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Introduction 

Ten years ago the writer of a mathematics 
textbook would have been considered 
frivolous by his colleagues if his book in- 
cluded puzzles and other entertaining 
topics. This is no longer true. Exercises in 
the first two volumes of Donald E. Knuth's 
monumental work in progress, The Art 
of Computer Programming (Reading: 
Addison-Wesley, 1968, 1969), are filled 
with recreational material. There are even 
textbooks in which a recreational emphasis 
is primary. A delightful instance is Harold 
R. Jacobs's Mathematics: A Human En- 
deavor, subtitled A Textbook for Those 
Who Think They Don't Like the Subject 
(San Francisco: W. H. Freeman and Co., 
1970). Richard Bellman, Kenneth L. Cooke, 
and Jo Ann Lockett, authors of Algorithnzs, 
Graphs, and Computers (New York: Aca- 
demic Press, 1970), write in their preface, 
"The principal medium we have chosen to 
achieve our goals is the mathematical 
puzzle." 

The trend is not hard to understand. I t  
is part of the painfully slow recognition by 

educators that students learn best who are 
motivated best. Mathematics has never 
been a dreary topic, although too often it 
has been taught in the dreariest possible 
way. There is no better way to relieve the 
tedium than by injecting recreational top- 
ics into a course, topics strongly tinged 
with elements of play, humor, beauty, and 
surprise. The greatest mathematicians al- 
ways looked upon their subject as a source 
of intense intellectual delight and seldom 
hesitated to pursue problems of a recre- 
ational nature. If you flip the leaves of 
W. W. Rouse Ball's classic British work, 
Mathematical Recreations and Essays 
(first published by Macmillan in 1892 and 
soon to be issued in a twelfth revised edi- 
tion), you will find the names of celebrated 
mathematicians on almost every page. 

Euclid himself, among the earliest of 
the mathematical giants, wrote an entire 
book (unfortunately it did not survive) on 
geometrical fallacies. This is a topic cov- 
ered in standard works on recreational 
mathematics but curiously avoided in most 
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geometry textbooks. One of these days high 
school teachers of geometry will discover 
that an excellent way to impress their stu- 
dents with the need for rigor in deduction 
is to "prove" on the blackboard that, say, 
a right angle equals an obtuse angle, then 
challenge the class to explain where the 
reasoning went wrong. 

The value of recreational mathematics is 
not limited to pedagogy. There are endless 
historical examples of puzzles, believed 
to be utterly trivial, the solving of which 
led to significailt new theorems, often with 
useful applications. I cite only one recent 
instance. Edward F. Sloore writes, in an 
important paper on "The Shortest Path 
through a hlaze": "The origin of the present 
methods provides an interesting illustra- 
tion of the value of basic research on puz- 
zles and games. Although such research is 
often frowned upon as being frivolous, it 
seems plausible that these algorithms might 
eventually lead to savings of very large 
sums of money by permitting more efficient 
use of congested trallsportatio~l or com- 

munication systems." (Reprinted in Annuls 
of the  Computation Laboratory of Hurcurd 
Unicersity, Vol. 30, 1959; pages 285-292.) 
Need I remind readers that the maze is a 
topological puzzle older than Euclid's 
geometry, and that topology itself had its 
origin in Leonhard Euler's famous analysis 
of a route-tracing puzzle iilvolving the 
seven bridges of Konigsberg? 

This is the sixth anthology of my arti- 
cles for the Scientific American department 
called Slathematical Games. As in previous 
collections, the articles have been ex- 
panded, errors corrected, bibliographies 
added. I am grateful to the magazine for 
the great privilege of contributing regu- 
larly to its pages, to my wife for unfailing 
help in proofing, and as always to the hun- 
dreds of Scientific Americccn readers whose 
suggestions have added so much to the 
value of the original articles. 

MARTIN GARDNER 
February, 1971 



1. The Helix 

Rosy's instant acceptance of our model at first amazed me. I had feared that 
her sharp, stubborn mind, caught in her self-made antihelical trap, might dig 
up irrelevant results that would foster uncertainty about the correctness of 
the double helix. Nonetheless, like almost everyone else, she saw the appeal 
of the base pairs and accepted the fact that the structure was too pretty 
not to be true. 

James D. Watson, The Double Helix 

A STRAIGHT SWORD will fit snugly into a 
straight scabbard. The same is true of a 
sword that curves in the arc of a circle: it 
can be plunged smoothly into a scabbard 
of the same curvature. Mathematicians 
sometimes describe this property of straight 
lines and circles by calling them "self- 
congruent" curves; any segment of such a 
curve can be slid along the curve, from one 
end to the other, and it will always "fit." 

Is it possible to design a sword and its 
scabbard that are not either straight or 
curved in a circular arc? Most people, after 
giving this careful consideration, will an- 
swer no, but they are wrong. There is a 
third curve that is self-congruent: the cir- 

cular helix. This is a curve that coils around 
a circular cylinder in such a way that it 
crosses the "elements" of the cylinder at a 
constant angle. Figure 1 makes this clear. 
The elements are the vertical lines that 
parallel the cylinder's axis; A is the constant 
angle with which the helix crosses every 
element. Because of the constant curvature 
of the helix a helical sword would screw its 
way easily in and out of a helical scabbard. 

Actually the straight line and the circle 
can be regarded as limiting cases of the 
circular helix. Compress the curve until 
the coils are very close together and you 
get a tightly wound helix resembling a 
Slinky toy; if angle A increases to 90 de- 



1 .  Circular helix (colored) on cylinder 

grees, the helix collapses into a circle. On 
the other hand, if you stretch the helix 
until angle A becomes zero, the helix is 
transformed into a straight line. If parallel 
rays of light shine perpendicularly on a 
wall, a circular helix held before the wall 
with its axis parallel to the rays will cast 
on the wall a shadow that is a single circle. 
If the helix is held at right angles to the 
rays, the shadow is a sine curve. Other kinds 

of projections produce the cycloid and other 
familiar curves. 

Every helix, circular or otherwise, is an 
asymmetric space curve that differs from 
its mirror image. We shall use the term 
"right-handed" for the helix that coils clock- 
wise as it "goes away," in the manner of an 
ordinary wood screw or a corkscrew. Hold 
such a corkscrew up to a mirror and you 
will see that its reflection, in the words of 
Lewis Carroll's Alice, "goes the other way." 
The reflection is a left-handed corkscrew. 
Such a corkscrew actually can be bought as 
a practical joke. So unaccustomed are we to 
left-handed screw threads that a victim may 
struggle for several minutes with such a 
corkscrew before he realizes that he has to 
turn it counterclockwise to make it work. 

Aside from screws, bolts, and nuts, which 
are (except for special purposes) standard- 
ized as right-handed helices, most man- 
made helical structures come in both right 
and left forms: candy canes, circular stair- 
cases, rope and cable made of twisted 
strands, and so on. The same variations in 
handedness are found in conical helices 
(curves that spiral around cones), including 
bedsprings and spiral ramps such as the 
inverted conical ramp in Frank Lloyd 
Wright's Guggenheim Museum in New 
York City. 

Not so in nature! Helical structures 
abound in living forms, from the simplest 
virus to parts of the human body, and in 
almost every case the genetic code carries 
information that tells each helix precisely 
"which way to go." The genetic code it- 
self, as everyone now knows, is carried by 



2. Helical horns of the Pamir sheep have opposite handedness 

a double-stranded helical molecule of DNA, 
its two right-handed helices twining around 
each other like the two snakes on the staff 
of Hermes. Moreover, since Linus Pauling's 
pioneer work on the helical structure of 
protein molecules, there has been increas- 
ing evidence that every giant protein mole- 
cule found in nature has a "backbone" that 
coils in a right-handed helix. In both nu- 
cleic acid and protein, the molecule's back- 
bone is a chain made up of units each one 
of which is an asymmetric structure of the 
same handedness. Each unit, so to speak, 
gives an additional twist to the chain, in 
the same direction, like the steps of a helical 
staircase. 

Larger helical structures in animals that 
have bilateral symmetry usually come in 
mirror-image pairs, one on each side of the 
body. The horns of rams, goats, antelopes, 
and other mammals are spectacular ex- 
amples [see Figure 21. The cochlea of the 
human ear is a conical helix that is left- 
handed in the left ear and right-handed in 

the right. A curious exception is the tooth 
of the narwhal, a small whale that flourishes 
in arctic waters. This whimsical creature 
is born with two teeth in its upper jaw. 
Both teeth remain permanently buried in 
the jaw of the female narwhal, and so does 
the right tooth of the male. But the ~nale's 
left tooth grows straight forward, like a 
javelin, to the ridiculous length of eight or 
nine feet - more than half the animal's 
length from snout to tail! iZround this giant 
tooth are helical grooves that spiral forward 
in a counterclockwise direction [see Figure 
31. On the rare occasions when both teeth 
grow into tusks, one would expect the right 
tooth to spiral clockwise. But no, it too is 
always left-handed. Zoologists disagree on 
how this could come about. Sir D'Arcy 
Thompson, in his book 0 1 1  Growth a n d  
Form, defends his own theory that the 
whale swims with a slight screw motion 
to the right. The inertia of its huge tusk 
would produce a torque at the base of the 
tooth that might cause it to rotate counter- 



3. Helical grooves of the narwhal tooth are always left-handed 

clocku~ise as it grows (see "The Horn of 
the Unicorn," by John Tyler Bonner; Sci- 
entific ,4merican, hlarch, 1951). 

\$'henever a single helix is prominent in 
the structure of any living plant or animal, 
the species usually confines itself to a helix 
of a specific handedness. This is true of 
countless forms of helical bacteria as well 
as of the spermatozoa of all higher animals. 
The hurnan umbilical cord is a triple helix 
of one vein and two arteries that invariably 
coil to the left. The most striking instances 
are provided by the conical helices of the 
shells of snails and other n~ollusks. Not 
all spiral shells have a handedness. The 
chambered nautilus, for instance, coils on 
one plane; like a spiral nebula, it can be 
sliced into identical left and right halves. 
But there are thousands of beautiful mol- 
luscan shells that are either left- or right- 
handed [see Figure 41. Some species are 
always left-handed and some always right- 
handed. Sorne go one way in one locality 
and the other way in another. Occasional 
"sports" that twist the wrong way are prized 
by shell collectors. 

A puzzling type of helical fossil known 
as the devil's corkscrew (Daemonelix) is 

found in Nebraska and Wyoming. These 
huge spirals, six feet or more in length, 
are sometimes right-handed and sometimes 
left-handed. Geologists argued for decades 
over whether they are fossils of extinct 
plants or helical burrows made by ancestors 
of the beaver. The beaver theory finally 
prevailed after remains of sillall prehistoric 
beavers were found inside some of the 
corkscrews. 

In the plant world helices are con~illoil 
in the structure of stalks, stems, tendrils, 
seeds, flowers, cones, leaves-even in the 
spiral arrangement of leaves and branches 
around a stalk. The number of turns made 
along a helical path, as you move from one 
leaf to the leaf directly above it, tends to be 
a number in the familiar Fibonacci series: 
1, 2, 3 ,  5 ,  8,  13 . . . (Each number is the 
sum of the preceding two numbers.) A 
large literature in the field known as "phyl- 
lotaxy" (leaf arrangement) deals with the 
surprising appearance of the Fibonacci 
numbers in botanical phenoillena of this 
sort. 

The helical stalks of climbing plants are 
usually right-handed, but thousands of 
species of twining plants go the other way. 



4. Three molluscan shells that are right-handed conical helices 

The honeysuckle, for instance, is always 
left-handed; the bindweed (a family that 
includes the morning glory) is always right- 
handed. IVhen the two plants tangle with 
each other, the result is a passionate, vio- 
lent embrace that ha5 long fascinated En- 
glish poets. "The blue bindweed," wrote 
Ben Jonson in 1617, "130th itself enfold wit11 
honeysuckle." And Shakespeare, in A Mid- 
sumrrter Wight 's  Dreain, has Queen Titania 
speak of her intention to embrace Bottom 
the Weaver (who has been transforlned into 
a donkey) by saying: "Sleep thou, and I 
will wind thee in my arms./ . . . So dot11 

the woodbine the sweet honeysuckle/ 
Gently entwist." In Shakespeare's day 
"woodbine" was a common term for bind- 
weed. Because it later came to be applied 
exclusively to honeysuckle many comrnen- 
tators reduced the passage to absurdity 
by supposing that Titania was speaking of 
honeysuckle twined with honeysuckle. 
A~vareness of the opposite handedness of 
bindweed and hone~.suckle heiglitens, of 
course, the nleaning of Titania's metaphor. 

hlore recently, a charming song called 
"hlisalliance," celebrating the love of 
the honeysuckle for the bindweed, has been 



MISALLIANCE 

T h e  fragrant Honeysuckle spirals clockwise to the sun 
And many other creepers do the same. 

But some climb counterclockwise, the Bindweed does, for one, 
Or Conooluulus, to give her proper name. 

Rooted on either side a door, one of  each species grew, 
And raced toward the window ledge above. 

Each corkscrewed to the lintel in the only way it knew, 
Where they stopped, touched tendrils. smiled and fell in love. 

Said the right-handed Honeysuckle 
To the left-handed Bindweed: 

"Oh, let us get married, 
If our parents don't mind. We'd 

Be loving and inseparable. 
Inextricably entwined, we'd 

Live happily ever after," 
Said the Honeysuckle to the Bindweed 

T o  the Honeysuckle's parents it came as a shock. 
"The Bindweeds," they cried, "are inferior stock. 

They're uncultivated, of breeding bereft. 
W e  twine to the right and they twine to the left!" 

Sazd the eounterelockwrse Bzndweed 
To the cloekwzse Honeysuckle 

"We'd better start savtng- 
Many a mzckle maks a muekle- 
Then run atLay for a honeymoon 

And hope that our luck'll 
Take a turn for the better," 

Sazd the BzndtLeed to the Honcyarc.klc. 

A bee who was passing remarked to them then: 
"I'b e said it before, and I'll sa) it again 

Consider your offshoots, if offshoots there be 
v- 

They'll never receibe any blessing from me." 

Poor little sucker, how will it learn 
W h e n  it is climbing, which way to turn? 

Right-left-what a dlsgracel 
-9 Or ~t may go straight up and fall flat on its face! 

Satd the right-hand-thread Honeysuckle 
To the left-hand-thread Bindweed 

'It seems that against us all fate has combined. 
Oh my darlzng, oh my darbng, 

Oh m y  darlzng Columbzne, 

i 
Thou art lost and gone forever, 

i W e  shall never intertwrne." 

i Together they found them the very next day 
They had pulled up thelr roots and just shriveled away, 

Depribed of that freedom for which we must fight, 
To veer to the left or to veer to the right! 
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written by the British poet and entertainer 
Xlichael Flanders and set to music 11y his 
friend Donald Swann. With Flanders' kind 
permission the entire song is reproduced 
on the opposite page. (Readers who would 
like to learn the tune can hear it sung by 
Flanders and Swann on the Angel recording 
of At the Drop of n H a t ,  their hilarious two- 
man revue that made such a hit in London 
and New York.) Note that Flanders' honey- 
suckle is right-handed, his bindweed left- 
handed. It is a matter of convention whether 
a given helix is called left- or right-handed. 
If you look at the point of a right-handed 
wood screw, you will see the helix moving 
toward you counterclockwise, so that it 
can just as legitimately be called left- 
handed. Flanders simply adopts the con- 
vention opposite to the one taken here. 

The entwining of two circular helices 
of opposite handedness is also involved in 
a remarkable optical-illusion toy that was 
sold in this country in the 1930's. It is easily 
made by twisting together a portion of two 
wire coils of opposite handedness [see 
Figure 51. The wires must be soldered to 
each other at several points to make a rigid 
structure. The illusion is produced by 
pinching the wire between thumb and fore- 
finger of each hand at the left and right 
edges of the central overlap. When the 

hands are moved apart, the fingers and 
thumbs slide along the wire, causing it to 
rotate and create a barber's-pole illusion 
of opposite handedness on each side. This 
is continuously repeated. The wire seems to 
be coming n~iraculously out of the inex- 
haustible meshed portion. Since the neu- 
trino and antineutrino are now known to 
travel with screw motions of opposite 
handedness, I like to think of this toy as 
demonstrating the endless productioli of 
neutrinos and their mirror-image particles. 

The helical character of the neutrino's 
pat21 results from the fusion of its forward 
motion (at the speed of light) with its 
"spin." Helical paths of a similar sort are 
traced by many inanimate objects and living 
things: a point on the propeller of a nloving 
ship or plane, a squirrel running up or down 
a tree, free-tailed bats gyrating 
counterclockwise when they emerge from 
caves at Carlsbad, New hlexico. Conically 
helical paths are taken by whirlpools, wa- 
ter going down a drain, tornadoes, and thou- 
sands of other natural phenomena. 

LT7riters have found helical motions useful 
on the metaphorical level. The progress of 
science is often likened to an inverted 
conical spiral: the circles growing larger 
and larger as science probes further into 
the unknown, always building upward on 

5. Helical toy that suggests the product ion of neutrinos 
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the circles of the past. The sarrie spiral, a 
[lark, 1)ottomless whirlpool into which an 
individlial or hunianity is sliding, has also 
l ~ e c n  used as a synlbol of pessirnisrn and 
despair. This is the metaphor that closes 
Norman Mailer's book Aduertisentents f o r  
M!yself: "Am I already on the way out?" 
he asks. Time for hlniler is a conical helix 
of water flushing down a cosmic drain, 
spirming him off "into the spiral of star-lit 
empty waters." 

And now for a simple helix puzzle. A ro- 
tating barber's pole consists of a cylincler 
on which red, white, and blue helices are 
painted. The cylinder is four feet high. The 
red stripe cuts the cylinder's ele~nents 
(vertical lines) with a constant angle of 60 
degrees. How long is the red stripe? 

The problem may seem to lack sufficie~lt 
inforniation for determir~ing the stripe's 
length; actually it is absurdly casy when 
aI)proachecl properly. 

Answer 

If a right triangle is wrapped around any 
type of cylinder, the haw of the triangle 
going around the base of the cylinder, the 
triangle's hypoterruse will trace a helix on 
the cylinder. Think of the red stripe of the 
11arl)er's pole as tlie l~y~~oter iuse  of a right 

triangle, then "unwrap" the triangle from 
the cylinder. 'l'he triangle will have angles 
of 30 and 60 degrees. The hypotenuse of 
such a trianglc must be twice the altitude. 
(This is easily seen if you place two such 
triangles together to forrrl an equilateral 
triangle.) In this case the altitude is folir 
feet, so that the hypotenuse (red stripe) 
is eight feet. 

The interesting part of tliis problem is 
that the length of the stripe is independent 
not only of the diarrleter of the cylinder but 
also of the shape of its cross section. Tlle 
cross section can be an irregular closed 
curve of any shape whatever; the answer 
to the problem remains tlie same. 
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2. Klein Bottles and Other Surfaces 

Three jolly sailors from 
Blaydon-on-Tyne 

They went to sea in a bottle by Klein. 
Since the sea was entirely inside 

the hull 
The scenery seen was exceedingly dull 

Frederick Winsor, 
The Space Child's Mother Goose 

TO A TOPOLOGIST a square sheet of paper 
is a model of a two-sided surface with a 
single edge. Crumple it into a ball and it is 
still two-sided and one-edged. Imagine 
that the sheet is made of rubber. You can 
stretch it into a triangle or circle, into any 
shape you please, but you cannot change 
its two-sidedness and one-edgedness. They 
are topological properties of the surface, 
properties that remain the same regardless 
of how you bend, twist, stretch, or conlpress 
the sheet. 

Two other important topological invari- 
ants of a surface are its chromatic number 

and Betti number. The chromatic number is 
the maximum number of regions that can 
be drawn on the surface in such a way that 
each region has a border in colnrnon with 
every other region. If each region is k' riven 

a different color, each color will border on 
every other color. The chromatic number 
of the square sheet is 4. In other words, it 
is impossible to place more than four differ- 
ently colored regions on the square so that 
any pair has a boundary in common. The 
term "chromatic number" also designates 
the minimum number of colors sufficient 
to color any finite map on a given surface. 
It is not yet known if 4 is the chromatic 
number, in this map-coloring sense, for 
the square, tube, and sphere, but for all 
other surfaces considered in this chapter, 
it has been shown that the chromatic num- 
ber is the same under both definitions. 

The Betti number, named after Enrico 
Betti, a nineteenth-century Italian physi- 
cist, is the maximum number of cuts that 
can be made without dividing the surface 
into two separate pieces. If the surface has 
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edges, each cut must be a "crosscut": one 
that goes from a point on a11 edge to another 
point on an edge. If the surface is closed 
(has no edges), each cut 111ust be a "loop 
cut": a cut in the form of a simple closed 
curve. Clearly the Betti nulnber of the 
square sheet is 0. ,4 crosscut is certain to 
produce two disconnected pieces. 

If we make a tube by joining one edge 
of the square to its opposite edge, we cre- 
ate a n~odel  of a surface topologically dis- 
tinct from the square. The surface is still 
two-sided but now there are two separate 
edges, each a simple closed curve. The 
chromatic number remaii~s 4 but the Betti 
number has changed to 1. A crosscut from 
one edge to the other, although it eliminates 
the tube, allows the paper to remain in one 
piece. 

A third type of surface, topologically the 
same as the surface of a sphere or cube, is 
made by folding the square in half along a 
diagonal and then joining the edges. The 
surface continues to be two-sided but all 
edges have been eliminated. It is a closed 
surface. The chromatic number continues 
to be 4. The Betti number is back to 0: any 
loop cut obviously creates two pieces. 

Things get more interesting when we 
join one edge of the square to its opposite 
edge but give the surface a half-twist before 
doing so. You might suppose that this can- 
not be done with a square piece of paper, 
but it is easily managed by folding the 
square twice along its diagonals, as shown 
in Figure 6. Tape together the pair of edges 
indicated by the arrow in the last drawing. 
The resulting surface is the familiar hf6- 

6. Mobius surface constructed with a square 

bius strip, first analyzed by A. F. Llobius, 
the nineteenth-century German astrononler 
who was one of the pioneers of topology. 
The model will not open out, so it is hard to 
see that it is a hliibius strip, but careful 
inspection will convince you that it is. The 
surface is one-sided and one-edged, with a 
Betti number of 1. Surprisingly, the chro- 
matic number has jumped to 6. Six regions, 
of six different colors, call be placed on the 



7. Torus surface folded from a square 

surface so that each region has a border in 
common with each of the other five. 

When both pairs of the square's opposite 
edges are joined, without twisting, the 
surface is called a torus. It is topologically 
equivalent to the surface of a doughnut or 
a cube with a hole bored through it. Figure 
7 shows how a flat, square-shaped model 
of a torus is easily made by folding the 
square twice, taping the edges as shown by 

the solid gray line in the second drawing 
and the arrows in the last. The torus is 
two-sided, closed (no-edged) and has a 
chromatic number of 7 and a Betti number 
of 2. One way to make the two cuts is first 
to make a loop cut where you joined the 
last pair of edges (this reduces the torus to 
a tube) and then a crosscut where you 
joined the first pair. Both cuts, strictly 
speaking, are loop cuts when they are 
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marked on the torus surface. It is only be- 
cause you make one cut before the other 
that the second cut becomes a crosscut. 

It is hard to anticipate what will hap- 
pen when the torus model is cut in vari- 
ous ways. If the entire model is bisected 
by being cut in half either horizontally 
or vertically, along a center line parallel 
to a pair of edges, the torus surface receives 
two loop cuts. In both cases the resulting 
halves are tubes. If the model is bisected 
by being cut in half along either diagonal, 
each half proves to be a square. Can the 
reader find a way to give the model two 
loop cuts that will produce two separate 
bands interlocked like two rings of a chain? 

Many different surfaces are closed like 
the surface of a sphere and a torus, yet one- 
sided like a Miibius strip. The easiest one 
to visualize is a surface known as the Klein 
bottle, discovered in 1882 by Felix Klein, 
the great German mathematician. An ordi- 
nary bottle has an outside and inside in the 
sense that if a fly were to walk from one side 
to the other, it would have to cross the edge 
that forms the mouth of the bottle. The 
Klein bottle has no edges, no inside or out- 
side. What seems to be its inside is con- 
tinuous with its outside, like the two appar- 
ent "sides" of a Mobius surface. 

Unfortunately it is not possible to con- 
struct a Klein bottle in three-dimensional 
space without self-intersection of the sur- 
face. Figure 8 shows how the bottle is tra- 
ditionally depicted. Imagine the lower end 
of a tube stretched out, bent up and plunged 
through the tube's side, then joined to the 
tube's upper mouth. In an actual model 

8. Klein bottle: a closed surface 
with no inside or outside 

made, say, of glass there would be a hole 
where the tube intersects the side. You 
must disregard this defect and think of the 
hole as being covered by a continuation 
of the bottle's surface. There is no hole, 
only an intersection of surfaces. This self- 
intersection is necessary because the model 
is in three-space. If we conceive of the sur- 
face as being embedded in four-space, the 
self-intersection can be eliminated entirely. 
The Klein bottle is one-sided, no-edged 
and has a Betti number of 2 and a chro- 
matic number of 6. 

Daniel Pedoe, a mathematician at Pur- 
due University, is the author of The Gentle 
Art of Mathematics. It is a delightful book, 
but on page 84 Professor Pedoe slips into 
a careless bit of dogmatism. He describes 



9. Folding a Klein bottle from a square 

the Klein bottle as a surface that is a chal- 
lenge to the glass blower, but one "which 
cannot be made with paper." Now, it is 
true that at the time he wrote this appar- 
ently no one had tried to make a paper 
Klein bottle, but that was before Stephen 
Barr, a science-fiction writer and an ama- 
teur mathematician of Woodstock, New 
York, turned his attention to the problem. 
Barr quickly discovered dozens of ways to 
make paper Kleiil bottles. Here I will de- 
scribe only one of Barr's Klein bottles; one 
that enables us to continue working with a 
square and at the same time follows closely 
the traditional glass model. 

The steps are given in Figure 9. First, 
make a tube by folding the square in half 

and joining the right edges with a strip of 
tape as shown [ S t e p  11. Cut a slot about a 
quarter of the distance from the top of the 
tube [ S t e p  21, cutting only through the 
thickness of paper nearest you. This cor- 
responds to the "hole" in the glass model. 
Fold the model in half along the broken 
line A. Push the lower end of the tube up 
through the slot [ S t e p  31 and join the edges 
all the way around the top of the model 
[ S t e p  41 as indicated by the arrows. It is 
not difficult to see that this flat, square 
model is topologically identical with the 
glass bottle shown in Figure 8. In one way 
it is superior: there is no actual hole. True, 
you have a slot where the surface self- 
intersects, but it is easy to imagine that 
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the edges of the slot are joined so that 
the surface is everywhere edgeless and 
continuous. 

hloreover, it is easy to cut this paper 
model and demonstrate many of the bottle's 
astonishing properties. Its Betti number of 
2 is demonstrated by cutting the two loops 
formed by the two pairs of taped edges. If 
you cut the bottle in half vertically, you 
get two hlbbius bands, one a mirror image 
of the other. This is best demonstrated by 
making a tall, thin model [see Figure 101 

10. Bisected bottle makes two Mobius strips 

from a tall, thin rectangle instead of a 
square. When you slice it in half along the 
broken line (actually this is one long loop 
cut all the way around the surface), you will 
find that each half opens out into a hliibius 
strip. Both strips are partially self-inter- 
secting, but you can slide each strip out of 
its half-slot and close the slot, which is 
not supposed to be there anyway. 

If the bottle can be cut into a pair of 
Mobius strips, of course the reverse pro- 
cedure is possible, as described in the fol- 
lowing anonymous limerick: 

A mathematician named Kleirl 
Thought  the Mobius hand was diuine. 

Said he: "lf you glue 
The  edges o f  two,  - .  

You'll get a weird bottle like mine." 

Surprisingly, it is possible to make a 
single loop cut on a Klein bottle and pro- 
duce not two hlobius strips but only one. 
A great merit of Barr's paper models is that 
problems like this can be tackled empir- 
ically. Can the reader discover how the 
cut is made? 

The Klein bottle is not the only simple 
surface that is one-sided and no-edged. A 
surface called the projective plane (because 
of its topological equivalence to a plane 
studied in projective geometry) is similar 
to the Klein bottle in both respects as well 
as in having a chromatic number of 6. As in 
the case of the Klein bottle, a model cannot 
be made in three-space without self-inter- 
section. A simple Barr method for folding 
such a model from a square is shown in 
Figure 11. First cut the square along the 



solid black lines shown in Step 1. Fold the 
square along the diagonal A-A', inserting 
slot C into slot B [Steps 2 and 31. You must 
think of the line where the slots interlock 
as an abstract line of self-intersection. Fold 
up the two bottom triangular flaps E and F ,  
one on each side [Step 41, and tape the 
edges as indicated. 

The model is now what topologists call 
a cross-cap, a self-intersecting llobius strip 
with an edge that can be stretched into a 
circle without further self-intersection. This 
edge is provided by the edges of cut D, 
originally made along the square's diagonal. 
Note that unlike the usual model of a hlo- 

bius strip, this one is symmetrical: neither 
right- nor left-handed. W7hen the edge of the 
cross-cap is closed by taping it [Step 51, 
the model becomes a projective plane. You 
might expect it to have a Betti number of 2, 
like the Klein bottle, but it does not. It has 
a Betti number of 1. Ko matter how you 
loop-cut it, the cut produces either two 
pieces or a piece topologically equivalent 
to a square sheet that cannot be cut again 
without making two pieces. If you retnove a 
disk from anywhere on the surface of the 
projective plane, the model reverts to a 
cross-cap. 

Figure 12 summarizes all that has been 
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Klein Bottles 

said. The square diagra~ns in the first col- 
unln show how the edges join in each 
moclel. Sides of the same color join each to 
each, with the direction of their arrows 
coinciding. Corners labeled with the same 
letter are corners that come together. Bro- 
ken lines are sides that remain edges in the 
finished model. Next to the chromatic num- 
ber of each model is shown one way in 
which the surface can be mapped to ac- 
comnlodate the maximum number of colors. 
It is instructive to color each sheet as 
shown, coloring the r e g i o ~ ~ s  on both sides 
of the paper (as though the paper were 
cloth through which the colors soaked), be- 
cause you must think of the sheet as having 
zero thickness. An inspectio~l of the final 
  nod el will show that each region does in- 
deed border on every other one. 

Answers 

The torns-cutting problem is solved by 
first ruling three parallel lines on the un- 
folded square [see Figure 131. When the 
square is folded into a torns, as explained, 
the lines make two closed loops. Cutting 
these loops produces two interlocked 
bands, each two-sided with tu7o half-twists. 

How does one find a loop cut 011 the Klein 
bottle that will change the surface to a 
single Sliibius strip? On both left and right 
sides of the narrow rectangular model de- 
scribed you will note that the paper is 
creased along a fold that forms a figure- 
eight loop. Cutti~lg only the left loop trans- 
forms the model into a hliibius band; 

13. Solution to the torus-cutting problem 

cutting only the right loop produces an 
identical band of opposite handedness. 

\;CThat happens if both loops are cut? The 
result is a two-sided, two-edged band with 
four half-twists. Because of the slot the band 
is cut apart at one point, so that you must 
imagine the slot is not there. This self- 
intersecting band is mirror-symmetrical, 
neither right- nor left-handed. You can 
free the band of self-intersection by sliding 
it carefully out of the slot and taping the 
slot together. The handedness of the re- 
sulting band (that is, the direction of the 
helices formed by its edges) depends on 
whether you slide it out to the right or the 
left. This and the previous cutting prob- 
lems are based 011 paper models that were 
invented by Stephen Barr and are described 
in his Experiments i n  Topology. 
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3. Combinatorial Theory 

" A ~ I I D  THE ACTION and reaction of so dense 
a swarm of humanity," Sherlock Holmes 
once remarked in reference to London, 
" 

every possible combination of events may 
be expected to take place, and many a little 
problem will be presented which may be 
striking and bizarre. . . ." Substitute "math- 
ematical elements" for "humanity" and 
the great detective's remark is not a bad 
description of combinatorial mathematics. 

In the language of set theory, combina- 
torial analysis is concerned with the ar- 
rangement of elerller~ts (discrete things) 
into sets, subject to specified conditions. 
A person playing chess is faced with a 
combinatorial problem: how best to bring 
about an arrangement of elements (chess 
pieces) on an eight-by-eight lattice, sub- 
ject to chess rules, so that a certain element 
(his opponent's king) will be unable to 
avoid capture. A composer of music faces 
a co~l~binatorial problem: how to arrange 
his elements (tones) in such a way as to 
arouse aesthetic pleasure. In the broadest 
sense, combinatorial tasks abound in daily 

life: seating guests around a table, solvir~g 
crossword puzzles, playing card games, 
making out schedules, opening a safe, 
dialing a telephone nurn1)er. When you put 
a key in a cylinder lock, you are using a 
mechanical device (the key) to solve the 
combinatorial problem of raising five little 
pins to the one permutation of heights 
that allows the cylinder to rotate. (This 
basic idea, by the way, goes back to wooderl 
cylinder locks of ancient Egypt.) 

Combinatorial number problenls are as 
old as numbers. In China a thousand years 
before Christ mathematicians were explor- 
ing number combinations and permutations. 
The Lo SI.zu, an ancient Chinese rnagic 
square, is an exercise in elementary combi- 
nations. How can the nine digits be placed 
in a square array to form eight intersecting 
sets of three digits (rows, columns, and main 
diagonals), each su~nmiilg to the same num- 
ber? So t  counting rotations and reflections, 
the Lo Shu  [see Figure  18, pnge 241 is the 
only answer. It is a pleasant exercise in 
combi~latorial thinking to see how simply 



14. Two of Ram6n Lull's combinatorial wheels 

you can prove the Lo Shu pattern to be 
unique. (A good proof is given by Maurice 
Kraitchik in his Mathematical Recreations; 
New York: Dover, 1953; pages 146-147.) 

In the thirteenth century Ramon Lull, an 
eccentric Spanish theologian, built a flour- 
ishing cult around combinatorial thinking. 
It was Lull's fervid conviction that every 
branch of knowledge could be reduced to a 
few basic principles and that by exploring 
all possible combinations of these princi- 
ples one could discover new truths. To aid 
the mind in such endeavors Lull used con- 
centric disks mounted on a central pin. 
Around the rim of each disk he placed 
letters symbolizing the basic ideas of the 
field under investigation; by turning the 
wheels one could run through all combi- 
nations of ideas. [see Figure 141. Even today 

there are survivals of Lullism in techniques 
developed for "creative thinking." 

