square is painted a color. The remain-
ing eight squares are similarly divided and
painted. If repetitions of this procedure con-
tinue indefinitely [see Figure 114], what is
the limit of the painted area?

When a series does not converge, it is
said to diverge. It is easy to see that 1 +2 +
3+4+5+ . . . does not choke off. Suppose,
however, that each new term, in a series
joined by plus signs, is smaller than the pre-
ceding one. Must such a series converge?
It may be hard to believe at first, but the
answer is no. Consider the series known as
the harmonic series:

1+124+1/3+1/4+1/5+ . ..

The terms get smaller and smaller; in fact,
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113. An infinite set of nested squares

they approach zero as a limit. Nevertheless,
the sum increases without bound! To prove
this we have only to consider the terms in
groups of two, four, eight, and so on, begin-
ning with 1/3. The first group, 1/3 + 1/4,
sums to more than 1/2 because 1/3 is greater
than 1/4, and a pair of fourths sums to 1/2.
Similarly, the second group, 1/5+ 1/6 + 1/7
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+ 1/8, is more than 1/2 because each term

except the last exceeds 1/8, and a quadruple
of eighths sums to 1/2. In the same way the
third group, of eight terms, exceeds 1/2 be-
cause every term except the last (1/16) is
greater than 1/16, and 8/16 is 1/2. Each suc-
ceeding group can thus be shown to exceed
1/2, and since the number of such groups is



W

-

114. What is the limit of area for the colored portion?

unlimited the series must diverge. It does
so, however, with infuriating slowness. The
first 100 terms, for instance, total only a bit
more than 5. To reach 100 requires more
than 2'* terms, but less than 2'* terms. (I
am indebted to Daniel Asimov for supply-
ing these upper and lower bounds.) In 1968
John W. Wrench, Jr., calculated the exact

number of terms at which the series has a
partial sum exceeding 100. The number of
terms is 15,092,688,622,113,788,323,693,-
563,264,538,101,449,859,497.

The harmonic series is involved in an
amusing problem that appeared in the Pi
Mu Epsilon Journal for April, 1954, and
more recently in Puzzle-Math, a book by
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George Gamow and Marvin Stern. If one
brick is placed on another, the greatest off-
set is obtained by having the center of grav-
ity of the top brick fall directly above the
end of the lower brick, as shown by arrow
A in Figure 115. These two bricks, resting
on a third, have maximum offset when their

combined center of gravity is above the
third brick’s edge, as shown by arrow B. By
continuing this procedure downward one
obtains a column that curves in the manner
shown. How large an offset can be obtained?
Can it be the full length of a brick?

The unbelievable answer is that the offset

115. The infinite-offset paradox

168



can be as large as one wishes! The top brick
projects half a brick’s length. The second
projects 1/4, the third 1/6 and so on down.
With an unlimited supply of bricks the off-
set is-the limit of

1/24+1/4+1/6+1/8+ . . .

This is simply the harmonic series with
each term cut in half. Since the sum of the
harmonic series can be made larger than
any number we care to name, so can half
its sum. In short, the series diverges, and
therefore the offset can be increased with-

Limits of Infinite Series

out limit. As we have seen, such a series
diverges so slowly that it would take a great
many bricks to achieve even a small offset.
With 52 playing cards, the first placed so
that its end is flush with a table edge, the
maximum overhang is a little more than 2Y4
card lengths [see Figure 116.]. Readers may
enjoy seeing if they can build an offset,
using one deck, that exceeds two card
lengths. ‘

The harmonic series has many curious
properties. If every term containing the
digit 9 is crossed out, the remaining terms

e

116. The overhang of a deck of cards
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form a convergent series. If the denomina-
tor of each term is raised to the same power
n, and n is greater than 1, the series con-
verges. If every other sign, starting with the
first, is changed to minus, the resulting
series

1—-12+1/3—-1/4+1/5— . ..

chokes off on the natural logarithm of 2, a
number slightly smaller than .7. Does the
value of the series ever reach (after 1, of
course) a number that is an integer? If there
were a simple formula for expressing the
value of the series for n terms, this might be
easily answered, but there is no such for-
mula. An ingenious odd-even argument,
however, that goes back at least to 1915 (the
details are given on page 48 of the American
Mathematical Monthly for January, 1934)
shows that the series never reaches an
integral sum. .

If all the terms of an infinite series are
positive, it clearly does not matter how the
terms are grouped or rearranged; the limit
remains the same. But if there are negative
terms, it sometimes makes a big difference.
From the seventeenth century to the middle
of the nineteenth, before laws of limits were
carefully formulated, all sorts of disturbing
paradoxes were produced by juggling the
plus and minus terms of various infinite
series. Luigi Guido Grandi, a mathema-
tician at the University of Pisa, considered
the simple oscillating series 1 —1+1—1
+1— . ... If one groups the terms (1 — 1)
+(1-1D+1—-1+...,thelimitisO.If
one groupsthem 1 —(1—1)—(1—-1)— . . .,
changing the signs within parentheses as
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required, the sum is 1. This shows, Grandi
said, how God could take a universe with
parts that added up to nothing and then, by
suitable rearranging, create something.

The correct limit for the original series,
Grandi declared, is 1/2. He supported this
by a parable. A father wills a precious stone
to two sons with the proviso that every year
the stone go from one to the other. If the
value of the stone is 1, then its value to each
son is the sumof1—14+1—1+4+ . . . . Since
the two brothers share the legacy equally,
this value must be 1/2. Many distinguished
mathematicians joined in the controversy
over this series. Both Gottfried Wilhelm von
Leibniz and Leonhard Euler agreed on the
1/2, although for somewhat different rea-
sons. Today the series is recognized as
divergent, so that no meaningful limit can
be assigned to it.

An even worse instance is provided by
the series 1 —2+4—8+16— . . . . Group
itl+(—2+4)+(-8+16)+ ... and you
obtain the series 1 + 2+ 8+ 16+ ...,
which diverges to positive infinity. Group it
(1—2)+4—-8)+(16—-32)+ . .. and you
get the series—1—4—16—64—. . . , which
diverges to infinity in the negative direc-
tion! The climax to all this infernal hubbub
came in 1854 when Georg Friedrich Bern-
hard Riemann, the German mathematician
now well known for his non-Euclidean
geometry, proved a truly remarkable
theorem. Whenever the limit of an infinite
series can be changed by regrouping or
rearranging the order of its terms, it is called
conditionally convergent in contrast to an
absolutely convergent series, which is un-



affected by such scrambling. Conditionally
convergent series always have negative
terms, and they always diverge when all
their terms have been made positive. Rie-
mann showed that any conditionally con-
vergent series (such as the one previously
cited that chokes off on the natural logarithm
of 2) can be suitably rearranged to give a
limit that is any desired number whatever,
rational or irrational, or even made to
diverge to infinity in either direction.

Even an infinite series without negative
terms, if it diverges, can cause serious trou-
ble if one tries to handle it with rules that
apply only to finite and converging series.
For example, let x be the infinite, positive
sumof 1+2+4+8+16+ ... .Then2x
must equal 2+4+8+ 16+ . . . . This new
series is merely the old series minus 1.
Therefore 2x = x — 1, which reduces to x =
—1. Thus we seem to have proved that —1
is infinite and positive. One can sympathize
with the Norwegian mathematician Niels
Henrik Abel, who wrote in 1828: “The
divergent series are the invention of the
devil, and it is a shame to base on them any
demonstration whatever.”

Addendum

S. W. Golomb was the first of several mathe-
maticians to point out that I was not quite
accurate in saying that a divergent series
could not be given a meaningful sum. “After
convincing our undergraduates that diver-
gent series are the invention of the devil,”
Golomb wrote, “we let them learn in

Limits of Infinite Series

graduate school that these series can be
‘summed’ after all, if one is sufficiently care-
ful to define new kinds of summation rules
(e.g., Cesaro summation, Abel summation,
etc.).” Golomb went on to say that G. H.
Hardy’s Divergent Series (New York: Ox-
ford Press, 1949) is a remarkable book in
which such summation techniques are ex-
plained. The series 1 —1+1—1+1 .. .,
for example, has both a Cesaro sum and an
Abel sum of 1/2, as Leibniz and Euler main-
tained. The reader is referred to Hardy’s
posthumous book for a fascinating survey of

the field.

Answers

If Achilles runs seven times as fast as the
tortoise, which has a head start of 100 yards,
the total distance Achilles travels, before
overtaking the tortoise, is the limit of the
series

100 | 100 100
100+ =" +77 v 777

+ ...

Each term is seven times the next term.
Using the trick explained, we let x equal the
series, then multiply each side by 7:

100

100
7x =700 + 100 + — + == +
7 77

This series, after 700, is the original series.
Therefore 7x =700 + x, or 6x =700, and x =
116%s, the number of yards Achilles travels.

The bouncing ball comes to rest after
traveling a distance equal to the first foot
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that it falls, plus the sum of 2/3 + 2/9 +
2/27+ . . . . The same procedure is applied
(multiplying by the constant factor of 3) to
obtain a limit of one foot for the series. Thus
the total distance traveled by the ball, be-
fore it comes to rest after an infinite number
of bounces, is 1 + 1, or two feet.

The Hungarian problem of the colored
squares calls for the limit of the following
series:

1 8 8 8
§+@+§5+§+. ..

This is also a geometric progression, with
each term 9/8 of the next one. As before, we
can use the algebraic trick, or—what
amounts to the same thing —use the follow-
ing formula for the sum of a converging
series in geometric progression:

X
x—1

where 7 is the ratio of adjacent terms (in this
case 9/8) and x is the largest term of the
series (in this case 1/9). The limit is 1.
Therefore as the number of coloring opera-
tions increases without bound, the colored
area of the unit square approaches the area
of 1. In other words, the limit is a fully
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covered square. Of course this could be
achieved in practice only if a coloring pro-
cedure could be devised in which the time
required for each step would decrease in a
converging series.