Until the nineteenth century most combi- 
natorial problems were, like magic squares, 
studied as either mystical lore or mathe- 
matical recreations. To this day they pro- 
vide a large share of puzzle problems, 
some of which are trivial brain teasers: 
A drawer contains two red socks, two green 
socks, and two blue socks. What is the 
smallest number of socks you can take from 
the drawer, with your eyes closed, and be 
sure you have a pair that matches? 

There are moderately difficult questions 
such as: In how many different ways can a 
dollar be changed with an unlimited sup- 
ply of halves, quarters, dimes, nickels, 
and pennies? 

And there are problems so difficult they 



have not yet been solved: Find a forlnlila 
for the number of different ways a strip of 
n postage stamps car1 be folded. Think of 
the starnps as being blank on both sides. 
Two ways are not "different" if one folded 
packet can be turned in space so that its 
structure is the same as the other. Two 
stamps can be folded in only one way, 
three stamps in two ways, four in five m7ays 
[see Figl ire  151. Call the reader give the 
number of different ways a strip of five 
stanlps can be folded? 

It was not until about 1000 that co11113i- 
natorial analysis began to be recognized 
as an independent branch of mathematics, 
and not until the 1050's that it suddenly 
grew into a vigorous new discipline. There 
are many reasons for this upsurge of in- 
terest. hloderrl ~rlatlle~natics is mucll con- 
cerned with logical foundations, and a 
large part of fomml logic is combii~atorial. 
Slodern science is much cor~cerr~ed with 
probability, and most probability problems 
demand prior combinatorial analysis. Al- 
most everywhere science looks today it 
discovers not continuity but discreteness: 
molecules, atoms, particles, the quanturn 
numbers for charge, spin, parity, and so 011. 

\\'olfgang Pauli's "exclusion principle," 
which finally explained the structure of the 
periodic table of elemellts, was the outcome 
of combinatorial thinking. 

The great revolution that is now under 
way ill 11iology springs frorn the se~lsatio~lal 
discovery that genetic information is carried 
by a nucleic acid code of four letters taken 
three at a time in a way that recreational 
mathematicians have been exploring for 15. Ways of folding two, three, and four stamps 
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more than a century. Perhaps it is n o  acci- 
dent that the first suggestion the genetic 
code consisted of triplets of four symbols 
was made by the physicist George Garnow, 
who always had a keen interest in mathe- 
matical puzzles. (For the story of this re- 
markable insight, see the afterworcl of 
Camow's autobiography, Jllj SVorld Liue.1 
Information theory with its bits and code 
words, computers with their yes and no 
circuits raise a myriad of combinatorial 
questions. At the same time the computer 
has made possible the solution of combina- 
torial problems that had previously been too 
coml3lex to solve. This too has surely been 
a factor in stimulating interest in combi- 
natorial mathematics. 

The two main types of cornbinatorial 
problen~ are "existence" problems and 
" enumeration" problems. An existence 
problem is simply the cluestion of whether 
or not a certain pattern of elements exists. 
It is answered with an example or a proof 
of possibility or impossibility. If the pat- 
tern exists, enumeration problems follow. 
How many varieties of the pattern are there? 
LVhat is the best way to classify them? \\'hat 
patterns meet various maxinla and mini~na 
conditions? Arid so on. 

We can illustrate both types of problem 
by considering the following simple ques- 
tion: Is it possible to arrange a set of p s i -  
tive integers from 1 to rt in a hexagonal 
array of 1 1  cells so that all rows have a con- 
stant surn? In short: Is a magic hexagon 
possible? 

The simplest such array of cells is shown 
in Figure 16. Can the digits from 1 to 7 be 

16. "Order 2" magic hexagon impossibility proof 

placed in those seven cells in such a way 
that each of the nine rows has the same 
sum? The sum, called the magic constant, 
is easily determined. \f7e have only to add 
the digits from 1 to 7 and then divide by 
3- the nurnber of rows that are parallel in a 
given direction. The sum is 28, but it is not 
evenly divisible by 3. Since the magic 
constant must be an integer, we have 
proved that an "order 2" magic hexagon 
(the order is the number of cells on a side) 
is impossible. For an even sirnpler im- 
possibility proof consider corner-cell A. 
It belongs to two rows that contain only 
two cells. If both rows have the same surn, 
cells R and C will have to contain the same 
digit, but this violates a condition of the 
problem that was k' T I V ~ I I .  

Turning attention to the next largest array, 
an order-3 hexagon with 19 cells, we find 
that the numbers sum to 190-which is 
divisible by 5 ,  the number of parallel ro\i7s 
in one direction. The magic constant is 38. 
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T h e  previous inlpossil)ility proof has fk~iled, 
but  of course this does not gnaratrtee that 
an order-3 magic ht.x:~gorr exists. 

I11 1910 Cliffortl W. Adams, now living in 
Philadelphia as a retired clerk for tlre Read- 
ing Railroad, began searching for a magic 
hexagon of order 3. H e  hati a set of lrexag- 
orla1 ceramic tiles made, bearing the nurn- 
bers 1 to 19, so that he  could push thern 
around ailtl explore patterns easily. For 
forty-seven years he worked at the task in 
odd moments. In  19Ti7, co~lvalcscirrg frorn 
an operation, he  found u solutioil [scc Fig-  
i ~ r c  171. IIe  jotted it down on a sheet of 
paper \ ~ u t  mislaid the sheet, and for the  next 
five years he triecl in vain to reconstruct 

17. The only possible magic hexagon 

his solution. I n  December 1962 ht. fol~ncl 
tht. paper, ancl early the following year he 
sent rile the pattern. Each of tlre 15 rows 
sums to 38. T h e  colored liircs connect con- 
secutively nlirnberecl cells in sets of twos 
and threes to bring out the pattenl's curious 
bilatenil sytllmetry. (A similar syrnnletry 
is disI)layed by thc I,o Sl1u if  it is tipped so 
cell 2 is at the top, cell 8 is at the I)otto~n, 
and triplets (1, 2, : 3 ) ,  (4, Fi, (i), aircl (7, 8, $1) 
are joined 1)y lines.) 

Llihcn I received this Iresagon f ron~ 
Adurrrs, I was only rnilclly irnpressc.tl. I 
assurnecl that thcre was pro1)al)ly air ex- 
tensive literature, oir ~rlagic hexagolrs n~rcl 
that A d a ~ r ~ s  had siml>ly discovc.1-cd olrc of 
Ilundretls of order-3 pitttcrrrs. To my strr- 
prise a search of the literatltre disclosed 
not a s i i~gle  irlagic hexagon. I knew that 
there wcre 880 different varieties of n~ag ic  
sqllares of ortler 3,  and  that ortler-5 iliagic 
squares have not yet heen entimeratccl 1)e- 
cause their nurnbcr runs iirto the millions. 
It  seetncrl strange that rrotllilrg on magic 
hexagons had b e e ~ r  l~ul,lisl~etl. 

I sent the Adarlrs hexagoir to C:harles 
U7. Trigg, a matl~enlaticia~r at Los A n g t . 1 ~ ~  
City College who is an expert oir coi~ll~irra- 
torial pro1,leins of tlris sol-t. A l,ost-card 
rel)ly confirmed the hc>xago~l's nnfii~rriliar- 
ity. A tnor~th later I was staggered to rcceivc, 
from Trigg a forir~al f roof that no other 
~nag ic  llexagon of t r r l y  size is l)ossible. 
Arnol~g t l ~ e  infinite nlimber of \ V ; L ~ S  to place 
integers fi-om 1 to 1 1  in hex;igo~r:tl arrays, 
only ollc pattern is magic! 

Trigg's 131-oof of i i i rpossi l~i l i t~ for orders 
almvc 3 calls orr Uiopllairtilre analysis, 
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the obtaining of integral solutiorls for equa- 
tions. Trigg first worked out the formula for 
the magic con4tant in terms of order n: 

This is easily chailged to an equation in 
which 5/(%n - 1) is an integral term. To be 
integral, 11 nlust be either 1 or 3. A magic 
hexagon of one cell is of course trivial. 
Adams had found one pattern for order 3. 
Are there other arrangements of the 19 
integers (not counting rotations arld reflec- 
tions) that are magic? Trigg's negative 
answer was obtained by combi~ling brute 
force (he used a ream and a half of sheets 
on which the cell pattern had been re- 
produced six times) with clever short cuts. 
Ilis result was later verified by numerous 
computer programs. (Trigg explained his 
proof, and discussed curious properties 
of the hexagon, in "A Unique hlagic Hexa- 
gon," Recrentioizul Alathei7zc~tics .2lugazirze, 
January, 1963.) 

As an elementary exercise the reader 
is invited to see if he can rearrange the 
19 digits in Adams' hexagon so that the 
pattern is magic in the following \%lay: each 
3-cell row adds to 22, each 4-cell row to 42, 
each 5-cell row to 62. hlagic hexagons of 
tlzis type have been explored before and 
there are large nunlbers of them. (The prob- 
lem is solved easily with the right insight. 
Hint: The new pattern can be obtained by 
applying the same siinple transformation 
to each number.) 

A pattern of integers arranged in a unique, 
elegant manner usually has many bizarre 

properties. Even the ancient Lo Sltu still 
harbors surprises. A few years ago Leo 
hloser of the University of Alberta dis- 
covered an amusing paradox that arises 
when the Lo Slzu is regarded as a chart 
of the relative strengths of nine chess 
players [see Figure 181. Let row A be a team 
of three chess experts with the playing 
strengths of 4, 9, and 2 respectively. Rows 
B and C are two other teams, with playing 
strengths as indicated. If teanls A and B 
play a round-robin tournament, in which 
every player of one team plays once against 
every player of the other team, team B 
will win five games and team A will win 
four. Clearly team B is stronger than A. 
\17hen team B plays teain C, C wins five 
garnes and loses four, so that C is o1)viously 
stronger than B. \f71lat happens when C, the 

18. The Lo Shu, ancient Chinese magic square 



Combinatorial Theory 

strongest team, plays A, the weakest? Work 
it out yourself. Team A is the winner by 
five to four! Which, then, is the strongest 
team? The paradox brings out the weak- 
ness of round-robin play in deciding the 
relative strengths of teams. Moser has 
analyzed many paradoxes of this sort, of 
which this is one of the simplest. The para- 
dox also holds if teams A, B, and C are the 
columns of the Lo Shu instead of the rows. 

Similar paradoxes, Moser points out, 
arise in voting. For example, assume that 
one person's preference for three candi- 
dates is in the order A, B, C. A second per- 
son prefers B, C, A and a third prefers C, 
A, B. It is easy to see that a majority of the 
three voters prefers A to B, a majority pre- 
fers B to C, and (confusingly) a majority 
also prefers C to A !  This simple paradox 
was apparently first discussed in 1785 by 
the French mathematician, the Marquis de 
Cordorcet, and first rediscovered by Lewis 
Carroll who published several remarkable 

on voting procedures. The para- 
dox was independently rediscovered later 
by many others. (For a history of the para- 
dox, and a listing of important recent works 
in which its implications for group decision 
theory are analyzed, see "Voting and the 
Summation of Preferences," by William 
H. Riker, The Arnericun Political Science 
Review, December, 1961. On the applica- 
tion of the ~aradox  to the scores of corn- 
peting teams, see "A Paradox in the Scoring 
of Competing Teams," by E. V. Huntington, 
Science, Vol. 88, 1938, pages 287-288.) 

The arrangement of elements in square 
and rectangular matrices provides a large 

portion of modern cornbinatorial problems, 
many of which have found useful applica- 
tions in the field of experimental design. In 
Latin squares the elements are so arranged 
that an element of one type appears no 
more than once in each row and column. 
Here is a pretty combinatorial problem 
along such lines that is not difficult but 
conceals a tricky twist that may escape 
many readers: 

Suppose you have on hand an unlimited 
supply of postage stamps with values of 
one, two, three, four, and five cents (that 
is, an unlimited supply of each value). You 
wish to arrange as many stamps as possible 
on a four-by-four square matrix so that no 
two stamps of the same value will be in the 
same row, column, or any diagonal (not 
just the two main diagonals). In other 
words, if you place a chess queen on any 
stamp in the square and make a single 
move in any direction, the queen's path 
will not touch two stamps of like value. 
There is one further proviso: the total value 
of the stamps in the square must be as large 
as possible. What is the maximum? No cell 
may contain more than one stamp, but one 
or more cells may, if you wish, remain 
empty. 

Addendum 

After my publication of the magic hexagon, 
John R. A. Cooper called my attention to a 
prior publication without commentary by 
Tom Vickers in The hrlutlzernuticul Gazette, 
December, 1958, page 291. So far as I know, 
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this Lvas the first appearance of the hexa- 
gon in print. Karl Fabel sent me a letter 
he had received from hlartin Kiihl, of Han- 
over, Germany, showing that Kiihl, too, had 
independently discovered the hexagon 
(about 1940) but had not published it. 

A feature story by Karl Abraham on 
Clifford \T7. hdams' discovery of the pat- 
tern appeared in the Philadelphia Evening 
Rulletirl, July 19, 1963, page 18; a follow-up 
story giving the solution (which readers 
had been asked to find) appeared in the 
July 30 issue. 

Answers 

The combinatorial questio~ls are answered 
as follows: 

Four socks guarantee a n ~ a t c h i ~ ~ g  pair. 
A dollar can be changed in 202 distinct 

ways. For a full solution, using recursive 
computation, see the last two pages of 
George Polya's HOZC to S u l ~ e  I t ;  Second 
edition; New York: Doubleday, 1957. 

A strip of five stamps, blank on both 
sides, can be folded in 14 distinct ways 
[see Figure 191. (If the stamps are printed 
on one side, you might think the number of 
ways would double, but it increases only 
to 25. Why?) 

The problern of finding a formula for 11 

stamps remains unsolved, but recursive 
procedures by which the number of differ- 

19. Answer to the stamp-folding problem 
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ent folds can be calculated easily with 
computers have been developed. This prob- 
lem was first posed by S. M. Ulam. In 1961 
Mark B. Wells, using a computer at Los 
Alamos Scientific Laboratory, found the 
number of distinct foldings for six, seven, 
eight, and nine stamps to be 38, 120, 353, 
and 1,148 respectively. More recent re- 
sults will be found in "A Map-folding 
Problem," by W. F. Lunnon, in Mathe- 
matics of' Computat ion,  January, 1968; 
and in "Folding a Strip of Stamps," by 
John E. Koehler, in Journal of Comhinato- 
rial Theory, September, 1968. The problern 
of finding a nonrecursive formula is more 
difficult, and also unsolved, if one asks for 
different ways of folding square sheets into 
a packet of unit squares. 

To change the magic hexagon to a hexa- 
gon with 22 as the sum of each three-cell 
row, 42 as the sum of each four-cell row, 
and 62 as the sum of each five-cell row, 
replace the number in each cell with the 
difference between that number and 20. 

The problem of placing stamps with 
values of one, two, three, four, and five 
cents in a four-by-four square, with no two 
stamps of the same value in any row, col- 
umn, or diagonal (including the smaller 
diagonals), can be answered with a maxi- 
mum value of SO cents [see Figure 20, which 
shows one of many  solutions].  This is 
probably two cents more than most readers 
were able to achieve if they used four 
fours and left two cells empty. The trick is 
to use only three four-cent stamps. "The 
reader will probably find, when he sees 
the solution," wrote Heriry Dudeney in 

20. A solution to the stamp-placing problem 

Anluseme~lts  in Matllei?zatics (Problem 308), 
"that, like the stamps themselves, he is 
licked." 

Donald E. Knuth found that Dudeney's 
solution could be enlarged to a remarkable 
five-by-five square, satisfying all the con- 
ditions and giving the maxinlum total value 
of 75 cents. Simply add a top row of 2, 1, 
4, 3,  5, and a right border (reading down- 
ward) of 5, 1, 3, 2, 4. Each value appears 
five times in the square. This is equivalent 
to the problern of superin~posing five solu- 
tions to the problem of the non-attacking 
queens on the order-fj board. (See Chapter 
16 of my Unexpected Hanging; New York: 
Simon and Schuster, 1969.) 
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4. Bouncing Balls in 
Polygons and Polyhedrons 

THROUGHOUT recorded history the bounc- 
ing ball has been indispensable equip- 
ment for a dazzling variety of indoor and 
outdoor sports. Games exploiting it range 
from the child's simple bouncing of a rub- 

- ber ball ("One, two, three O'Lary . . .") to 
sports such as tennis, handball, and bil- 
liards in which the ability to judge angles 
of incidence and reflection is essential to 
a player's skill. 

The balls 
shine round and clear, quick blobs 
of color on faultless Felds, 
where rapid vengeance rolls 
and clicks, returns 
or poorly judged, deflects 
to pass and spend i tselfin motion 
rebounding gingerly from cushions . . . 

Herman Spector, 
"B.A. (Billiard Academy)" 

Mathematicians and physicists are no- 
toriously fond of pool and billiards. I t  is 
easy to understand why. The gingerly re- 

bounds within faultless fields can be pre- 
cisely calculated. Lewis Carroll, who taught 
mathematics at the University of Oxford, 
enjoyed playing billiards, particularly on 
a circular table he  had made for himself. 
A much prized collector's item is the first 
edition of a two-page leaflet, published by 
Carroll in 1890 and never reprinted, that 
explains his rules for this game. 

Hundreds of recreational problems con- 
cern the rebounds of elastic balls within 
perimeters of various shapes. Consider, 
for example, the following old puzzle: 
You have two vessels with respective ca- 
pacities of 7 and 11 pints. Beside you is a 
large tub of water. Using only the two ves- 
sels (and excluding all dodges such as mark- 
ing the containers or tilting them to obtain 
fractional amounts), how can you measure 
exactly two pints? 

The question can be answered by trial 
and error or by applying variou: algebraic 
procedures. What has all this to do with 
bouncing balls? Surprisingly, liquid-mea- 
suring puzzles of this type can be solved 
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easily by graphing the paths of balls bounc- 
ing inside rllotnl?oidal tables! (The method, 
using what topologists call a "directed 
graph," was first explained hy hl.  C. K. 
Tweedie in The Alatlzemuticcrl Gazette of 
July, 1930.) The cushions of such tables 
are best drawn on isometric graph paper: 
paper with a lattice of equilateral triangles. 
In this case the sides of the table are 7 and 
11 units [see Figure 811. Readings on the 
horizontal axis represent the amount of 
water in tlle 11-pint vessel at any time and 

readings on tlle vertical axis tell how much 
water is in the 7-pint vessel. 

To use the graph, imagine a ball at point 
0 in the lower left corner. It travels to the 
right along the base of the rhomboid until 
it strikes the right-hand cushion at a point 
labeled 11 on the base line: the 11-pint 
vessel has been filled and the 7-pint con- 
tainer remains empty. After bouncing off 
the right-hand cushion the ball travels up 
and to the left until it hits the top cushion 
at point 4 on the horizontal co-ordinate 



22. Graph of Tartaglia's puzzle 

and on the seventh line on the side co- 
ordinate. This plot indicates that 7 pints 
have been transferred from the 11-vessel 
to the 7-vessel, leaving 4 pints in the 
larger vessel. 

If you continue to follow the bouncing 
ball until it strikes a point marked 2, keep- 
ing a record of each step, you will obtain the 
18-step answer shown below the graph. 
Slanting arrows indicate that water is poured 
from one vessel into another. The vertical 
arrows show either that the 7-vessel is being 
emptied into the tub or that the 11-vessel is 
being filled. 

Is this the shortest answer? No; an alter- 
native procedure is to begin by filling the 
7-vessel. This is graphed by starting the ball 
at the O point and rolling it u p  along the 
table's left side. If the reader traces the 
ball's ~ a t h  until it strikes a 2 point, keeping 
a record of the steps, he will find that his 

ball computer bounces out a solution in 14 
steps -the minimum. 

LVith a little ingenuity one can devise 
ball-bounce computers for any liquid-pour- 
i i ~ g  puzzle in which no more than three 
vessels are involved. Consider the oldest of 
all three-vessel problems, which goes back 
to Nicola Fontana, the sixteenth-century 
Italian mathematician who called himself 
Tartaglia ("The Stammerer"). A11 eight-pint 
vessel is filled with water. By means of two 
empty vessels that hold five and three pints 
respectively, divide the eight pints evenly 
between the two larger vessels. The graph 
for this problem is shown in Figure 22. Here 
the eight-pint vessel is represented by a line 
paralleling a main diagonal of the rhomboid. 
The ball begins as before in the 0 corner. It 
is easy to trace a path that computes the 
minimum solution, which requires seven 
operations. 



23. Graph for vessels 
of volumes 7, 9, and 12 

\Vllen the two smaller vessels have no 
common divisor and the thircl vessel is 
equal to or greater than the sum of the 
smaller vessels, it is possible to measure 
out any whole rlu~llber from 1 to the capac- 
ity of the middle-sized vessel. For example, 
with vessels of 1 5 ,  16-, and 31-pint capac- 
ities one can measure any quantity from 1 to 
16. This is not possible if the two smaller 
vessels have a comnlon divisor. A graph for 
vessels of 4 ,6 ,  10 will not bounce the ball to 
any odd number, and vessels of 3 ,9 ,  12 will 
measure only the quantities 3, 6, 9. (In both 
cases only nlultiples of the coinrnon divisor 
can be measured.) If the largest vessel is 
smoller than the sum of the other two, there 
are further limitations. For example, vessels 
of 7,9,  12 require that a corner of the rhom- 
boidal graph be sliced off [see Figure 231. 
The bouncing ball will measure any quan- 

tity from 1 to 9 except 6.  ,Altholigll 7 and 9 
have no  common divisor, the smallness of 
the third vessel makes it impossible to 
ol~tain 6. 

When the largest vessel is larger than the 
sun1 of the other two, the graph continues 
to be applicable. The reader may enjoy 
applying it to the followirlg variation of 
Tartaglia's problem, as posed by Sam Loyd 
on page 304 of his fanlous Cyclo),edicl of 
Puzzles. (This is one of the puzzles for 
which the Cyclopedic1 fails to furnish an 
answer, a fact that may explain why the puz- 
zle has never been reprinted.) 

Some U.S. soldiers nlanaged to "capture" 
a 10-gallon keg of beer. "They naturally 
sampled a part of it," writes Loyd, making 
use of 3-gallon and 5-gallon containers. The 
rest of the beer was carried back to camp in 
three equal portions-one in the keg and 



the other two in the two containers. How 
much did they drink and how did they mea- 
sure the remainder into three equal (non- 
zero) parts? The best solution is the one 
with the fewest steps for the entire pro- 
cedure. Each step, including the drinking 
operation, involves an integral number of 
gallons, and it is assumed that no beer is 
wasted by being tossed out. 

You lnay find it entertaining to experi- 
ment with vessels of various sizes, using the 
ball computer to explore all that can be 
done with them. For more information 
about the technique, including its exten- 
sion to four vessels by means of tetrahedral 
graphs, the interested reader is referred to 
the book by T. H. O'Beirne listed at the 
close of this chapter. 

A different type of ball-bouncing prob- 
lem is that of finding cyclic paths along 
which a ball can bounce forever inside a 
polygon, always tracing the same path and 
hitting each side only once in each cycle. 
Such problems can be solved by using the 
powerful technique of mirror reflection. ,4 
table in the shape of a square provides a 
simple example. Figure 24 shows a square 
reflected along three different sides, and the 
colored line is its only cyclic path with seg- 
ments of equal length. Folding the four 
squares into a unit-square packet trans- 
forms the straight line into the cyclic path. 

At this point two interesting questions 
arise. Are there cyclic paths with equal seg- 
ments inside the solid analogues of the 
square and equilateral triangle: the cube 
and tetrahedron? The ball is assunled to be 
an idealized elastic particle (or a light ray 

24. Equal-segment path in a square 

inside a solid with interior mirror surfaces), 
taking straight paths in zero gravity and 
bouncing off the sides in the usual manner: 
with equal angles of incidence and reflec- 
tion on a plane perpendicular to the side 
against which it bounces. The ball nlust 
strike each face only once during the cycle 
and travel the same distance between each 
consecutive pair of bounces. (Striking an 
edge or corner is not regarded as striking 
the faces meeting at that edge or corner; 
otherwise the cube problem would be 
solved by a ball moving back and forth be- 
tween two diagonally opposite corners.) 

Warren Weaver, in one of his many arti- 
cles on Lewis Carroll, has disclosed that the 
cube problem is found among Carroll's un- . 
published and mathematical notes. It is the 



25. Solution to Lewis Carroll's 
cube-and-ball problem 

sort of problem that would appeal to the 
inventor of circular billiards. Actually the 
notion of playing billiards inside a cubical 
"table" is not as farfetched as it might seem. 
With gigantic space stations perhaps only a 
few decades away it takes no great prophetic 
ability to foresee a variety of three-dimen- 
sional sports that will take advantage of 
zero gravity. Pool adapts neatly to a rectan- 
gular room with cushion walls, floor and 
ceiling, corner pockets, and balls numbered 
from 1 to 35 that are initially arranged in 
tetrahedral formation. Of course, there 

would be difficulties. Air resistance offers 
much less friction than the felt surface of a 
pool table does. If the tetrahedron were 
broken by a fast cue ball, entropy would 
increase at a rapid rate. It would be hard to 
keep out of the way of balls flying about in 
random directions like the molecules of a 
gas in thermal equilibrium! 

But back to Carroll's problem. The reflec- 
tion technique used with squares can be 
applied to cubes. Five reflections are re- 
quired and the colored line in Figure 25 
traces the desired path. It is one of four 
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different paths, identical in shape, that 
solve the problem. (If all six faces of the 
cube are ruled into nine smaller squares, 
each path touches every face at one corner 
of the central square.) Figure 26 shows a 
cardboard model that demonstrates the 
path after the six cubes have been "folded" 
into one another. The cord is held in place 
by passing loops through small holes and 
securing them on the outside with pegs 
made of wood. If you think of the cube as 
being formed of 27 smaller cubes, you will 
see that every segment of the path is a diag- 
onal of a small cube. Each segment there- 
fore has a length of 1/* on a unit cube. The 
path's total length is 2 s .  

26. Model showing path inside a cube 

As far as I know, Hugo Steinhaus was the 
first to find this path. (See his One Hun- 
dred Problems in Elementary Mathematics; 
New York: Basic Books, 1964, Problem 33. 
The book is a translation of the 1958 Polish 
edition.) The solution was later redis- 
covered by Roger Hayward, who published 
it in Recreational Mathematics Magazine, 
June, 1962. The shape of the path, he writes, 
is known to organic chemists as a "chair- 
shaped hexagon." It occurs often in car- 
bon compounds, such as cyclohexane, in 
which six carbon atoms are single-bonded 
in a ring with other atoms attached outside 
the ring. "It is interesting to note," writes 
B. M. Oliver of the Hewlett-Packard Com- 
pany in Palo Alto, California, "that the path 
appears as a 1 X 2 rectangle in all projec- 
tions of the cube taken perpendicular to a 
face, as a rhombus in three of the isometric 
projections taken parallel to a diagonal of 
the cube, and as a regular hexagon in the 
fourth isometric view. A queer figure, but 
that's the way the ball bounces!" 

A similar cyclic path inside a tetrahedron 
was discovered by John H. Conway and 
later, independently, by Hayward in 1962. 
It is easy to reflect a tetrahedron three times 
[see Figure 271 and find a cyclic path that 
touches each side once. The difficult trick 
is to find a cyclic path with equal segments. 
One is shown by the colored line. There are 
three such paths, all alike, touching each 
face of the solid at one corner of a small 
equilateral triangle in the center of the face. 
The side of this small triangle is a tenth of 
the edge of a tetrahedron with an edge of 1. 
Each segment of the ball's path has a length 



28. Acetate model of a path in the tetrahedron 

27. Solution to the problem of a ball 
in the tetrahedron 

of m110,  or .31622777+, giving the path a 
total length of 1.264W. 

Hayward made a handsome acetate model 
in which nylon thread traces the path of the 
bouncing ball (or light ray) after the four 
tetrahedrons have been "folded" together 
[see Figure 281. He cut the sides fro111 sheets 
of acetate and celneilted them along their 
edges after drilling four small holes at the 
proper points. Before cementing the last 
side he looped the thread through the holes 
of three faces and held it with pieces of tape 
on the outside. The two free ends were 
drawn through the hole in the fourth face, 
which was then cemented to the other 

three. After tightening the thread by pull- 
ing on the loops he sealed each hole with a 
drop of acetone mixed with Duco l~ousel~old 
cemei~t and trimmed the outside loops and 
ends. A similar acetate model call be made 
of the cube. In both models threads of dif- 
ferent colors can be used to show all possible 
paths. 

Addendum 

G. de Josselin de Jong of Holland gener- 
alized Lewis Carroll's ball-in-cube problem 
to hypercubes of all higher dimensions. He 
wrote out his analysis for me in 1963 and I 
do not know if he has since published it. 
The length of the ball's path is given by the 
simple formula 2 fi, where n is the number 
of dimensions. Therefore, the ball's path 
inside a unit four-space hypercube has a 
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length of exactly four units. In all higher 
spaces the path is unique except, of course. 
for rotations and reflections. 

Answer 

Given a ten-gallon keg filled with beer and 
two vessels of three-gallon and five-gallon 
capacity, how can one (in the minimum 
number of operations) drink a quantity of 
beer and leave equal (nonzero) amounts in 
each of the three vessels? Since the vessels 
measure only integral amounts, the beer to 
be divided into thirds rnust be a multiple of 

three: three, six or nine gallons. The first 
two amounts can be eliminated tjecause in 
both cases a third of the amount i5 less than 
the capacity of each vessel. (After any pour- 
ing operation at least one vessel must be 
either einpty or full. Neither situation 
would obtain if each vessel contained less 
than its capacity.) We conclude, therefore, 
that one gallon nlust be drunk, leaving nine 
to be divided into thirds. 

The ball-bouncing computer traces a min- 
imum path that measures one gallon [see 
Figure  291. After the gallon (in the three- 
gallon vessel) is drunk, four gallons remain 

29. Solution to Sam Loyd's problem 

1G-GALLOR KEG 

t CALLCN VESSEL 

3-GALLCN VESSEL 

10 GALLOR KEG 

5 GALLCN VESSEL 

3 GALLCN VESSEL 

1C GALLON KEG 

5 GALLOIK VESSEL 

3 GALLPh VESSEL 
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in the ten-gallon keg, five in the five-gallon 
vessel. The three-gallon vessel is empty. 
This new situation is diagramed as shown in 
the lower graph. The ball nlust now reach a 
point that marks three gallons in each con- 
tainer. The minimum path is shown in color, 
\vith two alternative steps in a lighter shade. 
Counting the drinking of the gallon as an 
" 

operation," the coillplete solution involves 
nine operations, which are show11 below the 
two graphs. 
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Four Unusual Board Games 

DURING the 1960's there was a remarkable 
upsurge of interest in mathematical 1,oard 
garnes. Today more people than ever before 
are playing the traditional games such as 
chess and experimenting with the new 
games that keep turning up in the stores. 
More mathematicians are analyzing the 
strategies of such games and more com- 
puters are being programed to play them. In 
this chapter we examine four excellent but 
little-known board games, two new and two 
old. Their playing fields can easily be 
drawrr or1 paper or cardboard, the rules of 
play are quite simple and everyone in the 
family will find the contests great fun. 

The Military Game, as it is called in 
France, is a splendid example of a two- 
player game that combines extreme sim- 
plicity with extraordinary strategic sub- 
tlety. According to ~ d o u a r d  I,ucas, who 
describes the game in Volume I11 (pages 
105-116) of his celebrated Rbcre'atio~~s 
Math6nlcltiyue,s, the game was popular in 
French military circles during and after the 
Franco-Prussian War of 1870-1871. It is a 

pity that it has since been so completely 
forgotten; not one of the standard histories 
of 1)oarcl garnes even mentions it. 

The board for the hlilitary Ganle is shown 
in Figure 30 wit11 the positions labeled to 
facilitate description. One player-we will 
call him White-has tllree inen that are 
initially placed on the colored spots. A, 1, 
ancl 3. Black, his opponent, has only one 
man, which he places on spot $5 in the cell- 
ter. (Chess pawns can 11e used for men, or 
three pennies and a nickel.) White moves 
first and the game proceeds with alternate 
turns. Black may move in any direction 
along a line from one spot to u neig11l)oring 
spot. White moves similarly, but only left, 
right or forward (straight ahead or diago- 
nally), never 1,ackward. There are no cap- 
tures. White wins if he can pin Black's 
piece so that it cannot move. This usnally 
occurs with Black on spot I?, but it can also 
occur with Black on spot 4 or 6. Any other 
outcome is a win for Black. IIe wins if he 
slips behind "enemy lines," making it im- 
possible for White to pill him, or if a situa- 



30. The French Military Game 

tion develops in which the same n-roves are 
endlessly repeated. 

The game is as simple to learn as ticktack- 
toe, but it is more exciting to play and more 
difficult to analyze. Lucas is able to show 
that White, if he plays rationally, can always 
win, but there is no simple strategy and the 
game abounds in traps and surprises. Often 
the best move is the move that seems to be 
the worst. An experienced Black has little 

difficulty escaping from an inexperienced 
'Il'hite. 

Suppose we increase Black's freedom by 
permitting him to place his piece, at the 
start of the game, on crnlj spot he chooses? 
'I77ho now wills if both sides play rationally? 

Topological board games, on which play- 
ers construct paths that twist allout over the 
field, are recent developments. Hex, Bridg- 
it, Zig-Zag, Roadblock, Pathfinder, Squirt, 
Twixt: these are trade names of some of the 
games of this type that have been marketed 
during the past thirty years. In 1960 Wil- 
liam L. Black, then an undergraduate at the 
hlassachusetts Institute of Technology, 
made a study of Hex and Bridg-it, two games 
discussed in earlier collections of my col- 
umns. An outcome of this study was a novel 
topological game his friends called Black. 

Although marked tiles can be used, Black 
is easily played as a pencil-and-paper game 
on a checkered field. The size of the field is 
optional; the standard eight-by-eight field 
seems ideal, but it is simpler to explain the 
game on the smaller four-by-four. After the 
field is drawn the first player starts the game 
by making a cross in the upper left corner 
cell as shown in Figure 31. The second 
player continues the path by making one of 
three permissible marks in a cell adjacent 
to the first cell marked. The three marks, 
shown at the hottorn of the illustration, are 
each composed of two lines. One line repre- 
sents one of the three ways in which the 
path can be joined to an open side of the 
square; the second is added to connect the 
remaining two sides. 