The colored-squares problem was taken
from Hungarian Problem Book I, translated
by Elvira Rapaport, in the Random House
New Mathematical Library (New York:
Random House, 1963).
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18. Polyiamonds

IN 1965 CHARLES SCRIBNER’S SONS pub-
lished Polyominoes, a book of great interest
to mathematics puzzlers. The author is Solo-
mon W. Golomb, a mathematician then as-
sociated with the California Institute of
Technology’s Jet Propulsion Laboratory and
professor of engineering and mathematics
at the University of Southern California. It
was in 1953 that Golomb, a student at Har-
vard University, coined the term “polyom-
ino” for any flat figure formed by joining
unit squares along their edges. Since a
“domino” consists of two attached squares,
Golomb proposed calling a three-square
figure a “tromino,” a four-square figure a
“tetromino” and so on.

Among puzzle fans the 12 pentominoes —
all the different ways of uniting five unit
squares —proved the most popular. So in-
triguing were the combinatorial problems
posed by these 12 little shapes that working
with them became something of a national
pastime. Sets of plastic pentominoes were
marketed both in this country and in Brit-
ain, and Golomb found himself swamped

with suggestions for new problems and re-
quests for more information. Then, to the
delight of all pentomino buffs, he assembled
in one profusely illustrated volume every-
thing of interest he had learned about the
pentominoes and their square-cornered
cousins.

In this chapter we consider a triangular
cousin. It is mentioned briefly in Golomb’s
book and there are scattered references to
it in a few journals, but most of what is
known about this new recreation has been
discovered since 1965. It is a field with
many fundamental problems yet to be
solved and a rich supply of patterns and
theorems still to be discovered.

Golomb had pointed out as early as 1954,
in “Checkerboards and Polyominoes,” in
The American Mathematical Monthly,
December, 1954, that a recreation similar to
polyominoes could be based on pieces
formed by joining unit equilateral triangles.
The Glasgow mathematician T. H. O’Beirne,
writing in the New Scientist in 1961, pro-
posed calling such shapes “polyiamonds.”
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Taking his etymological cue from Golomb,
O’Beirne reasoned that if a “diamond” con-
sists of two attached triangles, a figure
formed by three triangles should be called
a “triamond,” four triangles a “tetriamond”
and so on up through ‘“pentiamond,”
“hexiamond,” “heptiamond” and higher
n-iamonds. Obviously there is only one
form of diamond and triamond, and the
reader can quickly convince himself that
there are three tetriamonds and four pent-
iamonds. (As with polyominoes, mirror
reflections of asymmetrical forms are not
usually considered different.) The hex-
iamonds, by a pleasing coincidence with
the pentominoes, are exactly 12 in number.
There are 24 heptiamonds, 66 octiamonds,
and 160 order-9 figures (one with a hole).
Beyond this no accurate counts have been
established.

The 12 hexiamonds are shown in Figure
117. with appropriate names, most of them
first proposed by O’Beirne. The reader is
invited to copy these 12 shapes on a sheet
of cardboard and carefully cut them out.
The coloring on the shapes should be ig-
nored. It is best to use cardboard that is
the same on both sides, so that asymmet-
rical pieces can be turned over at will. It is
good to have a supply of isometric paper on
hand for ease in recording patterns.

It is obvious that any pattern formed by
two or more hexiamonds must contain a
number of unit triangles that is evenly di-
visible by 6. We can go further. By coloring
the pieces as shown we see that every piece
except the last two (sphinx and yacht) are
“balanced” in the sense that they contain
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117. The 12 hexiamonds

three triangles of each color. Therefore any
figure made by fitting together two or more
balanced hexiamonds must itself be bal-
anced. The yacht and sphinx are each un-
balanced four to two. If one of these pieces
appears in a figure, the figure must be un-
balanced by an excess of two triangles. If
both pieces are used, the figure must be
either balanced (the yacht and sphinx being
so placed that they compensate for each
other) or unbalanced with an excess of four
triangles. This provides a powerful check
for eliminating many figures that otherwise
might be thought possible.

Consider, for example, the equilateral
triangle of order-6 [Figure 118, top]. It con-
tains 36 unit triangles; it is the only tri-
angle within the range of the 12 hexiamonds
that has a number of unit triangles evenly
divisible by 6. One could waste many hours
vainly trying to construct this triangle with
six hexiamonds. If it is colored as shown,
however, we find that it contains an excess
of six triangles of one color. Since the maxi-
mum achievable excess is four, the figure is
seen at once to be impossible.

Attention turns naturally to the parallelo-
grams. Only the 3 X 3 and 6 X 6 diamonds
(rhombi) contain the proper number of tri-
angles. The smaller diamond is easily found
to be impossible, but the 6 X 6 has scores of
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118. Three “impossible” hexiamond patterns

known solutions. One solution, by Maurice
J. Povah of Blackburn, England, is shown in
Figure 120, top. It is interesting on two
counts: all pieces except the hexagon touch
the border, and a line divides the pattern
into congruent halves. The halves can, of
course, be fitted together in other ways to
make bilaterally symmetrical figures.

Among the rhomboids (parallelograms
with oblique angles and unequal adjacent
sides) these facts are known:

1. If one side is 2, the other side must be
a multiple of 3. The 2 X 3 is impossible. The
2 X 6 has one solution (ignoring indepen-
dent reflections of the two halves), shown in
Figure 119. It is easy to prove that only
these four pieces are usable in any rhom-
boid with a side of 2. The rhomboidal piece
leaves a space alongside it that cannot be
filled, and each of the other pieces divides
the figure into two areas, both of which con-
tain an odd number of unit triangles. Since
an odd number cannot be a multiple of 6,
no other rhomboid with a side of 2 is pos-
sible.

2. If one side is 3, the rhomboid will con-
tain a multiple of six triangles. The 3 X 3 is
impossible. The 3x4,5,6,7,8,9, and 10 are
all possible, each with many solutions.

The 3 X 11 is possible, but it is so difficult
to achieve that I leave this as an advanced
exercise for the reader. In all known solu-



119. The only possible rhomboid with a side of 2

tions (one is given in the answer section)
the bat is the piece left out.

The 3 X 12, which calls for all 12 hex-
iamonds, is the outstanding unsolved prob-
lem in the field. [See Figure 120, bottom.]
No solution has been found, nor has an
impossibility proof been devised. Can any
reader cast light on this problem?

3. If one side is 4, the other must be a
multiple of 3. The 4 X 3 (mentioned earlier

Polyiamonds

120. Parallelograms involving all 12 hexiamonds
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as 3 X 4) is possible. So is the 4 X 6. The
4 X 9, which uses all 12 pieces, has many
solutions, one of which is shown in Figure
120, middle. The shaded sections can be
reflected to give three other solutions.

4. If one side is 5, the only rhomboid
with a suitable number of triangles is the
5 X 6. There are many solutions.

Charles H. Lewis of Roslyn, New York,
was the first to propose ring-shaped figures
such as the two in Figure 118, center and
bottom. It is easy to show that the triangu-
lar ring is impossible by coloring it and
observing that it is unbalanced by six tri-
angles. The hexagonal ring is balanced, but
a simple impossibility proof was discovered
by Meredith G. Williams of Washington,
D.C. The hexagon can go in only two posi-
tions, all others being derived by rotating
or reflecting the figure. In either position
it is impossible to add the lobster without
dividing the remaining field into two re-
gions, neither of which has an area that is
a multiple of 6.

Many patterns with threefold symmetry
have been constructed. Hexagons of order-2
and order-3 exist, as is evident from the
order-3 hexagon found by Adrian Struyk of
Paterson, New Jersey. [see “a” in Figure
121]. Struyk also found several ways to

121. Hexiamond patterns made by Adrian Struyk.
Bottom pattern covers a regular octahedron.

Polyiamonds

make the trefoil shape shown in b in the
illustration. This arrangement permits
the moving of one hexagon to make a
straight chain of three joined hexagons. In
¢ Struyk has bisected the trefoil into con-
gruent halves, and in d he has produced a
pattern that can be folded around a regular
octahedron. Figure 122 features a variety
of striking hexiamond patterns, of bilateral
and threefold symmetry, discovered by
Povah. Note that the figure at top right
contains a solution to the problem of form-
ing three congruent shapes using all 12
pieces.

The duplication problem —forming twice-
as-high replicas of each hexiamond by using
four pieces—is easily solved for each figure.
As Lewis has pointed out, the two halves
of the 6 X 2 rhomboid [see Figure 119] can
be fitted together in various ways to dupli-
cate all hexiamonds except the pistol,
crown and lobster. The triplication prob-
lem —forming larger replicas with nine
pieces—cannot be solved for the sphinx
and yacht, which are unbalanced by six
triangles. The other pieces are balanced,
and triplications have been found for all
except the butterfly. The butterfly is be-
lieved to be impossible.

Figure 123 is Povah’s solution to what is
called the “three twins” problem. Figure
124 shows a six-pointed star that has an
eight-piece solution believed to be unique.
It is not difficult, and solving it is an excel-
lent introduction to the pleasures of hexi-
amondry. Here is a hint: Neither the snake,
the hexagon, nor the crown can contribute
to the star’s perimeter.
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~<— 122. Symmetrical hexiamond patterns

by Maurice J. Povah

123. A solution to the “three twins” problem
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Answers

Daniel Dorritie of Endicott, New York, was
the first to supply a proof that the triplica-
tion problem for the butterfly is impossible.
Similar proofs were found by Esther Black-
burn of Montreal; Wade E. Philpott of Lima,
Ohio; and Dennis C. Rarick, a student at
Indiana University. Karl Schaffer, a ninth-

124. A star to be made with eight pieces

grade student in Birmingham, Alabama, was
able to prove that the six-pointed star [Fig-
ure 125] is indeed the unique solution.
All these proofs are of the exhaust-all-
possibilities type and are too lengthy to
give here.

The outstanding unsolved hexiamond
problem — the 3-by-12 rhomboid — was
solved at the Lawrence Radiation Labora-
tory of the University of California. A com-
puter program written by John G. Fletcher
had previously been set up for testing pen-
tomino problems. A trivial modification by
Fletcher converted this program to one
capable of testing hexiamond patterns. The
3-by-12 rhomboid was found to be impos-
sible, and the 3-by-11 rhomboid was shown
to have 24 distinct solutions, all of which
omit the bat. [A solution is shown in Fig-
ure 126.]