The players alternate moves. Each move 
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31. William L. Black's game 
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must extend the path into a neighboring 
cell. Each player tries to avoid running the 
path to a border of the field. If he is forced 
to carry the path to the border, he loses the 
game. He wins if he succeeds in extending 
the path into (not just to the border of) the 
lower right corner cell [shou~rz shaded]. The 
illustration shows successive moves of a 
typical short game. The first player wins by 
forcing his opponent to play in the upper 
right corner cell, where any mark will carry 
the path to the edge of the field. (Note that 
the cross extends the path only along one of 
its arms, although the other arm may be- 
come part of the path as the result of a later 
play.) 

The game of Black is of special interest 
because soon after it was conceived a friend 
of Black's, Elwyn R. Berlekamp, hit on an 
elegant strategy that guarantees a win for 
one of the players. The strategy applies to 
rectangular fields of any size or shape. 
Since knowledge of the strategy destroys 
all interest in actual play, I urge you to play 
the game and see if you can match Berle- 
kamp's brilliant insight before checking the 
answer section. 

One of the best of many medieval board 
games is a game that seems to have been 
first played in Scandinavian countries as 
early as the fourth and fifth centuries, when 
it was called ta8. In later centuries it was 
known as hnefitc~jl.  The Norsemen intro- 
duced the game to Britain, where it was the 
only board game played by the early Saxons 
until it begail to be replaced by chess in the 
eleventh and twelfth centuries. H. J .  R. 
Xlurray, in his History of Board-Games 

Other than Chess, gives reasons for think- 
ing that this is essentially the same game 
that was still being played in the sixteenth 
century in Wales, under the name of tnwl- 
bwrdd, and in the eighteenth century in 
Lapland, where it was known as tablut. 

It was hlurray who discovered that the 
great Swedish botanist Carolus Linnaeus 
included a full description of tablut in an 
extensive diary he kept during his explora- 
tion of Lapland in 1732. An English transla- 
tion of the diary, by Sir James Edward 
Smith, was published in London in 1811 
with the title Lachesis Lapponica: or a 
Tour of L u p l a ~ ~ d .  Figure 32 is a reproduc- 
tion of the tablut board as it is shown on 
page 55 of Volume I1 of that edition. 

32. The game of tablut 



White pieces, representing light-haired 
Swedes, include a single king and 8 war- 
riors. Black pieces, 16 in number, represent 
Xluscovite warriors. (It is convenient to use 
a white chess king and 8 white pawns for 
the Swedes. Black chessmen can be used 
for the Xluscovites, but all must be regarded 
as identical pieces.) Each black and white 
piece, including the king, moves like a rook 
in chess, that is, an unlimited distance 
along vacant cells in a straight line paral- 
leling a side of the board. 

The game begins with the Swedish king 
occupying the center square, which is 
known as the castle. Only the king is per- 
mitted to stand in the castle, although any 
piece may move through it when it is vacant. 
Surrounding the king, on the 8 shaded 
squares, are his eight warriors. The h~lusco- 
vites occupy the 16 decorated squares at the 
four sides of the board. 

Either player may open the game. Enemy 
pieces are captured by a pincer move that 
consists of occupying adjacent cells on op- 
posite sides of a piece, the three pieces 
being in the same row or column. For ex- 
ample, if Black makes the indicated move, 
he captures the three white pieces simul- 
taneously [see Figure 33, top drawing].  If 
a piece moves between two enemy pieces, 
however, it is not captured by them. The 
king may take part in capturing enemy 
pieces, but he himself is captured only if he 
is surrounded on all four sides by four 
enemy pieces or by three enemy pieces and 
the castle square [midd le  drawing];  he can- 
not move from his castle into such a forma- 
tion without being captured. 

CASTLE S Q J A R E  
-1- 

33. Methods of capture in tablut 

Linnaeus adds that when the king is in his 
castle, with three enemy warriors on three 
sides, and one of his own men on the fourth 
side, the Swedish warrior is taken if a Xlus- 
covite moves to the cell next to the Swede 
on the side opposite the king [bottom drazc- 
ing]  . 

Black's objective is to capture the king. 



If this occurs, the Muscovites win. White's 
objective is to allow the king to flee the 
country by reaching any cell on the perim- 
eter of the board. Whenever there is an 
unobstructed path along a row or column by 
which the king can reach the border, White 
must warn Black by saying "Raichi!" (a 
remark similar in function to "Check!" in 
chess). If there are two escape paths, White 
calls out "Tuichu!" Of course "Tuichu!" 
announces a win for White because there is 34. Sidney Sackson,s game of Focus 
no way Black can block two escape routes 
with a single move. 

Sidney Sackson, a New York City engi- 
neer who makes a hobby of collecting board 
games, knows of only one occasion on been removed. Figure 34 shows how the 
which tablut has been made and sold in pieces (black and colored in this case) are 
this country. In 1863 it was issued as a arranged. 
Civil War game called Freedom's Contest, Either side may move first. A move con- 
or the Battle for the Union. This game is sists of moving a "pile" of pieces (at the out- 
identical with tablut except that the king set all piles are one chip high) as many 
is called the "Rebel chief' and the pieces spaces as there are pieces in the pile. Moves 
are Rebel and Union soldiers. The Rebel are vertical or horizontal, never diagonal. 
chief is limited to a maximum move of four The four possible moves of one colored 
spaces. The traditional game seems to favor piece at the start of a game are shown in 
White, so perhaps this restriction was in- Figure 34. If the piece moves up, it lands on 
tended to redress the balance. (Breakthru, a vacant square. A move to the right puts it 
Minnesota Mining and Manufacturing's on top of another colored piece, to the left 
Bookshelf Game currently on sale, is based or down puts it on top of a black piece. The 
on tablut.) last three moves form two-high piles. Such 

Sackson is himself the inventor of many piles may be moved two spaces in any direc- 
unusual board games, one of the best of tion. Piles of three, four, and five pieces 
which he calls Focus. It is played with 36 move three, four, and five spaces respec- 
counters, half of them one color and half tively. A pile is controlled by the player who 
another. Small poker chips of the interlock- owns the piece on top. In moving it does 
ing variety make excellent pieces. They are not matter whether the intervening cells 
placed initially on an eight-by-eight board are empty or occupied by piles controlled 
from which three cells at each corner have by either player. Passed-over pieces are not 
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affected in any way. A move may end on a 
vacant cell or on another pile. Figure 35 
shows the possible moves of a two-high pile. 

Piles may not contain more than five 
pieces. If a move produces- a pile of more 
than five, all pieces in excess of five are 
taken from the bottom of the stack. If they 
are enemy pieces, they are considered cap- 
tured and are removed from the game. If 
they belong to the player making the move, 
they are placed aside as reserves. At any 
time during the game a player may, if he 
wishes, take one of his reserve pieces and 
place it on any cell of the board, empty or 
otherwise. It has the same effect as a moved 
piece: if it goes on a pile, the pile belongs 
to the player who placed it. Using a reserve 
piece substitutes for a move on the board. 

A player may, if he wishes, make a move 
of fewer spaces than the number of pieces 
in the pile being moved. He does this by 
taking from the top of the pile as many 
pieces as the number of spaces he wishes 

35. Moves in the game of Focus 

to move. The rest of the pieces stay where 
they are. For example, a player may take 
the top three pieces of a five-high pile and 
move them three spaces. The pile that 
remains after such a move belongs to the 
player who owns the piece on top. 

When a player is unable to move (that is, 
controls no piles and has no reserves), the 
game is over and his opponent wins. 

One additional rule is needed. As Paul 
Yearout, a mathematician at Brigham Young 
University, pointed out, the second player 
can always achieve at least a draw by sym- 
metry play; that is, after each move by the 
first player, he duplicates the move by a 
symmetrically opposite play. To prevent 
this, Sackson suggests either of the follow- 
ing alternatives: (1) A draw is declared a 
win for the first player, (2) Before the game 
begins each player switches one of his 
pieces for one of his opponent's pieces (the 
second player must make an exchange that 
does not restore symmetry to the pattern) 
and the game then proceeds as described. 

Focus was marketed by Whitman Pub- 
lishing Company in 1965, the first of Sack- 
son's many marketed games. For a more de- 
tailed account of the game as well as 
suggestions for strategic play, see pages 
125-134 of Sackson's Gamut  of Games. 

Answers 

Which side wins the French Military Game 
if Black is given the privilege of starting his 
piece on any vacant cell? The question was 
first answered by the Dutch mathematician 
Frederik Schuh in his book Wonderlijke 



Problemen, published in Holland in 1943. 
White can always trap Black if he plays 
rationally. A complete analysis cannot be 
given here, but the following table shows 
White's winning responses to Black's six 
different opening plays. 

Black White 

2 A 3 5  
4 (or 6) A 1 5 (or A 3 5) 
5 1 2 3  
7 (or 9) A 1 5 (or A 3 5) 
8 A 1 5  
B 1 2 3  

For a complete analysis of the game see 
F. Gobel's translation of Schuh's book, The  
 master Book of Mathematical Recreations, 
edited by T. H. O'Beirne (New York: Dover, 
1968; pages 239-244). Schuh also analyzes 
variants of the game. For a good suggestion 
on how to program a computer to play the 
game see Donald E. Knuth's Fundamental 
Algorithms (New York: Addison-Wesley, 
1968; page 546). Richard Sites, a computer 
scientist at Stanford University, proved in 
1970 that White, regardless of where Black 
starts, can always trap Black on the board's 
B cell. 

The topological game of Black is won on 
square boards by the first player if the total 
number of cells is odd, by the second player 
if the number of cells is even. 

When the play is on an odd-celled board, 
say a five-by-five, the first player's strategy 
is to suppose the board, except for the lower 
right corner cell, is completely covered 
with dominoes [see Figure 361. The way the 

36. Strategy for five-by-five game of Black 

dominoes are placed is immaterial. Each 
move by the second player starts the path 
on a new domino. The first player then 
plays so that the path renzuirzs on that  
doinino. This forces the second player to 
complete the domino and start the path on 
another one. It is obvious that the second 
player eventually will be forced to the 
border or to an edge of the lower right cor- 
ner cell. 

On even-celled square boards the strategy 
by which the second player wins is more 
complicated. The board is thought of as 
being covered with dominoes except for the 
upper left and lower right corner cells. 

Since the two missing cells are the same 
color, however (supposing that the board is 
colored like a checkerboard), it is clearly 
impossible to cover the remaining cells 
completely with dominoes: there will 
always be two uncovered cells of the same 
color. Elwyn R. Berlekamp, who cracked 



37. Strategy for four-by-four game of Black 

the game, calls these two ulrcovcretl cells 
" 

a split domino." The  split cloinino is taker1 
care of by the follow~ing clever rrraneuver: 
T h e  second player makes his first rnove as 
show11 in Fig111.e 37, top tlrawir~g. This 
forces the  first 1)layer to play i i l  the secolrcl 
cell of the rrlaitl diagonal, ant1 his three 

plays are s1row11. Iil each case the 
unused line of his play will corrrlcct two 
cells of tlle same color. These two cells, 
l a l~e led  S in the  drawings, are regarded as 
the split dolnir~o. Tllr rclnaini~r g cc l l s  (cx- 
cllidilig the lower right corner cell) c an  irow 
1)e covered wit11 dorni~roes. Again, the pat- 
tern is :irl,itrary. T h e  second player. wills ljy 
the dolniiro ~netllotl  In-eviously cxl)li~irletl. 
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6. The Rigid Square and 
Eight Other Problems 

1. The Rigid Square 

Raphael hl .  Robinson, a mathematician at 
the University of California at Berkeley, is 
known throughout the world for his solu- 
tion of a fanlous ~nininlurrl problenl in set 
theory. In 1924 Stefan Baiiach and Alfred 
Tarski dumfounded their colleagues by 
showing that a solid ball call be cut into a 
finite nuniber of point sets that can then be 
rearranged (without altering their rigid 
shape) to make two solid balls each the same 
size as tlie original. The minimum nuniber 
of sets required for the "Banach-Tarski 
paradox" was not established until twenty 
years later: when Robinson canle up with an 
elegant proof that it was five. (Four are 
sufficierlt if one ileglects the single point 
i l l  tlie center of the hall!) 

Here, on a less significant but more recrea- 
tional level, is an unusual minima problem 
recently devised by Robinson for which tlie 
minimum is not yet known. Imagine that 
you have before you an unlilllited supply of 
rods all the same length. They can be con- 

nected only at their ends. A triangle formed 
11y joining three rods will be rigid but a 
four-rod square will not: it is easily dis- 
torted into other shapes \vitliout l~eildiiig or 
breaking a rod or detaching the ends. The 
siimplest way to brace the square so that it 
cannot be defornled is to attach eight more 

38. Bracing a square in three dimensions 
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rods [see Figure 381 to form the rigid skele- 
ton of a regular octahedron. 

Suppose, however, you are confirled to 
the plane. Is there a way to add rods to the 
square, joining them only at the encls, so 
that the square is made absolutely rigid? 
All rods must, of course, lie perfectly flat on 
the  lane. They may not go over or under 
one another or be bent or broken in any way. 
Tlie answer is: Yes, the square cull be nlade 
rigid. But what is the smallest nurnber of 
rocls required? 

2. A Penny Bet 

Bill, a student in mathematics, and his 
frierld John, arl English major, usually spun 
a coin 011 the bar to see who would pay for 
each round of beer. One evening Bill said: 
"Since I've won the last three spins, let me 
give you a break on the next one. You spin 
t z ~ o  pennies and I'll spin one. If you have 
more heads than I have, you win. If you 
don't, I win." 

"Gee, thanks," said John. 
On previous rounds, wl~en  one coin was 

spun, John's probability of winnillg was, of 
course, 112. \.'('hat are his chances under the 
new7 arrangement? 

3. Three-dimensional Maze 

Three-dimensional mazes are something of 
a rarity. Psychologists occasionally use them 
for testing ,ranirnal learning, and from time to 

time toy manufacturers market then1 as 
puzzles. two-level space maze through 
which one tried to roll a marble was sold in 
London in the 1890's; it is depicted in 
Pzlzzles Old clnd New by "Professor IIoff- 
mann" (London, 1893). Currently on sale in 
this country is a cube-shaped, four-level 
maze of a sirnilar type. Essentially it is a 
cube of transparent plastic divided by trans- 
parent partitions into 64 smaller cubes. By 
eliminating various sides of the small cubi- 
cal cells one can create a lal~yrinth through 
which a marble can roll. It is a simple maze, 
easily solved. 

Robert Abhott, author of the hook Ahhott's 
New Card Gnnle.s (New, York: Stein and 
Day, 1963), recently asked himself: How 
difficult can a four-by-follr-by-fo111- cubical 
space rnaze, constructed :ilong such lines, 
be made? The trickiest design he could 
achieve is shown in Figure 39. The reader 
is asked not to make a model but to see ho\v 
quickly he can run the maze without one. 

On each of the four levels shown at the 
left in the illustration, solid black lines 
represent side walls. Color indicates a floor; 
no color, no floor. Hence a sillall square cell 
surrounded 011 all sides by black lines and 
uncolored is a cubical colnpartinent closed 
on four sides but open at the bottoln. To 
determine if it is open or closed at the top it 
is necessary to check the correspoilding cell 
on the next level above. The top level (A) is 
of course completely covered by a ceiling. 

Think of diagranls A through I 1  as floor 
plans of the four-level cubical structure 
shown at the right in the illustration. First 
see if you can find a path that leads from the 



39. A three-dimensional maze 

entrance on the first level to the exit on the 
top level. Then see if you can deterlnine the 
shortest path from the entrance to the exit. 

4. Gold Links 

Lenox R. Lol~r, president of the hluseum of 
Science and Industry in Chicago, was kind 
enough to pass along the following decep- 
tively simple version of a type of combina- 
torial prot)lern that turns up in many fields 
of applied mathematics. A traveler finds 
himself in a strange town without funds; he 
expects a large check to arrive in a few 
weeks. His most valu;~ble possession is a 

gold watch chain of 23 links. To pay for a 
room he arranges with a landlady to give 
her as collateral one link a day for 23 days. 

Naturally the traveler wants to damage 
his watch chain as little as possible. Instead 
of giving the landlady a separate link each 
day he can give her one link the first day, 
then on the second day take back the link 
and give her a chain of two links. On the 
third day he can give her the single link 
again and on the fourth take back all she has 
and give her a chain of four links. All that 
matters is that each day she must be in pos- 
session of a number of links that corresponds 
to the number of days. 
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The traveler soon realizes that this can 
be accomplished by cutting the chain in 
many different ways. The problem is: What 
is the smallest number of links the traveler 
needs to cut in order to carry out his agree- 
ment for the full 23 days? More advanced 
mathematicians may wish to obtain a gen- 
eral formula for the longest chain that can 
be used in this manner after n cuts are made 
at the optimum places. 

5. Word Squares 

Word puzzlists have long been fascinated 
by a type of puzzle called the word square. 
The best way to explain this is to provide an 
example: 

M E R G E R S  

E T E R N A L  

R E G A T T A  

G R A V I T Y  

E N T I T L E  

R A T T L E R  

S L A Y E R S  

Note that each word in the above order-7 
square appears both horizontally and ver- 
tically. The higher the order, the more diffi- 
cult it is to devise such squares. Word square 
experts have succeeded in forming many 
elegant order-9 squares, but no order-10 
squares have been constructed in English 
without the use of unusual double words 
such as Pango-Pango. 

Charles Babbage, the nineteenth-century 
pioneer in the design of computers, ex- 
plains how to form word squares in his 
autobiography, Passages from the  Life o f  a 
Philosopher, and adds: "The various ranks 
of the church are easily squared; but it is 
stated, I know not on what authority, that 
no one has succeeded in squaring a bishop." 
Readers of Eureka, a mathematics journal 
published by students at the University of 
Cambridge, had no difficulty squaring 
bishop when they were told of Babbage's 
remarks. The square shown below (from the 
magazine's October 1961 issue) was one of 
many good solutions received: 

B I S H O P  

l L L U M E  

S L I D E S  

H U D D L E  

O M E L E T  

P E S E T A  

As far as I know, no one has yet suc- 
ceeded - perhaps even attempted - to 
square the word "circle." Only words found 
in an unabridged English dictionary may be 
used. The more familiar the words, the more 
praiseworthy the square. 

6. The Three Watch Hands 

Assume an idealized, perfectly running 
watch with a sweep second hand. At noon 
all three hands point to exactly the same 



Mathematical Games 

spot on the dial. \Yhat is the next time at 
which the three hands \vill be in line again, 
all pointing in the same direction? The 
answer is: \lidnight. 

The first part of this problem-much the 
easiest-is to prove that the three hands are 
together only when they point straight up. 
The second part, calling for more ingenuity, 
is to find the exact time or times, between 
noo~l  and midnight, when the three harlcls 
come closest to pointing in the same direc- 
tion. "Closest" is defined as follows: two 
hands point to the same spot on the dial, 
with the third hand a minimum distance 
away. When does this occur? How far away 
is the third hand? 

It is asslimed (as is custonlary in prob- 
lerns of this type) that all three hands nlove 
at a steady rate, so that time can be regis- 
terecl to any desired degree of accuracy. 

7. Three Cryptarithms 

Of the three remarkable cryptarithrns in 
Figure 40 the first [ top]  is easy, the secorlcl 
[rrliddle] is moderately hard, and the third 
[hottonl] is so difficult that I do not expect 
a n y  reader to solve it without the use of 
a computer. 

Problern 1: Each dot represents one of 
the ten digits fro111 O to 9 inclusive. Sonle 
digits nlay appear more than once, others 
not at all. As you car1 see, a two-digit num- 
ber multiplied by a two-digit number yields 
a four-digit product, to which is added a 
three-digit number starting with 1. Replace 

e . . . .  

40. Three cryptarithms 
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each dot with the proper digit. The  solution 
is unique. 

Problem 2: As in the first cryptarithm, a 
nlultiplication is follo\ved by an addition. 
In this case, however, each dot is a digit 
froill 1 to 9 inclusive (110 0) and each digit 
appears once. Tlle answer is unique. 

Problem 3: Each dot in this multiplica- 
tion problen~ stands for a digit froin 0 to 9 
inclusive. Each digit appears exactly tztiice. 
Again, the answer is unique. 

8. Maximizing Chess Moves 

When the eight chess pieces of one color 
(pawns excluded) are placed alone on the 
board in the standard starting position, $51 
different moves can be made. Rooks and 
bishops can each make 7 different rnoves, 
knights and the king can each make 3, the 
queen can rnake 14. By changing the posi- 
tions of the pieces it is easy to increase the 
number of possible rnoves. What is the 
maximum? In othcr worcls, how can the 

eight pieces of one color 11e placed on an 
einpty board in such a way that the largest 
possible number of different moves can be 
made 2 

The two bishops should be  placecl 011 

opposite color squares to conform with 
standard chess practice, and the move of 
castling is not considered. Actually neitller 
qualification is necessary because in both 
cases a violation would onl>. restrict the 
freeclom of pieces to move. 

9. Folding a Mobius Strip 

Stephen Barr's method of folding a hliibius 
strip from a square sheet of paper was ex- 
plained in chapter 2. The  square [ c l t  le,ft i l l  

Figure 411 is simply folded in half twice 
along the dotted lines, then edge B is taped 
to R' .  The result is a band with a half-twist, 
one-sided ancl one-edged; it is a legitimate 
nlodel of a hliibius surface even though it 
cannot be  opened out for easy inspection. 

Suppose instead of a square we use a 
paper rectangle t\vice as long as it is high 
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[ c ~ t  right in  Figure 411. Is it possible to fold 
t l ~ i ~  into a 1Iiibius surface that joins B to R'?  
One can fold or twist the paper in any way, 
but of course it must not be tom. Assume 
that the paper can be made as thin as de- 
sired. The surface must be given a half- 
twist that allows the entire length of edge 
B to be joined to the entire length of edge 
B'. It would not be difficult to make the strip 
by joining A to A ' ;  the problem is to find a 
way to do it by connecting the pair of longer 
edges. 

Once the reader has either found a way to 
do it or corlcluded that it is impossible, a 
more interesting question arises: What is 
the smallest value for A / B  that will allow a 
Lliibius strip to be folded by the joining of 
B to B ' ?  

Answers 42. Solutions to square-bracing problem 

Raphael 11. Robinson's best solution to his 
problem of bracing a square on the plane 
with the minimurn number of rods, all equal 
in leilgth to the square's side, calls for 31 
rods in aclditio~l to the 4 used for the square. 
Figure 42 shows two of several equally 
good patterns. 

This ans\ver was reduced to 25 rods [see 
Figure 431 hy 57 Sciertti.fic Antericcl~r read- 
ers. As I was recoveriilg from the shock of 
this elegant irnprovernent seven readers - 
C;. C .  Baker, Joseph H. Engel, Kenneth J.  
Fawcett, Kichard Jenney, Frederick R. 
Kling, Bernard hl.  Schwartz, and Glenwood 43. 25-rod solution for square-bracing 



44. 23-rod solution 

\J7einert- staggered me with the 23-rod 
solution shown in Figure 44. Later, about a 
dozen more readers sent the same solution. 
The rigidity of the structure beco~nes ap- 
parent when one realizes that points A, B, 
and C must be collinear. 

All solutions with fewer than 23 rods 
proved to be either nonrigid or geornetri- 
cally inexact. For example, many readers 
sent the pattern shown in Figure 45, top, 
which is not rigid, or the pattern shown at 
the bottom, which, although rigid, unfor- 
tunately includes line 4, a trifle longer than 
one unit. 

The problem obviously can be extended 
to other regular polygons. The hexagon is 
sirnply solved with internal braces (how 
many?), but the pentagoil is a tough one. 
T. H. O'Reirne managed to rigidify a regu- 
lar pentagon with 64 additional rods, but it 
is not known if this number is minimal. 45. TWO incorrect solutions to square-bracing 



Bill spins one penny, John two. John wins 
if he has more heads than Bill. A tabulation 
of the eight equally probable ways 3 coins 
can fall sho\vs that John wins in four cases 
and loses in four, so his chances of winning 
are 112, which is what they would be if a 
single coin were spun. His probability of 
winning reniains the same whenever he has 
one Inore coin than Bill. Thus if he has 51 
coins arid Bill has 50, each marl still has an 
equal chance of winning. This problen~ ap- 
peared in the Canadian magic magazine 
Ibidem; December, 1961, page 34; it was 
contri1)uted by "Ravelli," pen-name of 
chemist R o ~ ~ a l d  \17ohl. 

The silliplest pal>er-and-pencil way to 
solve Robert Abbott's three-dimensional 
maze is to place a spot in each cell and then 
draw lines fronl spot to spot to represent all 
open corridors. Since a maze involves oilly 
topological properties of the pattern, it does 
not matter how these lines twist and turn as 
long as they conl~ect the spots properly. 

The next step is to erase all blind-alley 
lines and all loops that do no more than take 
one from spot to spot in a roundabout way 
when a shorter path is available. Eve~ltually 
only the shortest route remains. This path 
is shown in Figure 46. Note that two loops 

46. Three-dimensional maze solution 
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near the top offer two different rolltes of 
equal length. Each of the long curved lines 
connecting the spots is, of course, only one 
unit in length in the actual maze, therefore 
the entire maze can be  run by a path 19 
units long. 

An alternate method of finding the short- 
est path in any type of maze is to make a 
inode1 of the network out of string. Each 
segment of string must have a length that is 
in the same proportion to the length of the 
corridor it represents, and it  nus st be  Isbeled 
in some way so that the corridor can be 
identified. After the model is completed, 
pick up the "start" of the network with one 
thumb and finger ancl the "end" of the net- 
work with the other t h u n ~ b  and finger. Pull 
t l ~ e  string taut. Koundabout loops and blind 
alleys hang loose. The taut portion of the 
model traces the path of minimum length! 

A third method is to label the starting cell 
with "1". Put "2" in all cells that can be  
reached in one step. Put "3" in all cells that 
call be reached in one step from each %cell. 
Continue in this manner, nuinhering every 
cell once. If you return to a cell already 
labeled, do not give it a larger number. 
After all cells are labeled, start at the final 
cell and move backward through the num- 
bered cells, taking them in reverse order, 
to trace out a minimal-length path. 

Tliere is now a large literature on these 
and other algorithms for finding shortest 
routes in rnazes or on graphs. Recent refer- 
ences follow; readers will find maily earlier 
articles on the topic listed in then?: 
"The Shortest Path through a hIaze." E. F. lloore. 

In Proccedillgs of'clil I i l t ~ r~ l c~ t i ona l  Scympo.ciun~ 

nit t1lc Theor;/ o f  Stcitchirlg, Part 11, April 
"-3, 1957. (Reprinted in L4~ii lc~/s  of the C O ~ I I ) ) I L -  
fatioil Lnbortrfory of' Harccrrcl 17triccrsit!l, 
\'ol. 30, 19.59. Pages 28.5-293.) 

"An Algorithm for Path Connections ancl Its 
i\pplications." C. Y. Lee. I .  R .  E .  l'ral~sc~ctioits 
or7 Electroi~ic Co~)lpllters, \'ol. EC-10; Sep- 
tember, 1961. Pages 346-365. 

''.ill Shortest Routes in a Graph." G. R .  Daritzig. 
Opc.rc~tioils Reserrrcll T e c h ~ ~ i c o l  Report 66-:3, 
Stanford University; Sovenil,er, 1966. 

"Shortcut in the Decomposition Algorithm for 
Shortest Paths in a Setwork." T. C. Hu and 
\\'. T. Torres. IBAI  Jorirtlal 0.f Rc.~ccrrc*l~ ( l i d  

Dcc~lopirt'rlt, 1'01. 13, No. 4; July, 1969. 
Pages 387-390. 

Algoritllnls, Grcrplls, ~ i t d  C~on l l~u f t ' r . ~ .  Kicllarcl 
Bellrna11, Kenneth L. Cooke, and Jo .I1111 

Lockett. New York: .Icademic Press, 1970. 
Pages 04-100. 

The  traveler with a 23-link gold chain can 
give his landlady one link a day for 23 days 
if he  cuts as few as 2 links of the chain. By 
cutting the fourth and eleventh links he  
obtains two segments containing one link 
and segments of 3, 6, and 12 links. Com1)in- 
ing these segments in various ways will 
make a set of any number of  lengths from 
1 to 23. 

The  formula for the maximum length 
of chain that can be handled in this way 
with 11 cuts is 

[(n + 1)2'1L1] - 1. 

Thus one cut (link 3) is sufficient for a chain 



Mathematical Games 

of 7 links, three cuts (links 5,  14, 31) for a 
chain of 63 links, and so on. 

I confess that what I thought was a new 
problem turns out, as Dmitri Borgrnann in- 
formed me, to be one of the first English 
word squares ever published! In a letter to 
the British periodical Xotes  and Qz~eries 
for July 21, 1859, a reader signing himself 
"W. \\I." spoke of the word-squaring game 
"which has of late been current in society" 
and proceeded to give the following ex- 
ample: Circle, Icarus, Rarest, Create, Lustre, 
Esteem. "There are very probably," he 
wrote, "other ways of squaring the circle." 

Yes, when I published the problem in 
Scieiltijic Arnericur~ about 1,000 readers 
found more than 250 different ways of doing 
it. I despair of summarizing the variations. 
The 111ost popular choice for a second word 
was Inures, with Iberia, Icarus, and Isohel 
following in that order. The square com- 
posed by the most (227) people was: Circle, 
Inures, Rudest, Crease, Lesser (or Lessor), 
Esters. ,\lmost as many (210) sent essen- 
tially the same square, with Lessee and 
Esteem as the last two words. "This was 
done with eu.se," wrote Allan ,.Zbrahamse, 
in punning reference to the fact that a main 
diagonal of this square consists entirely of 
E's. Fifty-six readers found Circle, Inures, 
Rumens, Create, Lenten, Essene. 

The most popular square with Iberia as 
the second word was Circle, Iberia, Recent 
(or Relent, Repent, and so on), Create, 
Linter, Eaters (or Eatery). The most popu- 

lar wit11 Icarus second: Circle, Icarus, 
Rarest, Create, Luster, Esters. With Isohel 
second: Circle, Isohel, Robarld (or Roland), 
Chaise (or Chasse), Lenses, Eldest. Each 
of these three squares was arrived at by 
more than a hundred readers. 

Of some 40 other words chosen for the 
second spot, Imaret was the favorite. hlore 
than 40 readers used it, mostly as follows: 
Circle, Imaret, Radish, Crissa, Lesson, 
Ethane. hlany squares with unusual words 
were found by one reader only; the follow- 
ing are representative: 

Circle, Imoros, Romist, Crirnea, Losest, 
Estate (Frederick Chait). 

Circle, Isolux, Kosace, Claver, Lucent, 
Exerts (Ross and Otis Schuart). 

Circle, Iterurn, Refine, Cringe, Lunger, 
Emeers (Ralph Hinrichs). 

Circle, Isaian, Rained, Cingle, Laelia, 
Endear (Robert Utter). 

Circle, Ironer, Rowena, Cnemis, Lenite, 
Eraser (Ralph Beaman). 

Circle, Inhaul, Rhymed, Camise, Lueses, 
Eldest (Riley Hampton). 

Circle, Irenic, Regime, Cnidus, Limuli, 
Ecesis (hlrs. Barbara B. Pepelko). 

A number of readers tried the more diffi- 
cult task of squaring the square. All to- 
gether about 24 different squared squares 
came in, all with esoteric words such as 
Square, Quaver, Uakari, Avalon, Rerose, 
Erinea (hiss. P. J. Federico). Several read- 
ers tried to square the triangle, but without 
success. Edna Lalande squared the ellipse: 
Ellipse, Lienees, Lecamas, Inagile, Pemi- 
can, Sealane, Essenes. 

Four readers (Quentin Derkletterer, 



Solornon C;ololnl,, Jolln hIc(:lellar~, and Derklett t~er took off t'l-o~li tllis sclu:ire, along 
James Topp) indepe~jclerrtly hit on this a third co-ortlir~ate, and ~na~iagecl to c111>c, 
deliglith~l scll~ared cul~c:  the cube: (:111)e, Ugly, Hlue, Eyes; Ugly, 

G I I I ~ ,  Lull, Yelp; Blue, Lull, LJltls, Else; 
C U B E  Eyes, Y e l p ,  Elst>, Spec1 [sec l ; ig t i~ . t .  471. 
U G L Y  Patrick 0'Nt:il alrtl Cliarles Keith cul~ccl the 

c ~ ~ b e  this way: Cul~e ,  LTpolr, Bold, EIIC~S; 
B L U E  Uporr, Pole, Olio, Neo~i;  Holcl, Olio, Liar, 
E Y E S  Dora; E~lds ,  Neon,  Dora, S1ia1,. Rv~?janli~i 
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F. 11elk11n and C;lenn A. Lars011 found still 
anotliei- cubed cul)e, then vanished alo11g 
a fourth co-ordinate and came back with 
hypercubes for the words Pet ancl Eat. They 
wele 11nal)le to cube the spllere. K. J .  Rea 
cvas able to cube eggs; ancl H. 51. Thoinas 
and H. P. Tliomas ctl11ed root, dice, \,eef, 
and ice, but were u ~ l a l ~ l e  to cube sugar. 

Leigh IIercer, the London expert on word 
pla>-, sent ~ n e  the I~cst-k~lown squares in 
Lvhich the \vords, taken ill order, fonn sen- 
tences: 

Just, Ugly, Slip, Type. 
l i ight ,  Idler, Glide, Hedge, Trees? 
Crest, Rt.;~ch, Eager (Scene Three). 
Leaye, Ellen, Alone, \-enon), Enemy. 

-1 quick \vay to prove that all three hands of 
a \\.-atch with a ~ \ \ ~ e e p  second hand are to- 
gether only when they point to 12 is to 
:1~~21!- elementary Diophixnti~le analysis. 
\\'herl tlle hour l la~ld coincides with one of 
tlle other Ila~lcls, the difference between the 
distances traveled 1)y each must 11e an in- 
tegral numl~e r  of hours. During the 12-hour 
period the hour lla~ltl makes one circuit 
around the dial. Assume that it travels a 
distance s, less than one complete circuit, 
to arril-e at a position wit11 all three hands 
together. ,ifter the hour l~ailcl has g,tone a 
distance of x,  the minute hand will have 
gone a distance of l", making the differ- 
ence 11s. I11 the same period of time the 
s e c o ~ ~ d  ha~icl will have gone a distance of 
72O.x, rllakii~g the difference 7lS.x. All three 

hands call be together only when x has a 
value that niakes both S1Y.u and 11s in- 
tegral. But 719 and 11 are both priine num- 
bers, therefore x can take only the \~alnes of 
O and 1, which it has at 0 and 1.3 o'clock 
respectively. 

.Aside from the case ill which all three 
hancls point straight up, the closest the 
hands come to p o i n t i ~ ~ g  in the same clirec- 
tion (definiilg "closest" as the rni~linlum 
cleviation of one hand \\,hen the other t\vo 
coincide) is at 16 minutes 16 and 3561719 
secontls past 3 ,  anti again at 33 minutes 43 
arid 463/719 seconds after 8. 