An earlier computer program by Mrs.
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126. Forming the 3-by-11 rhomboid

John Leech, in England, found 155 solu-
tions for the 6-by-6 rhombus, 74 solutions
for the 4-by-9, none for the 3-by-12. Her
program, like Fletcher’s, was a modifica-
tion of a previous program for pentominoes.
Andrew L. Clarke, Wellesey, England,
supplied proofs (without computer aid) for
the 3-by-12 rhombus, the butterfly, and the
six-pointed star.

Sets of plastic hexiamonds were on sale
in the late 1960’s, under various trade
names, in England, Japan, and West
Germany.
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19. Tetrahedrons

ANY FOUR POINTS (A, B, C, D) in space that
are not all on the same plane mark the cor-
ners of four triangles [see Figure 127]. These
triangles in turn are the faces of a tetrahe-
dron, the simplest of all polyhedrons (solids
bounded by polygons). If each face of a
tetrahedron is an equilateral triangle, it is
a regular tetrahedron, the simplest of the
five platonic solids. Indeed, it is so simple
that it was known in ancient Egypt and was
probably studied by mathematicians as
early as the cube.

The Greek Pythagoreans believed that
fire was composed of tetrahedral particles
too small to be seen. Because the tetrahe-
dron has fewer faces and sharper corners
than any other regular convex solid, they
argued, tetrahedral particles would form
the least stable and most “penetrating” of
the four elements: earth, air, fire and water.
We know better today, yet there is a sense
in which this Pythagorean guess, like so
many guesses of that school, was a shrewd
one, for the tetrahedral structure does turn
up in many aspects of the microworld. The

so-called carbon atom, without which or-
ganic molecules and life as we know it
would not be possible, is actually an atom
of carbon joined by chemical bonds to four
other atoms vibrating at the vertices of a
tetrahedron. For example, a molecule of
carbon tetrachloride, the familiar cleaning
fluid, consists of one carbon atom bonded
in this way to four atoms of chlorine. Many
crystal lattices, including that of diamond,
have a tetrahedral structure. An important
copper ore that has a tetrahedral lattice
is called tetrahedrite because it is found
so often in large, well-developed tetra-
hedral crystals.

Squares of the same size fit together like
a checkerboard to fill the plane, and in a
similar way cubes join to fill space. Because
equilateral triangles also tile a plane, one
might suppose that regular and congruent
tetrahedrons would also pack snugly to fill
space. This seems so intuitively evident
that even Aristotle, in his work On the
Heavens, declared it to be the case. The
fact is that among the platonic solids the



127. A regular tetrahedron

cube alone has this property. If the tetrahe-
dron also had it, it would long ago have
rivaled the cube in popularity for packaging.

Interestingly, regular tetrahedrons and
octahedrons (regular solids bounded by
eight triangles) will pack to fill space if
they are arranged alternately as shown in
Figure 128. They are the only two regular
solids that fit together to fill space. Note
that every triangle in the lattice is the face
of both a tetrahedron and an octahedron,
and that every vertex is surrounded by
eight tetrahedrons and six octahedrons.
This beautifully regular structure has been
exploited in recent years by the inventor-
architect R. Buckminster Fuller. The canti-
levered truss he calls the “octet” consists
of aluminum tubing joined in a network that
traces the edges of an octahedral-tetrahedral
honeycomb. (A stimulating classroom proj-
ect is to model such a honeycomb by
joining the ends of a large number of rods
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or soda straws that are all the same length.)
Fuller’'s more famous “geodesic” domes
are essentially tetrahedral lattices intended,
like his octet, to achieve maximum rigidity
at minimum weight and cost.

Fuller is not the first well-known Ameri-
can inventor to be fascinated by the tetra-
hedron’s great strength-to-weight ratio.
After Alexander Graham Bell achieved fame
as the inventor of the telephone he devel-
oped an almost obsessive interest in tetra-
hedrons. Efforts to build airplanes in the
1890’s had failed because engines lacked
the power to keep the craft airborne,
and Bell decided that the answer lay in
constructing enormous silk-covered, man-
carrying kites honeycombed with a tetra-
hedral lattice of aluminum tubing. At his
summer home in Baddeck, Nova Scotia, he
built and flew a fantastic variety of such
kites. To observe his kites in flight he had
an 80-foot-high platform constructed at
the top vertex of a tetrahedral skeleton
formed by three trusses, each of which was
a tetrahedral network. On the ground he
built a wooden observation hut also shaped
like a tetrahedron. When the Alexander
Graham Bell Museum was built at Baddeck
in 1955, a tetrahedral pattern was used
throughout the building as a basic archi-
tectural motif.

Bell would surely have been delighted by
recent adaptations of the tetrahedral shape
to packaging. If you pinch together the
bottom of a paper tube and tape it to form
a straight edge, then do the same thing at
the top of the tube but at right angles, a
tetrahedron results. If the tube’s circum-



128. Tetrahedron and octahedron (top)
and space tesselated by the two polyhedrons
arranged alternately (bottom)
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ference is 4 units and its height is the
square root of 3, the tetrahedron will be
regular [Figure 129]. This efficient method
of construction underlies Tetra Pak, the
trade name for a paper container developed
in Sweden in the mid-1950’s. It first swept
through Europe and is now being used in-
creasingly in the U.S., chiefly as a milk
container and coffee creamer.

A quite different application of the tetra-
hedral shape is shown in Figure 130. Dur-
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ing World War II the four-pronged device
called a “caltrop” (it might be interpreted
as a model of the carbon atom!) was used
for puncturing the tires of enemy vehicles.
Hundreds of them can be tossed along a
road and every one will land with one spike
pointing straight up; moreover, the shape
permits maximum penetration of a tire. The
idea is an old one. The Oxford English
Dictionary defines a caltrop as “an iron
ball armed with four sharp prongs or spikes,
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129. Making a tetrahedral container
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130. Tetrahedral tire-puncturing device

placed like the angles of a tetrahedron, so
that when thrown on the ground it has
always one spike projecting upwards: Used
to obstruct the advance of cavalry, etc.”
One of the dictionary’s several quotations
from sixteenth century documents reads:
“The Irishmen had strawed all alongst the
shore a great number of caltrops of iron, with
sharp pricks standing up, to wound the
Danes in the feet.”” And Oliver Wendell
Holmes, in 1858, wrote: “One of those
small calthrops our grandfathers used to
sow round in the grass when there were
Indians about . . .”

A more recent use for the caltrop structure
is provided by the “tetrapod,” a monstrous
four-limbed object made of reinforced con-
crete and weighing many tons. It resembles
a fat caltrop with flat instead of pointed
ends. When thousands are piled together
on a beach, they interlock to provide highly

efficient breakwaters. The New York Times,
February 21, 1965, page S19, described
their widespread use at the Port of Ashdod
in Israel.

The four-dimensional analogue of the
tetrahedron is called a pentatope. If a point
at the center of an equilateral triangle is
joined to each vertex, the result is a projec-
tion on the plane of a tetrahedron’s skele-
ton. In similar fashion we can join a point
at the center of a tetrahedron to the four
vertices and obtain a projection in three-
space of the skeleton of a pentatope [Figure
131]. It is easy to see that the pentatope has
five vertices, ten edges, ten triangular faces

131. Projection in three-space of a pentatope
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and five tetrahedral cells. (In this projection
we see four small cells and one large one.
On the pentatope itself, if it is regular, all
five cells are congruent.) Any five points
in four-dimensional space that are not on
the same three-space hyperplane mark the
corners of a pentatope, and each set of four
points establishes the corners of a tetrahe-
dral cell. If the five points are so placed in
four-space that each pair is the same dis-
tance apart, the figure is a regular pentatope,
one of the six regular convex solids of the
fourth dimension.

Just as a tetrahedron’s four faces can be
unfolded to make a plane figure consisting
of a central triangle with a triangle attached
to each edge, so the five tetrahedral cells
of a pentatope that form its hypersurface
can be ‘“unfolded” into three-space to
make a stellated tetrahedron: a central
tetrahedron with a tetrahedron on each
face [see Figure 132]. If we only knew
how to fold such a solid through the fourth
dimension, we could fold itinto a pentatopal
container for hypercream.

A strange, little-known property of the
regular tetrahedron —a property it does not
share with any other platonic solid—is
involved in a perplexing magic trick that
can be presented as a demonstration of
one’s ability to sense color vibrations with
the fingers. First construct a small model
of a regular tetrahedron, its faces congruent
with the triangles in Figure 133. (A quick
way to make such a model has been pro-
posed by Charles W. Trigg. Cut the pattern
shown in Figure 134 from stiff paper or
light cardboard. Crease all lines the same
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way, fold the white triangles into a tetra-
hedron, then tuck the shaded triangles into
open edges to form a stable, no-paste-re-
quired model.) Place the model on the black
triangle at the top of the pattern (or on a
board made by copying the pattern with
different colors for each of the numbered
shades). While your back is turned, some-
one “rolls” the model at random over the
pattern by tipping it over an edge from tri-
angle to triangle. He stops whenever he
pleases, notes the color on which it rests
and lets it remain there while he counts
slowly to 10. Then he slides the tetrahedron
back to the black triangle. You turn around,
pick up the tetrahedron, feel its underside
and name the color on which it last rested.

The secret combines geometry with a
card hustler’s dodge. A common method
of marking a deck of cards while a game is
in progress is to obtain a smear of what is
called “daub” on the tip of a finger, then
press it to the margin of a card at a spot
that codes the card’s value. The daub leaves
only a dim smudge, indistinguishable from
the kind of dirt marks that normally dull
the margins of cards that have been much
used. Make some daub by rubbing a pencil
point heavily over the same spot on a piece
of paper. Slide a fingertip over the graphite,
then press the tip lightly against the corner
of one face of the tetrahedron. The idea is
to leave such a faint smudge that no one
but you will ever notice it.

Place the secretly marked tetrahedron
on the black triangle with the mark at the
top commer and facing the pattern. At the
end of the trick the location of the smudge



132. Pentatope unfolded into three-space
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133. Board pattern for the magic trick

134. Pattern for folding a tetrahedral counter
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will code the color on which the model
last rested. As you pretend to feel the base
of the model, look directly down at it. The
smudge will be at one of four positions,
each of which indicates a different color
[see Figure 135]. 1 leave it to the reader to
discover why the trick cannot fail.

The following puzzles involving tetra-
hedrons are not difficult, but some have
surprising solutions.

1. A regular tetrahedron is cut simul-
taneously by six different planes. Each
slices the solid exactly in half by passing
through one edge and bisecting the opposite
edge. How many pieces result?

2. Can any triangle cut from paper be
folded along three lines to form a (not
necessarily regular) tetrahedron? If not,
give the conditions that must be met.



POSITION OF SMUDGE

COLOR

AT TOP CORNER

ON BASE (NOT VISIBLE)

AT LEFT OF A BASE CORNER
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135. The key to the magic trick

3. Inside a room shaped like a regular
tetrahedron a bug crawls from point A to
point B [see Figure 136]. The room is 20
feet on a side and each point is seven feet
from a vertex, on an altitude of a triangular
wall. What is the length of the bug’s
shortest path?

4. What is the largest number of spots

AT RIGHT OF A BASE CORNER

that can be painted on a sphere so that the
distance between every pair is the same?

5. If a regular tetrahedron one inch on
a side is cut from each corner of a tetrahe-
dron with a side of two inches, what kind

of solid is left?

6. Is it possible to label each face of a
tetrahedron with a different number so
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136. The bug problem

that the sum of the three faces meeting at
each vertex is the same? Is it possible to
label each edge so that the sum of the three
edges meeting at each vertex is the same?
In both cases numbers may be rational
or irrational.

7. What is the length of the side of the
largest regular tetrahedron that can be
packed into a cubical space one foot on
a side?

8. How many different tetrahedrons can
be made by joining four equilateral card-
board triangles each of which has a different
color? Two tetrahedrons are considered
alike only if one can be turned and placed
beside the other so that the color patterns
of the two figures match. If the patterns
can be made to match only by mirror re-
flection, they are considered different.
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9. If each side of a regular tetrahedron
is painted either red or blue, it is easy to
see that only five different models can be
made: one all red, one all blue, one with
one red side, one with one blue side, and
one with two red and two blue sides. If
each side is painted either red, white, or
blue, how many different models can be
made? As before, rotations are not regarded
as different.

Answers

1. A regular tetrahedron cut by six planes,
each passing through an edge and bisecting
the opposite edge, will be sliced into 24
pieces. This is easily seen when one re-
alizes that each face is dissected into six
triangles, as in a in Figure 137, each of
which is the base of a tetrahedron with its
apex at the model’s center. (This problem
was contributed by Harry Langman to
Scripta Mathematica for March-June,
1951.)

2. Any paper triangle, if all its angles
are acute, can be folded into a tetrahedron.

3. The bug’s shortest path from A to B
is 20 feet, as shown on the unfolded tetra-
hedron at b in Figure 137. This is shorter
by .64+ feet than the shortest path that
does not touch a third face.

4. Four is the largest number of spots
that can be placed on a sphere so that every
pair is the same distance apart. The spots
mark the corners of an inscribed regular
tetrahedron. -



137. Answers to the tetrahedron problems
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5. If one-inch regular tetrahedrons are
sliced from the four corners of a two-inch
regular tetrahedron, the remaining solid
is a regular octahedron.

6. It is not possible to label the sides of a
tetrahedron with four different numbers so
that the sum of the three faces at each vertex
is the same. Consider any two sides A and
B. They meet side C at one vertex and side
D at another. For the sums at both vertices
to be constant the numbers on sides C and
D would have to be the same, but this
violates the condition that the four numbers
must be different.

A proof (from Leo Moser) that the edges
of a tetrahedron cannot be labeled with six
different numbers to yield constant corner
sums is a bit more involved. First label the
edges as shown at ¢ in Figure 137. Assume
that the problem can be solved. Then a + b
+c¢=a+e+d, therefore b+ c=e+d. Simi-
larly, f+ b+ d=f+e+c, therefore b+ d=
e+ c¢. Add the two equations:

b+c=e+d
b+d=e+c
2b+c+d=2e+c+d.

The sum reduces to b = e, which of course
violates the assumption that no two num-
bers are the same.

7. The largest regular tetrahedron that
can be placed inside a unit cube has a side

the length of which is the square root of
2 [“d” in Figure 137].
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8. Four equilateral cardboard triangles
of four different colors will combine to
make two different tetrahedrons, one a
mirror image of the other.

9. If each side of a regular tetrahedron
is painted red, white or blue, it is possible
to paint 15 different models: three will be
all one color, three will have red-blue faces,
three will have red-white faces, three will
have blue-white faces, and three will have
red-white-blue faces with two faces of the
same color. The formula for the number of
different tetrahedrons (counting mirror
reflections but not rotations as being dif-
ferent) that can be made with n colors is

n*+ 11n?
12 -
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20. Coleridge’s Apples and

Eight Other Problems

1. Coleridge’s Apples

Who would have thought that the poet
Samuel Taylor Coleridge would have been
interested in recreational mathematics? Yet
the first entry in the first volume of his
private notebooks (published in 1957 by
Pantheon Books) reads: “Think any num-
ber you like —double —add 12 to it—halve
it—take away the original number—and
there remains six.” Several years later,
in a newspaper article, Coleridge spoke
of the value of this simple trick in teaching
principles of arithmetic to the “very young.”

The notebook’s second entry is: “Go into
an Orchard—in which there are three
gates —thro’ all of which you must pass—
Take a certain number of apples—to the
first man [presumably a man stands by each
gate] I give half of that number & half an
apple —to the 2nd [man I give] half of what
remain & half an apple —to the third [man]
half of what remain & half an apple —and
yet I never cut one Apple.”

How long will it take the reader to deter-

mine the smallest number of apples Cole-
ridge could start with and fulfill all the
stated conditions?

2. Reversed Trousers

Each end of a 10-foot length of rope is tied
securely to a man’s ankles. Without cutting
or untying the rope, is it possible to remove
his trousers, turn them inside out on the
rope and put them back on correctly? Party
guests should try to answer this confusing
topological question before initiating any
empirical tests.

3. Coin Game

The two-person game shown in Figure 138
has been designed to illustrate a principle
that is often of decisive importance in the
end games of checkers, chess, and other
mathematical board games. Place a penny
on the spot numbered 2, a dime on spot 15.



138. Can the penny always trap the dime?

Players alternate turns, one moving the
penny, the other the dime. Moves are made
along a solid black line to an adjacent spot.
The penny player always moves first. His
object is to capture the dime by moving
onto the spot occupied by the dime. To win

196

he must do so before he makes his seventh
move. If after six of his moves he has failed
to catch the dime, he loses.

There is a simple strategy by which one
player can always win. Can the reader
discover it?



4. Truthers, Liars, and Randomizers

Logic problems involving truth-tellers and
liars are legion, but the following unusual
variation—first called to my attention by
Howard De Long of West Hartford, Con-
necticut—had not to my knowledge been
printed before it appeared in Scientific
American.

Three men stand before you. One always
answers questions truthfully, one always
responds with lies and one randomizes
his answers, sometimes lying and some-
times not. You do not know which man does
which, but the men themselves do. How
can you identify all three men by asking
three questions? Each question may be
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directed toward any man you choose, and
each must be a question that is answered
by “Yes” or “No.”

5. Gear Paradox

The mechanical device shown in Figure
139 was constructed by James Ferguson,
an eighteenth-century Scottish astronomer
well known in his time as a popular lec-
turer, author and inventor, and for the
remarkable fact that although he was a
member of the Royal Society his formal
schooling had consisted of no more than
three months in grammar school. (One of
his biographies is called The Story of the

139. James Ferguson’s gear paradox
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Peasant-Boy Philosopher.) His device is
given here as a puzzle that, once solved,
will be seen to be a most curious paradox.

Wheel A and its axis are firmly fixed so
that wheel A cannot turn. When the device
is rotated clockwise around wheel A by
means of the handle, wheel B will of course
rotate in the same direction. The teeth of
B engage the teeth of three thinner wheels
C, D, and E, each of which turns indepen-
dently. A, B, and E each have 30 teeth. C
has 29 teeth, D has 31. All wheels are of
the same diameter.

As seen by someone looking down on the
device as it is turned clockwise, each of
the thin wheels C, D, and E must turn on
its axis (with respect to the observer)
either clockwise, counterclockwise, or not
at all. Without constructing a model, de-
scribe the motion of each wheel. If the
reader wishes to build a model eventually,
it is not necessary that the wheels have
the exact number of teeth given. It is only
necessary that A and E have the same num-
ber of teeth, C at least one less, and D at
least one more.

6. Form a Swastika

During World War II a gag problem that
made the rounds was: How can you make
a Nazi cross with five matches? One answer
was “Push four of them up his rear end and
light them with the fifth.” Here is a some-
what similar problem, although one that
does not hinge on wordplay.

The reader is asked to take four cigarettes
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140. Model for the swastika

and eight sugar cubes, place them on a dark-
surfaced table top and form the best pos-
sible replica of the swastika (a mirror image
of the Nazi symbol) shown in Figure 140.
All 12 objects must be used and none must
be damaged in any way.

7. Blades of Grass Game

According to a recent book by two Soviet
mathematicians, the following method of
fortune-telling was once popular in certain
rural areas of the U.S.S.R. A girl would hold
in her fist six long blades of grass, the ends
protruding above and below. Another girl
would tie the six upper ends in pairs,
choosing the pairs at random, and then tie
the six lower ends in a like manner. If this
produced one large ring, it indicated that
the girl who did the tying would be married
within a year.