The t\vo tinlea are ~nirror  iniages in the 
sense that if a watch sho\vii~g one time ia 
held up to a min-or and the image is read as 
thouq'h it were an unreveraed clock, the 
image \vould indicate the other time. The 
sum of the two times is 12 hours. In 110th 
instances the second and hour hands co- 
incide, \\7ith the ~ i l i ~ l u t e  llaricl separated 
froin them hv a distance of 360/71!1 of one 
degree of arc. (The distance is 5 and $51719 
seco~lds if we define a second as a sixtieth 
of the cl is ta~~ce of a clock minute.) In the 
first iilstance the illirlute h a i d  is behind the 
othei. two by this distance, ill the second 
insta1-lce it leads by the same distance. 

Another simp:e proof that the three hands 
are never together except at 13 was found 
by Heiir). D. Fried~nan,  of Sylxrania Elec- 
tronic Systems. The  hour and minute hands 
meet e l e \~en  t in~es ,  wit11 periods of 12111 
hours that divide tlie clock's circunlference 
into eleven equal parts. The  minute and 
second hands similarly clivide the circuin- 
fereilce into 59 equal parts. All three hands 
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car1 meet only at a point where r / l l  = s/59, 
r and s being positive i~l tcgers  wit11 r less 
than 11 and s less than 59. Since ll/fi$) ccan- 
not tle redrlced to lower fraction, r./s, 
there can be no meeting of the three hands 
except at 12 o'clock. 

T h e  three cryptarithms have the unique 
solutions shown in Figure 48. T h e  top one 

was devised by Stephen Barr, the lower left 
one is the work of the English puzzlist 
Henry Ernest Dudeney; the lower right one 
is from Frederik Schuh's Wot~derlijke 
Prohlenterl. For a translation of Schuh's 
arlalysis see pages 287-291 in F.  C;oljel's 
Master Rook of Alathcmtrticc~l Recreations. 

T h e  third cryptarithm, which I tholight 110 

one co~ l ld  solvc without a computer, was 
solved with pencil and paper ljy n o  fewer 
than 53 Scieiiti$c An~ericcil~ readers. Few 
of the solvcrs went  011 to show that n o  otl?cr 

48. Solutions to cryptarithrns 
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solutio~l was possible. Six readers, however, 
programed computer? to check all possi- 
bilities, and they confiri~led the urliquerless 
of the answer. 

If eight chess pieces of one color are placed 
on the board as shown in Figure 39, a total 
of exactly 100 different moves call be made. 
According to T. R. Dawson, the E~lglish 
chess problemist, this question was first 
asked in 1838 by a German chess expert, 
h1. Bezzel. His solution, the one shown 
here, was publishecl the follo\ving year. In 

1899 E. Lantfau, in Der Schclchfreutzd, 
September, 1899, proved that 100 inoves is 
the maximum and that Bezzel's solution is 
uniclue except for the trivial fact that the 
rook, ~,n the seventh square of the fourth 
row fro111 the top, could just as well be 
place<]. on the first square of that same row. 

Among the many readers who solved this 
cl~ess prohlem, fourteen supplied detailed 
proof that 100 moves is indeed the maxi- 
muin. 

For a way of placing the eight pieces so 
that a ~ n i ~ l i i ) l t i i ) ~  iluinber of moves (ten) are 
possible, see Figure 38, page 88, of my hook 
C7ttexpected Hntlgiwg.  

49. Board setup 
chess moves 

for maximum 



50. Mobius-strip solution 

9. I'roof is supplied by a folding technique 
explained in Stepheri Rarr's Ex)~crirrlctlts i l l  

What is the si~lallest value of A/B th:it a -  ?'opolog!l (New York: T. Y. Crowell, 1964). 
lows one to join the B edges of the paper The strip is pleated as shown ill Figure 50 
rectangle irkto a Mi-ihius l~and?  The sllrpris- to form a narrow strip with ends that slrow 
ing answer is that there is no minimum. The two-fold symmetry. After this narrow strip 
fraction A / B  can be niatle as small as orie is given a half-twist the ends are joirled. 
pleases. Voilir ! 



7. Sliding-Block Puzzles 

"THE OLDER INHABITANTS of Puzzleland, " 
wrote Sam Loyd in his Cyclopedia of Puz- 
zles, "will remember how in the early 
seventies I drove the entire world crazy 
over a little box of movable blocks which 
became known as the 14-15 Puzzle." Fif- 
teen numbered blocks were placed in a 
square box as shown in Figure 51. The ob- 
ject was to slide the blocks about, one at a 
time, until the 14-15 error was corrected 
and all blocks were in serial order with the 
empty space in the lower right-hand corner 
as before. 

The craze spread rapidly to Britain and 
Europe. "People became infatuated with 
the puzzle," Loyd continued, "and ludi- 
crous tales are told of shopkeepers who 
neglected to open their stores; of a distin- 
guished clergyman who stood under a street 
lamp all through a wintry night trying to 
recall the way he had performed the feat. 
. . . A famous Baltimore editor tells how he 
went for his noon lunch and was discovered 
by his frantic staff long past midnight push- 
ing little pieces of pie around on a plate!" 

Interest in the puzzle abated after several 
mathematicians published articles proving 
it could not be done. Today the puzzle 
(still on sale in a variety of forms) is some- 
times cited by computer experts as a minia- 
ture model of what is now called a sequential 

51. Sam Loyd's 14-15 Puzzle 



machine. Each movement of a block is an 
input, each arrangement, or "state," of the 
blocks is an output. It turns out that exactly 
half of the 15! (1 x 2 x 3 . . . x 15), or 
1,307,674,368,000, possible states of the 
machine are achievable outputs. The math- 
ematical theory of the 14-15 Puzzle applies 
to all sliding-block puzzles in w h ~ c h  the 
pieces are unit squares confined to rectangu- 
lar fields. 

But not to sliding-block puzzles in which 
the pieces are not unit squares! The success 
of Loyd's puzzle brought a rash of sliding- 
block puzzles, with differently shaped 
pieces, that have sold all over the world for 
the past eighty years. These puzzles are 
very much in want of a theory. Short of trial 
and error, no one knows how to determine 
if a given state is obtainable from another 
given state, and if it is obtainable, no one 
knows how to find the minimum chain of 
moves for achieving the desired state. These 
entertaining puzzles provide all sorts of 
challenges for computer programmers. For 
the rest of us they are engrossing solitaire 
games that can be constructed in a few min- 
utes with only a pair of scissors and a supply 
of cardboard. 

A puzzle of this type - perhaps the earliest 
and certainly the most widely sold-is 
shown in Figure 52. The reader is urged to 
stop reading and cut the nine pieces from a 
sheet of thin cardboard. The diagram is 
easily copied by drawing a four-by-five 
rectangle, ruling it lightly into unit squares, 
then outlining the nine pieces. Number 
them as indicated, cut them out and place 
them on a four-by-five rectangle drawn on 

52. Dad's Puzzle 

a sheet of paper or cardboard of contrast- 
ing color. The problem: By sliding the 
pieces one at a time, keeping them flat on 
the paper and inside the rectangle, bring 
the large square from corner A to corner C. 

It is easy to bring the square to corner B. 
hlove the pieces in order as follows: 5 , 4 ,  1, 
2, 3; 4 (up and right), 1, 6, 7, 8; 9 ,3 ,4 ,  1 ,6 ;  
7 (halfway), 9, 5 ,  4, 8; 6, 2, 3, 1. This is a 
minimum-move solution in 24 steps for 
which I am indebted to Edward E. Roderick, 
Alfred C. Collins, Jan-Henrik Johansson, 
and hlichel Hbnon. (Sliding a piece "around 
a corner" is counted as one move.) To bring 
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the large square to corner D requires 29 
moves. The first 19 are the same as before, 
then continue with: 1, 3 , 2 , 6 ,  7; 8, 9 ,4 ,  5, 1. 

It is not possible to slide the large square 
from corner A to corner C in fewer than 59 
moves. Readers are urged to see if they can 
achieve this minimum before the moves are 
disclosed. Cardboard pieces are quite satis- 
factory, although handsomer and more 
permanent models can be cut from sheets of 
wood, plastic, linoleum, Vinylite, and so on. 
The restraining border can be made by 
gluing strips on a wooden board. The board 
should be sandpapered for smooth sliding, 
and it is best to round off the corners of the 
pieces and bevel their edges slightly. 

The origin of this excellent puzzle is un- 
known. The earliest version in the puzzle 
collection of the late Lester Grimes of New 
Rochelle, New York, is called the Pennant 
Puzzle and was copyrighted in 1909 by 
L. W. Hardy and made by the O.K. Novelty 
Company in Chicago. Cardboard pieces 
bear the names of major cities. The large 
square, which represents the home team, is 
to be brought to the corner, which symbol- 
izes first place in the league. In 1926 a 
wooden version was marketed under the 
name of Dad's Puzzler, and most later ver- 
sions have been called Dad's Puzzle. An 
inexpensive version currently on sale has 
the trade name Moving Day Puzzle (a pic- 
ture of a piano is on the large square), and 
there is an elegant version called Magnetic 
Square Puzzle with large wooden pieces 
(containing magnets) that cling to a metal 
field. 

If one of the two-by-one rectangles in  

Dad's Puzzle is cut in half to make two unit 
squares, the resulting ten pieces provide 
the sliding t~locks for a more difficult puz- 
zle [,sec~ Figure  ,531 that has long been popu- 
lar in France under the name of ~ ' ~ n e  
Rouge (The Red Donkey). The object of the 
puzzle is to move the large square with the 
red donkey's picture to the bottom of the 
border so that it can be slid out of the box 
through the opening. A correspondent in 
Scotland recalls seeing an English version 
on sale in the early 1930's. hlore recently it 
has been sold in this country under such 
trade names as Intrigue, hlov-it Puzzle and 
Hako. The minimum-move solution re- 

53. L'Ane Rouge puzzle 
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54. Line Up the Qu~nt les puzzle 

FINISH 

quires 81 irioves. It was worked out by 
Tliomas W. Lemann, a New Orleans attor- 
ney; and it was proved rnirlilnal in 1964 by 
John Z,arr11out11 of Ca1nl)ridge Univclrsity, 
arid later I)y Miclrel tlhnon, both men using 
conlputers. 

In 1934, when the Ilionne qui~rtuplets 
were born, the event was celebrated by the 
appearance of an unusual sliding-block 

puzzle called Lirre Up the Quirlties. (The 
box bears the imprint of  the En11)ossilrg 
Cornpasly of Albany, New York, and states 
that tlre puzzle was created 1)y Richard W. 
Fatiguant.) In the schematic drawings of 
this puzzle [Figure 541 the five circles are 
the faces of the five qllintuplcts. The prob- 
lern is to start with the pieces arranged as 
shown in the first tlrawiilg and move them 
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to the pattern shown at the bottom. A 30- 
move solution, the best I have found, is 
given in the answer section. 

It was inevitable that someone would 
think of complicating this sort of puzzle by 
introducing nonrectangular pieces. In 1927 
Charles L. A. Diamond of Newburgh, New 
York, obtained patent No. 1,633,397 for the 
puzzle shown in Figure 55. It was manu- 
factured under the name of Ma's Puzzle (in 
obvious competition with Dad's) by the 
Standard Trailer Company of Cambridge 
Springs, Pennsylvania. Piece No. 2 was 
labeled "Ma," No. 5 "My Boy." (The other 
seven pieces bore the labels "No Work," 
'6 Danger," "Broke," "Worry," "Trouble," 
"Homesick," and "Ill.") The object of the 
puzzle is to unite Ma with My Boy to form a 
single three-by-two rectangle in the upper 
right-hand corner of the box. (This rec- 
tangle may be either wider than high or vice 
versa.) I give a 23-move solution in the 
answer section. More complicated puzzles, 
some all rectangular, others with L-shaped 
pieces, have been marketed here and 
abroad. Sliding block puzzles with tri- 
angular pieces have been explored, chiefly 
by T. H. 07Beirne of Glasgow, but none 
have so far been manufactured. 

The latest innovation in this curious and 
unchronicled field has been supplied by 
Sherley Ellis Stotts, a piano tuner who lives 
in Denver. Stotts, who holds a master's 
degree in psychology from the University 
of Colorado (his thesis was on the reli- 
ability of the Seashore music tests), has 
been blind since the age of seven. In re- 
cent years he has invented and made a 

55. Ma's Puzzle 

variety of unusual puzzles out of wire, 
wood and plastic. A patent application is 
now pending for what he calls his Tiger 
series of sliding-block puzzles. 

Each tiger puzzle is based on a diagram 
often used by algebra teachers as a visual 
display of the square of a polynomial. I shall 
describe only the simplest Tiger puzzle, 
which exploits the diagram [Figure 561 for 
the square of a + b + c. The three terms are 
represented by the horizontal and vertical 
line segments on the sides of the square. 
When the expression is multiplied by it- 
self, the result is a2 + b2 + c2 + 2ab + 2ac + 
2bc. Each term, of course, is represented in 
the figure: there are three squares with 
sides, respectively, of a, b, and c, two rec- 
tangles with sides ab, two with sides ac, 
and two with sides bc. Stotts converted this 
dissection to the charming puzzle shown at 



56. Stotts's Tiger puzzle 

the right in the illustration. On the large 
square he glued a replica of a tiger. At the 
upper right-hand corner he attached to the 
frame two segments of a fence (shown in 
color). Three other fence segments were 
glued to pieces 1,4, and 6 as shown. (Read- 
ers who wish to try the puzzle may simply 
draw the fences on cardboard pieces.) The 
ratios of a:b:c must be 3:2:1. 

The puzzle starts with the pieces ar- 
ranged as indicated, except that piece 9 is 
removed from the field. The problem is to 
slide the pieces so that the tiger square is 
moved to the upper right-hand corner and 
completely surrounded by a square fence. 
Unlike all previous sliding-block puzzles, 
the open space is large enough to allow, at 
times, the 90-degree rotation of a rectangu- 
lar piece. This is permitted, of course, only 
when the rotation is geometrically possible 

within the space, keeping all pieces flat on 
the field. In the answer section I give a 48- 
move solution. 

At the moment there is no practical appli- 
cation for a theory of sliding-block puzzles 
with differently shaped pieces, but it would 
be foolhardy to say that none will ever be 
found. As automation advances, complex 
problems arise in connection with the effi- 
cient storage and retrieval of goods. The day 
may come when a housewife will dial an 
order to a department store and machines 
will find the items and deliver them to a 
post office or truck. If the items are kept in 
rectangular packages, it is not inconceivable 
that a certain amount of package-shifting, 
within confined areas, will be called for. 
Something of this sort actually goes on con- 
stantly in big-city garages and parking lots 
where it is necessary to park as many cars 
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as possible within the available space and to 
retrieve the cars with maximum efficiency. 
In fact, in Britain sliding-block puzzles are 
often called "garage puzzles" because 
several British versions have presented the 
pieces as cars confined to a garage. The 
problem, of course, is to maneuver a cer- 
tain car to the garage's entrance without 
taking any of the other cars outside. 

As the reader will quickly discover if he 
tries to solve any of these puzzles, there is 
an almost hypnotic fascination in pushing 
the pieces about in search of a minimum 
chain of inputs that will produce the de- 
sired state. It is by no means all trial and 
error. The mind soon "sees" that certain 
lines of play lead to blind alleys whereas 
other lines of play are promising. 

Answers 

Dad's Puzzle: 59 moves. 5, 4, 1, 2, 3, 4 
(up, right). 1, 6, 7, 8, 9, 5. 4, 1, 6, 7, 8, 9. 
5 (left, up), 9, 8, 5, 4, 1. 3, 2, 7, 6, 4 (up, 
left), 6. 7, 4, 5, 6, 7, 5 (right, up). 3, 2,5,  
4, 3, 2. 4 (down, right), 2, 3, 6, 7, 1. 4,5,  
2, 3, 6, 7. 1, 4 (left, up), 9, 8, 1. 

~ ' ~ n e  Rouge: 81 moves. 9 (halfway), 4, 
5, 8 (down), 6. 10 (halfway), 8, 6, 5, 7 (up, 
left). 9,6,  10 (left, down), 5 ,9 .  7 ,4 ,6 ,  10, 
8. 5, 7 (down, right), 6 ,4 ,  1. 2, 3, 9, 7, 6. 
3, 2, 1, 4, 8. 10 (right, up), 5 ,3 ,6 ,8 .  2 ,9 ,  
7 (up, left), 8, 6. 3, 10 (right, down), 2, 9, 
(down, right), 1. 4, 2, 9, 7 (halfway), 8. 6, 
3,10,9(down),2.  4 ,1 ,8 ,7 ,6 .  3,2,7,8,1. 

4, 7 (left, up), 5, 9, 10. 2, 8, 7, 5, 10 (up, 
left). 2. 

Line U p  the Quinties: 30 moves. 9,8,1, 
2,3. 6 , 8  (up, left), 2 , 5  (right, down), 3. 6, 
8 (up, left), 9,2,8. 6 , 3 , l  (right, down), 6,3. 
5 (up, right), 1 (right, down), 7, 1 (left), 8. 5 
(down), 3, 6 (halfway), 4, 9. 

Ma's Puzzle: the 32-move solution I 
originally published in the pages of Sci- 
entific American was reduced by more than 
a dozen readers to 23. 9 (left), 8, 7, 6, 5. 
9 (up), 8, 7, 6 ,4 .  2, 1 , 3  (up), 9 (up, right), 
5 (left, up). 6, 4 (down, right), 9 (down all 
the way), 5, 3. 1, 2, 5. 

Tiger Puzzle: 48 moves. Letters stand for 
up, down, left, right, and turn (90 degrees). 
8d, 5d, 6d, 4r, ld .  21,31,4u, l r ,  7u. 81,5d, 
6d, Id, 4d. 3r, 2r, 7u, 11, 5u. 6u, 8r, Id, 
51, 61. 4d, 2dtr, 7r, 5u, 61. 41, 2d1, 3d, 7r, 5r. 
6u, 41u, lu ,  81, 3d. 2td, lru, 8ur, 4d, 6dr. 
51, 6u, 4u. This solution, with one less than 
the number of moves in the solution I 
originally presented, was provided by 
Charles Clapham, John Harris, and Thomas 
Kew. 
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8. Parity Checks 

She took me to her elfin grot, 
And there she wept and sigh'd 

full sore, 
And there I shut her wild, wild eyes 

With kisses four. 

"\\'HY FOUK KISSES, you will say . . ." 
wrote Jo1111 Keats in a letter, com~l~enting 
on the above stanza from his well-known 
poem Ln Belle Dnme sans Alerci. "I was 
obliged to choose an even number that both 
eyes might have fair play. . . . I think two 
a piece quite sufficient. Suppose I had said 
seven; there would have been three and a 
half a piece - a very awkward affair." 

If we had beer1 told that Keats's pale 
knight kissed the lady's eyes 37 times, 
would it be necessary to make an e l~ l~ i r i ca l  
test to determine if each eye could receive 
the same number of kisses? No, 37 is an odd 
number, not evenly divisible by 2. \Ye know 
at once that one eye must have been kissed 
at least one more time than the other. 

An old joke along similar lines tells of a 
graduate student in mathematics who was 
on a spring outing with his girl. She plucked 
a daisy and began to pull off the petals 
while she recited "He loves me, he loves 
me not . . . " 
"You are really going to a great cleal of 

ul~necessary trouble," said the young man. 
"A11 you have to do is count the petals. If 
the total is even, the answer is negative. If 
it is odd, the answer is affirmative." 

\Ye have here two trivial applications of 
what matheinaticia~ls sometimes call a 
parity check. It is one of the most powerful 
tools in mathematics. \Vhenever a problenl 
involves odd and even, or two mutually 
exclusive sets that can be identified with 
odd and even numbers, a parity check often 
furnishes a quick, elegant proof for sonle- 
thing that might otherwise be extremely 
difficult to establish. 

The classic instance in number theory is 
provided by Euclid's proof, which may go 
back to the Pythagoreans, that the square 
root of 2canllot be expressed as a common 
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fraction (a fraction with an integer above 
and an integer below the line). Since the 
diagonal of a unit square has a length equal 
to the square root of 2, this nleans that no 
ruler, however finely graduated, that ac- 
curately nleaslires the sicle of the square 
will acclirately rlleasure the diagonal. 

The proof is easy to follow. Assume that 
there i.s such a corninon fraction, n / n ~ ,  
which has been reduced to its lowest terms. 
Since the square of this fraction is 2, we 
can write the e q u  '1 t '  lon 

and then rearrange the terms to 

The right sicle of this equality is an even 
nmnber (because it is a nlultiple of 2); 
therefore the left side, IL', is even. Only an 
even number gives an even product when 
multiplied by itself; therefore 11 also is even. 
\TJe turn our attention to nl. Is it odd or 
even? It cannot be even because 11 and 171 

would then both be even and we would he 
able to silnplify the fraction t t 1 n ~  by dividing 
both terms by 2. This, however, would 
contradict our original assumption that 
t l l ~n  had already been reduced to its lowest 
terms. Lye lnust assume, then, that nt is odd. 

Since 11 is even, we can express 11 in the 
form 2(1, letting (1 stand for another integer. 
Substituting 2a for )I in equation (2), we 
have 

which reduces to 

By the same argl~ment used above, 771 can- 
not be odd because its square equals the 
even number expressed by the left side of 
the equation. it7e previously saw that nz 
cannot be even. Now we see that it also 
canilc~t be odd. Since every integer must be 
even or odd, n~ cannot be an integer. Our 
initial assumption must be false; there is 
no common fraction n / n 2  that is the square 
root of 2. The number we seek is irrational, 
a tern1 that reflects the shock of the clis- 
covery of such numbers by the ancient 
Greeks. Note also that equation (2) has been 
shown to be one that cannot be satisfied by 
integers. In other words, no square integer 
is ex,actly twice another square integer. 
This too is an important theorem that would 
be hard to prove without the astonishirlg 
powe:r of a simple parity check. 

In every branch of mathematics an odd- 
even check often supplies an efficient, 
short-cut proof. The following problern in 
topology is typical. Draw as many circles as 
you like, of any size, wherever you \vish 011 
a sheet of paper. Can such a "map" always 
be colored with two colors in such a way 
that 110 two regions with a CoInmoIl border 
are the same color? One way to prove that 
the answer is yes is to consider any pair of 
adjacent regions, A and B. They will be 
divided by an arc of a circle, which we will 
call X. One of the regions will be inside X, 
the other outside. Aside froln X, A and B 
will be inside either no circles or the same 



Parity Checks 

number of circles; therefore one of the two 
regions is sure to be inside one more circle 
than the other. If we label each region with 
the number of circles it is within [see Figure 
,571, one of every pair of adjacent regions i \  
sure to be even and its partner is sure to be 
odd. We color the even-numbered regions 
one color and the odd regions another 
color and the job is clone. (For a different 

way of confirniing the yes answer see 111y 
book Xetc; Jlntherncrticul Di~er~siolas .from 
Scic~lti f ic Aniericclli; New York: Simon and 
Schuster, 1966; chapter 10.) 

I11 the physical world things frequently 
have a mathematical pattern to which the 
familiar properties of odd and even num- 
bers apply. An amusing instance is supplied 
by a parlor trick wit11 three empty drinking 

57. A two-color map 
theorem 



58. Setup for  the glass trick 

glasses. Place the glasses as shown in 
Figure 58.  The puzzle, you explain to your 
audience, is to turn over two glasses simul- 
taneously, one with each hand, and in three 
such "moves" bring all the glasses upright. 
To demonstrate: Turn glasses 1 and 2, 
then 1 and 3,  then 1 and 2 again. All three 
glasses will then be right side up. (Actually, 
you can get them all up in two moves, or 
even one move, but you do it in three to 
confuse your spectators.) Now comes the 
sneaky part. Casually invert the center 
glass and invite someone to try. Few people 
will notice that the starting position is no 
longer the same as before. A simple parity 
check shows that from this new position the 
probleln camlot be solved in unly number of 
moves. 

The proof is as follows. Whenever an 
even number of glasses (zero or two) are 

upright, we say that the "system" has even 
parity. IVl1en an odd number are upright, 
the system has odd parity. It is easy to see 
that turning any two glasses cannot change 
the system's parity. No alnount of turning in 
pairs will convert the initial state of even 
parity (two up) to the desired state of odd 
parity (three up). If a spectator follows your 
moves exactly, he will bring all the glasses 
dozon. Should he accidentally set them up 
properly for a new attempt, step in quickly, 
make another fast demonstration of how it is 
done and leave hill1 again with the incorrect 
starting; position. 

If there are ten glasses (or any even nuin- 
ber not divisible by 4) arrailged alternately 
up ancl down, is it possible to make a se- 
quence of moves t l~at  will bring all the 
glasses up or all down? No, because in 
either case an impossible change in the 
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system's parity (from, say, an odd five to an 
even ten) is demanded. 

-AS long as the glasses 1)eh;we politely, 
according to our notion of their structure, 
it is inconcei\,able that this parity-conserva- 
tion law would be violated. But nature, 
particularly on the subatomic level, is under 
no obligation to conform to our notions of 
structure. In 1957 a parity law that for thirty 
years had been found applicable to the 
wave functions of quantum mechanics 
turned out not to hold in the case of the 
weak interactions of particles. Physicists 
are still recovering from the shock. It was as 
if someone had stepped up to ten alterilating 
glasses, turned them in pairs and brought all 
ten upright! 

An entertaining coin trick of the extra- 
sensory-perception variety exploits the 
same urlderlying principle as the glass trick. 
Someone is asked to take a handful of coins 
from his pocket and toss them on the table. 
While you look away, ask him to turn over 
the coins at rand0111 but always two coins 
simultaneously. He continues as long as he 
pleases, doing it silently so that you have no 
idea how many turns he makes. He then 
covers one coin with his hand. You turn 
around, glance at the other coins and irn- 
inediately tell hirn whether the concealed 
coin is heads or tails. 

The method (explained by A1 Thatcher 
in the October, 1962, issue of a magician's 
periodical, Tltc Nett Plwenix) could not be 
simpler. At the outset an even number of 
heads indicates even parity; an odd num- 
ber, odd parity. If coins are turned in pairs, 
parity must be conserved. For exan~ple, 

suppose five heads show at the beginning. 
At the finish, when one coin is hidden, the 
parity of the system must still be odd. Thus 
if you see an even number of heads, you 
know the concealed coin is a head. If you 
see an odd number of heads, the coilcealed 
coin must be a tail. 

As a variation, let a spectator c o ~ ~ e r  tzco 
coins and then tell him whether they match 
or not. Another variant is to let him turn first 
one coin, then two, then three, and repeat 
this triplet of changes as long as he wishes. 
Since 1 + 2 + 3 = 6, an even number, parity 
will be conserved as before. 

Sometimes the underlying parity struc- 
ture of a systern is so well camouflaged that 
only the most alert mathematician is able to 
spot it. A sterling example is provided by 
the followiilg uilusual problem adapted 
from Unterhaltsnme Alatlzematik, a brilliant 
collection of puzzles by the German llath- 
ematician Roland Sprague. (A11 English 
translation by T. H. O'Beirne was pub- 
lished in Londorl in 1963 by Blackie and 
Son Ltd.) Five alphabet blocks, all exactly 
alike and each with the letter ,4 on one face 
only, are first placed on a checkerboard in 
the cross formation shown in Figure 59, 
upper left corner of the board. The A sides 
of all five blocks are uppermost. The blocks 
are now moved from square to square by 
being tipped over along one edge, as one 
rnight move a large, heavy cubical box. In 
other words, each block is moved by a series 
of quarter turns each of which tips it from 
one square to an adjacent square. It is irn- 
possible, if one moves the blocks in this 
fashion, to arrange them in a row, anywhere 



59. A problem for parity analysis 

on the board, with the A faces uppennost 
and all with the same orientation. It is pos- 
sible to arrange thein as shown in the row at 
the bottom of the board. \\'hich block in this 
row started out as the center block of the 
cross formation? 

One could, of course, obtain five alphabet 
blocks and find by actual test which block 
it must be, but with the right insight illto the 
odd-even structure of the system the cor- 
rect block can be identified simply by study- 
ing the picture. \loreover, the parity check 
provides a proof the empirical test does not. 
The test merely shows that one block in the 
row cozlld hace beell the center one; it does 
not prove that no other block could have 
been if the right sequence of turns had been 
made. 

Perhaps an easier odd-even problem con- 
cerns the work of an eccentric U.S. archi- 
tect, Frank Lloyd Wrong. To annoy a 
wealthy client, Wrong designed a house 

shaped like an enormous shoe box. It was 
divided by floors into three levels, and on 
each level the floors were divided by verti- 
cal walls into seven rectangular rooms. 
Thert: were no hallways, staircases, or 
closets, there was no basement or attic. The 
house consistecl entirely of 21 rectangular, 
box-sllaped rooms. 

The doors of the house were of two types: 

1. Conventional doors that enabled one 
to go fro111 one room to a neighboring room, 
or froim a first-floor room to the grounds out- 
side. 

2. Trap doors that allowed one, with the 
aid of ladders, to go from one rooin to a room 
directly above or below. 

The doors were placed at random. One 
room might contain a clozell or Inore doors 
or (like the Other Professor's room in Lewis 
Carroll's Sylcie and Bnino)  as few as no 
doors at all. M7rong was careful, however, to 
see tl-)at each roo111 had an even number of 
doors. (Zero is considered even.) The prob- 
lem is to prove that the nunlber of outside 
doors., leading fro111 first-floor rooms to the 
grounds, is even. 

Answers 

M'hich one of the five alphabet blocks in a 
row on a chessboard had been the center 
olock in the previous formation before the 
block!; were rnoved by tippiilg thein over an 
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edge from square to square? It is obvious 
that if a block is rnoved an even number of 
times, it will rest on a square that is the 
same color as the square on \vhich it started. 
An odd number of moves puts it on a square 
of opposite color. Not so oln7ious is the way 
in which odd and even apply to the orienta- 
tions of each block. 

I~nagine a block painted red on three 
sides that meet at one corner and placed so 
you can see three of its sides. There are four 
possibilities: you see no red side, one red 
side, two red sides, or three red sides. If you 
see one or three red sides, we say the block 
has odd parity; otherwise, it has even parity. 
\Vhenever the block is given a quarter-turn 
in any direction, it is sure to change parity 
as shown in Figure 60. (This follows from 
the fact that opposite sides of the block are 
different colors. Each quarter-turn takes one 
side out of your line of vision and brings its 
opposite side into view. Thus a quarter-turn 
always alters one of the visible colors.) 

Think of a block as a die instead of a block 
with colored sides. In this case its parity is 
indicated by whether the sum of the three 
visible faces is odcl or even. 

Because each move of the block gives it a 
quarter-turn, it changes its parity with each 
move. After an even nurnber of moves it 
will be on a square of the same color as the 
square fro111 which it started, and it will 
have the same parity. After an odd number 
of moves it will have changed both color of 
square and l3arity. The center block origi- 
nally rested on white. If it moved an odd 
number of times, it will be in the second 
formation on a black square, its parity al- 
tered. But all the blocks on black squares in 
the second formation have the same parity, 
therefore the center block is not among 
them. It must have moved an ecell number 
of times. This would put it on a white 
square, with its parity the same as before. 
Of the two blocks on white squares, only 
the second from the right has unaltered 

60. How a quarter-turn changes the parity of a cube 

ODD E'd E N 003 
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parity. Therefore it is the block we seek. 
,Actually, the blocks can be moved ran- 

domly to ciny final spots on the board and 
you can always identify the block that was 
originally at the center of the cross. It will 
be either the only block on a white cell with 
unaltered parity, or the ollly block on a 
black cell with altered parity. 

To prove that Frank Lloyd Wrong's shoe- 
box house has an even number of outside 
doors, we consider first the fact that every 
door has two sides. If there are 11 doors, the 
total number of sides is 212, an even number. 
We are told that every room has an even 
number of doors. Assume that all doors are 
closed. An even number of sides will face 
into each room, therefore the total number 
of sides facing into rooms will be even. Lf7e 
subtract this even number from the total 
number of sides, also even, to obtain 
another even number: the number of sides 

not fa,cing illto a room. These sides must, of 
coursle, be on the exterior doors. Therefore 
the nl~lmber of doors leading to the grounds 
is even. 
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9. Patterns and Primes 

N o  BRANCH of number theory is more satu- 
rated with mystery and elegance than the 
study of prime numbers: those exasperating, 
unruly integers that refuse to be divided 
evenly by any integers except themselves 
and 1. Some problems concerning primes 
are so sinlple that a child can understancl 
them and yet so deep and far from solved 
that Inany mathematicians now suspect they 
hace no solution. Perhaps they are "un- 
decidable." Perhaps number theory, like 
quantum mechanics, has its ouTn uncer- 
tainty principle that inakes it necessary, in 
certain areas, to abandorl exactne!;~ for 
probabilistic formulation. 

The central difficulty is that the primes 
are scattered along the series of integers in 
a pattern that clearly is not random and yet 
defies all attempts at precise description. 
What is the 100th prirne? The only .way a 
mathematician can answer is by obtaiiliilg a 
list of prirnes and counting to the :LOOth. 
How is such a list obtained initially? The 
simplest method is to go thi-ough the inte- 
gers and cross out all the composite (not 

prime) numbers. Of course a computer can 
do this with great speed, but it still must use 
essentially the same simple-minded proce- 
dure that Eratosthenes, the Alexandrian 
geographer-astronomer and friend of Archi- 
medes, devised two thousand years ago. 

There is no better way to becorlle familiar 
with the primes than by using Eratosthenes' 
Sieve (as his procedure is called) for sifting 
out all primes under 100. Kenneth P. Swal- 
low of hlonterey, California, has proposed 
an efficient way to do this. LVrite the num- 
bers from 1 to 100 in the rectangular array 
sllo\\ln in Figure 61. Cross out all multiples 
of 2, except 2 itself, by drawing vertical 
lines down the second, fourth and sixth col- 
umns. Eliminate the remaining multiples of 
3 by drawing a line down the third column. 
The next integer not crossed out is *5, hlulti- 
ples of 3 are removed by a series of diagonal 
lines running down and to the left. Remain- 
ing niultiples of 7 are eliminated b y  lines 
sloping the other way. The integers 8, 9, 
and 10 are composite: their multiples have 
already been crossed out. Our job is now 



61. The Sieve of Eratosthenes 

finished because the next prime, 11, is 
Inrger than the square root of 100, the high- 
est ~lunlber in the table. Had the table been 
lonqer, lnrger inultil)le5 of 11 would have 
been rernoved b> diagonal lines of steeper 
slope. 