A pencil-and-paper betting game (a pleas-



ant way to decide who pays for drinks) can
be based on this procedure. Draw six verti-
cal lines on a sheet of paper. The first
player joins pairs of upper ends in any
manner, then folds back the top of the paper
to conceal the connecting lines from his
opponent. The second player now joins
pairs of bottom ends as shown at the left
in Figure 141. The sheet is unfolded to see
if the second player has won by forming one
large closed loop. (The illustration at the

141. A pencil-and-paper betting game

S
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right of Figure 141 shows such a win.) If
even money is bet, whom does the game
favor and what is his probability of winning?

8. Casey at the Bat

During a baseball game in Mudville, Casey
was Mudville’s lead-off batter. There were
no substitutions or changes in the batting
order of the nine Mudville men throughout

N
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142. Change the pattern at the left to the one at the right

the nine-inning game. It turned out that
Casey came to bat in every inning. What
is the least number of runs Mudville could
have scored? Charles Vanden Eynden of
the University of Arizona originated this
amusing problem.

9. The Eight-Block Puzzle

Sam Loyd’s well-known 14-15 Puzzle was
mentioned in this book’s chapter on sliding-
block puzzles. For all puzzles of this type,
in which unit squares are shifted about
inside a rectangle by virtue of a “hole” that
is also a unit square, there is a quick parity
check for determining if one pattern can
be obtained from another. For example,
on the simplest nontrivial square field
shown in Figure 142 can the pattern at
the left (with the blocks in descending
order) be changed to the pattern at the
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right? To answer this we switch pairs of
numbers (by removing and replacing blocks)
until the desired pattern is achieved,
counting the switches as we go along. This
can be done in helter-skelter fashion, with
no attempt at efficiency. If the number of
switches is even (as it always will be in
this case), the change by sliding is pos-
sible. Otherwise it is not.

But what is the smallest number of slid-
ing moves sufficient to make this change?
Surprisingly little work has been done on
methods for minimizing such solutions. The
problem given here—reversing the order
of the digits—can be shown to require at
least 26 moves. If each square takes the
shortest path to its destination, 16 moves
are used. But 4 and 5 are adjacent and can-
not be exchanged in fewer than four moves,
and the same reasoning applies to 3 and 6.
This lifts the lower limit to 20. Two moves
are lost by the opening move of 1 or 3 and



two more by the last move of 8 or 6, since
in each case a square must occupy a cell
outside its shortest path. This raises the
lower limit to 24. Finally, if one constructs
a tree graph for opening lines of play, it is
apparent that two more moves must be lost
by the ninth move. The puzzle therefore
cannot be solved in fewer than 26 moves.
Because the hole returns to its original
position, it can be shown that every solution
will have an even number of moves.

The best solution on record (it is the
solution to problem 253 in Henry Ernest
Dudeney’s posthumous collection, Puzzles
and Curious Problems) requires 36 moves.
Recorded as a chain of digits to show the
order in which the pieces are moved, it is
as follows: 12543 12376 12376 12375 48123
65765 84785 6. 1 have good reason to be-
lieve, however, that it can be done in fewer
moves.

To work on the problem one can move
small cardboard squares, numbered 1
through 8, on a square field sketched on
paper, or work with nine playing cards on
a rectangular field. I shall be grateful if
readers who do better than Dudeney will
send their solutions to me.

Answers

1.

Seven is the smallest number of apples
(we rule out “negative apples”) that satis-
fies the conditions of Coleridge’s problem.
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2.

To reverse a man’s trousers while his ankles
are joined by rope, first slide the trousers
off onto the rope, then push one leg through
the other. The outside leg is reversed twice
in this process, leaving the trousers on the
rope right side out but with the legs ex-
changed and pointing toward the man’s
feet. Reach into the trousers from the waist
and turn both legs inside out. The trousers
are now reversed on the rope and in posi-
tion to be slipped back on the man, zipper
in front as originally but with the legs
interchanged.

3.

In analyzing the topological properties of
a network with an unusual pattern it is
sometimes helpful to transform the network
to a topologically equivalent one that ex-
hibits the network’s regularities better.
The pattern of the penny-dime game [at
top of Figure 143] is readily seen to be
equivalent to the board at the bottom in the
illustration. If the penny moves directly
toward the dime, it cannot trap it because
the dime has what in chess and checkers
is called the “opposition.” The meaning
of this term is brought out by coloring every
other spot. As long as both pieces avoid the
triangle at the upper right the dime’s move
will always carry it to a spot of the same
color as the spot occupied by the penny;
therefore the penny, on its next move, can
never catch the dime. To gain the opposi-
tion the penny must move once along the
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long outside arc that joins the two colored
spots numbered 1 and 3. Because this alters
the relative parity of the two pieces it is
then a simple matter for the penny to corner
the dime.

Translating back to the original board,
this means that the penny’s best strategy
is to move either first to 1, then all around
the outside circle to 3, or first to 3 and then
around to 1. In either case the penny will
then have no difficulty trapping the dime,
on spot 6, 9 or 15, before the seventh move.

4,

Label the three men, A, B, C, and let T
stand for truth-teller, L for liar, and R for

randomizer. There are six possible permuta-
tions of T, L, and R:

A B C
(1) T L R
(2) TR L
3) L R T
4 L T R
(3) R T L
6) R L T

Ask A “Is B more likely to tell the truth
than C?” If he answers, “Yes,” lines 1 and
4 are eliminated and you know that C is not
the randomizer. If he answers “No,” lines
2 and 3 are eliminated and you know that
B is not the randomizer. In either case,
turn to the man who is not the randomizer
and ask any question for which you both
know the answer. For example: “Are you
the randomizer?”” His answer will establish

Coleridge’s Apples

whether he is the truth-teller or the liar.
Knowing this, you can ask him if a certain
one of his companions is the randomizer.
His answer will establish the identities of
the other two men.

Many readers sent different solutions.
The most unusual, by Kenneth O’Toole,
was passed along to me by Mary S. Bern-
stein. A man is asked, “If I asked each of
you if I had on a hat, and your two compan-
ions gave the same answer, would your
answer agree with theirs?” The truther
says no, the liar yes, and the randomizer
cannot reply because he knows his com-
panions cannot agree. Here we encounter
ambiguity because, in a sense, any answer
by the randomizer would be a “lie.” As-
suming, however, that the randomizer
remains silent, the question need be asked
of only two men to identify all three.

5.

When James Ferguson’s curious mechani-
cal device is turned clockwise, wheel C
rotates clockwise in relation to the ob-
server, D rotates counterclockwise, and
E does not rotate at all!

6.

Four cigarettes and eight sugar cubes can
be placed on a dark surface to form an ex-
cellent replica of a swastika, as shown in
Figure 144.
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144. Solution of the swastika puzzle

7.

What is the probability of forming one ring
by a random joining of pairs of upper ends
of six blades of grass, followed by a random
joining of pairs of lower ends? Regardless
of how the upper ends are joined, we can
always arrange the blades as shown in
Figure 145. We now have only to determine
the probability that a random pairing of
lower ends will make a ring.

If end A is joined to B, the final outcome
cannot be one large ring. If, however, it
is joined to C, D, E, or F, the ring remains
possible. There is therefore a probability
of 4/5 that the first join will not be disas-
trous. Assume that A is joined to C. B may
now join D, E, or F. Only D is fatal. The
probability is 2/3 that it will join E or F,
and in either case the remaining pair of
ends must complete the large ring. The

204

145. The blades-of-grass problem

same would hold if A had been joined to D,
E, or F instead of to C. Therefore the prob-
ability of completing the ring is 4/5 X 2/3 =
8/15 = .53+. That the probability is better
than half is somewhat unexpected. This
means that in the pencil-and-paper version
explained earlier the second player has a
slight advantage. Since most people would
expect the contrary, it makes a sneaky game
to propose for deciding who picks up the
tab. Of course you magnanimously allow
your companion to play first.

The problem generalizes easily. For two
blades of grass the probability is 1 (certain),
for four blades it is 2/3, for six it is 2/3 X
4/5, and for eight blades, 2/3 X 4/5 X 6/7.
For each additional pair of blades simply
add another fraction, easily determined
because the numerators of this series
are the even numbers in sequence and
the denominators are the odd numbers



in sequence! For a derivation of this simple
formula, and the use of Stirling’s formula
to approximate the probability when very
large numbers of fractions must be multi-
plied, see Challenging Mathematical Prob-
lems with Elementary Solutions, Vol. I, by
the Russian twin brothers A. M. and I. M.
Yaglom. (It is problem No. 78 in the English
translation by James McCawley, Jr.; San
Francisco: Holden-Day, 1964.)

Waldean Schulz included the following
additional twist to this problem in a paper
titled “Brain Teasers and Information The-
ory” that he wrote for a philosophy class
at the University of Colorado taught by
David Hawkins. Suppose you are the second
player. How can you join the lower ends
in such a way that you can ask a single yes-
no question which, if answered by the first
player, will tell you if you won or lost?

The answer is to join the two outside
lines, the two next-to-outside lines, and
the two middle lines. The question is: Did
you connect the upper ends in a bilaterally
symmetric way? A yes answer means you
lost, a no answer means there is a single
loop and you win. It is surprising that one
“bit” of information is sufficient to distin-
guish between winning and losing patterns.

8.

The Mudville team could have scored as
few as no runs at all even though Casey,
the lead-off man, came to bat every inning.
In the first inning Casey and the next two
batters walk and the next three strike out.
In the second inning the first three men
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walk again, which brings Casey back to bat.
But each runner is caught off base by the
pitcher, so Casey is back at the plate at
the start of the third inning. This pattern
is now repeated until the game ends with
no joy in Mudville, even though the mighty
Casey never once strikes out.

There are, of course, many other ways
the game could be played. Robert Kaplan,
Cambridge, Massachusetts, wrote the fol-
lowing letter:

Dear Mr. Gardner:

That was indeed an amusing problem con-
cerning Casey and the Mudville nine —amusing,
that is, to all save lovers of Mudville. For on
the unfortunate day described in your problem,
Mudpville scored not a run. This is what hap-
pened:

In the first inning, Casey and two of his con-
freres reached base, but batters four through
six struck, flied, or otherwise made out. No runs.

In the second inning, batters seven and eight
struck out, let us say, but the Mudville pitcher,
to the surprise of all, reached base on a bobbled
infield roller. Casey came up to bat, frowning
mightily. With the count two and two, the per-
fidious rival pitcher, ignoring the best interests
of poetry, baseball mythology and Mudyville,
whirled toward first and picked off his opposite
number, who, dreaming of Cooperstown and
the Hall of Fame, had strolled too far from the
bag. The crowd sighed, Casey glowered, and
the inning was over: no runs.

Now as you know, if an inning ends with a
pick-off play at any base, the batter who was in
the box at the time becomes the first batter next
inning. So it was with Casey; once again Mud-
ville loaded the bases; but once again three outs
were made with no runs scoring, so that the
inning ended with batter six making the last out.
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Life may be linear but fate is cyclic: innings four,
six, and eight followed precisely the same pattern
as inning two (though you may be sure that after his
second miscue in the fourth, the Mudville pitcher
was lifted and his relief was responsible not only for
the flood of runs the opponents scored, but for sim-
ilar cloud-gazing on the base-paths). And of course,
Casey led off the fifth, seventh, and ninth innings as
he had the third—and again, Mudville would load
the bases, but could not deliver (if I remember cor-
rectly, the gentlemen responsible for this orgy of
weak hitting were Cooney, Burrows, Blake and
Flynn). Grand total for Mudville: a goose egg.

Sincerely though sorrowfully yours,
ROBERT KAPLAN

PS. I see in rereading the problem that there
were no substitutions or changes in the Mudville
batting order during the game. How, then, you
might justly ask, did the crowd or the manager tol-
erate such flagrant disdain of first base on the part
of their pitcher? The answer is that he was married
to the owner’s daughter, and no one could say him
nay.

9.

The sliding-block puzzle can be solved in 30
moves. I had hoped I could list the names of
all readers who found a 30-move solution, but
the letters kept coming until there were far too
many names for the available space. All
together readers found ten different 30-
movers. They are shown paired in Figure 146,
because, as many readers pointed out, each
solution has its inverse, obtained by substitut-
ing for each digit its difference from 9 and tak-
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ta. 34785 21743 74863 86521 47865 21478
1b. 12587 43125 87431 63152 65287 41256
2a. 34785 21785 21785 64385 64364 21458
2b. 14587 53653 41653 41287 41287 41256
3a. 34521 54354 78214 78638 62147 58658
3b. 14314 25873 16312 58712 54654 87456
4a. 34521 57643 57682 17684 35684 21456
4b. 34587 51346 51328 71324 65324 87456
5a. 12587 48528 31825 74316 31257 41258
5b. 14785 24786 38652 47186 17415 21478

146. Minimum-move sliding-block solutions

ing the digits in reverse order. Note that of the
four possible two-move openings, only 3,6
does not lead to a minimum-move solution.
Solutions 2a and 3b proved to be the easiest to
find. The most elusive solution, 5a, was discov-
ered by only ten readers. Only two readers, H.
L. Fry and George E. Raynor, found all ten
without the help of a computer.

Donald Michie of the University of Edin-
burgh has been wusing this eight-block
puzzle in his work on game-learning ma-
chines. His colleague Peter Schofield, of
the university’s computer unit, had written
program for determining minimum solu-
tions for all the 20,160 patterns that begin
and end with the hole in the center. (Of



these patterns, 60 require 30 moves, the
maximum for center-hole problems.) With
the aid of this program Schofield was able
to find all ten solutions, but this did not
rule out the possibility of others, or even
of a shorter solution. The matter was first
laid to rest by William F. Dempster, a
computer programmer at the Lawrence
Radiation Laboratory of the University
of California at Berkeley, with a program for
an IBM 7094. It first ran off all solutions
of 30 moves or fewer, printing out the ten
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solutions in 2Y2 minutes. A second run, for
all solutions of 34 moves or fewer, took 15
minutes. It produced 112 solutions of 32
moves and 512 solutions of 34 moves. There
are therefore 634 solutions superior to the
36-mover given by Henry Ernest Dudeney,
who first posed the problem. The ten 30-
movers were later confirmed by about a
dozen other computer programs. It is not
yet known if there are starting and ending
patterns, with the hole in the corner or
side cell, that require more than 30 moves.
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21. The Lattice of Integers

THE SIMPLEST of all lattices in a plane —
taking the word “lattice” in its crystallo-
graphic sense —is an array of points in square
formation. This is often called the “lattice
of integers,” because if we think of the
plane as a Cartesian coordinate system, the
lattice is merely the set of all points on
the plane whose x and y coordinates are
integers. Figure 147 shows a finite portion
of this set: the 441 points whose coordi-
nates range from 0 to 20.

Think of the 0,0 point as the southwest
corner of a square orchard, fenced on its
south and west sides, but infinite in its
extension to the north and east. At each
lattice point is a tree. If you stand at 0,0
and peer into the orchard, some trees will
be visible and others will be hidden behind
closer trees. Here, of course, our analogy
breaks down, because the trees must be
taken as points and we consider any tree
“visible” to one eye at 0,0 if a straight
line from that point to the tree does not pass
through another point. The colored dots
mark all lattice points visible from 0,0; the

unmarked grid intersections
points that are not visible.

If we identify each point with a fraction
formed by placing the point’s y coordinate
over its x coordinate, many interesting
properties of the lattice (properties first
called to my attention by Robert B. Ely of
Philadelphia) begin to emerge. For example,
each visible point is a fraction whose
numerator and denominator are coprime;
that is, they have no common factor other
than 1 and therefore cannot be reduced to
a simpler form. Each invisible point is a
fraction that can be simplified—and each
simplification corresponds to a point on
the line connecting the fraction with 0,0.
Consider the point 6/9 (y =6, x = 9). It is
not visible from 0,0 because it can be simpli-
fied to 2/3. Place a straightedge so that it
joins 0,0 and 6/9 and you will see that the
visibility of 6/9 is blocked by the point at

represent

147. The infinite orchard and the points visible
from 0,0 on the lattice of integers
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2/3. All points along the diagonals that ex-
tend up and to the right from 0/1 and 1/0
are visible because no fraction whose num-
erator and denominator differ by 1 can be
simplified.

Note that many of the diagonals running
the other way—from upper left to lower
right—consist entirely of visible points
except for their ends. All these diagonals,
Ely points out, cut the coordinate axes at
prime numbers. Every visible point along
such a diagonal is a fraction formed by two
numbers that sum to the prime indicated
by the diagonal’s ends. Two numbers that
sum to a prime obviously must be coprime
(if they had a common factor, then that
factor would also evenly divide the sum),
so such fractions cannot be simplified. Ver-
tical and horizontal lines that cut an axis at
a prime get progressively denser with vis-
ible lattice spots as the primes get larger,
because such lines have invisible lattice
points only where the other coordinate is
a multiple of the prime.

Is it possible to stand at 0,0 and look
into this infinite orchard along a line that
will never, even when extended to infinity,
intersect a “tree” ? Yes; not only is there
an infinity of such lines but also there are
infinitely more of them than there are lines
that hit trees! Consequently if the direction
for a line of sight is determined randomly,
the probability of finding a tree along that
line is virtually zero. How can we define
such a line? We have only to slope it so
that every point along it has coordinates
that are incommensurable with each other;
in other words, so that the y/x fraction of
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any point—which is the same as the tangent
of the angle that the sloping line makes with
the x axis—is irrational. For example, we
move to the right along the x axis to, say,
10, then up to a point with a y coordinate
of 10 times pi. If we join this point to 0,0,
we produce a line that cannot, no matter
how far it is extended, hit a point because
10pi/10 equals pi, an irrational number.
(It would take some fine drawing and a
superpowered microscope to detect how
far the line misses the point at 355/113. This
fraction gives pi to six decimal places!)
The black line shown in the illustration
has a slope of V2. It is easy to prove that a
bullet traveling this line could not, from
here to eternity, strike a tree. The right tri-
angle shown in Figure 148 has a base of 1
and an altitude of V2, so the tangent of angle
6 is V2. If we extend the hypotenuse as
shown by the broken line to form any larger
right triangle on the extended base line,
the altitude and base of the larger triangle
will have the same irrational ratio. The
bases and altitudes of all such triangles
correspond to the two coordinates of the
sloping line with a tangent of V2. There-
fore, no matter how far the sloping line is
extended into the lattice of integers, the
coordinates of any point along that line will
form the same irrational fraction. But every
lattice point represents a rational fraction;
therefore no lattice point can be on the line.
Observe, however, that by searching for
near misses we can find fractions that are
excellent approximations of the irrational
slope. Think of the V2 line as a taut rope
anchored at infinity. If we hold the end at



148. Tangent of angle 6 equals V2

0,0 and move the rope east, it will press
against trees that represent fractions smaller
than V2, or 1.4142136. . . , but that get
closer to V2 as one moves away from 0,0.
The first tree it touches is 1/1, or 1, a poor
approximation. The next is 4/3, a bit better,
and the next is 7/5, or 1.4, which is not bad.
Similarly, if we move the end of the rope
northward, it presses against fractions larger
than 1.4142136. . . , but the excess ap-
proaches 0 as we move toward infinity. The
first fraction, 2/1, or 2, is not very good; 3/2
is better, 10/7 still better and 17/12, or
1.41666. . . , misses V2 by only .0024+

The Lattice of Integers

One of the simplest ways to express V2
is by the endless continued fraction

1+

DO~

+

DO =
+
(ST
-+
fo—

If we start at the top and form partial sums
(1, 14+1,1+1/2, 1+1/3 and so on), we
get just those fractions mentioned above:
1, 2, 8/2, 4/3, 7/5, 10/7, 17/12. They come
closer and closer to V2 as their lattice points
come closer and closer to the sloping line.

The discussion of irrational numbers
suggests the following problem: Let the
coordinates of a point be y = V27, x = V3.
Does the infinite line passing from the origin
through this point cut any points other than
0,0?