All but 26 number\ (shown in color) hdve 

fallen through the sieve. These are the first 
26 primes. llathematicians prefer to say 35 
primes, because various important theorems 
are sinlpler to express if 1 is not called a 
prime. For example, the "fundamental 
theorem of arithmetic" states that every 
integer greater than 1 can be factored into 
a u~lique set of prime numbers. Thus 100 is 
the product of four primes: 2 x 3 x -5 x 5. No 
other set of positive primes has a product 
of 100. If 1 were called a prime, we could 
not say this. There would be an infinite 
numbler of different sets of prime factors, 
s u c l i a s 9 ~ 2 ~ 5 ~ 5 ~ l X l .  

?\Iuch can be learned about the primes by 
studying Figure 61. You see at once that all 
prin1t.s greater than 3 are either one less or 
one more than a multiple of 6. Also, it is 
clear why there are so many "twin primes": 
pairs of primes that have a difference of 2, 
such as 71 and 73, 209,267 and 209,269, or 
1,000,000,009,649 and 1,000,000,009,651. 
After eliminating multiples of 2 and 3,  al l  
remaining numbers are twin-paired. Subse- 
quent sievings simply remove one or both 
partners of a pair, but they leave Inany un- 
touched. Twin primes get scarcer as the 
numl-)ers get bigger. It is conjectured that 
an infinity of them continue to sift through 
the sieve, but no one knows for certain. The 
chart also shows at a glance that 3 , 5 , 7  is the 
only ]?ossible triplet of primes. 

If the integers are differently placed, the 
primes will of course forill a different geo- 
metrical pattern. In 196:3 Stanislaw 11. 
Ula~n, of the Los Alamos Scientific Labora- 
tory, attended a scientific meeting at \vhich 
he found himself listening to \$,hat he cle- 
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scribes as a "long and very boring paper." 
To pass the time he  doodled a grid of hori- 
zontal and vertical lines on a sheet of paper. 
His first impulse was to compose some chess 
problems, then he  changed his mind and 
began to number the intersections, starting 
near the center with 1 and moving out in 
a counterclockwise spiral. With no special 
end in view, he  bega11 circling all the prime 
numbers. To his surprise the prirnes seenled 
to have an uncanny tendency to crowd into 
straight lines. Figure 62 shows how the 

~ r i r n e s  appeared on the spiral grid from 1 to 
100. (For clarity the numbers are shou,n in- 
side cells instead. of or1 i~itersections.) 

Near the center of the spiral the lining up 
of primes is to 11e expected because of the 
great "density" of primes and the fact that 
all primes except 2 are odd. Sumber the 
squares of a checkerboard in spiral fashio~l 
and you will discover that all odd-numbered 
squares are the same color. If you take I7 
checkers (to represe~lt the 17 odd grimes 
under 64) and place them at random on the 

62. Ularn's square spiral 



63. Photographs of a compute 
grid showing primes as 
a spiral of integers from 
1 to about 10,000 (top) 
and from 1 to about 65,000 
(bottom) 
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32 odd-numbered squares, you will find 
that they form diagonal lines. But in the 
higher, less dense areas of the number 
series one would not expect many such 
lines to form. How would the grid look, 
Ulam wondered, if it was extended to thou- 
sands of primes? 

The computer divison at Los Alanlos has 
a magnetic tape on which $10 million prime 
numbers are recorded. Ulam, together with 
Myron L. Stein and Mark B. Wells, pro- 
gramed the MANIAC computer to display the 
primes on a spiral of consecutive integers 
from 1 to about 65,000. The picture of the 
grid presented by the computer is shown in 
Figure 63. Note that even near the picture's 
outer limits the primes continue to fall 
obediently into line. 

The eye first sees the diagonally compact 
lines, where odd-number cells are adjacent, 
but there is also a marked tendency for 
primes to crowd into vertical and hori- 
zontal lines on which the odd numbers 
mark every other cell. Straight lines in all 
directions (once they have been extended 
beyond the consecutive numbers on a seg- 
ment of the spiral) bear numbers that are 
the values of quadratic expressions begin- 
ning with 4x5 For example, the diagonal 
sequence of primes 5, 19,41,71 is given by 
the expression 4x" lox + 5 as x takes the 
values 0 through 3. The grid suggests that 
throughout the entire number series expres- 
sions of this form are likely to vary markedly 
from those "poor" in primes to those that 
are "rich," and that 013 the rich lines an 
unusual amount of clumping occurs. 

By starting the spiral with numbers lhigher 

than 1 other quadratic expressions form the 
lines. Consider a grid formed by starting 
the spiral with 17 [see F i g u r e  64, lef t ] .  
Numbers in the main diagonal running 
northeast by southwest are generated by 
4x" 2x + 17. Plugging positive integers 
into x gives the diagonal's lower half; plug- 
ging negative integers give the upper half. 
If we consider the entire diagonal, rear- 
ranging the numbers in order of increasing 
size, we find- pleasantly enough - that all 
the numbers are generated by the siinpler 
formula x" x + 17. This is one of many 
"prime-rich" formulas discovered by Leon- 
hard Euler, the eighteenth-century Swiss 
mathematician. It generates primes for all 
values of x from 0 through 15. This means 
that if we continue the spiral shown in the 
illustration until it fills a 16-by-16 square, 
the entire diagonal will be solid with 
primes. 

Euler's most famous prime generator, 
x2 + x + 41, can be diagramed similarly on a 
spiral grid that starts with 41 [see Figure 64, 
r i g h t ] .  This produces an unbroken se- 
quence of 40 primes, filling the diagonal of 
a 40-by-40 square! It has long been known 
that of the first 2,398 numbers generated by 
this formula, exactly half are prime. After 
testing all such numbers below 10,000,000, 
Ulam, Stein, and Wells found the proportion 
of primes to be ,475 . . . Mathematicians 
would like to have a forinula expressing a 
function of n that would give a different 
prime for ezjery integral value of r z .  It has 
been proved that no polynomial formula 
of this type exists. There are many nonpoly- 
nomial formulas that w i l l  generate only 



64. Diagonals generated by the formula xZ + x + 17 (left) 
and x Z  + x + 41 (right) 

primes, but they are of such a nature that 
they are of no use in computing primes 
because the sequence of primes must be 
known in order to operate with the formu- 
las. (See "History of a Formula for Primes," 
by Underwood Dudley, Tlze Americun 
Alntl~enzutical Jlontlzly, January, 1969.) 

Ulam's spiral grids have added a touch of 
fantasy to speculations about the enigmatic 
blend of order and haphazardry in the dis- 
tribution of primes. Are there grid lines 
that contain an infinity of primes? \$'hat is 
the maximum prime density of a line? On 
infinite grids are there density variations 
between top and bottom halves, left and 
right, the four quarters? Ulam's doodlings 
in the twilight zone of mathematics are not 
to be taken lightly. It was he who made the 
suggestion that led him and Edward Teller 
to think of the "idea" that made possible the 
first thermonuclear bomb. 

Although primes grow steadily rarer as 
numbers increase, there is nohighest prime. 

The infinity of primes was concisely and 
beautifully proved by Euclid. One is 
tempted to think, because of the rigidly 
ordered procedure of the sieve, that it 
would be easy to find a formula for the exact 
number of primes within any given interval 
on the number scale. No such formula is 
known. Early nineteenth-century mathe- 
maticians made an empirical guess that the 
number of primes under a certain number 
n is approximately nlnatural log of n, and 
that the approximation approaches a limit 
of exactness as n approaches infinity. This 
astonishing theorem, known as the "prime- 
number theorem," was rigorously proved in 
1896. (See "Slathematical Sieves," by 
David Hawkins, Scientijic American, De- 
cember, 1958, for a discussion of this 
theorem and its application to other types of 
numbers, including the "lucky numbers" 
invented by Ulam.) 

It is not easy to find the mammoth primes 
isolated in the vast deserts of composite 
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numbers that blanket ever larger areas of 
the number series. At the ~noment the larg- 
est known prime is 2'"":" - 1, a number of 
6,002 digits. It was discovered in 1971 by 
Bryant Tuckerman, at IB hl's research center, 
Yorktown Heights, New York. Before the 
advent of modern computers, testing a num- 
ber of only six or seven digits could take 
weeks of dreary calculation. Euler once 
announced that 1,000,009 was prime, but 
he later discovered that it is the product of 
two primes: 293 and 3,413. This was a con- 
siderable feat at the time, considering that 
Euler was 70 and blind. Pierre Fermat was 
once asked in a letter if 100,895,598,169 is 
prime. He shot back that it is the product of 
primes 898,423 and 112,303. Feats such as 
these have led some to think that the old 
masters may have had secret and now-lost 
methods of factoring. As late as 1874 U'. 
Stanley Jevons could ask, in his Principles 
of Scielzce: "Can the reader say what two 
numbers multiplied together will produce 
the number 8,616,460,799? I think it un- 
likely that anyone but myself will ever 
know; for -they are two large prime num- 
bers." Jevons, who himself invented a 
mechanical logic machine, should have 
kno\vn better than to imply a lirnit on future 
computer speeds. Today a computer car1 
find his two primes (96,079 and 89,681) 
fkister than he could nlultiply thern together. 

Numbers of the form 2" - 1, where p is 
prime, are called hlersenne numbers after 
hlarin hlersenne, a seventeenth-century 
Parisian friar (he belonged to a humble 
order known as the hlinirns --a11 appropriate 
order for a mathematician), who was the 

first to point out that many numbers of this 
type are prime. For some 200 years the 
llersenne number 2"' - 1 was suspected of 
being prime. Eric Temple Bell, in his book 
Mathematics, Qneetl crncl Sercc~nt of Sci- 
ence, recalls a meeting in New York of the 
American hlathematical Society in October, 
1903, at which Frank Nelson Cole, a Colum- 
bia University professor, rose to give a 
paper. "Cole-who was always a man of 
very few words -walked to the board and, 
saying nothing, proceeded to chalk up the 
arith~netic for raising 2 to the sixty-seventh 
power. Then he carefully su1)tracted 1. 
LVithout a word he rrioved over to a clear 
space on the board ancl multiplied out, by 
longhand, 

The t\vo calc~lations agreed. . . . For the 
first and only time on record, an audience of 
the American llathe~natical Society 1-igor- 
ously applauded the author of a paper 
delivered before it. Cole took his seat with- 
out having uttered n word. Nobody asked 
him a question." Years later, when Bell 
asked Cole how loqg it took him to crack 
the number, he replied, "Three years of 
Sundays.'' 

The British puzzle expert Henry Ernest 
Dudeney, in his first puzzle book (The 
Canterbz~ry P~izz l e s ,  1907), pointed out that 
11 was the only known prime consisting 
entirely of 1's. (Of course: a number fonned 
by repeating any other digit would he com- 
posite.) He was able to show that all such 
"repunit" numhers, froni 3 througl~ 18 units, 
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are composite. Are any larger "repunit" 
chains yrirxie? Oscar Hoppe, a S e w  York 
City reader of Dudeney's book, took u p  the 
challenge and actually managed to prove, 
in 1018, that the 19-"repunit" number, 
1,111,111,111,111,111,111 is prime. Later 
it was discoverecl that 23 repeated 1's is 
also  rime. There the matter rests. No one 
knows if the "repunit" primes are infinite, 
or even if there are more than three. It is 
easy to see that no repunit number is priil~e 
unless the number of its units is prime. 
(For exarnple, if its number of digits has a 
factor of, say, 1.3, then clearly it is divisible 

a repunit of 13 digits.) As of 1970 repunits 
have been tested through 373 digits without 
finding a fourth prime. 

Can a rliagic square be constructed solely 
of different primes? Yes; Dudeney was the 
first to do it. Figure 65 shows such a square. 
It sunis in all directions to the "repunit" 
numl)er 11 1: tlie lowest possible constarlt 
for a prime square of order 3. (Curiously, 
an order-4 square is possible with the lower 
magic coristant of 102. See Dudeney's 
; \nzuse~~~ents  in 3lutlzemutic.s; New York: 
Dover, 1917; problem 408.) 

Can a magic square be made with con- 
secictice odd primes? (The even prime, 2, 
must be left out because it would make the 
odd or even parity of its rows arld colurnrls 
different from the parity of all other rows 
and columns, thereby preventing the array 
from being magic.) In 1913 J. N. hluncey of 
Jessup, Iowa, proved that tlie smallest 
magic square of this type is one of order 12. 
This remarkable curiosity is so little known 
that I reproduce it in Figure 66. Its cells 

65. Prime magic square with lowest 
order-3 constant 

hold the first 144 consecutive odd prirnes, 
starting wit11 1. All rows, columns arid the 
two iiiairl cliagolials suin to 4,514. 

Readers may test their familiarity with 
prilnes by aiiswering the follo\ving ele- 
rneritary cyuestions: 

1. Identify the four prirnes among the 
following six numbers. (Xo te :  The second 
number is the first five digits in the decimal 
of pi.) 



66. Smallest possible magic square of consecutive odd primes 



2. 'I 
arrow, 
small 

67 A gear problem 

'wo gear wheels, each marked with an 
mesh as shown in Figure 67. The 

wheel turns clockwise until the ar- 
rows point directly toward each other once 
more. If the large wheel has 181 teeth, how 
many times will the small wheel have ro- 
tated? (Contributed by Burris Smith of 
Greenville, hlississippi.) 

3. Using each of the nine digits once, and 
only once, form a set of three primes that 
have the lowest possible sum. For example, 
the set 941, 827, and 653 sum to 2,421, but this 
is far from minimal. 

4. Find the one composite number in the 
following set: 

5. Find a sequence of a million consecu- 
tive integers that contains not a single 
prime. 

Addendum 

hlany Scie~rtijic An~cl.ican readers experi- 
mentl?d with triangular and hexangular 
arrays of integers and found that the primes 
cluster along straight lines in the same man- 
ner as in Stanislaw Ulam's square spiral 
grids. Laurence 11. Klauber of San Diego, 
California, sent rne a copy of a paper he had 
read to a meeting of the hlatllematical Asso- 
ciatioln of America in 1932, discussing his 
search for prime-rich polynon~ial formulas 
in such an array. Ulam has also used the Los 
Alnrnos computer for investigating a variety 
of other types of grid, including the triangu- 
lar, and in every case he found that signifi- 
cant departures from randonl distributions 
of primes were at once apparent. This is 
hardly surprising, because any orderly 
arrangement of consecutive integers in a 
grid u7ill have straight lines that are gen- 
erated by polynomial expressions. If the 
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expression is factorable, tlie line cannot 
contain primes; this fact aloiie can accou~it 
for a co~icentration of pritiies along certain 
other lines. 

A11 diagonals of even numl~ers are ob- 
viously prime-empty, a ~ i d  other lines are 
empty because they are factorable by other 
numbers. hlany readers noticed that the 
diagorlal line exterldilig down and to tlie 
right from 1 011 Clam's spiral grid contains 
in sequence the squares of odd integers, 
and the diagonal line exteridi~ig up  and to 
the left fro111 4 gives tlle squares of even 
integers. Botli diagonals are, of course, 
prime-empty. Conversely, other lines are 
prime-rich I~ecause they are generated by 
formulas that act as sieves, retilovirlg num- 
bers that are multiples of low tximes. The 
significalice of Ulam's spiral grids lies not 
in the discovery that primes are nonran- 
domly clistributed, which is to he  expected 
in any orderly arrangement of integers, but 
in the use of a computer and scope to extend 
such grids quickly so that pliotograplis pro- 
vide, so to speak, a bird's-eye view of the 
pattern from which hints can be obtained 
tliat may lead to new theorems. 

Several readers called my attention to 
\I1. H. SIills's formula in the Bulletill of the  
Americun Jlat1len~uticcll Societly; June, 
1947: page 604, which contains an irra- 
tional number I~etween 1 and 2. \Vlle~l posi- 
tive integers are substituted for n in tlie 
formula, the expression gives prime values; 
but since the irrational 11uml)er is not 
kno\vn, tlle formula is of no value in cornput- 
ing primes. In fact, it is to write irra- 
tional numbers that generate e17ery prime in 

sequence, for exarnple .203030701101~3017- 
0190230. . . . To l)e sure, one has to know 
tlie sequence of primes before computing 
tlie number. There are many ways of \x,ritin,q 
complicated f~inctions of 11 so that integral 
values of I I  produce distinct l~rirnes, but the 
catch is tliat tlie function itself requires the 
introduction of the prime-riuniher sequence, 
maki~ig the formula valueless for finding 
primes. Readers interested in formulas of 
this type will find a nontechnical discus- 
sion of them in Oysteiri Ore's excelle~lt 
11ook .?izimber Theor!/  clnd 1t.s Hi . s tory  (Ye\v 
1-ork: SlcCra~v-Hill, 1948). 

Answers 

1. The two composite numl~ers are 
10,001 (the product of primes 73 and 1:37) 
and 123,456,789, \xrhicli is eveiil>. divisible 
by 3.  The other nurnl~ers are primes. 

2. Two meslled gear wheels of different 
sizes cannot return to the same position 
until a certain number of teeth, k ,  have 
passed the point of contact on both \vlleels. 
The number k is the lowest commoli mul- 
tiple of tlie number of teeth on each wheel. 
Let 11 be the number of teeth on the small 
wheel. \17e are told that the large wheel has 
181 teeth. Since 181 is a prime riulr~her, the 
lowest comlnorl multiple of 1 1  and 181 is 
18111. Therefore tlie small wheel will have 
to make 181 rotations before the two wheels 
will return to their former position. 

3. How can tlie rii~ie digits be arranged 
to make three primes with tlie lo\vest pos- 
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si l~le s11m? \Ye first try num1,ers of three 
digits each. Tlie end digits must be 1, 3, 7, 
or 9 (this is true of all primes greater than 
3). \\'e choose the last three, freeing 1 for 
a first digit. The lowest possible first digits 
of each 1lurn1)er are 1.2,  and 4, \vhicli lea\res 
*5, 6, and 8 for the middle digits. .L\mong the 
11 three-digit primes that fit these specifi- 
cations it is not possible to find three that 
do not du171icate a digit. \Ye turn next to 
first digits of 1, 2, and Fj. This yields the 
uniclue answer 

4. Tlie l u t  nunil~er, 333333331, has a 
factor of 17. (The problem is based on a re- 
sult ol~tained by Andrzej hlakowski of 
Poland, which was reported in Recrecltio>lcll 
Jltrfhet,lcltic~.y Jlngclairlc for Fe11ruar~-, 1962.) 

5. It is easy to find as large ail inter\.al as 
we please of coilsecutive integers that are 
riot priine. For an interval of a million iiite- 
gers, consider first the ilumber 1,000,001! 
The esclamatioil mark liieans that the num- 
ber is "factorial 1,000,001," or the product 
of 1 x 2 x :3 x 4 . . . x 1,000,001. The first 
nurllber of the interval we seek is 1,000,001! 
+ 2. \\'e know that 1,000,001! is divisible by 
"one of its factors). so that if we add an- 
other 2 to it, the resulting integer rnust also 
11e di\isil)le by 2. Tlie second nunlber of the 
interval is 1,000,001! + :3. Again, because 
1,000,001! has a factor of 3, it must he divis- 

ible by 3 after we add 3 to it. Similarly for 
1,000,001! + 4, and so on up to 1,000,001! 
+ 1,000,001. This gives a corisecutive se- 
quence of one million composite numbers. 

Are these tlie srnallest integers that fornl 
a sequence of one million nonpri~nes? So, 
as Ted L. Powell pointed out in The 
Gralzclnz Dic~l for April, 1960; u7e can obtain 
a lower sequence just as easily by sub- 
trc~ctitlg: 1,000,001! - 2; 1,000,001! - 3;  
and so on to 1,000,001! - 1,000,001. 
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Graph Theory 

AN EENGIXEER draws a diagram of an elec- 
trical network. A chemist makes a sketch to 
show how the atoms of a corrlplex rnolecule 
are joined by chemical bonds. A genealogist 
draws an intricate family tree. X niilitary 
commander plots a network of supply lines 
on a map. A sociologist traces in an elabo- 
rate diagram the power structure of ;I giant 
corporation. 

What do all these patterns have ill com- 
mon? They are points (representing elec- 
trical connections, atoms, people, cities, 
and so on) connected by lines. In the 1930's 
the mathematician Dbnes Kiinig made the 
first systematic study of all such patterns, 

" 

giving them the generic name graphs." 
(The confusion of this tern1 with the 
"graphs" of analytic geometry is regret- 
table, but the term has stuck.) Today graph 
theory is a flourishing field. It  is usually 
considered a branch of topology (because 
in inost cases only the topological proper- 
ties of graphs are considered), although it 
now overlaps large areas of set theory, 
combinatorial mathematics, algebra, geom- 

etry, matrix theory, game tlleory, logic, 
and many other fields. 

Kiinig's pioneer book on graphs (pub- 
lished in Leipzig in 1036) has yet to be 
translated, but an English edition of a later 
French book, T h e  T l ~ e o r ! ~  of Grcrl~/~,i. c ~ r l c i  

1t.s Applicatiorls, by Claude Berge, was 
published in England in 1962. .).stein 
Ore's elementary introduction, (:ral)lz.c crrld 
Their Uses, was issued as a paperback 
(New York: Randoin House, 1963). Both 
books are of great recreational interest. 
Hundreds of fami1i:lr puzzles, seemingly 
unrelated, yield readily to grapli t l~eory. 
In this chapter we center our attention on 
"planar graphs" and some of their rnore 
intriguing puzzle aspects. 

A planar gral~h is a set of points, called 
vertices, connected by lines, called edges, 
in such a way that it is possible to draw the 
graph on a plane \vithout any pair of etlges 
intersecting. Imagine that the edges are 
elastic strings that call be  bent, stretched, 
or shortened as we please. Is the graph 
show~l  in Figure 68 planar? (Its four ver- 



68. Three ways to draw a complete graph for four points 

tices are indicated by spots. The crossing 
point at the center is not a vertex; think of 
one line as passing under the other.) Yes, 
because we can easily remove the intersec- 
tion by shifting the position of a vertex, as 
shown in the middle graph, or stretching an 
edge as shown in the one at the right. All 
three of these diagrams are "isornorphic": 
each represents a different way of drawing 
the su~izc! planar graph. The edges of any 
solid polyhedron, such as a cube, are planar 
graphs because we can always stretch the 
solid's "skeleton" until it lies on a plane, 
free of intersections. The skeleton of a 
tetrahedron is isomorphic with the three 
graphs of Figure 68. 

It is not always easy to decide if a graph 
is planar. Consider the problem depicted 
at the left in Figure 69, one of the oldest 
and most frustrating of all topological 
teasers. Since the English puzzlist Henry 
Ernest Dudeney gave it this form in 1917 
it has been known as the "utilities problem." 
Each house must receive gas, water and 
electricity. Can lines be drawn to con~iect 
each house with each utility in such a way 
that no line intersects another? In other 

words, is the resulting graph planar? 
The answer is no, and it is not difficult 

to give a rough proof. Assume that only 
houses A and B are to be connected to the 
three utilities. To do this without having 
any line cross another you must divide the 
plane into three regions as shown at the 
right in Figure 69. Your lines need not be 
as pictured, but however you draw them 
your graph will be isornorphic with the one 
shown. House C must go in one of the three 
regions. If it goes in X, it is cut off from 
electricity. If it goes in Y, it is cut off from 
water. At 2, it is cut off from gas. The same 
argument holds if the graph is drawn on a 
sphere, but not if it is drawn on certain other 
surfaces. For example, the graph is easily 
drawn without intersections on the surface 
of a doughnut. 

When every vertex of a graph is connected 
to each of the other vertices, the graph is 
said to be "complete." We saw in Figure 68 
that the complete graph for four points is 
planar. Is the complete graph for five points 
planar? Again an informal proof (the reader 
may enjoy working it out for himself) shows 
it is not. This proof is equivalent to a proof 



69. Problem of the three utilities (left) and the impossibility 
proof for the utilities problem (right) 

70. Simplest nonplanar graphs 

that it is not possible to draw five regions the utilities graph (kno\vn as a Thornsen 
in such a way that every pair shares a com- graph), at the right is the complete graph 
mon border segment, a theorem often for five points. 
confusecl with the farnous four-color map The fact that a complete graph can be  
theorelm. The two simplest nonplanar planar only if it has four or fewer points is 
graphs are shorn-n in Figure 70. .At the left is not without philosophical interest. Alan>, 



Mathematical Games 

l ~ l i l o s o ~ l e r s  arltl rt~:~tl~eiil:~ticia~rs have 
tried to answer the cluc,stion: R'lly does 
pliysical space have three clirrie~rsions? In  
his h o k  7 '12~ Strllctrirc' (111d ~;[ ' : l io/utio~~ oftlle 
(Jr~i~c.r .~r:  (New York: Harper Torchl,ooks, 
1959) the British cosmologist (;. J. Wliitrow 
argues that irrtelligerlt life as wc  know it 
could not have cvolveil iri :I space of Itlore 
tliail three dimerrsio~is \)ecause such spaces 
do not allow stal~lc I)lanetary orl~its arourld 
a sun. How about spaces of one or two di- 
rneiisiorls? llitelligcrit Lil~elanders :~nd  
Flat1iuidc.r~ are rtilecl ont, says Wlritrow, 11y 
grap11 theory. A I,raiir requires an innncnse 
numl~er  of irerve cells (points), connected 
in ~xiirs by ncrves (edges) that ~rrlist riot 
iiite~.sect. 111 threc dirirensions there is 1 1 0  

limit to the num1,er of cells that can 1,e so 
corliicctctl, I)nt i l l  a I~latlailtl tlre n~axinllml 
~irirnl,er, as we have seen, wo~i ld  1)c. four. 

"717h~~s," Whitrow writcs, "we may con- 
cl~idcx t11:~t the r i u n ~ l ~ e r  of clilnensio~is of 
I,l)ysical space is necessarily threc, no Inore 
aird n o  less, 1)ecaase it is tlle uniclue ~iatural 
collcomita~it of the evolutio~i of the higher 
fornrs of tcrrcstrial life, in particular of 
1!:11i, t 1 t~  fo r~ t~ t l l (~ to r  of the ~ ) r o l ) l c , ~ r ~ . "  

l)cvisi~lg 1)lanlar gral~lrs is air essential 
task ill rlraily fields of tcclrnology. Printed 
circ.lrits, for i~lstnriccx, will short-circ~iit if 
any two paths cross. The  reader tniiy wish to 
test his skill in planar graph coirstruction 
l,y co~lsitlering the two printed-circuit 
I~rol,lcnis showrl ilr 71. In thc. npper 
l~ rob le~ i l  five n o i i t r s e c t i g  lines mlist 1)e 
drawn within the rectarigle, each connect- 
ing a pair of spots 1,earirrg the sanie letter 
(A with A, 13 with H, ancl so on). The  two 

l i r~cs ,ID arid 13C are barriers of someh sort 
that iliiiy ~ i o t  be  crossed. 111 tlre lower prol,- 
lern five liracs are to 1,e drawn - connecting 
pairs of spots, lal~elecl with thc same letter, 
as before-bllt irl this case all 1i1ic.s rrrust 
follow the grid. Of course t l ~ c r e  must b e  no 
crossi~igs. Tlrc solrition is ul~iclue. 

Another well-known type of graph puzzle 
is the one that calls for drawing ;I given 
l)laiiar grapli in one co~ltinuous line without 
taking :a pericil froni the paper or goitrg over 
any edge twice. If s11ch u line can be drawn 
as a closed loop, returr~irig to the vertex frorri 
whicli it started, the graph is said to b e  an 
"Euler grapl~" ancl the line an "Euler line." 
In 1736 the Swiss mathe~natician Leor~h:trd 
Euler solvetl a fa~nous problem involving a 
scxt of seven ljridges iri tlie East l'russian 
tow11 of Kiinigsberg (now Kaliningratl). Was 
it possil)le to walk ovcr eacl-r bridge orwe 
and only o i ~ c c  and return to where one hird 
started? Euler foliiid that the problem was 
identical with that of tracing a sirnple graph. 
IIe showcd, in the first paper ever written 
oil graph tl~eory, that if every vertex of a 
gragli is of "ever) degree" (has ;in even 
nu1rl1,c.r of lines nieeting it), it can be  traced 
in oiie round-trip I,ath. If there are two ver- 
tices of odd degree, no round trip is possil)le, 
\)lit the graph can 1,e drawn 1)y ti line begill- 
nilig at one odd vcrtcx a r ~ d  ending at the 
other. If t l~c rc  are 2k vertices of otld degree 
(ancl the nurrr1)er of odd vertices rnlist al- 
ways be even), it car1 1,e trncecl1)y k separate 
paths, each starting anci ending ,rat an odd 
vertex. The graph for the bridges of Kiir~igs- 
berg has four odd vertices, therefore it re- 
qnires a minimum of two paths (neither of 



71. Two printed-circuit problems 



them closed circuits) to traverse all edges.
Any Euler graph can be traversed by an

Euler line that makes the entire round trip
without intersecting itself. Lewis Carroll, we
are told in a biography by his nephew, was
fond of asking little girls to draw, with one
Euler line, the graph in Figure 72. It is easily
done if lines are allowed to intersect, but it is
not so easy if intersections an forbidden. A
quick way to solve such puzzles has been pro-
posed by T. H. O’Beirne of Glasgow. One col-
ors alternate regions as shown in the middle
drawing, then breaks them apart at certain
vertices in any way that will leave the colored
areas “simply connected” (connected without
enclosing noncolored areas). The perimeter
of the colored region is now the Euler line we
seek [at bottom, right]. The reader can try this
method on the Euler graph shown in Figure
73 (proposed by O’Beirne) to see how pleas-
ingly symmetrical an Euler line he can obtain.

An entirely different and, strangely, much
more difficult type of graph-traversing puzzle is
that of finding a route that passes through each
vertex once and only once. Any route that pass-
es through no vertex twice is known in graph
theory as a single path, if it returns to the start-
ing point it is called a circuit. And a circuit that
visits every vertex once and only once is called
a Hamiltonian line, after Sir William Rowan
Hamilton, the nineteenth-century Irish mathe-
matician, who was one of the first to study
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72. Lewis Carroll’s three-square problem



73. O'Beirne's four-circle problem 

such paths. H e  showed that a Hamiltoniarl 
line could be  traced along the edges of each 
of the five regular solids, and h e  even sold 
a toy manufacturer a puzzle based 01-1 find- 
ing Hamiltonian tours along the edges of 
the dodecahedron. 

It might be  supposcd that, as in the case 
of Euler lines, there would b e  simple rules 
for determining if a graph is Hamiltonian; 
the fact is that the two tasks are surprisingly 
clissirnilar. An Euler line must trace ever!, 

edge once and onl). once, but it go 
through any vertex more than once. Hamil- 
tonian line must go through each vertex 
once and only once, but it need not trace 
every edge. (I11 fact, it traverses exactly two 
of the edges that meet at any one vertex.) 
IIamiltonian paths are important in marly 
fields where one would not expect to find 
them. In  operations research, for example, 
the problem of obtaining the best order in 
which to carry out a specified series of 
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operations can sometimes he diagramed as 
a graph on which a Ha~~liltonian line L '  rives 
an optimum solution. Unfortunately there 
is no general rnetllod for deciding if a graph 
is Hamiltonian, or for finding all Haniil- 
toniar~ lines if it is. 

Alany serniregular polyhedrons, but not 
all, have Hamiltoriian skeletons. An excep- 
tion is the rho~nbic dodecahedron shown in 
Figure 74, a form often assumed by crystals 
of garnet. Even if the path is not required to 
1,e closed, there is no way to traverse the 
skeleton so that each vertex is visited once 
and only once. The proof, first given by 
H. S. 11. Coxeter, is a clever one. All ver- 
tices of degree 4 are shown as black spots, 
all of degree 3 as colored spots. Note that 
every black spot is completely surrounded 
by colored spots and vice versa. Therefore 
any path through all 14 spots must alternate 

74. The skeleton of a rhombic dodecahedron 

coloreld and black. But there are six black 
spots and eight colored ones. No path of 
alternating color i\ po\sible, either closed or 
open a~t the ends. 

An ancient chess recreation that at first 
seems far removed from Hamiltonian paths 
is the reentrant knight's tour. It consists of 
placing the knight on a square of the chess- 
l~oard, then finding a path of continuous 
knight's nloves that will visit every square 
once and only once, the knight thereupor1 
returning in one move to the square from 
which it started. Suppose each cell of the 
board to be represented by a point and 
every possible knight's move by a line join- 
ing two points. The result is, of course, a 
graph. Any circuit that visits each vertex 
once and only once will be a Hamiltonian 
line, and every such line will trace a re- 
entrant knight's tour. 

Sucl:~ a tour is impossible on any board 
with an odd nur~lber of cells. (Can the reader 
see why?) The sll~allest rectangle on which a 
closed. tour is possible is one with an area 
of 30 scluare units (3 x 10, or 3 x 6). The 
six-by-six is the sn~allest square, No tours, 
not even open-ended ones, are possible on 
rectangles with one side less than three. 
No one knows how many rnillior~s of differ- 
ent reentrant knight's tours can be made on 
the sttandard eight-by-eight chessboard. In 
the einormous literature on the topic the 
searcl-1 has usually been confined to paths 
that exhibit interesting symmetries. Thou- 
sands of elegant patterns, such as those 
show1.1 in Figure 75 have been discovered. 
Paths with exact fourfold symmetry (un- 
changed by any 90-degree rotation) are not 



75. Reentrant knight's tours 
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~oss ih le  on the eight-by-eight board, al- 
though five slich patterns are possible on 
the six-by-six. 

?Is an introduction to this classic pirstime 
you are invited to search for a reentrant 
knight's tour or1 a s i r n ~ l e  12-cell board 
[see Figure 761. After it has 1)een found, a 
see~llingly more difficult question arises: 
Is it possible to move the knight over this 
board in one chain ofjumps and make every 
possible knight's rnove once and only once? 
There are 16 different knight's moves. A 
move is considered "made" whenever a 
knight connects the two cells by a jump in 
either direction. Of course, the knight niay 
visit a n ?  cell more than once, but it must not 
make the saine move twice. The l ~ a t l ~  need 
not be reentrant. 

76. A knight's-tour problem 

The reader will soon coilvi~lce himself 
that such a path is not possible; but what is 
the snlallest num1,er of sepcircite paths that 
will cover all 16 of the possible moves? 
This can be answered in just a few minutes 
by apl)lying one of the graph theorems clis- 
cussecl earlier in this chapter. 