If a billiard ball is placed at 0,0 and
stroked so that it travels up the main diag-
onal at an angle of 45 degrees, it will
of course continue forever, passing only
through lattice points whose fractions re-
duce to 1 (the tangent of 45 degrees). Now
suppose we confine the lattice to rectangles
of arbitrary size, provided that heights and
widths are integral, and assume that the
ball rebounds from all sides and rolls with-
out friction over the surface of the latticed
billiard table. It is not hard to show, by a
reflection technique depicted in Hugo
Steinhaus’ Mathematical Snapshots, that
whatever the dimensions of the rectangle,
the ball will strike one of the table’s
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other three corners after a finite number
of bounces.

This statement can be made stronger. Re-
gardless of the angle of the first shot, if the
ball strikes the first cushion at a point that is
a rational distance from a corner, it will
eventually strike one of the table’s corners.
But if it hits the first cushion at an irrational
spot, every rebound will be at an angle with
an irrational tangent and the path will never
touch a lattice point. Since the corners are
lattice points, the ball will never strike a
corner. There are infinitely more irrational
points on a line than there are rational
points. Therefore the probability is infinitely
close to zero that an ideal ball (we must
think of the ball as a point) shot from the
corner at a random angle will strike the first
cushion at a rational point. Imagine the
table covered with a fine screen of lattice
points —billions of them, all with rational
coordinates. The randomly shot ball will
move forever around the table, never going
over a path twice, never once touching a
single lattice point.

Here we are concerned only with the
simpler case of a ball traveling along diag-
onals that form 45-degree angles with the
table’s sides. An intriguing question (first
sent to me by Joseph Becker of Milwaukee)
immediately arises. Given the table’s di-
mensions, how can one predict which of the
three corners the ball will hit? We can al-
ways draw a graph and find out, but if the
table has, say, a width of 10,175 units and a
length of 11,303 units, graphing a solution
would be tedious.

As Becker points out, if at least one side of
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the table is odd, a clever parity check leads
to simple rules for determining which cor-
ner the ball will hit. Suppose both sides are
odd. We color the 0,0 point and every sec-
ond lattice point [see “a” in Figure 149].
Clearly the ball will pass through the col-
ored points only. Of the three possible ter-
minating corners, only the northeast corner
is colored, so this must be the corner the
ball will strike. (The reader can verify this
by continuing the ball’s path through the
colored points.) If one side of the table is
even and the other odd, the same parity
coloring [“b” and “c”’] shows that the ball
must strike the corner adjacent to the origin
and on the table’s even side.

When both sides of the table are even, we
run into an unforeseen difficulty. There are
colored spots on all four corners [d]. Which
of the three possible terminal corners will
the ball hit? A little experimenting on graph
paper will show that all three can be reached
on various even-even tables. Can the reader
devise an arithmetical rule for quickly de-
termining, on any table with even sides,
which corner the ball will hit?

A hint for the solution to this problem lies
in the curious fact that the point on the
table’s longest side that is nearest the origin,
and on the ball’s path as well, is always ex-
actly twice the greatest common divisor
(ged) of the two sides. If the two sides are
coprime, then of course the ged is 1. This is
the case in ¢ and ¢ of Figure 149. Sure
enough, on the longest side we see that the
point on the ball’s path nearest to 0,0 is 2,
or twice the gcd.

This property of 45-degree paths of a



149. Parity coloring checks
for billiard-ball paths
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150. Zavrotsky’s device for finding greatest common divisors

bouncing ball inside a rectangular lattice of
integers suggested to Andrés Zavrotsky, of
the University of the Andes in Venezuela,
an optical device for finding the greatest
common divisors of pairs of integers. A
sketch of his invention (U.S. patent 2,978,-
816, April 11, 1961) is shown in Figure 150.
Four mirrors with integral scales on their
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edges can be adjusted to form a rectangle
with sides equal to the pair of numbers
under investigation. A pencil of light is
introduced through a crack at one corner, as
shown. It rebounds at an angle of 45 degrees
from the corner—the zero point on the two
scales meeting at that corner—and contin-
ues its path from mirror to mirror until it



terminates at one of the other three corners.
The illuminated mark closest to the corner
of origin of what Zavrotsky calls the “op-
tical billiard” on the rectangle’s long side is
twice the ged. Zavrotsky intended his in-
vention to serve as a teaching device. Read-
ers should have little difficulty proving that
the device cannot fail to work, and solving
this problem: Given the rectangle’s sides,
find a formula for the total length of the
light’s path, from 0,0 to the corner; also find
a formula for the number of times the “op-
tical billiard” rebounds from a side.

By connecting pairs of lattice points with
straight lines one can draw an infinite vari-
ety of simple polygons [see Figure 151].
(“Simple” here means that no side crosses
another.) The area of such a “lattice poly-
gon” can be calculated by the tiresome
method of cutting it up into simpler figures,
but again there is an easier and more amus-
ing way to do it. We apply the following
remarkable theorem: The area of any lattice
polygon is one-half the number of lattice
points on its border, plus the number of
points inside its border, minus one. The
unit of area is the area of the “unit cell” of
the lattice.

This beautiful theorem, which Steinhaus
says was first published by one G. Pick in
a Czechoslovakian journal in 1899, belongs
to “affine” geometry, a geometry that plays
an important role in the mathematics of
relativity. This means that the theorem holds
even when the lattice is distorted by stretch-
ing and shearing. For example, the formula
applies to the connect-the-dot polygon on
the lattice shown in Figure 152. As before,

The Lattice of Integers

the unit area is the unit cell, in this case the
little parallelogram to the right. This T-
polygon, like the T in Figure 151, has 24
points on its border and 9 inside; according
to Pick’s formula, its area is 12+9—1=20
unit cells, as is easily verified. Readers may
enjoy seeing if they can devise a complete
proof of the theorem. An outline of one such
proof is given in H. S. M. Coxeter’s Intro-
duction to Geometry (New York: John
Wiley and Sons, 1961; page 209).

One is tempted to suppose that it would
be easy to extend Pick’s formula to poly-
hedrons drawn on integral lattices in three
dimensions. Figure 153 quickly dispels this
illusion. It shows the unit cell at the 0,0,0
corner of a three-space cubical coordinate
system. The four points 0,0,0, 1,0,0, 0,1,0,
and 1,1,1 mark the corners of a lattice tetra-
hedron. If we raise the apex of this pyramid
to 1,1,2, we increase the tetrahedron’s vol-
ume but no new lattice points appear on its
edges or faces or in the interior. Indeed, by
raising the apex higher along the same co-
ordinate the volume can be made as large
as we please without increasing the number
of lattice points involved. It is possible,
however, to find a formula by introducing
a secondary lattice. The interested reader
will find this explained in “On the Volume
of Lattice Polyhedra,” by J. E. Reeve, in
Proceedings of the London Mathematical
Society; July, 1957, pages 378-395. For an
extension of the formula to still higher
spaces, see “The Volume of a Lattice Poly-
hedron,” by I. G. Macdonald, in Proceed-
ings of the Cambridge Philosophical So-
ciety; October, 1963; pages 719-726.
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151. Find the area of these “lattice polygons”




152. "“Affine” transformation of lattice polygon

A final problem: On the square lattice of
integers, connect exactly 12 lattice points to
form a lattice polygon of the same shape as
the T-polygon in Figure 151 but with an
area of ten square units. (According to Pick’s
formula, it must surround exactly five lattice
points.)

Answers

A line from 0,0 on the lattice of integers,
with a slope of V27/V3, will pass through an
infinity of lattice points. Because V27 =
V3 X 9=23V3, the fraction V27/V3 reduces
to 3/1, a rational fraction. The first lattice
point on this slope is y =3, x = 1.

On a rectangular lattice with even sides,
a ball leaving the origin at a 45-degree
angle will travel through lattice points
separated (along coordinate lines) by a dis-
tance equal to twice the greatest common
divisor (gcd) of the sides. If we mark these
points with spots as in Figure 154, we see

0,0,0

163. Lattice tetrahedrons

that only one of the three possible terminal
corners receives a spot, and it therefore
must be the corner the ball will hit. To
determine which corner this will be, we
divide each side by the ged. If both results
are odd, the ball strikes the corner diago-
nally opposite the origin. If one result is
even (both cannot be even), the ball strikes
the corner on that side and adjacent to the
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154. Solution to the “even-even’ problem

origin. For rules governing the more general
case, when the ball’s path may be at any
angle with a rational slope, see M. S.
Klamkin’s solution to his problem No. 116
in the Pi Mu Epsilon Journal, Spring, 1963.

Formulas for the length of the ball’s path
and the number of rebounds are intuitively
evident in Figure 155, adapted from Hugo
Steinhaus’ Mathematical Snapshots. What-
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155. Finding the length of the ball’s path

ever the integral dimensions of a rectangle,
a square can always be formed by placing a
finite number of replicas of the rectangle
side by side as shown at the top in the illus-
tration. The smallest square formed in this
way will have a side that is the lowest com-
mon multiple of the rectangle’s two sides.

Think of each rectangle as a mirror reflec-
tion of each rectangle adjacent to it. The



diagonal line from A, where the ball starts
its 45-degree path, to the opposite corner
will then be the “unfolded” path, so to
speak, of the ball as it rebounds from side
to side. If we cut out just those rectangles
that contain the path (lower left), fold them
along the broken lines and then hold the
packet up to a strong light, the diagonal line
will trace the actual path of the ball around
the rectangle (lower right).

Since the diagonal line AD, on the large
square, is the hypotenuse of a rightisosceles
triangle with a side equal to the lowest
common multiple of the sides of the rec-

156. The T-polygon solution
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tangle, we see at once that the length of the
path is this lowest common multiple times
V2.

The spots shown along the diagonal,
minus the end spots, represent points of
rebound. It is easy to see that the number of
rebounds must be

at+b
ged

>

where a¢ and b are the sides of the original
rectangle and gcd is their greatest common
divisor.

Figure 156 shows the only way to draw
the T-polygon on a square lattice so that
there are 12 points on the border and five
inside: an area of ten square units.
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22. Infinite Regress

Chairman of a meeting of the Society of Logicians: *Before we put the
motion: ‘That the motion be now put,’ should we not first put the motion:
‘That the motion: “That the motion be now put” be now put'?”

THE INFINITE REGRESS, along which
thought is compelled to march backward in
a never ending chain of identical steps, has
always aroused mixed emotions. Witness
the varied reactions of critics to the central
symbol of Broadway’s most talked-about
1964 play, Edward Albee’s Tiny Alice. The
principal stage setting—the library of an
enormous castle owned by Alice, the
world’s richest woman—is dominated by a
scale model of the castle. Inside it lives
Tiny Alice. When lights go on and off in the
large castle, corresponding lights go on and
off in the small one. A fire erupts simulta-
neously in castle and model. Within the
model is a smaller model in which a tinier
Alice perhaps lives, and so on down, like a
set of nested Chinese boxes. (“Hell to

From an old issue of Punch

clean,” comments the butler, whose name
is Butler.) Is the castle itself, into which
the play’s audience peers, a model in a
still larger model, and that in turn . . .? A
similar infinite nesting is the basis of E.
Nesbit’s short story, “The Town in the
Library in the Town in the Library” (in her
Nine Unlikely Tales); perhaps this was the
source of Albee’s idea.

For many of the play’s spectators the end-
less regress of castles stirs up feelings of
anxiety and despair: Existence is a mysteri-
ous, impenetrable, ultimately meaningless
labyrinth; the regress is an endless corridor
that leads nowhere. For theological stu-
dents, who are said to be flocking to the
play, the regress deepens an awareness of
what Rudolf Otto, the German theologian,



called the mysterium tremendum: the
ultimate mystery, which one must approach
with awe, fascination, humility and a sense
of “creaturehood.” For the mathematician
and the logician the regress has lost most of
its terrors; indeed, as we shall soon see, itis
a powerful, practical tool even in recrea-
tional mathematics. First, however, let us
glance at some of the roles it has played in
Western thought and letters.

Aristotle, taking a cue from Plato’s Par-
menides, used the regress in his famous
“third man” criticism of Plato’s doctrine of
ideas. If all men are alike because they have
something in common with Man, the ideal
and eternal archetype, how (asked Aristotle)
can we explain the fact that one man and
Man are alike without assuming another
archetype? And will not the same reason-
ing demand a third, fourth, and fifth arche-
type, and so on into the regress of more and
more ideal worlds?

A similar aversion to the infinite regress
underlies Aristotle’s argument, elaborated
by hundreds of later philosophers, that the
cosmos must have a first cause. William
Paley, an eighteenth-century English theo-
logian, put it this way: “A chain composed
of an infinite number of links can no more
support itself than a chain composed of a
finite number of links.” A finite chain does
indeed require support, mathematicians
were quick to point out, but in an infinite
chain every link hangs securely on the one
above. The question of what supports the
entire series no more arises than the ques-
tion of what kind of number precedes the
infinite regress of negative integers.

Infinite Regress

Agrippa, an ancient Greek skeptic, ar-
gued that nothing can be proved, even in
mathematics, because every proof must be
proved valid and its proof must in turn be
proved, and so on. The argument is repeated
by Lewis Carroll in his paper “What the
Tortoise Said to Achilles” (Mind, April,
1895). After finishing their famous race,
which involved an infinite regress of smaller
and smaller distances, the Tortoise traps
his fellow athlete in a more disturbing
regress. He refuses to accept a simple de-
duction involving a triangle until Achilles
has written down an infinite series of hypo-
thetical assumptions, each necessary to
make the preceding argument valid.

F. H. Bradley, the English idealist, argued
(not very convincingly) that our mind can-
not grasp any type of logical relation. We
cannot say, for example, that castle A is
smaller than castle B and leave it at that,
because “smaller than” is a relation to
which both castles are related. Call these
new relations ¢ and d. Now we have to re-
late ¢ and d to the two castles and to “small-
er than.” This demands four more relations,
they in turn call for eight more, and so on,
until the shaken reader collapses into the
arms of Bradley’s Absolute.

In recent philosophy the two most revolu-
tionary uses of the regress have been made
by the mathematicians Alfred Tarski and
Kurt Godel. Tarski avoids certain trouble-
some paradoxes in semantics by defining
truth in terms of an endless regress of
“metalanguages,” each capable of discuss-
ing the truth and falsity of statements on
the next lower level but not on its own

221



Mathematical Games

level. As Bertrand Russell once explained
it: “The man who says ‘I am telling a lie of
order n’ is telling a lie, but a lie of order
n + 1.” In a closely related argument
Godel was able to show that there is no
single, all-inclusive mathematics but only
an infinite regress of richer and richer
systems.

The endless hierarchy of gods implied by
so many mythologies and by the child’s
inevitable question “Who made God?” has
appealed to many thinkers. William James
closed his Varieties of Religious Experience
by suggesting that existence includes a col-
lection of many gods, of different degrees
of inclusiveness, “with no absolute unity
realized in it at all. Thus would a sort of
polytheism return upon us. . . .”” The no-
tion turns up in unlikely places. Benjamin
Franklin, in a quaint little work called
Articles of Belief and Acts of Religion,
wrote: “For I believe that man is not the
most perfect being but one, but rather that
there are many degrees of beings superior
to him.” Our prayers, said Franklin, should
be directed only to the god of our solar
system, the deity closest to us. Many writ-
ers have viewed life as a board game in
which we are the pieces moved by higher
intelligences who in turn are the pieces in
a vaster game. The prophet in Lord Dun-
sany’s story “The South Wind” observes the
gods striding through the stars, but as he
worships them he sees the outstretched
hand of a player “enormous over Their
heads.”

Graphic artists have long enjoyed the
infinite regress. Who can look at the striking
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cover of the April, 1965, issue of Scientific
American (showing the magazine cover re-
flected in the pupil of an eye) without recall-
ing, from his childhood, a cereal box or
magazine cover on which a similar trick was
played? The cover of the November, 1964,
Punch showed a magician pulling a rabbit
out of a hat. The rabbit in turn is pulling a
smaller rabbit out of a smaller hat, and this
endless series of rabbits and hats moves up
and off the edge of the page. It is not a bad
picture of contemporary particle physics.
The latest theory proposes a smaller, yet un-
detected, group of particles called “quarks”
to explain the structure of known particles.
Is the cosmos itself a particle in some un-
thinkably vast variety of matter? Are the
laws of physics an endless regress of hat
tricks?

The play within the play, the puppet
show within the puppet show, the story
within the story have amused countless
writers. Luigi Pirandello’s Six Characters
in Search of an Author is perhaps the best-
known stage example. The protagonist in
Miguel de Unamuno’s novel Mist, antici-
pating his death later in the plot, visits
Unamuno to protest and troubles the author
with the thought that he too is only the fig-
ment of a higher imagination. Philip
Quarles, in Aldous Huxley’s Point Counter
Point, is writing a novel suspiciously like
Point Counter Point. Edouard, in André
Gide’s The Counterfeiters, is writing The
Counterfeiters. Norman Mailer’s story “The
Notebook™ tells of an argument between
the writer and his girl friend. As they argue
he jots in his notebook an idea for a story



that has just come to him. It is, of course, a
story about a writer who is arguing with his
girl friend when he gets an idea. . . .

J. E. Littlewood, in A Mathematician’s
Miscellany, recalls the following entry, which
won a newspaper prize in Britain for the
best piece on the topic: “What would you
most like to read on opening the morning
paper?”’

OUR SECOND COMPETITION

The First Prize in the second of this
year’s competitions goes to Mr. Arthur
Robinson, whose witty entry was easily the
best of those we received. His choice of
what he would like to read on opening his
paper was headed “Our Second Compe-
tition” and was as follows: “The First
Prize in the second of this year’s compe-
titions goes to Mr. Arthur Robinson, whose
witty entry was easily the best of those we
received. His choice of what he would like
to read on opening his paper was headed
‘Our Second Competition,” but owing to
paper restrictions we cannot print all of
it.”

One way to escape the torturing implica-
tions of the endless regress is by the topo-
logical trick of joining the two ends to make
a circle, not necessarily vicious, like the
circle of weary soldiers who rest themselves
in a bog by each sitting on the lap of the man
behind. Albert Einstein did exactly this
when he tried to abolish the endless regress
of distance by bending three-dimensional
space around to form the hypersurface of a
four-dimensional sphere. One can do the
same thing with time. There are Eastern

Infinite Regress

religions that view history as an endless re-
currence of the same events. In the purest
sense one does not even think of cycles
following one another, because there is no
outside time by which the cycles can be
counted; the same cycle, the same time go
around and around. In a similar vein, there
is a sketch by the Dutch artist Maurits C.
Escher of two hands, each holding a pencil
and sketching the other [see Figure 157]. In
Through the Looking Glass Alice dreams of
the Red King, but the King is himself asleep
and, as Tweedledee points out, Alice is only
a “sort of thing” in his dream. Finnegans
Wake ends in the middle of a sentence that
carries the reader back for its completion to
the broken sentence that opens the book.

Since Fitz-James O’Brien wrote his pio-
neer yarn “The Diamond Lens” in 1858 al-
most countless writers have played with the
theme of an infinite regress of worlds on
smaller and smaller particles. In Henry
Hasse’s story “He Who Shrank™ a man on a
cosmic level much larger than ours is the
victim of a scientific experiment that has
caused him to shrink. After diminishing
through hundreds of subuniverses he lin-
gers just long enough in Cleveland to tell
his story before he vanishes again, wonder-
ing how long this will go on, hoping that the
levels are joined at their ends so that he can
get back to his original cosmos.

Even the infinite hierarchy of gods has
been bent into a closed curve by Dunsany
in his wonderful tale “The Sorrow of
Search.” One night as the prophet Shaun is
observing by starlight the four mountain
gods of old—Asgool, Trodath, Skun, and
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167. Maurits C. Escher’s ""Drawing Hands”

Rhoog—he sees the shadowy forms of three
larger gods farther up the slope. He leads
his disciples up the mountain only to ob-
serve, years later, two larger gods seated at
the summit, from which they point and
mock at the gods below. Shaun takes his
followers still higher. Then one night he
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perceives across the plain an enormous,
solitary god looking angrily toward the
mountain. Down the mountain and across
the plain goes Shaun. Whil