Answers 

The two printed-circuit problenls are solved 
in the n~anner shown in Figure 77. A sym- 
metrical, 11011-self-intersecting Euler line 
for the: four-circle puzzle is show11 in Figure - 
t 8 ,  obtained by the coloring method ex- 
p1aint:d on page 96. The path at the left in 
Figure 79 traces a reentrant knight's tour 
on the cross-shaped board. To determine 
if there is a single path that will go over 
every possible knight's move, we first draw 
a graph [u t  r ight  i l l  illustrrrtion] sliowing 
every move. Note that eight of the vertices 
are n3'eeting points for an odd number of 
edges. In accorclance with one of Euler's 
theorems, a minimur-il of 812, or 4, paths are 
required to trace every edge once and only 
once. Each path inust hegin at one odcl ver- 
tex and end at another. 

To prove that no reentrant knight's tour 
is po~~sible 011 a board with an odd number 
of cells, first color the cells altenlatel>r, 
checkerboard fashion. Every knight's move 
carries the piece from a cell of one color to 
a cell of another, so that if the path is a 
closecl circuit, half the cells in the ~ a t h  
must be one color ~ n d  half another color. 



77. Solutions to printed-circuit problems 



78. Solution to four-circle problem 

79. Graphs for reentrant knight's tour (r ight)  and for all knight's moves ( le f t )  

102 



Graph Theory 

But if a board has ari otld riurn1)er of cells, 
regardless of its shape there will he more 
cells of one color than of the other. 
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11. The Ternary System 

Somewhere in the darkness a woman sang in a high wild voice and the tune 
had no start and no finish and was made up of only three notes which went 
on and on and on. 

Carson McCullers, 
The Ballad of the Sad Cafe 

NOW ASD THES a cultural anthropologist, 
eager to push mathematics into the folk- 
n7ays, will point to the use of different iiunl- 
ber systems in pr i~ni t ive societies as 
eviclence that laws of arithmetic vary frorn 
culture to culture. But of course the same 
old arithmetic is behind every nurnher 
system. The  systems are nothing more than 
different languages: different \vays of utter- 
ing, symbolizing, and manipulating the 
.sclr~e numl~ers .  Two plus t\vo is invariably 
four in any notation, and it is alwap-s pos- 
sible to translate from one number 
languagc to another. 

Any integer except O can furnis l~ the base, 
or radix, of a number system. The  sirnplest 
notation, based on 1, has only one symbol: 
the notches an outla\iT cuts in his gull or the 

beads a billiard player slides along u wire 
to record his score. The  binary system has 
two I S ~ I I I I ~ ~ I S :  0 and 1. The  decimal system, 
now universal throughout the civilized 
worl'd, uses ten symbols. The  larger the 
base, the Inore co~llpactly a large n u m l ~ e r  
can 1,e written. Tlie decimal number 1,000 
requires ten digits in binary notation 
(1111101000) and 1,000 digits in the 1- 
system. O n  the debit  side, a large base 
rilearls rnore digits to mernorize and larger 
tables of addition and multiplication. 

Frlom time to time reform groups, fired 
with almost religious zeal, seek to over- 
thro\v what has been called the  "tyranny of 
10" m d  replace it with what they believe 
to b e  a more efficient radix. I11 recent years 
the c:Inodecirnal  stem, hased on 12, has 
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been the most popular. Its chief ad~rantage 
is that all multil>les of the base (can be  
evenly halved, thirded, and quartered. (The 
unending decimal fraction .3333 . . . , 
which stands for 113, becomes a simple .4 
in the 12-system.) There have been advo- 
cates of a 12-base since the sixteenth 
century, includirlg such persorrages as 
Herbert Spencer, John Quincy Adains, and 
George Bernard Shaw. H. C .  Ll'ells has the 
system adopted before the year 2100 in his 
novel \V7het~ the  Sleeper \l'tlkes.. There is 
even a Duodecimal Society of America. (Its 
headquarters are at 20 Carleton Place, 
Staten Island, New York 10304.) It pub- 
lishes Tlze Duodec in~n l  Bulletit1 and 3fat1- 
uul o f  tlze Dozen S~ystenl and supplies its 
" dozeners" with a slide rule based on a 
radix of 12. The  society uses an X s:vmbol 
(called dek) for 10 and an inverted 3 (called 
el) for 11. The  first three powers of 12 are 
do, gro, rno; thus the cluodecimal nurnber 
l11X is called rno gro do  dek. 

Advocates of radix 16 have produced the 
funniest literature. I n  1862 John I\'. Ny- 
stronl privately in P11iladt:lphia 
his Project o f  (1 Xeu: S11~teli1 ~ f , A r i t / z ~ n ~ t i c ,  
lt 'eight, 31easurc, ulzcl C,'oins, Pro)~osetl  t o  
Re Called t h e  Totla1 Sl/.ste?rl, tc;itl~ S ix teo i  
to  the  Bu,se. Nystrom urges that numbers 1 
throllg1-1 16 be called an, de,  ti, go, su, by, 
ra, me,  ni, ko, hu, vy, la, po, fy, ton. Joseph 
Bowden, who was a mathematicia.~i at 
.4delphi College, also considered 16 the 
best radix but preferred to keep the familiar 
names for n ~ ~ r n b e r s  1 t l~rough 12, then con- 
tinue wit11 thrun, fron, feen, wunty. I n  
Bowdeu's notation 233 is writterl ?,ti and 

pronounced "feenty feen." (See Chapter '3 
of his Sl~ccicrl Topics in Theoretictll -1r.ifll- 
tlzetic, privately published; Garden City, 
New York: 1936.) 

It seerns unlikely that the "tyranny of 10" 
will soon 1)e toppled, but  that does not pre- 
vent the matheinatician from us i~ lg  what- 
ever nurnber system h e  finds most useful 
for a give11 task. If a structure is rich in t\vo 
values, such as the on-off values of com- 
puter circuits, the binary systenl may be  
~ n u c h  more efficient than the decirnal sys- 
tem. Similarly, the ternary, or 3-base, 
system is often the most efficient way to 
analyze struc.turcs rich in three values. In 
the quotation that opens this chapter Carson 
~ I c C u l l e r s  is writing about herself. She is 
the wonli~n singing in the darkness a l~ou t  
that grotesque triangle in which l l a cy  lo\res 
Irliss Amelia, who loves Cousin Lymon, 
who loves Rlacy. T o  a nlathelnatician this 
sad, endless round of u i~rec~ui ted  love sug- 
gests the endless round of a base-3 arith- 
metic: each note ahead of another, like the 
numbers on an eterrlally ruinling three-hour 
clock. 

In ternary arithmetic the tlzree notes are 
0, 1, 2. As you move left along a ternary 
number, each digit stands for a int~ltiple of 
a lligher power of 3. In the ternary nuniher 
102, for example, the 2 stands for 2~ 1. The  
O is a "place holder," telling us that no 
mult i l~les  of 3 are indicated. The  1 stands 
for 1 x 9. \Ye sum these valnes, 2 + O + 9. to 
obtain 11, the decimal equivalent of the 
ternary number 102. Figure 80 sho\vs the 
ternary equivalents of the decinlal nurnl~ers 
1 through 27. (A\ Chinese ;ibact~s, 11y the 



Mathematical Games 

DECIMAL TERNARY 
NUMBERS / NUMBERS 

80. Ternary numbers 1 through 27 

way, is easily adapted to the ternary sys- 
tem. Just turn it ulxide down and use the 
two-bead section.) 

Perhaps the rnost corninon situation lend- 
ing itself to ternary analysis is provided by 
the three values of a balance scale: either 

one pan goes down or the other pan goes 
down, or the pans balance. As far back as 
1624, in the second edition of a hook on 
recreiltional mathematics, Claude Gasper 
Bacliet asked for tlle smallest nt~mher of 
weights needed for weighing any object 
with an integral weight of froni 1 through 
40 pounds. If the weights are restricted to 
one :side of the scale, the answer is six: 
1, 2, .4, 8, 16, 3.3 (successive po\t7ers of 2). If 
the \veiglits may go on either pan, only four 
are needecl: 1, 3 ,9 ,27  (successive powers of 
*3). 

To determine how weights are placed to 
weigh an object of 11 r>o~~nds ,  we first write 
I I  in the ternary system. Next we change the 
form of the ternary number so that instead 
of expressing its value with the symbols 0, 
1, 2 vve use the symbols, 0, 1, -1. To do this 
each 3 is changed to -1, then the digit to tlle 
immediate left is increased by 1. If this pro- 
duces a new 2, it is eliminated in the same 
way. If the ~rocedure  creates 213, we replace 
the 3 with 0 and add 1 to the left. For in- 
stance, suppose the weigllt is 23 pounds, or 
221 in ternary notation. The first 2 is 
changed to -1, then 1 is added to the left, 
forming the nurnber 1 -1 2 1. The remain- 
ing ;! is now changed to -1, and 1 is added 
to t1l.e left, nlakirlg tlle iiun~ber 1 O -1 1. 
This ne\tr ternxy ilunlber is equivalent to 
the old one (27 + 0 - 3 + 1 = 25), bu t  no\\- 
it is in a forin that tells us how to place the 
weights. Plus digits indicate \lieights that 
go in one pan, minus digits indicate weights 
that go in the other pan. The object to be 
weighed is placed on the nlinus side. 
Figure 81 shows horn7 the three weights are 
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81. How to weigh a 25-pound object 

A more sophisticated balance-scale 
problem (dozens of papers have discussed 
it since it first sprang up, seemingly out of 
nowhere, in 1945) is the problem of the 12 
coins. They are exactly alike except for one 
counterfeit, which weighs a bit more or a 
bit less than the others. With a balance 
scale and no weights, is it possible to iden- 
tify the counterfeit in three weighings and 
also know if it is underweight or over- 
weight? 

Although I constantly receive letters 
asking about this problem, I have avoided 
writing about it because it was so ably 
discussed by C. L. Stong in "The Amateur 
Scientist" column of Scientijic American 
for May, 1955. Now we shall see how one 

placed for weighing a 25-pound object. solution (there are many others) is linked 
The base3  system using the symbols -1, with the ternary system. 

0, +1 is called the "balanced ternary sys- First, list the ternary numbers from 1 
tem." A good discussion of it Can be found through 12. To the right of each number 
in Donald E. Knuth's Seminumerical Algo- write a second ternary number obtained 
rithms (New York: Addison-Wesley,l969; from the first by changing each 0 to 2, each 
pages 173-175). "So far no substantial ap- 2 to 0 [see Figure 821. Next, find every num- 
plication of balanced ternary notation has 
been made," Knuth concludes, '<but per- 82. Ternary numbers for 12-coin problem 

haps its symmetric properties and simple 
arithmetic will prove to be quite important 1 
some day (when the 'flip-flop' is replaced 2 
by a 'flip-flap-flop')." 3 

Suppose you wish to determine the 4 
weight of a single object known to have an 5 
integral weight of from 1 through 27 pounds. 6 

What is the smallest number of weights 7 

needed, assuming that they may be placed 
8 
9 

on either pan? There is no catch, but the 10 
question is tricky and the answer is not 1 1  
what you are first likely to think. 12 

001 221 
002 220 
010 212 
011 211 
012 210 
020 202 
021 201 
022 200 
100 122 
101 121 
I02 I20 
110 112 



her that contains as the first unlike digits 
one of the following pairs of adjacent digits: 
01, 12, 20. Assign one of these 12 numbers 
(shown in color) to each of the 12 coins. 

For the first weighing the four coins with 
a first digit of 0 go left, the four with a first 
digit of 2 go right. If the pans balance, put 
down 1 as the first digit of the counterfeit. 
If the left pan goes down, the counterfeit's 
first digit is 0; if the right pan goes down, it 
is 2. 

For the second weighing the four coins 
with a middle digit of 0 go left, the four with 
a middle digit of 2 go right. The same pro- 
cedure is followed to obtain the middle 
digit of the counterfeit. On the third weigh- 
ing, coins with final digits of 0 go left, those 
with final digits of 2 go right, and the last 
digit of the counterfeit is obtained as be- 
fore. Figure 83 shows the three weighings 
that identify the counterfeit as coin 201. 
When the coin is overweight, as in this 
case, the number given by the three weigh- 
i n g ~  is the actual number of the coin. If the 
three weighings give a number not assigned 
to a coin, then the coin is underweight. Its 
number is obtained by substituting a 0 for 
each 2, and a 2 for each 0. 

Scores of simplified versions of this pro- 
cedure have been devised. The best I know 
comes from W. Fitch Cheney, Jr., a mathe- 
matician at the University of Hartford. 
Label the coins with the letters of SILENT 

COWARD. The three weighings are SCAN 

83. Three weighings to identify 
a counterfeit coin 
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against WORD, SCAK against LINE, SLOT 

against HAII>. Put a ring around each word 
that goes down. If a pair balances, lalark out 
all its letters from all six words. Inspect the 
circled words. If there is a letter not crossed 
out that appears in each word, it indicates 
the false coin and the coin is overweight. 
If there is no such letter, you are sure to 
fi~id one not crossed out in each of the un- 
circled words. It then indicates an under- 
weight counterfeit. Other key words can, of 
course, be devised. L. E. Card, intrig:ued by 
Cheney's SILENT COWARD, found two 
dozen sets, of which I cite only one: CRAZY 

\\'EIGHTS: CITY-HAZE, GRE\T-HAZY, KSU 
WISH-TRAY. ? 

The problem has been generalized. In 
four weighings one can identify the false 
coin, and tell whether it is ligllt or heavy, 
among a ~llaxi~num of 3' + 3'+ 3:'= 39 coins; 
five weighings will take care of 3' + 3' + 
3" + 3 &  = 120 coins, and so on. RIore com- 
pactly, I L  weighings take care of 1/:2(31'-3) 
coins. It is worth noting that a counterfeit 
among 13 coins can be found in three weigh- 
i n g ~  if one need riot know whether it is 
heavier or lighter (simply put the 13th 
coin aside and if you fail to find the counter- 
feit among the 12, the 13th coil1 is it): to 
know whether the false coin is heavier or 
lighter, three weighiqgs also suffice for 1:3 
coins if you add a 14th coin known to be 
genuine. 

llan); card tricks are closely related to tlle 
,11ow11 12-coin problem. One of the best is 1- 

as Cergonne's three-pile problern after the 
French mathematician Joseph Diez Ger- 
gonne, who first studied it early in the 

nineteenth century. Someone is asked to 
look through a packet of 27 cards and fix one 
in his mind. He holds the packet face down, 
deals the cards face up into a row of three, 
then continues dealing on top of these 
c_arcls, left to right, until all 27 have been 
dealt into three face-up piles of nine cards 
each. After telling the magician \vllicl~ pile 
contains his chosen card, he assembles the 
piles by placing them 011 top of one another, 
in any order he wishes, turiis the packet 
face down and again deals them into three 
face-up piles. Once more he indicates the 
pile in which his card fell. This is repeated 
a third time, then tlie assenlbled packet is 
placed face down on the table. The magi- 
cian, who has not touched the cards through- 
out the entire 13rocedure: names the position 
of the chosen card. 

Tlle secret lies in observing, at each 
pickup, whether the pile with the selected 
card goes on the top, the botto~n, or ill the 
niiddle of the assembled facetfo~vn packet. 
These posit io~~s are designated 0 for the top, 
1 for the middle, 2 for tlle bottom. The 
ternary numl~cr expressed by the three 
pickups, written fro111 r i g h t  to left, is the 
nuniber of cards above the chosen card 
after the final pickup. For example, suppose 
tlie first pickup puts tlle pile on the top (O),  
the second on the I~ottorn (2), the thirct in 
the middle (1). These digits, written right 
to left, give the ternary numl,er 120, or 15 
in the deci~lial scale. Fifteen cards are 
therefore above tlle selected one, making 
it the 16th card from the top. Of course, the 
trick can be done just as easily in reverse. 
The spectator chooses any number from 1 
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tlrrougli 27, then the magician, rnakilrg the 
pickups liirnself, I~ri~rgs the card to that 
n1irrll)er from the top. 

If ill clealiilg into three ]>iles one is per- 
~rrittc:ci to put each card on atly pile, 11 

Ix~werf~il sortirlg rnetllocl results. At this 
poirrt the reader is asked to o1)taili eight 
filc cards and prirtt oir ex11 curt1 one of the 
lcttcrs in the word IIEXIOCRAT. Arrange the 
cards into a packet, letter sicles tlowil, that 
sl~ells IlEh4O(:RA'T fro111 the top ~ l o \ ~ 1 1  [SCW 

t op  i l l z ~ . r . t r . c i l i o i l  oj I ; igu~ .c  841. Yon wish to 
real-range the cards so tlrut, fi-orn the top 
d o w ~ ~ ,  they are in alI)lral)ctical orclcr as 
shown in Figr~re 84, bottom. It is easily 
tlonc in ant, deal. Ttirn the toy card, 11, 
face up arrd place it as the first card of' pile 
1. The next three cards, E ,  '11, 0, go o r 1  top 
of tlrc I ) .  0' becomes the first card of pile 2, 
R gochs 1);ick on pile 1, A starts pile :3, and 
7' goes or1 pile 1. .4ssenil1le by ~x~tti irg pile 1 
on 2 aucl those c;trds on :3; then turn the 

packet fact down. You will find tlie cards ill 
itll)lial)etical orcler, top to l)otton~. A single 
deal is also sufficient, as you can easily 
cliscover, for changing the alphabetized 
order 1-jack to I IEMOCKA~.  

Put the DEMOC:RAT cards aside and make 
;t new set that spells IIEPUHIJCAN. (=all 
thi.s set 11c alpliabctized in oile opcratior~? 
No,  it cai~irot. What is the srnallest number 
of operatio~rs r~cccss:t~-y? Kenlernl~er, the 
initial packet of face-down cards must spell 
t l ~ e  MTC)I.(~ frorn the top down. Eacll card is 
tlenlt face up, the piles are picked up in any 
orcler, tllelr t l ~ c  packet is turned face dowil 
to conclntle onc opcratioii. After the last 
opcrati~on tlie carcls mlist 1,e in the order 
A ~ C E I I ~ N P K U ,  to11 to I~ottorn. If you solve 
this l ~ r o l ~ l e ~ ~ r ,  see if you can cleterlrlir~e the 
~ni~lirnli~n nurill~er of operations rreetled to 
change tlrc order back to HEPURLICAN. And 
if both I~rol~Ser~ls seen1 too easy, try a set of 
cards that spell SCIENlIFIC AMEKICAN. 111 

84. Original ( top) and desired sorting of DEMOCRAT cards 
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the answer section I explairi how all sort- 
ing prol)lt'r~is of this type can 1)e solved 
quickly 11y a sirnple application of  ternary 
nun~bers ,  and I also answer tlle l~rol,leril of 
the weigllts. 

Answers 

The  n i i ~ i i r ~ ~ l l n ~  n ~ ~ r n b e r  of weights needed to 
weigh 27 I~oxes with iiltcgral weights of 
from 1 tlirough 27 l)ollncls, assurrriirg tliilt 
weights may I)e I>laced on either sitlc of a 
balance scale, is three: 2,  6, and 1 H pourids. 
(They repl-esent doul>li~igs of succcssi\,c 
powers of 3 . )  These weights will acl-hieve an 
cxact 1)alance for every eve11 11urx111er of 
~)ouilds from 1 tlirougl~ 27. T h e  odd weights 
are tleterrriined by checking the even 
weights directly a l~ovc  and below; for ex- 
~imple,  a 1)ox of 17 ~)oi l~l t ls  is identified l ~ y  
the fact that it weighs less than 18 and more 
than 16 pounds. (Mitchell LVeiss ofUowr~ey, 
California, this p l t~asa l~ t  twist on 
an old prol,lcrri.) 

Tlie tusk of alpliabctizi~ig the letters of 
REPUBLICAN 1)y dea l i l~g  letter curcls into 
three piles can 11e solvecl in two operations. 
First, write down the letters i ~ i  :ilphal>etical 
order: AB(:EILNPRU. A is the first letter, so 
we p1;ict: a 0 a l~ove  the letter A iii tlic word 
REPUBLICAN. WC niove r i g / l f  d01lg the wort1 
in search of H ,  the secontl letter, but we do 
not find it. Because we are forccd to rnove 
left to reach B,  we put 1 ubovc it. Mie con- 
t i n i ~ e  to movc right in seiircll of' (:. This 
time we find it on tlie right, so we laljel it 
with I also. Tlrc ~ i c x t  letter, E ,  forces us to 

move left again, therefore w e  1al)el it 2. I is 
to tlie right o l  I:', so it gets 2 also, 1)ut L car- 
ries us left again, so it gets 3 .  In short, w e  
raise the nu1ril)er only when we have to 
niove left to find tllv letter. This is how the 
final result appears: 

5 2 4 5 1 3 2 1 0 3  

R E P U B L I C A N  

O n  ~ ; I C ~ I  letter cart1 write tlic ternary 
etluivalent of tlrc decimal 11urril)er assigried 
to that Ictter. T h e  cards are held in a face- 
dowrr packet, spelling nEl3Ul3l,1C:AN frorn 
t l ~ c  top down. T~riagilre that thc three piles 
are r ~ u r ~ ~ l ) e r e d ,  left to right, 0, 1, 2. Turn 
over the top card, 11. Its tcwiary nurnl~er  is 
12. 'Tile lusi digit, 2, tells you to deal the 
cart1 to pile 2 (the end  pile ~ I I  the right). Tile 
ricxt card, E ,  has a ternary ~lurr i l~er  of 02; 
it also goes or1 the right end pile. (:oirtinuc 
in this way, dealing each card to the pile 
indicated 11y tlic final digit. Tlre piles are 
always asselir1)led ti-om right to left 1jy put- 
ting the last l)ilc (2) on the center pile ( I ) ,  
then all those cards oil the first pile (0). 
T111-11 tlic packet face tlow~r and (leal once 
inorc, this time dealing as indicated ljy tlie 
f i r s t  digits of e:icli ternary numlxr.  As- 
sen11,le as l~efore.  Tlle cnrcls arc now algha- 
1)ctized. 

To  plit tllc cards back i n  their origiilal 
order a nclur analysis of the letters ~ririst he 
nraclc, assignirlg tlierir a iicw set of ~~ruril>ers: 

Two opcratio~ls will return thc cards to 
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their initial order, but  the sorting procedure 
is not the same as before. If the  dec i~na l  
numbers assigned to the letters go above 8, 
then a ternary r lu~nber  for a letter will re- 
quire rnore than two digits, and the number 
of required operations will be  more than 
two. I t  is easy to see that the rninimum num- 
ber  of operations is given by the number of 
digits in the highest ternary number. To 
alphabetize SCIEXTIFIC AMERICAS the 
letters are num~bered: 

6 1 4 2 5 6 4 3 3 1  

S C I E N T I F I C  

0 4 2 5 3 1 0 4  

A M E R l  C A N  

Because the highest number, 6, has only 
two digits in its ternary fonll, only two opera- 
tions are called for. However, to reverse the 
procedure, changing the alphabetized order 
back to SCIESTFIC AMERICAS, the highest 
number is 10. This has three ternary digits, 

therefore three operations are necessary. 
If the I-eader will test the system on longer 
phrases or sentences, h e  will be  astonisl~ed 
at how few operations are required for what 
seems to h e  an enormously difficiilt sorting 
job. One  can generalize the method to any 
number of piles, 1 1 ,  simply by  writing nurn- 
bers in a system based on 1 1 .  
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12. The Trip around the Moon 
and Seven Other Problems 

1. The Trip around the Moon 

The year is 1984. A  noon base has been 
estal~lishecl and an astronaut is to make an 
exploratory trip around the moon. Starting 
at the base, he is to follow a great circle and 
return to the base from the other side. The 
trip is to be made in a car built to travel over 
the satellite's surface and having a fuel 
tank that holds just enough fuel to take the 
car a fifth of the way around the n:loon. In 
addition the car can carry one sealed con- 
tainer that holds the same amour~t of fuel as 
the tank. This may be opened and used to 
fill the tank or it may 11e deposited, un- 
opened, on the moon's surface. No fraction 
of the container's contents may be so de- 
posited. 

The proble~n is to devise a way of nlaking 
the round trip wit11 a minimum consunll>- 
tion of fuel. As many preliminary trips as 
desired may be made, in either direction, to 
leave containers at strategic spots where 

they can 1,e picked up and used Inter, but 
eventually a conlplete circuit must be rnade 
all the way around in one direction. Assume 
that there is an u~llimitecl sul>ply of con- 
tainers at the base. The car can always be 
refueled at the base from a large tank. For 
example, if it arrives at the base with a 
partly empty tank, it can refill its tank 
\vithout wasting the fuel remaining in its 
tank. 

To work on the problem, it is co~lvenient 
to draw a circle and divide it into twen- 
tieths as shown on the next page in Figure 
85. Fuel used in preliminary trips must of 
course be counted as part of the total amount 
consumed. For example, if the car carried a 
container to point '30, left it there and re- 
turned to base, the operation wo~ild con- 
sume one tank of fuel. 

This operations-research problenl is 
similar in some respects to the well-known 
problem of crossing a desert in a truck, but 
it demands a quite different analysis. 



85. A tour-of-the-moon orobiem 

2. The Rectangle and the Oil Well 

An oil well being drilled in flat prairie 
country struck pay sand at an underground 
spot exactly 21,000 feet frorn one corner of a 
rectangular plot of farmland, 18,000 feet 
from the opposite corner, and 6,000 feet 
from a third corner. How far is the under- 
ground spot from the fourth corner? Read- 
ers who solve the problem will discover a 
useful formula of great generality and de- 
lightful simplicity. 

3. Wild Ticktacktoe 

A. K. Austin of Hull, England, has written 
to suggest a wild variation of ticktacktoe. It 
is the same as the standard game except that 
each player, at each turn, may  nark either 
a naught or a cross. The first player to com- 
plete a row of three (either three naughts or 
three crosses) wins the game. 

Standard ticktacktoe is a draw if both 
sides play rationally. This is not true of the 
unusual variant just described. Assuming 
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that both players adopt their best strategy, 
who is sure to win: the first or the second 
player? 

4. Coins of the Realm 

In this country at least eight coins are 
required to make the sum of 99 cents: a 
half-dollar, a quarter, two dimes arid four 
pennies. Imagine yourself the leader of a 
small, newly independent nation. You have 
the task of setting up a system of coinage 
based on the cent as the smallest unit. Your 
objective is to issue the smallest number of 
different coins that will enable any value 
from 1 to 100 cents (inclusive) to be made 
with no more than two coins. 

For example, the objective is easily met 
with 18 coins of the following values: 1, 2, 
3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 
80, 90. Can the reader do better? Every 
value must be obtainable either by one coin 
or as the slim of two coins. The two coins 
need not, of course, have different values. 

5. Bills and Two Hats 

"No," said the mathematician to his 14-year- 
old son, "I do not feel inclined to increase 
your allowance this week by ten dollars. 
But if you'll take a risk, I'll make you a sport- 
ing proposition." 

The boy groaned. "What is it this time, 
Dad?" 

"I happen to have," said his father, "ten 

crisp new ten-dollar bills and ten crisp new 
one-dollar bills. You may divide them any 
way you please into two sets. We'll put one 
set into hat A, the other set into hat B. Then 
I'll blindfold you. I'll mix the contents of 
each hat and put one hat on the right and 
one on the left side of the mantel. You pick 
either hat at random, then reach into that 
hat and take out one bill. If it's a ten, you 
may keep it." 

"And if it isn't?" 
"You'll mow the lawn for a month, with 

no complaints." 
The boy agreed. How should he divide 

the 20 bills between the two hats in order 
to rnaxirnize the probability of his drawing 
a ten-dollar bill, and what will that prob- 
ability be? 

6. Dudeney's Word Square 

Charles Dunning, Jr., of Baltimore, Mary- 
land, recently set himself the curious task 
of placing letters in the nine cells of a 
three-by-three matrix so as to form the 
largest possible number of three-letter 
words. The words may be read from left to 
right or right to left, up or down and in 
either direction along each of the two main 
diagonals. Dunning's best result, shown in 
Figure 86, gives ten words: tea, urn, bay, 
tub, but, era, are, any, try, bra. 

How close it is possible to come in En- 
glish to the theoretical maximum of 16 
words? A letter may be used more than 
once, but words must be different in order 
to count. They should be dictionary words. 



86. Dunning's 10-word square 

I have on hand a specimen from one of H. 
E. Dudeney's puzzle books that raises the 
number of words to 12 but perhaps readers 
can do better. 

7. Ranking Weights 

Five objects, no two the same weight, are 
to be ranked in order of increasing weight. 
You have available a balance scale but no 
weights. How can you rank the objects cor- 
rectly in no more than seven separate 
weighings? 

For two objects, of course, only one 
weighing is required. Three objects call for 
three weighings. The first determines that 
A is heavier than B. We then weigh B 
against C. If B is heavier, we have solved 
the problem in two weighings, but if C is 
heavier, a third weighing is required to 
compare C with A. Four objects can be 

ranked easily with no more than five weigh- 
ings. 

With five objects the problem ceases to be 
trivial. As far as I know, no general method 
for ranking n objects with a minimum num- 
ber of weighings has yet been established. 

8. Queen's Tours 

Hundreds of entertaining puzzles, known as 
" chess tours," involve the movements of 
single chess pieces over the board. Chapter 
10 of this book discussed knight's tours and 
their connection with graph theory. Here 
is a choice selection of five queen's-tour 
problems. The reader does not have to be a 
chess player to work them out; he need only 
know that the queen moves an unlimited 
distance horizontally, vertically, or diag- 
onally. The problems are roughly in order 
of increasing difficulty. 

1. Place the queen on square A [see 
Figure 871. In four continuous moves tra- 
verse all nine of the gray-shaded squares. 

2. Place the queen on cell D (the white 
queen's starting square) and make the long- 
est trip possible in five moves. ("Longest" 
means the actual length of the path, not the 
maximum number of cells traversed.) The 
queen must not visit the same cell twice, 
and she is not allowed to cross her own 
path. Assume the path to be through the 
center points of all cells. 

3. Place the queen on cell B. In 15 moves 
pass through every square once and only 
once, ending the tour on cell C. 



87. Board for queen's-tour problems 

4. Place the queen on a corner square. by Sam Loyd, who always considered it one 
14 moves traverse every cell of the ofhis finer achievements. The tour, whether 

board, returning to the starting square on reentrant Or Open at the ends, be 
the 14th move. Individual cells may be made in fewer than l4 
visited more than once. This "reentrant 5. Find a similar reentrant tour in 12 
queen's tour" was first published in 1867 moves on a seven-by-seven board. That is, 
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tlle queen mu\t \tart and end on the same 
cell and pass through every cell at least 
once. As before, cells may be entered more 
tharl once. 

Answers 

The moon can be circled with a consump- 
tion of 23 tankfuls of fuel. 

1. I11 five trips, take five containers to 
point 90, return to base (consumes five 
tanks). 

2. Take one contairler to point 85, return 
to point 90 (one tank). 

3. Take one container to point 80, re- 
turn to poirlt 90 (one tank). 

4. Take one container to point 80, return 
to point 85, pick up the container there and 
take it to point 80 (one tank). 

5. Take one container to point 70, return 
to point 80 (one tank). 

6. Return to base (one tank). 

This coinpletes all preliminary trips in 
the reverse direction. There is now one 
container at point 70, one at point 90. Ten 
tanks have been consumed. 

7. Take one contaiiler to point 5, return 
to base (half a tank). 

8. In four trips, take four containers to 
point 10, return to base (four tanks). 

9. Take one container to point 10, re- 
turn to point 5, pick up the contaiiler there 
and leave it at point 10 (one tank). 

10. In the next two trips take two con- 
tainers to point 20, return to point 10 (two 
tanks). 

11. Take one container to point 25, return 
to point 20 (one tank). 

12. Take one container to point 30, re- 
turn to point 25, pick up the container there 
and carry it to point 30 (one tank). 

13. Proceed to point 70 (two tanks). 

14. Proceed to point 90 (one tank). 

15. Proceed to base (half a tank). 

The car arrives at base with its tank half 
filled. The total fuel consun~ptiori is 23 
tanks. 

I found this problem, in the story form of 
circling a mountain, as Problem 50 in H. 
E .  Dudeney7s Jlodertl Puzzles (1926); it is 
reprinted as Problem 77 in my edition of 
Dudeney's ,536 Pirzzlcs (1nd Cilriotl .~ Prob- 
1ent.s (New York: Scribner's, 1967). Tlle 
above solution, which was supplied in 
variant fornls by many readers, is essen- 
tially the same as Dudeney's. 

It is not, however, minimal. \Yilfred H. 
Shepherd, hlanchester, England, first re- 
duced the fuel consumption to E27/12 con- 
tainers. This was further reduced by Robert 
L. Elgin, Altadena, California, to 28'116 
containers. His solution can be varied in 
trivial ways, but it is lxlieved to be minimal. 

Elgin's solution is best explained by di- 
viding the circle into 80 equal parts. X 
container is picked up every time you move 
away froin honle base, and left on the 
ground every time you turn to move toward 
the base. Any available container is emptied 
into the car's tank every time the car runs 
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out of fuel. Assume that each container 
holds = 16 units of fuel. The  solution 
follows: 

1. Take one container to point 73, return to 
base (consumes 14 units). 

2. Two containers to 75, return to base (20 
units). 

3. Two containers to 72, return to base (32 
units). 

4. One container to 69%, back to 75 (16 
units). 

5. One container to 67%, back to 69%, for- 
ward to 67%, back to 72 (16 units). 

6. One container to 64, back to 67%, for- 
ward to 66, back to 67%, forward to 66 (16 
units). 

7. One container to 57, back to 64 (16 
units). 

8. Return to base (16 units). 

9. Five containers to 8, return to base (80 
units). 

10. One container to 10, back to 8, forward 
to 10, back to 8 (16 units). 

11. One container to 16, back to 8 (16 units). 

12. One container to 16%, back to 16, for- 
ward to 16%, back to 10 (16 units). 

13. One container to 21%, back to 16% (16 
units). 

14. One container to 25, back to 21%, for- 
ward to 25 (16 units). 

15. One container to 41 (16 units). 

16. Proceed to 57 (16 units). 

17. Proceed to 73 (16 units). 

18. Proceed to base (7 units). 

Total fuel consumption is 361/16 = 229/16 
units. 

Consider first a spot p on the surface inside 
the rectangle shown at the left of Figure 88. 
Adding two broken coordinate lines pro- 
vides a set of right triangles. Because e2 
= a' + c%nd g' = b' + d< we can write the 
equality 

And since f" uu" + d' and h2 = b" cc", we 
can write 

The  right sides of both equations are the 
same, therefore 

Exactly the same analysis applies to the 
right diagram, in which point p is outside 
the rectangle. If you think of 11 in either 
diagram as belowground, this will lengthen 
certain sides of the right triangles involved, 
but the relations expressed by the equations 
remain unchanged. In other words, regard- 
less of where point p is located in space- 
above, \>elow or even on the edge or corner 
of the rectangle itself-the sum of the 
squares of its distances from two opposite 
corners of the rectangle will equal the sun1 



88. Solution to the oil-well problem 

of the squares of its distances from the other 
two corners. Applying this siniple fornlula 
to the three distances given yields 27,000 
as the fourth distance. The sides of the rec- 
tangle are not, of course, deternliiled by the 
given data. 

M'hen ticktacktoe players are allowed to 
play either a naught or a cross on each move, 
the first player can always win by first tak- 
ing the center cell. Suppose he plays a 
cross. The second player has a choice of 
marking either a corner or a side cell. 

Assume that he inarks a corner cell. To 
avoid losing on the next move he must mark 
it with a 0. The first player replies by put- 
ting a O in the opposite corner, as in diagrani 

11 in Figure 89. The second player cannot 
prevent his opponent from winning on his 
next move. 

What if the second player takes a side cell 
on his second move? Again he rnust use a 0 
to avoid losing on the next move. The first 
player replies as shown in the next diagram 
[b] .  The second player's next move is 
forced [ c ] .  The first player responds as 
shown in the final diagram [d l ,  using either 
symbol. Regardless of where the second 
player now plays, the first player wins on 
his next move. 

\5'ild ticktacktoe (as this garne was called 
by S. \V. Golomb) immediately suggests 
a variant: reverse wild ticktacktoe. The 
rules are as before except that the first 
player to get three like-symbols in a row 
loses. Robert Abbott was the first to supply 



89. The ticktacktoe problem 

a proof that the game is a draw wliell played 
rationally. The first player cannot assure 
hirnself a win, I ~ u t  can always tie by using 
a syrnmctry strategy similar to his strategy 
for obtaining a draw in ordinary (or "tame") 
reverse ticktacktoe. He first plays any syrn- 
bol in the center. Thereafter he plays 
symmetrically opposite the seconcl player, 
always choosing a syrn1)ol different from 
the one previolisly played. 

As (:olornl) has I)ointccl out, this strategy 
gives at least a draw in reverse ticktacktoe 
(wild or not) on a11 boartls of odd-order. On 
even-order 1)oards tlie seconcl player can 
obtain at least a draw by a similar strategy. 
With the ortler-3 cu1)ical lward, <:oloml) 
adds, on which a draw is inlpossible, tllc 
strategy assures a win for the first player 
in revcrse ticktacktoe, wild or tame. 

With as few as 16 different coins one can 
express any value frorn 1 cent to 100 cents 
its the surn of no more than 2 coirrs. The 

coins are: 1, 3,  4, 9, 11, 16, 20, 25, 30, 34, 
30, 41, 46, 47, 49, 50. This \elution is yiverr, 
without proof th,lt it i \  ~ni~rinlal, iri Pro{)- 
lern 19 of Kolantl Sprugue's Rccrcwtiorr i l l  

L2fnt l~e~~1(~t ic .s ,  tran\latcd fro111 the (;cnn,~rl 
by T. H. O'Beirne (Lontlol~: Blackie and 
Son, 1963). 

Spragnc's solution has a range of only 100. 
A 16-integer solution with the higllcr range 
of 104 w,ls 1ly Peter 1Vegner of 
the University of  London: 1, 3,  4, ,5, 8,  14, 
20, 26, 32, 38, 44, 47, 48, 49, 51, Fi2. 

'The boy maximizes his chance of drawing 
a ten-dollar bill ljy putting u \ingle ten- 
dollar 11ill in onc hat, the other 19 1)ills 
(9 tell-dollar 1)ills and 10 one-dollar bills) 
in the othcr hat. Hi\ chance of picking the 
hat with the ten-dollar bill is 1 in 2, ant1 tlic 
11robability of l j icki~~g :I ten-dollar bill from 
that hat is 1 (certain). If he picks tlic other 
hat, there is still a prol)al)ility of 9/19 that 
lle will draw a ten-dollar bill from it. 



90. Probabilities in the hat problem 

This simple stochastic process is sho\vn 
in Figure 90. The probability that he will 
draw a ten-dollar bill from hat A is 112 x 1, 
or 112. The probability that he will draw a 
ten-dollar bill fro111 hat R is 112 x 9/19, or 
913s. The sum of the two probal~ilities, 
14/19 (or almost 3/4), is his over'dl proba- 
bility of getting a ten-dollar bill. 

Dudeney, in his p o \ t h ~ n i ~ o u s l ~  published 
A Puzzle-3fi1lc, was able to achieve 12 good 

English words by placing letters on the 
9-cell square like this: 

G E T 

A I A  

S U P  

The words are: get, teg, sup, pus, pat, tap, 
gas, sag, pig, gip, sit, aia. If the contraction 
" > tis" is permitted, the number is 13. 

\lore than SO readers sent in 12-word 
squares, 111ost of them superior to Dudeney's 
12-worder. hlany readers showed how 12 
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words could be obtained from a cross of A's 
in the center of the square, as shown [ n u m -  
ber 11 in Figure 91. Twenty-six readers 
sent in 13-word squares, in most cases with 
words that could all be found in Webs ter ' .~  
Neu; Collegiate Llictionary. The typical 
square [numbered 2 in  the  illustration] 
was independently discovered by Vaughn 
Baker, Mrs. Frank H. Driggs, William 
Knowles, and Alfred Vasko. 

Vaughn Baker, David Grannis, Horace 
Levinson, H. P. Luhn, Stephen C. Root, 
Hugh Rose, Frank Tysver, C. Brooke Worth, 
and George Zinsmeister all produced 14- 
word squares. Baker's square [numbered 
3 i n  the  i l lus tmt ion]  has only one word- 
"wey"-that is not usually found in short 

91. Solutions to word-square puzzle: ( 1 )  12-word, 
( 2 )  13-word, (3) 14-word, (4-8) 16-word -* 

R O T  * 
T A D  

dictionaries. Frederick Chait, James Gar- 
rels, B. W. Le Tourneau, Marvin Weingast, 
and Arnold Zeiske devised 15-worders, but 
none with more than 12 short dictionary 
words. 

Five readers hit the jackpot with 16 
words: Dmitri Borgmann, L. E. Card, Mrs. 
D. Harold Johnson, Peter Kugel, and Wylie 
Wilson. The five squares [numbered 4 
through 81 are reproduced in the order in 
which the alphabetized names appear 
above. There is no way to decide which 
square is best, since all exploit obscure 
words and even the tneaning of "word" is 
hazy. 

Several readers experimented with or- 
der-4 squares. L. E. Card, of Urbana, 



Illinois, achieved the maximum (20 dictionary
words), with:

S N A P

A E R A

R A I L

T R A P

“Tras”is the plural of “tra,” a Malaysian coin.

7.

Five objects can be ranked according to weight
with no more than seven weighings on a bal-
ance scale:

1. Weigh A against B. Assume that B is
heavier.

2. Weigh C against D. Assume that D is
heavier.

3. Weigh B against D. Assume that D is
heavier. We now have ranked three objects:
D > B > A.

4. Weigh E against B.
5. If E is heavier than B, we now weigh it

against D. If E is lighter than B, we weigh it
against A. In either case E is brought into the
series so that we obtain a rank order of four
objects. Assume that the order is D> B > E >
A. We already know (from step 2) how the
remaining object C compares with D. Therefore
we have only to find C’s place with respect to
the rank order of the other three. This can
always be done in two weighings. In this case:

6. Weigh C against E.

7.  If C is heavier than E, weigh it against B.
If C is lighter than E, weigh it against A.

The general problem of ranking n weights
with a minimum number of weighings (or n
tournament players with a minimum number of
no-draw two-person contests) was first pro-
posed by Hugo Steinhaus. He discusses it
briefly in the 1950 edition of Mathematical
Snapshots and includes it as Problem 52 (with n
= 5) in One Hundred Problems in Elementary
Mathematics (New York: Basic Books, 1964). In
the latest revision of Mathematical Snapshots
(New York: Oxford University Press, 1968),
Steinhaus gives a formula that provides correct
answers through n = 11. (For 1 through 11 the
minimum number of weighings are 0, 1, 3, 5, 7,
10, 13, 16, 19, 22, 26.) The formula predicts 29
weighings for 12 objects, but it has been proved
that the minimum number is 30.

The general problem is discussed by Lester
R. Ford and Selmer M. Johnson, both of the
Rand Corporation, in “A Tournament
Problem,” in The American Mathematical Monthly;
May, 1959. For a more recent discussion of this
and closely related problems, see Section 5.3.1
of Donald Knuth’s Sorting and Searching
(Reading, Mass.: Addison-Wesley, 1971) or suc-
cessor editions.

8.

Answers to the five queen’s-tour problems are
shown in Figure 92. In the fourth and fifth
problems there are solutions other than those
shown, but none in fewer moves.

Mathematical Games
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92. Solutions to queen's-tour problems 
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If you solved the secoild problem by going left and then right seven squares, you found 
first to tlie lower right corner, up to the a path almost (but not quite) as long as tlie 
upper right corner, along a main diagonal one shown. 
to the lower left corner, up  to the upper 



13. The Cycloid: Helen of Geometry 

DO THE TOPS of the tires on a moving car go 
faster than the bottoms? This odd question 
will start as many ferocious parlor debates 
as the old problem about the man who walks 
around a tree trying to see a squirrel on the 
opposite side of the trunk. As he walks, the 
squirrel scurries around the tree, keeping 
its belly against the trunk so that it always 
faces the man but with the trunk constantly 
hiding it from view. When the man has 
circled the tree, has he also gone around 
the squirrel? 

William James, considering this weighty 
metaphysical problem in the second chap- 
ter of his book Prugmat i sm ,  concludes 
that it all depends on what one means by 
" around." Similarly, the tire question can- 
not be answered without prior agreement 
as to precisely what all the words mean. Let 
us say that by "top" and "bottom" of the 
tire we mean those points on the tire that 
are at any given moment close to the top 
or bottom, and that by "go faster" we refer 
to the horizontal velocity of those points 

in relation to the ground. Surprising as it 
may seem, points near the top do move 
faster than points near the bottom. 

This can be demonstrated by a simple 
experiment with a coffee can. Cover the 
bottom of the can with white paper. Using 
a dark crayon, draw about eight diameters, 
like the spokes of a wheel, on the circular 
sheet. Place the can on its side and roll it 
back and forth past your line of vision. Do 
n o t  follow the can with your eyes; keep 
your gaze fixed on a distant object so that 
your eyes do not move as the can rolls by. 
You will find that the black spokes are 
visible only in the lower half of the wheel. 
The upper half is a gray blur. The reason is 
that the spokes in the upper half are ac- 
tually moving past your eyes at a much 
faster rate than the spokes in the lower 
half. This was such a familiar phenomenon 
in horse-and-buggy days that artists often 
indicated the motion of wheels by showing 
distinct spokes only below the axles. 

Figure 93 traces the motion of a point on 



93. How a cycloid is generated by a point on  a rol l ing circle 

the circuinference of a circle as it rolls with- 
out slipping along a horizontal line for a 
distance 4 B  that is equal to the circum- 
ference of the circle. The position of the 
circle is shown after each quarter-turn. 
Assuine that the circle rolls with uniform 
speed. It is easy to see that the point is 
nlotionless for an instant on the ground at A, 
gradually increases in speed, reaches its 
maxiinunl at the highest spot and then ac- 
celerates negatively until it touches ground 
again at B. If the wheel coiltillues to roll, 
the point will trace a series of arches, com- 
ing to rest for an instant at the bottoin of 
each cusp. The velocity of the point along 
the curve conforrns to what physicists call 
a simple harmonic motion. On wheels that 
have flanges, such as the wheels of a train, 
points on the flange actually move bnck- 
zc;clrd while they execute a tiny loop below 
the level of the track. 

The generic name for a curve traced by a 
point on any type of curve when it rolls 

without slipping along any other type of 
curve is "roulette." In this case a circle 
rolls on a straight line to generate one of 
the sinlplest of roulettes, the cycloid. It has 
been called the "Helen of geometry," not 
only because of its beautiful properties but 
also because it has been the object of so 
many historic quarrels between eminent 
mathematicians. 

No one knows ~ v h o  first recognized the 
cycloid as a curve worth studying. There 
is no mention of it before 1500. The first 
important treatise on the curve was written 
in 1644 by the Italian physicist Evangelista 
Torricelli, a student of Galileo's. Fourteen 
years later Blaise Pascal, who had aban- 
doned mathematics for a life of religious 
contemplatioi~, foui~d himself suffering from 
a terrible toothache. To take his mind off 
the pain he began thinking about the cy- 
cloid. The pain stopped. Regarding this as 
a sign that God was not displeased with his 
thoughts, Pascal spent the next eight days 
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in furious research on the curve. His re- 
markable results were issued first as a series 
of challenges to other mathematicians and 
then as a treatise on the cycloid. 

One of the simplest cluestions to ask about 
the cycloid - although by no means the 
easiest to answer-is: How long is it? '4s- 
sume that the generating circle has a diam- 
eter of 1. The base line A B  will, of course, 
be pi, an irrational nurnl~er. Everyone ex- 
pected the length of the curve to be ir- 
rational also. Sir Christopher M7ren, tlie 
distinguished English architect, apparently 
was the first to show (in 1658) that tlie 
length of the cycloidal arch, from cusp to 
cusp, is precisely four times the diameter 
of the circle. 

The area below the arch had been mea- 
sured previously and it too had been a 
surprise. Galileo had guessed tlie area to 
be pi tinles the area of the generating cir- 
cle, an estimate obtained by the direct 
iilethod of cutting the arcli from thin ma- 
terial and comparirig its weight with that 
of the circle cut froin the same material. 
Torricelli astounded his colleagues in 
Italy by proving that the area under the 
arch is exactly three times the area of the 
circle. Actually this had been shown earlier 
by the French mathematician Gilles Per- 
sonne de Roberval. Torricelli inay or may 
not have known this. Pascal accused Tor- 
ricelli of deliberately stealing Roberval's 
proof, as did Roberval hirnself. In France, 
Rene Descartes insisted that the entire 

was trivial. He worked out a sim- 
pler way to find the area and challenged 
Kol~erval to construct tangents to the cy- 

cloid. This led to a long, bitter dispute 
between the two men. Today all these pro],- 
lems are solved in first-year calculus classes 
(where the curve is called the "student's 
curve" because the answers are so simple), 
t ~ u t  in the seventeenth century calculus 
was still primitive. 

The mechanical properties of the cycloid 
are as remarkable as its geometric ones. 
In high school physics one learns that tlie 
time it takes a pendulum to swing back 
and forth is the same regardless of how wide 
the suing is, hut this is only approximate. 
M711e11 the swings are wide, there are slight 
deviations. In what path should a pendulum 
swing so that its period is exactly tlie same 
regardless of amplitude? Such a curve, 
called an isochrone, was first discovered 
by the Dutch physicist Christian Huygens, 
who publislied his discovery in 1673. If we 
turn two cycloidal arches upside do\vi~, as 
shown in Figure 94, and let a l3eildulum on 
a cord swing between them, the pendulum 
will trace urhat is called the involute of the 
cycloid. It turns out that the involute is 
another cycloid of the same size, and that 
the cycloidal pendulum is isochronal. 

For small swings a circular arc is so nearly 
the same as the central portion of a cycloid 
that the circular pendulum is allnost iso- 
chronal, but if the swings vary even a sl~lall 
amount, the "circular error" is cumulative. 
For example, i f  a seconds pendulum has a 
circular arc of two degrees, an increase to 
three degrees will cause it to lose about .66 
secoiid per day. Huygens constructed a 
pendulun~ clock - the first ever made - using 
a flexible pendulum that swung between 



94. Isochronal pendulum between cycloidal cheeks traces a cycloid 

two cycloidal cheeks. Unfortunately fric- 
tion on the cheeks produced a greater error 
than the cycloidal path corrected; clock- 
makers found it more practical to arrange 
things so that a circular pendulum would 
keep a constant amplitude. 

It was Huygens who also discovered that 
the cycloid is the tautochrone, or curve of 
equal descent. Imagine a marble rolling 
without friction down an inverted cycloid. 
No matter where you start it on the curve, 
it will reach the bottom in the same length 
of time. (Melville makes reference to this 
property of the cycloid in an interesting 
discussion of the structure of whaling ships 
in Chapter 96 of Moby Dick.) Consider a 
bowl with sides that curve in such a way 
that any cross section through the center 
of the bowl will be acycloid. Marbles placed 

at various heights on the sides of the bowl 
and released simultaneously will reach the 
center of the bowl at the same instant. Each 
marble moves with a simple harmonic mo- 
tion, as does the isochronal pendulum. 

The brachistochrone, or curve of quickest  
descent, was not discovered for another 
score of years. Suppose you are given two 
points: A and B. B is lower than A but not 
directly below it. The problem is to find a 
curve connecting A and B such that a mar- 
ble, rolling without friction, will travel from 
A to B in the shortest possible length of 
time. This problem was first posed in 1696 
by Johann Bernoulli, the Swiss mathema- 
tician and physicist, in Acta Erudi torum,  
a famous scientific journal of the day. It was 
first solved by Johann's brother Jakob (with 
whom Johann was feuding), but it was also 
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solved by Johann, Leibniz, Newton, and 
others. Newton solved it, along with a re- 
lated problem, in 12 hours. (The problem 
reached him at 4:00 p.sr.; he had the solu- 
tion by 4:00 A.M. and sent it off in the 
morning.) The brachistochrone turned out 
to be, as the reader has no doubt guessed, 
the cycloid. Johann Bernoulli's proof has 
become a classic of nonrigorous, intuitive 
reasoning. He found the problem equiva- 
lent to one concerning the path of a light 
ray refracted by transparent layers of 
steadily decreasing density. The interested 
reader will find his elegant proof clearly 
explained in What Is LMathematics? b y  
Richard Courant and Herbert Robbins 
(New York: Oxford University Press, 1941), 
as well as in Ernst hlach's earlier work, 
Science of Alechanics (Chicago: Open Court 
Publishing Company, 1893). 

Suppose we are given two points, A and 
B [see Figure 951, and we wish to find the 
brachistochrone that connects them. What 
we first find is the radius of the circle that, 
when rolled against line AC, will generate 
a cycloid starting at A and passing through 
B. To do this we place a circle of any size 
whatever under AC and nlark a point on its 
circumference at A. The circle is rolled 
along AC until this point crosses AB. As- 
sume that it crosses at D. Since all cycloids 
have similar shapes, we know that AD is to 
AB as the radius of the large circle we have 
just used is to the radius of the smaller 
circle we seek. This smaller circle, rolled 
along AC, will generate a cycloid from A 
to B. 

Note that in this case the marble actually 
rolls uphill to reach B.  Nevertheless, it 
reaches B in a shorter time than it would 

95. Constructing the curve of quickest descent between A and B 
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by rolling along a straight line, the arc of 
a circle or any other curve. Even when A 
and B are on the same horizontal level, a 
frictionless rnarble rolls fro111 A to B in the 
shortest possible time. (On a straight 
horizontal line, of course, it would not 
roll at all.) 

,4n industrious reader should have little 
difficulty constructing a model for demon- 
strating the brachistochrone. To draw a 
large cycloid the coffee can lnentioned 
earlier can be used. A piece of string looped 
once around it and fastened to the ends of a 
plank will keep the can from slipping as it 
rolls along the plank [.see Figure 961. A 
black crayon is taped to the inside of the 
can so that whell the can is rolled along a 
wall the crayorl will trace a cycloid on a 

sheet of paper fastened to the wall. Using 
this trace as a pattern, one car1 bend stiff 
wire into a cycloid down which a heavy 
nut will slide or a double cycloidal track 
down \vhich a marble will roll. The track 
can also be fornled by the cut edges of two 
rectangular sheets of plywood or heavy 
cardboard, mouilted vertically, with snlall 
strips of wood glued between them to keep 
the edges separated just enough to carry 
the marble. Similar tracks should be made 
to carry a second marble down a circular 
arc and a third rnarble down a straight line. 
The three tracks are placed side by side so 
that the rnarbles can be released sirnul- 
taneously by a pencil held horizontally. 
(Steel balls can be held by electromagnets 
and released by pushing a button.) If the 

96. Coffee-can device for drawing a cycloio 
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97. On what kind of curve will the car remain level? 

three tracks lead into one horizontal track, 
three differently colored marbles will in- 
variably enter the single track in the same 
order: the cycloid marble will lead, fol- 
lowed by the marble traveling on the circu- 
lar arc and then by the one on the straight 
line. 

The cycloid has other mechanical proper- 
ties of interest. It is, as Galileo guessed, 
the strongest possible arch for a bridge, 
and for this reason many concrete viaducts 
have cycloidal arches. Cogwheels are often 
cut with cycloidal sides to reduce friction 
by providing a rolling contact as the gears 
mesh. 

We have seen how a circle, rolled on a 
straight line, generates a cycloid. Stanley 
C. Ogilvy reverses this situation in one of 
his books by asking: Along what kind of 
curve can a circle be rolled so that a point 

on its circumference traces a straight line? 
To dramatize this question, imagine a 
railroad car with each wheel attached at 
its rim to the axle, as shown in Figure 97. 
How shall we curve a track so that when 
this curious car is rolled along the track it 
will remain level at all times and never 
bob up and down? 

Answer 

What kind of track will enable the car to 
travel without bobbing up and down? Figure 
98 supplies the surprising answer: a series 
of semicircles! If a circle is rolled inside 
a circular arc, points on its circumference 
generate what are called hypocycloids. 



98. Solution to the car problem 

" . 
Wllen the radius of a seInicirclll:Lr track is Sorne Historical Notes on  the Cycloid." E. A. 

twice that of the  rolling circle, as it is here ,  Llihitrnar~. l'lae Arnericcli~ hlatllernuticnl 
the  hypocycloid is a straight l ine.  b f o ~ ~ t l ~ l y ,  Vol. 50, No. 5; May, 1943. Pages 

309-315. 
A Rook of Crtrves. E. H .  1,ockwood. Cambridge: 
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14. Mathematical Magic Tricks 

MAGIC TRICKS that operate wholly or in 
part by mathematical ~rinciples fascinate a 
large segment of the conjuring fraternity. 
Dozens of such tricks are published every 
year in periodicals on magic or circulate 
from magician tts magician, only occasionally 
finding their way into mathematical circles. 
Royal \.'. Heath's Alathernagic (1933) was 
the first book in this hybrid field. hly own 
Mathemat ics ,  Magic and Alystery (1956) 
was the second. In 1964 Scribner's brought 
out a third: hluthemutical Alugic, by Wil- 
l ia~n Simon, who is president of a Kew 
Jersey firm that inakes brake linings and 
also one of the couiitry's most knowledge- 
able card experts. 

Most of the items in Simon's fine collec- 
tion will be unfamiliar to devotees of recre- 
ational mathematics. An example is a 
bewildering mind-reading trick discussed 
in the author's chapter on mental magic. 
Invented by Robert Hummer, a magician 
now living in Havre de Grace, Maryland, 
this trick is not only an entertaining parlor 
stunt but also such a puzzling exercise in 

logic that many magicians who regularly 
perform the trick are not sure tliemselves 
just why it works. 

One of the best presentations is as fol- 
lows. Three identical coffee cups are in- 
verted in a row on a table. The positions 
(not the cups) are assumed to be one, two 
and three as seen by the spectators [see 
Figure 991. The magician, standing across 
the room with his back to the table, asks 
that a spectator conceal a small object, say 
a matchbook, under any one of the cups. 
The spectator now scranlbles the positions 
of the cups by exchanging them in pairs, 
calling out each time the positions of the 
two cups involved. In making these ex- 
changes the cups are slid across the table, 
so that if the cup covers the object, the ob- 
ject slides along with the cup. For example, 
suppose the matchbook is placed under the 
middle cup. If the spectator switches the 
end cups, he calls out, "One and three." 
If he next switches the two cups on his left, 
he calls out, "One and two." A4s these cups 
are slid the inatchbook is carried along with 



99. Hummer's three-cup trick 

its cup from position two to position one. 
The spectator continues to switch pairs of 
cups as long as he wishes. The magician 
tlien turns around and immediately lifts 
the cup covering the matchbook. The trick 
can be repeated lilany times. Since the per- 
former is never told which cup the object 
was placed under initially, how does lie 
guess correctly? 

The metliod is simple and subtle. Al- 
though the three cups are alike, it is im- 
possible for then1 to be exactly alike. Inspect 
ally three cups carefully and you are sure 
to find some tiny distinguishing feature - a 
small chip, a cliscoloration, and so on-on 
one of them. Before you turn your back note 
the position of this marked cup. After the 
matchbook has been placed under a cup 
explain the switching procedure to tlie spec- 
tator, then ask llinl to make a practice 
switch by exchanging the two e m p t y  cups. 
Caution him not to tell you the two posi- 
tions, since that \voulcl give away the loca- 
tion of tlie matchbook. This practice switch 
seems to liave 110 bearing whatever on the 
trick; in fact spectators usually forget it was 
even made. Actually it is the key to the 
trick, for a reason that I shall ask you to 
deduce. 

Ais the spectator proceeds with his switch- 

ing, calling out the positions of the cups 
each time, you must secretly keep track of 
one cup by using your left hand as a com- 
puter. Fingers one, two, and three represent 
positions one, two, and three. Start with the 
tip of your left thu~ilb pressed against the 
finger tip that indicates the initiaI position 
of the marked cup. Of course, you must as- 
surne the marked cup is still in that position. 
Suppose at the start this cup is in the middle. 
You toucli your second finger. If he calls one 
and two, rnove your thumb from the second 
to the first finger. If he next calls one and 
three, shift to the third finger. If lie now 
calls one and two, you do not move your 
thumb: the position of the cup you are fol- 
lowing is not involved in the exchange. 
When the spectator decides to stop, let 11s 
say your thun~b  touches your third finger. 

Turn around and inspect the cups. If the 
marked cup is at position three, where your 
thumb says it should be, you know that 
this cup covers the matchbook. If the 
~ilarked cup is not at position three, tlie 
object will be under the zi111)mrked cup that 
is rlclt at position three. (Can you explain 
why?) 

Some magicians carry an artificial eye 
in their pocket to use in this trick. The 
performer uses the eye as tlie object placed 
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under one of the cups; 1le can then en- 
courage tlle inference that the eye is some- 
how able to provide him with a clue to its 
own whereabouts. The eye also furnishes 
an excuse for amusing chatter. The ma- 
gician call say: "Yes, I see the evil eye 
staring at me from inside this cup. . . ." 

Harry Lorayne, a Kew York City mne- 
monics expert (well known in entertain- 
ment circles for his sensational nlemory 
act), devised the follo\ving variation in 
which three ol~jects are used instead of 
cups, a i d  the magician is able to name the 
thought-of object without turning around. 
Three different objects - say a coin, a match- 
book, and a finger ring-are placed in a row 
and someone is asked to think of one of 
them. He inust also be able to recall the 
order of tlle objects, or else he should jot 
it down for future reference. The performer 
turns his back and calls for a practice switch 
with the two ol~jects the spectator did not 
think of. In this ir~stance the spectator does 
not say what switch he has made. The trick 
then continues as with the three cups, the 
spectator making exchanges and calling 
out positions. \T'hen he finishes, the per- 
former asks if the ot~jects are by any chance 
back in their original order. If not, the spec- 
tator rnakes the one or two additior~al 
switches needed to restore this order. 
Thesc exchanges are called out as before. 
The performer seems to have no relevant 
irlforrnation- the objects have nlerely been 
switched around and brought back to their 
initial state - yet he can name the thought-of 
object wit l~out  tzlrrtirzg n r o u ~ ~ r l .  

The method: 3lemorize the initial or- 

der. Pick any object and follow it with 
your thumb. You will not know, of course, 
whether or not that o13ject remained in its 
original position after the practice ex- 
change. Sonetheless, after the original 
order has been restored, if your thunlb 
indicates that the object you are follo\ving 
is back in its former position, you know 
that it is the chosen object. Otherwise the 
selected object is tlle one at the position 
represented neither by where your thumb 
started nor where it ended. Again can you 
explain why? 

Before writing this chapter I got in touch 
with Robert Hummer and obtained his per- 
mission to describe another of his curious 
mind-reading tricks, here explained in 
prirlt for tlle first time. The trick uses a card- 
t~oard circle attached to a sheet of cardboard 
by a paper fastener through the center. On 
the rim of the circle, in any order, are 
inscribed the values of the 26 red playing 
cards. Outside the circle, on the backin'g 
sheet, are the 26 letters of the alphabet. 
They too nlay be in ally order, but Hunlmer 
arranges them as shown in Figure 100 on 
the next page so that the 10 letters at the top 
spell "Think a word." 

A spectator is asked to think of any word, 
preferably a short word of four or five let- 
ters. Ele also thinks of any recl card. \t711ile 
the magician turns his back, the spectator 
rotates the wheel until his chosen card 
indicates the first letter of his word. The 
~nagiciarl turns around, glances quickly at 
the dial, then turns his back again while 
the spectator rnoves the wheel so that his 
card points to the second letter of his word. 



100. The "Think a word" trick 

Again the magician glances at the dial. 
Obviously he does not know the spectator's 
card, so the dial would seem to give him no 
useful information. This procedure is re- 
peated until the entire word is spelled. 
The magician, after appearing to concen- 
trate for a moment, names both the word 
and the card. 

A mathematician working with combina- 
torial mathematics, or a person skilled in 
cryptography, should have little difficulty 
devising a method for performing the wheel 
trick. For others I give it as a puzzle. The 
four positions of the dial in the illustration 
are typical of what the performer may see 
during the spelling of a four-letter word. 



What word is being spelled there? It is not 
hard to find the word by the laborious pro- 
cedure of testing each of the 26 red cards, 
but the problem is to devise a lnethod that 
will enable the performer to name the word 
in a few seconds after seeing the dial's 
final position. 

One of the best of many mathematical 
tricks invented by Jack Yates, a British 
magician, is his 12-penny trick, explained 
by Simon in a chapter on tricks with or- 
dinary objects. The 12 pennies are arranged 
heads up in a circle to indicate the 12 hours 
on a clock. The penny at 12 o'clock is marked 
with a key as shown in Figure 101. While 
the performer's back is turned someone is 
asked to turn over any six coins. The ma- 
gician, keeping his back turned, now gives 
directions for six more reversals. These 
are likely to involve some of the pennies 
reversed by the spectator; that is, some pen- 
nies turned tails up by the first six reversals 
nlay get turned back to heads by the second 
six reversals. 

" How many heads are now showing?" 
the magician asks. 

Suppose he is told: "There are two 
heads." Obviously the performer has no 
way of knowing which coins are heads and 
which are tails. Yet he is able to give di- 
rections for dividing the coins into two sets 
of six coins each so that the number of 
heads (and tails) in each set is the same. 
In this case each set would have one head 
and five tails. 

Surprisingly, the performer does not need 
to be told the nu~nber  of heads showing, 
but his asking for this information throws 

101. Yates's 12-penny tr ick 

spectators off the track of a solutio~l of the 
trick. When he directs the reversal of six 
coins, he may pick any six he wishes, but 
he must remember their numbers. For ex- 
ample, he may ask for the reversal of coins 
one, four, five, eight, nine and ten. To divide 
the coins properly into the two fi11a1 sets he 
asks that the following six coins be slid to 
one side: 2,  3, 6, 7, 11, and 12. These are 
merely the six that are not in the previous 
set. (In set theory they are said to form the 
"complement" of the previous set.) To dis- 
guise the nature of this second set the per- 
former directs their removal in pairs 
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indicated by the hour of day. Instead of 
saying coins two and three, for instance, 
he says: "Please slide to one side the coins 
that mark ten minutes past three." 

The principles of set theory exploited in 
this trick are the basis for numerous card 
tricks. The following, contributed by the 
British magician Norman AlacCleod to a 
magic magazine in the United States, Tlze 
Nett; Plloenix (No. 328, August, 1955), is one 
of the best. LI'llile sorneone deals the deck 
into four bridge hands the performer writes 
on a slip of paper: "There will be 22 face-up 
cards." This prediction is folded and placed 
aside. spectator takes tu7o of the piles, 
the magician takes the other two. 

"I have selected a number from one to 
ten," says the performer. "I shall turn that 
number of cards face up in each of my piles." 
He proceeds to turn sonle cards face up but 
~vithout letting anyone see how illany. 

The spectator is asked to do the same 
with his two piles: choose a number from 
one to tell and reverse that number of cards 
in each pile. The four piles are assembled, 
the deck spread and the face-up cards 
counted. There are 22. The   re diction is 
urifolded and found to l ~ e  correct. 

To perform this trick you must cheat a bit. 
Any even number between 13 and 30 can 
be written in your prediction. This number, 
minus 13, tells you the total number of 
cards to leave f'clce d o w n  in your two pack- 
ets. In this case 22 minus 13 is 9, so you 
reverse, say, all but 5 cards in one pile and 
all but 4 in the other. Put your two piles 
together and one of the spectator's piles 
on top. Hold this large packet in your left 

hand and ask the spectator to cut his re- 
maining pile into two parts. While attention 
is focused on the cutting casually turn over 
your left hand, thus secretly reversing all 
its cards. This large pile is sandwiched 
between the two halves of the cut pile. 

All the cards are now together again and 
presumably no one knows how many of 
them are face up. Do you see why there 
nlust be 22? The procedure reverses 1.3 cards 
in the spectator's two piles for the same rea- 
son that Yates's coin trick works. The 9 
cards you left face down are now face up, 
making 22 in all. The trick can be repeated 
using other even nunlbers in the prediction. 
Odd numbers should be avoided because 
the procedure, if it is done legitimately, 
could not produce an odd number of face- 
up cards. 

The magic linking and unlinking of rings 
can, if one stretches the term a bit, be re- 
garded as topological effects. I have space 
for one quick trick invented by William 
Bowman, a Seattle magician, and described 
in Simon's chapter on topological magic. 
Attach two paper clips to a one-dollar bill 
in the manner shown in Figure 102. If the 
bill is held at the ends and pulled flat, the 
clips pop off the bill l i~ lked  together.. (The 
linking is puzzling enough, but why do the 
clips hop from the bill with such force?) 
Simon has a story of young love to provide 
patter for all this, but I prefer to have the 
spectator hold the bill so that the clips 
point down. Ll'l~en the bill is pulled flat, 
the clips drop to the floor. Bet even money 
they will fall within one inch of each other. 
Of course you can't lose. 
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102. Bowman's bill trick 

Answers 

In the illustratioll for the "Think a word" 
trick the four-letter word being spelled is 
" love" and the thought-of card is the jack 
of hearts. To determine the word the ma- 
gician uses a gimmick: a cylinder of five 
disks that rotate around a pin as shown in 
Figure 103. The 26 red cards are in the same 
order around the rim of the first disk as 
they are on tlie spelling wheel, and the 26 
letters on each of the other disks are in 
the same order as those that surround the 
spelling wheel. 

\Vhen the first letter of the word is spelled, 
the inagician glances at the wheel and notes 
the letter opposite any card whatever, say 
the ace of hearts. -4s soon as his back is 
turned he rotates the second disk of his 
gimmick until this letter touches the ace 

of hearts. On his second glance at the wheel 
he notes the new letter opposite the ace of 
hearts. When his back is turned again, 
he adjusts the third disk accordingly. Simi- 
larly for the remaining two letters. In other 
words, tlie performer himself picks a card 
and uses it to spell four letters. He acljjusts 
his dials so that his card and these four let- 
ters are in line. Then he turns the entire 
cylinder until he sees a four-letter word. 
It will be the word the spectator spelled. 
There is, of course, a cha~lce that more than 
one word will turn up, but the odds are 
heavily against it. If it should happei~, the 
inagician simply makes more than one 
guess. 

The gimmick can be made small enough 
to keep concealed in one hand. sin~ilar 
gimmick can be nlade by mountii~g four 
conceiltric circles of graduated size on a 



If the word is long, one is often able to 
spot the only possible combination of letters 
before the spelling is completed and so 
guess the word. In such cases a final look 
at the wheel will verify the guess, then 
the performer can proceed to name the word 
without turning his back again. 

Some magicians omit the card symbols 
entirely from the gimmick. This has no 
effect on their ability to guess the word, 
and if someone asks them if they also know 
the selected card, they can answer, in com- 
plete honesty, that they haven't the slightest 
idea what is is! 

References 
103. Gimmick for the "Think a word" trick 
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15. Word Play 

Was I clever enough? Was I charming? Did I make at least one good pun? 

John Updike, Thoughts while Driving Home 

WORD PLAY - puns, anagrams, palindromes 
and so on-is not discussed in any mathe- 
matics book, yet it has about it a quasi- 
mathematical air. Letters are symbols that 
combine according to rules to form words; 
words are symbols that combine according 
to rules to form sentences. Perhaps this 
combinatorial aspect is the reason so many 
mathematicians are addicted to language 
play. 

The impulse to pun can persist even in 
the face of imminent death. On March 22, 
1963, a murderer named Frederick Charles 
Wood was executed at Sing Sing. Accord- 
ing to newspaper accounts, just before seat- 
ing himself in the electric chair Wood said 
to those present: "I have a speech to make 
on an educational project. You will see the 
effect of electricity on Wood." 

Less grim was the New York Times report 

a month later (April 28) that a gnu in the 
Chessington Zoo in England had bitten a 
zoo keeper. Odd, said the keeper, "most 
gnus are good gnus." I also find in my files 
an Associated Press dispatch from Des 
Moines, dated October 11, 1960, reporting 
that a perfume-dispensing machine in the 
women's lounge of a local hotel had failed 
to work. The management had hung a sign 
on it that read "Out of order." An unidenti- 
fied patron, using lipstick, had crossed out 
the first "r" of "order." 

The last is not strictly speaking a pun 
but rather a crude example of what word 
puzzlists call a deletion: the changing of 
one word into another by the removal of 
a letter. An amusing deletion story is told 
about Lord Kelvin, the British mathema- 
tician and physicist. He once put a sign on 
the door of a lecture hall stating that he 
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would be unable to "meet my classes 
today." A student beheaded the word 
"classes" by crossing out the "c." Next 
day, eager to observe the professor's re- 
action, the students found that he had one- 
upped them by performing a second 
beheading. 

The following is unusual: "Show this 
bold Prussian that praises slaughter, 
slaughter brings rout. Teach this slaughter 
lover his fall nears." If each word is be- 
headed, two entirely new sentences result. 
It is startling to learn that "startling" can 
be changed into eight other familiar words 
by successive deletions (from different 
places) of single letters. George Canning, 
an early-nineteenth-century British states- 
man, wrote the following verse about a 
word that is subject to "curtailment," that 
is, a word that becomes a different word 
when its last letter is removed. Can you 
identify the word? 

A word there is of plural number, 
Foe to ease artd tranquil slurriber; 
Ally other word you take 
Arid add a n  "s" will plurul make. 
But if you add art "s" to  this, 
So strange the metamorphosis, 
Plurc~l is plural now no ntore, 
And ~ w e e t  what  bitter wc~s  before. 

Both decapitation and curtailment are 
involved in the following old riddle: 

From a tlumber that's odd,  
cut o f  the head, 

It then will even be; 
Its tail I pray now tuke uwczy, 
Your mother then you'll see. 

It would be interesting to know how 
many technical books of recent years have 
messages concealed in the text by playful 
authors. One finds out about them by acci- 
dent. Who would have guessed, for example, 
that Transport Phenomena,  a 780-page 
textbook by R. Byron Bird, Warren E. 
Stewart and Edwin N. Lightfoot (published 
by John Wiley and Sons in 1960), had "On 
Wisconsin" hidden on page 712? (It  is 
spelled by the first letters of each para- 
graph.) Or that the first letters of each 
sentence in the preface spell "This book 
is dedicated to O. A. Hougen" ? 

Sometimes word play enters a technical 
book fortuitously. Recently I had occasion 
to look up something in Rudolf Carnap's 
great work on semantics, Meaning and 
Necessity.  On page 63 I came across a 
stretch of text in which the views of Black 
are sharply contrasted with those of White. 
Surely these were hypothetical individuals 
introduced to clarify an obscure point. No, 
on closer inspection they turned out to be 
the well-known philosophers Max Black 
and Morton White! 

A classic instance of accidental word play 
is provided by the first (1819) edition of 
William Whewell's E l e n ~ e n t a r y  Treatise o n  
Meclzanics. On page 44 the text can be 
arranged in the following form: 

There is no  force, lzowecer great, 
Can stretch a cord, IzowecerJi~te, 
Irito (1 horizontul line, 
\Ylzicla is c~ccurately struight. 

The buried poem was discovered by Adam 
Sedgwick, a Cambridge geologist, who re- 
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cited it in an iifterdinner speech. Whewell 
was not :tniused. He renlovecl the poem hy 
altering t11c lines in the book's next printing. 
Whewell actually published two I,ooks of 
serious poetry, 1)ut this ~inintencled dog- 
gerel is the only "poem" by hirn that anyone 
now remembers. 

If you keep your ears tuned, accidental 
rneters turn up more often t l~an yoti would 
expect. Max Reerlmhrn's eye caught the 
~lnintended beat in the following lines on 
the copyright page of the first English edi- 
tion of one of his books: 

London: John Lane, 'Shc Hodley Head 
N c w  York: C:harles Scribncr's S o ~ r s  

Bcerbolrn~ completc.tl the clnutrain by 
writing 

r 3 1 his plain ari~lourlcemc~lt, nicely rr;tcl, 
Ia~rlbically rlnls. 

" (>uintc.ssential light verse," wrote Jolln 
Updike, commenting recently on the above 

" lines, a twitting of the starkest prose into 
perfect form, a marriage of earth with light, 
ant1 quite magical. Inclced, were I :t high 
priest of literature, I would have this qua- 
train made into an amulet and wear it about 
my neck, for luck." 

The spoonerism, in which parts of t\vo 
worcls (~ls~lally first syllables) are switcllcd, 
continues to flourish as a 11op11lar form of 
wit. In 1960 Acllai Stevenson was canlpaigir- 
ing in St. Paul, Minnesota, wlierr tlie clergy- 
ntan Norrnan iiincent Peale made some 
  in fortunate political remarks. Steverlson 
told the press that he fo~ind St. Paul appeal- 
ing and Pcalc appalliilg, surely olle o f  the 

finest of all topical spoonerisms. I n  1962, 
shortly after Renrl)rundt's pairlting "Aris- 
totle Conternplating the Bust of Hon~er" 
had been bolight 1,y New York's Rsletro- 
politan hl~lscurn of Art for $2,300,000, it 
secnis t11ttt Aristotle Onassis, the <;reek 
shipping magnate, was sllowll Buster 
Kcaton's hot~se by a real estate agent. 
It was witlely reported that a photograph 
in a Los Angeles newspaper was captioned 
"Aristotle Conteli~plating the Home of 
Buster," although I cannot vo~ich for it. 

Ogden Nasln's verse abounds in sl~lendicl 
sl)oonerisrns: 

. . 1 ( L n L  (I ('0115c'~Ptl~l~)~iS 171~111,  

&lien I flzrozu 
rock,  (if ,eo hzrdc 

I lec~oe t l o  tern rittatoned, 
I ( I T T I  (L ~ ~ ~ t i c t ~ / o ~ i ~  rn(it1 

( l l l d  fb/f(?lL I ~)OI?r(ll/ 

habootl, I leclbr. r ~ o  rtern tit~toi~(2d. 

No disc~lssioi~ of word play sllould fail 
to rnerrtion James Joyce. Fivirlegr~us Wukc 
has, 1,y a conservative estimate, 200 verbal 
plays per page, or inore than 125,000 all 
together. The rnathernatical section of this 
l~ook, pages 884 to :308 of the etlition p1111- 
lished 1,y the Viking I'rcss in 1947, cor~tains 
llnnc-lreds of fi~rniliar ~nttthernatical terlns, 
scrambled with metapl~ysics and sex. (The 
geometric diagram on page 293 is discussed 
rnair~ly as a sex syml~ol.) The first footnote, 
"llideney, Dadency, Dudeuey," refers to 
Henry Ernest D ~ ~ d e n e y ,  the great English 
l)ilzzle expert of Joyce's day. On page 302 
" 7 Smitll-Jones-01-l~ison?" alludes to one of 
Dudeney's rnost popular puzzles, a logic 
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problem involving three men named Smith, 
Jones and Kobinson. Another of Dudeiiey's 
puzzles turns up in a footnote on page 299: 
"Pure chingclio~ig idiotism with any way 
words all in one soluble. Gee each owe tea 
eye smells fish. That's U." 

The puzzle: If you pronounce "gh" as 
in "tough," "o" as in "women" and "ti" 
as in "emotion," how do you pronounce 
"ghoti" ? \Vas Joyce, in this footnote, speak- 
ing of the book itself and calling his reader 
a poor fish for biting the hook? 

There are rnany references in Finnegans 
\l7clke to Lewis Carroll, who, as everyone 
kno\vs, was a mathematician. In the mathe- 
matics section we read (page 294): "One 
of the most nlurnlurable loose carollaries 
ever Ellis threw his cookingclass." (I 
scarcely need to point out that the last 
phrase puns on Alice Tltr.ough tlle Looking- 
Glu.~s.) 

The followirlg excerpt is from page 283: 
". . . palls pel1 inhis lleventh glike noughty 
times x, find, if you are not literally cooef- 
ficient, how minney combinaisies and 
permutandies can be played on the inter- 
national surd! pthwndxrclzp!, hicls cubid 
rlite being extructed, taking anan illit- 
terettes, ififif at a tom. Answers, (for teasers 
only)." 

A partial explication: Pel1 was a mathenia- 
tician for \vllorn the Pellian equation was 
named, a number theorem often mentioned 
by Dudeney. "Heventh" is a compression 
of "seventh heaven." "Pthwndxrclzp" is 
one of the book's many thunderclaps. "Tak- 
ing anan illitterettes, ififif at a torn" is, 
I suppose, "taking any letters, fifty at a 

time." "For teasers only; is a play on "for 
teachers only." 

The pangram, an ancient form of word 
play, is an attempt to get the maximum nuni- 
her of different letters into a sentence of 
minimum length. The English niathemati- 
cia11 Augustus De Ilorgan tells (in his A 
B~rdge t  of Purudoxes) of u~lsuccessful labors 
to write an intelligible sentence using every 
letter once and only once. "Pack my box 
with five dozen liquor jugs" gets all 26 let- 
ters into a 32-letter sentence, and ''%'altz, 
nyrnpli, for quick jigs vex Bud" cuts it to 28. 
Dmitri Rorgnlann of Oak Park, Illinois, the 
country's leading authority on word play, 
has devised a number of %%letter pangrams, 
but all require explanation. His best is 
" Cwrn, fjord-bank glyphs vext quiz." A 
"cwm" is a circular valley, "quiz" is an 
eighteenth century term for an eccentric, 
a "glyph" is a carved figure. Borgmann's 
sentence thus states that an eccentric 
person was annoyed by carved figures on 
the bank of a fjord in a circular valley. 
Can any reader supply a better 26-letter 
pangram? 

Another old and challenging word curios- 
ity is the palindronie, a sentence that is 
spelled the same backward and forward. 
Borgmann's collection, covering all major 
languages, runs to several thousand. In my 
opinion the finest English l~alindro~ne con- 
tinues to be "A man, a plan, a canal-Pan- 
ama!" It has recerltly been attributed to 
James Thurber, but it was composed many 
years ago by Leigh IIercer of London, one 
of the greatest living palindromists. An un- 
published llercer palindrome, which is also 
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something of a tongue twister, is "Top 
step's pup's pet spot." 

Another hlercer palindrome, remarkable 
for both its length and naturalness, is 
"Straw? No, too stupid a fad. I put sbot on 
warts." J .  A. Lindon of Weybridge, England, 
is another master palindromist who turns 
them out by the hundreds. Who would sus- 
pect a palindrome if, in a novel, he came on 
the following Lindon sentence: "Norma is 
as selfless as I am, Ron." Lindon has also 
composed a large number of palindron~es in 
which words rather than letters are the 
units. For instance: "So patient a doctor to 
try to doctor a patient so" and "Amusing is 
that company of fond people bores people 
fond of company that is amusing." 

Con~posing anagrams (a phrase or word 
formed by rearranging the letters of an- 
other) on the names of friends or prominent 
people was once a fashionable literary sport. 
De Morgan tells of a friend who composed 
800 anagrams on "Augustus De hlorgan" 
(sample: "0 Gus! Tug a mean surd!"). 
Lewis Carroll proudly recorded in his diary 
for November 25, 1868, that he had sent to a 
newspaper an anagram "which I thought 
out lying awake the other night: Vi7illiam 
Ewart Gladstone: Wilt tear down a11 im- 
ages? I heard of another afterwards, made 
on the same name: 'I, wise hlr. G., want to 
lead all'-which is well answered by 'Dis- 
raeli: I lead, Sir!"' When Grover Cleve- 
land was president, someone turned his 
name into "Govern, clever lad!" Theodore 
Roosevelt anagrams to "Hero told to over- 
see" and Dwight D. Eisenhower to "Wow! 
He's right indeed!" During the 1936 elec- 

tion, Borgmann also informs me, the letters 
of Franklin Delano Roosevelt's name were 
permuted - by a Republican, no doubt - to 
"Vote for Landon ere all sink!" It was said 
during this campaign that the Republicans 
avoided picking Styles Bridges, at that time 
governor of New Hampshire, for Landon's 
running mate for fear the Democrats would 
go about chanting "Landon-Bridges falling 
down." 

\Vhat can readers do with the full names 
of the two candidates for the 1964 election: 
Lyndon Baines Johnson and Barry llorris 
Goldwater? 

For less ambitious readers Figure 104 
on page 148 presents eight remarkable 
English words, the missing letters to be 
supplied. All letters omitted from the first 
word are consonants. The second word con- 
tains the first five letters of the alphabet in 
order. The third word can be typed by using 
only the top row of keys on a standard type- 
writer. (The letters of this row, left to right, 
are QWERTYUZOP.) The fourth and fifth 
words contain four letters in adjacent alpha- 
betical order. The sixth word contains the 
five vowels in reverse order, the seventh the 
five vowels plus Y in the usual order. In the 
last word consonants and vowels alternate. 

Addendum 

The following letter appeared in the No- 
vember 1964 issue of Scientific Ainericatl: 

Sirs: 
llartin Gardner's department "hlathematical 

Games" is the first thing we look at when we 



104. Eight curious words 

pick up a copy of Scietztific ~lnzericatl. His Sep- 
tember article on puns, palindromes, and other 
word games was quite entertaining and of par- 
ticular interest to us. 

In  connection with the concealed message in 
the text Trcl~~.sport Plwr~oinerzcl b y  Bird, Stewart 
and Lightfoot, you might be interested to know 
that ill the preface the first letters of the sen- 
tences actually spell "This book is dedicated to 

0. A. Hougen TTTIZl." The TTTRI means "This 
terminates the message." Furtherniore, in the 
forthcoming Spanish edition of our text (Fenri- 
1ne~to.s de Trmnsj~orte), to be  published by Eclito- 
rial Revert&, the translator, Professor F. RIato 
\.&zquez of the University of Salamanca, has 
oblingingly translated our preface so that the 
hidden message is faithfully retained as "Este 
libro estd dediccido ( I  0. A. Hougen," \vith n o  
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letters such as TTTlI left over. In the postface 
u7e were faced with a problem, since ' '011 \I'is- 
consin" would have little meaning to Spanish- 
speaking readers and "w" does not occur in 
Spanish. Hence u7e have requested the translator 
to try to include the hidden message "Adids  
cl~nigos" instead. 

You might also be interested to know that our 
colleague Professor Daizo Kunii (Depa~tment of 
Chemical Engineering, University of Tokyo) 
published a book entitled R g u d o  Kahcyo several 
years ago. The first characters of the paragraphs 
in his preface spell out, in Japanese, a dedica- 
tion to his wife. 

Answers 

The  first of the two rhymed riddles is an- 
swered by the word "caress," the second by  
the word "seven." Tlle six words in the 
closing quiz are "strengths," "absco~lder," 
"typewriter," "gymnoplast," "understudy," 
"unoriental," "facetiously" and "verisimili- 
tudes." 

A number of Sciet~tific Ainericcrn readers 
responded to the request for pangrams. 
\$'alter G. Leight of the Franklin Institute's 
Center for Naval Analysis sent Cozy  sphi11x 
wuces yuurt jug of bud ~tzilk (32 letters), 
Rlotcs~y red vixetzs fight a clztick j u t i~p  (:30) 
and Quick jigs for t~tr;altz uex bacl nryn~f~lz 
(28). The last is an improvement over the 

similar pangram given on page 146 be- 
cause it eliminates the name "Bud." Proper 
nouns, abl~reviations, initials and so on are 
considered blots on pangrams. 

John G. Fletcher of Pleasanton, Califor- 
nia, sent the best 26-letter pangram, \vhich 
h e  says is due  to the rnatherilatician Claude 
E .  Shannon: Sqzidgzj fez,  hlntlk jirn;)) crtctll 
cox! A crwth is a stringed instrullle~lt of 
Welsli origin. "Jimp" is a Scottish word for 
"thin," "slender," "delicate." ("I see thee 
clancing on the green, thy waist sixe jimp,/ 
Thy  lirnbs sae clean," wrote Robert Burns.) 
The  sentence is spoken by a man of the Near 
East to his short, squat fez as h e  pulls it 
down over his ears to blank out the thin, 
delicate voice (notes) of a cr\vth being 
played nearby. r7ic Reid, Jr., of New York 
City reports that while Caesar's legioils 
were encamped one night by a  norther^^ 
lake, they were approached by  15 mer- 
maids who tried vaiilly to persuade the men 
to dance with them on the water. X war cor- 
respondent cabled 26 letters to his Roman 
editor: XI7 quick ~lly?r~ph.s heg fjord Z G C ~ ~ Z .  

Several readers called attention to other 
ans\vers to the quiz about eight curious 
words. Abscotlded can, of course, be  sub- 
stituted for crh.sconder. Dmitri Borgrnann 
writes that in addition to typewriter the fol- 
lowing ten-letter words can also be  typed 
on the top row of letter keys: proprietor, 
peppertc;ort, pepperroof and proto)>teri. 
Others (from \I,. 13. Shepherd of hlan- 
chester, England): perpetuity, repertoire, 
perrziyziier, pewterz~ort and pirotletter. 
Borgn~al l i~  goes on to say that g~ynltloj~edia, 
limllophile and son~tloj~atll!l  are other ten- 
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letter words \\?it11 111nop in the sanle spot as 
in g ! l ~ ~ ~ i ~ o ) ~ l a s t  (although he prefers the 
sentence I uin no prude), and pclreciously 
and nlc~teriorr.~ly are alternates for fuceti- 
ousllj in liavi~lg the voulels and 11 in alpha- 
l~etical order. 

Stuart G. Scllaeffer found another, Inore 
timely solution to the "cares -caress" rid- 
dle, which he expressect in what he calls 
"shaggy doggerel": 

A cetltzr7cj ( ~ n d  rnore ( I ~ O  

Clazttoyclt~t Et~glzrl~rner~ tlzd k r ~ o t ~  
That  f i l  the t t ~ e t ~ t i e t h  century 
Ttclt~quzllity would shuttered be,  
Aild so suggeatecl bltter iloise 
Be changed to stceet untl s z le t~ t joys  
BI/ clddlng modest ~ t l d  cot~teztlenj 
"S"  to t m k e  the Bentles beatless 

The krirtuosity of readers in finding ana- 
grams on the full names of the two presi- 
dential candidates makes it iml~ossible to do 
justice to the hundreds of ingenious ana- 
grams received. Curiously each candidate's 
name involves a similar difficulty: taking care 
of the five X's in Lyndon Baines Johnson 
and the five R's in Barry hlorris Goldwater. 
Dmitri Borgmann's best one for Johnsoil 
is So ~ l i ~ i n y ,  he'.s 012 job,  lads. Essentially 
the same anagram was submitted by Arthur 
Schulman, James H. Cochrane, and Raphael 
11. Robinson. H(1nd.s on  oilly tlitle jobs was 
i~~dependerltly devised by Jlrs. H. A. 
hlorss, Jr., and 11s. and hlrs. Bruce D. 
Hainsworth; virtually the same phrase 
also came fro111 ?rIrs. E. hI. Cutler and many 
others. The best anti-Johnson anagram is 
from \Valter I. Cole, Jr.: Xone sill? S11/ Ilclnd 

on job. I should add that Cole also sent the 
following anti-Goldwater anagram: Jly  stur 
error-a glib c o r d .  

The best anagram favorable to Goldwater 
- S n ~ u r t ,  bold ,  grey curr ior-  was submitted 
by David Rabby, ~ 7 h o  also balanced it with 
a favorable Johnson anagram. hlost Gold- 
water anagranls stressed a fear that his 
policies would provoke war. Morbid story - 
larger icur was discovered by both hlrs. 
Cutler and L. E. Card. Among 39 clever 
ailagralns contril~uted by hlr. and hlrs. 
Gerald Dantzic are 1Vcirll uorld 's  rurer 
bigot; Orders big "n~urn l  z~nr"  try! C)ther 
arlagranls of similar import: Sorry brezc, 
Jlr. Glridiutor! (Jlrs. Coburn A. Buxton), 
Bald, raw, gory tenori.snz (Arthur Schul- 
man), Sly orcitor bred grin1 wcrr (James H. 
Cochrane), Gruh rest, nzold14 tcclrrior (Alan 
IVachtel, Phil Leslie). John de Cue\,as sent 
A greclt world! By n~irrors? Jlr. and l lrs .  
Bruce D. Hainsworth: Red Star big moral 
worry. Raphael Robinson, a well-known 
mathematician, imagined the following 
nlessage signed with Barry's first initial: 
Glory! I storm rec~rzourd. B. To which Robin- 
so12 added the followirlg prayer for a Gold- 
waterloo: Lord, bur griin zcorst year! 
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16. The Pythagorean Theorem 

Such a theorem as "the square of the hypotenuse of a right-angled triangle 
is equal to the sum of the squares of the sides" is as dazzlingly beautiful 
now as it was in the day when Pythagoras first discovered it, and celebrated 
its advent, it is said, by sacrificing a hecatomb of oxen-a method of doing 
honor to Science that has always seemed to me slightly exaggerated and 
uncalled-for. One can imagine oneself, even in these degenerate days, 
marking the epoch of some brilliant scientific discovery by inviting a convivial 
friend or two, to join one in a beefsteak and a bottle of wine. But a hecatomb 
of oxen! It would produce a quite inconvenient supply of beef. 

Lewis Carroll, A New Theory of Parallels 

THE FIRST CHAPTER of Arthur Schopen- 
hauer's great pl~ilosophical work The Il'orld 
(is \17ill and Idea contains a harsh attack on 
Euclid's method of proving propositions, 
and on the famous forty-seventh proposi- 
ti011 in particular. This is the familiar theo- 
rem, usually called the Pythagorean 
theorern, that states that the square on the 
hypotenuse of a right triangle has an area 
equal to the conlbined areas of the squares 
on the other two sides. It is, of course, one 
of the oldest and most indispensable theo- 
rems in the whole of mathem a t '  ~ c s .  

Euclid's proof, as many readers will 
recall from high school geonletry textbooks, 
is rather complicated. Constrliction lines 
are drawn here and there, says Schopen- 
hauer, for no apparent reason; then we are 
dragged through a long chain of deductive 
steps until suddenly the proof snaps shut 
on us like a mousetrap. LVe are colllpelled to 
admit that the conclusion is true, but we 
feel somehow cheated. We do not "see" its 
truth, A4ccording to Schopenhauer we are 
like a doctor who knows both a disease and 
its cure but has no urlderstanding of why the 



105. Ancient Greek proof of Pythagorean theorem 
for the isosceles right triangle 

cure works. The proof is a "brilliant piece of in Figure 105. We see at once that the 
perversity." It sneaks its truth in by a back squares on the two legs of the shaded tri- 
door instead of giving it to us forthrightly, angle are composed of four congruent tri- 
as a direct intuition of spatial relations. angles that fit together to form the square on 

A much better understanding of the theo- the hypotenuse. Essentially the same 
rem is obtained, Schopenhauer continues, diagram is used by Socrates (in Plato's 
by contemplating a diagram such as the one Meno) to convince a slave boy of the truth 



Mathematical Games 

of a theorenl. How foolish, Schopenhauer 
says, to toil over Euclid's rough terrain 
when we can get there clirectly b y  such a 
"bright, firm road." 

Schopenhauer's arguments are naive: the 
proof he  recommends concerns only a 
special case, the isosceles right triangle, and 
does not prove the theorem at all. Neverthe- 
less, there is something to be said for the 
pedagogic value of simple proofs that give a 
maxinlurn of intuitive insight. Consider the 
figure at left in Figure 106. Clearly a n y  
type of right triangle can be duplicated four 
times and arranged in this pattern. The  
tilted white square in the center-the square 
on the hypotenuse-has an area equal to 
that of the large square minus the com- 
hincd areas of the four shaded triangles. 
Now we rearra~lge the four triaqgles inside 

the saille large square in the rnallner shown 
in the figure at right in the illustration. The  
two white squares are the squares on the 
two legs. Since their co~nbilled area also is 
that of the large square minus the four tri- 
angles, we know it must equal the area of 
the tilted white square in the figure at left 

'1 1011. in the illustr' t '  
No one knows who first thought of this 

beautiful proof, but it may predate Pythag- 
oras himself. The  figure at the left in the 
illustration appears in the Cllou Pei, a Chi- 
nese manuscript that goes back to the Ha11 
period (202 B.C. to A.D. 220) but is believed 
to contain much older mathematical ma- 
terial. Although the manuscript gives no 
actual proof, it does mention the right tri- 
angle with integral sides of 3, 4, and 5, and 
many scholars think that the figure played 

106. P "look-see" proof of the theorem for any type of r ight triangle 
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a part in a proof similar to the one just 
explained. Pythagoras, who lived about 
500 B.c., is believed to have proved the 
theorem (legend has it that he sacrificed one 
hundred oxen when he first discovered 
the theorem), but no actual proof by him 
has survived. Recent research has dis- 
closed that the ancient Babylonians, more 
than a thousand years before the time of 
P~thagoras, knew the theorem as well as 
many different kinds of right triangle with 
integral sides. There is no evidence that 
the Egyptians knew either the theorem 
or the 3, 4, 5 triangle. The myth that they 
did goes back to 1900, when Moritz Can- 
tor, a German historian of mathematics, 
knowing that Egyptian temple builders 
used ropes in laying foundations, sug- 
gested that perhaps they obtained accurate 
right angles by using marked ropes that 
could be stretched around stakes to form 
a 3, 4, 5 triangle. Perhaps they did, but 
there is not a single known document to 
support this guess. 

A delightful, dynamic proof of the theo- 
rem, devised by a New York mathemati- 
cian, Hermann Baravalle, was published 
in 1945. Its five steps are shown in Figure 
107. Only the fourth step calls for comment. 
If a parallelogram is altered by a shearing 
motion that preserves its base and altitude, 
its area remains constant. 

I know of no more intuitively satisfying 
 roofs of the theorem than these, but by 
applying some elementary algebra still 
simpler proofs are possible. Surely the 
simplest is obtained by resting the triangle 
on its hypotenuse, as shown in Figure 108, 

then dropping a vertical line from the top 
corner. The small shaded right triangle is 
similar to the large triangle ABC because 
both have the angle A in common. Similar 
triangles have sides in the same ratio, 
therefore b : x = c : b, or bS = cx. The small 
unshaded right triangle is similar to ARC 
(they have angle B in common), therefore 
a : c - x = c : a ,  or a' = c' - cx. We add the 
two equations 

and obtain the theorem. 
Hundreds of ingenious ways to prove the 

theorem have been published. The second 
(1940) edition of The  Pythagorean Proposi- 
t ion, by Elisha S. Loomis, gives 367 differ- 
ent proofs, neatly classified by types. Of 
special interest-it is the only contribution 
to mathematics ever made by a president 
of the United States! -is an algebraic proof 
based on the construction shown in Figure 
109. The proof first appeared in a Boston 
weekly called The  New England Journal 
of Education on April 1, 1876, with a note 
by the editor saying it had been given to 
him by James A. Garfield, then a Republi- 
can congressman from Ohio. Garfield had 
hit on it, says the note, during "some mathe- 
matical amusements" with other congress- 
men, and "we think it something on which 
the members of both houses can unite with- 
out distinction of party." The basic right 
triangle is shown shaded. On its hypotenuse 
is drawn the right isosceles triangle CBE. 
Line AC is extended, then from point E a 



107. Baravalle's five-step dynamic proof 



108. Simplest algebraic proof of the theorem 

109. President Garfield's proof 
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perpendicular is drawn to the extended 
line, meeting it at D. The shaded triangle 
is congruent with triangle DCE, therefore 
AB = DC and AC = DE. I leave the proof 
as a puzzle for the reader. 

The theorem can be generalized in scores 
of interesting ways. For instance, any fig- 
ure can be drawn on the three sides- semi- 
circles, hexagons, triangles and so on. As 
long as the three figures are similar, with 
corresponding sides on the triangle, the 
area of the figure on the hypotenuse must 
equal the sum of the areas of the other two. 
Pappus of Alexandria, a Greek geometer 
who lived about A.D. 300, proved a much 
more remarkable generalization. One starts 
with any triangle whatever [ABC in Figure 
11 01. On its legs one draws two parallelo- 
grams [shown shaded] of any size or shape. 
Sides of these two parallelograms are ex- 
tended to meet at point P .  We next draw a 
line through P and C, extending it down- 
ward until Q R  is equal to PC. If a paral- 
lelogram is drawn on the hypotenuse of 
the triangle, its sides equal to and parallel 
with PR, its area will be the sum of the 
areas of the other two parallelograms. 

One proof is ridiculously easy. The 
shaded parallelogram at left in the illus- 
tration is equal in area to parallelogram 
IWCA (for the reason given in connection 
with Baravalle's proof) and also (for the 
same reason) equal to parallelogram AQRX. 
At right, the same argument shows that the 
shaded parallelogram has an area equal to 
parallelogram QBYR.  Since the large paral- 
lelogram on the hypotenuse is made up of 
AQRX and QBYR,  its area is the sum of the 

areas of the two shaded parallelograms. It 
is easy to see that the Pythagorean theorem 
is a special case of Pappus' theorem. It 
obtains when angle C is the right angle and 
the two shaded parallelograms are squares. 
In this special case the proof just outlined 
is essentially the same as Baravalle's proof. 

The simplest right triangle with integral 
sides is the 3 , 4 , 5  triangle. Of course we can 
get an infinity of other "Pythagorean trip- 
les," as these three numbers are called, 
simply by multiplying each number by the 
same integer. If we multiply by 2, we get 
the Pythagorean triple 6, 8, 10. This is not 
very exciting, because a triangle with such 
sides is merely an enlarged version of the 
3 ,4 ,5 .  Much more interesting are the Pytha- 
gorean triples that have no common factor, 
that is, that have integers that are "co- 
prime." Such triples are called "primitive 
Pythagorean triples," which we abbreviate 
to PP triples. Obviously no two PP triangles 
will have the same shape. 

Every Pythagorean triple, primitive or 
not, is an integral solution of the equation 
x" yy" = 2% There is an infinite number of 
primitive solutions. (If the exponent of the 
three terms is any integer greater than 2, 
there are believed to be no integral solu- 
tions. This is Pierre de Fermat's f' nmous 
"last theorem," not yet proved true.) The 
formula for finding primitive solutions 
goes back to the Greeks and probably back 
to ancient Babylonia: 



110. Pappus' generalization of the Pythagorean theorem 

The letters x and !J are the triangle's legs, 
z is the hypotenuse. Letters (1 and b stand 
for integers called "ge~~erators." They car1 
be any pair of positive integers, with the 
restrictions that they be coyriine (have no 
common divisor), of opposite parity (one 
even, one odd), ailcl that (1 be greater than 
b. For example, if h is 1 ancl (1 is 2 (the 
smallest possible generators), we obtain 
the 3, 4, 5 triangle. (:enerators of 3 and 2 

(for (1 and b respectively) give the next 
simplest I'P triple: 5, 12, 13. I11 this way 
the forml~la gcncratcs all 1'1' triples. Tllcre 
are 16 PP triangles with sides less than 100 
and exactly 100 such Pythagorean triangles 
(including thc primitives) if we count rnir- 
ror images as 1)eillg different. 

'The study of Pythagorean triples has long 
I~een a vigorous hrailch of recreational 
nurnlxr thcory, with a literature that has 
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reached awesome proportions. It is not 
hard to prove that x and s must be odd and 
that y is "doubly even" (divisible by 4). 
Either x or y is sure to be a multiple of 
3, and one of the three numbers must be a 
multiple of 5. Since the factors 3 , 4 , 5  occur 
somewhere in the triple, the product of 
all three numbers must be a multiple of 
60. The area of a PP triangle must be a 
multiple of 6 and cannot be a perfect square. 

Taking off from such simple properties, 
students of Pythagorean triples have set 
themselves an endless variety of bizarre 
problems. How many PP triangles have a 
certain integer as a leg? As a hypotenuse? 
Find PP triangles with a perimeter that is a 
square, or an area that equals the hypote- 
nuse, or legs that differ by 1, or an area that 
contains each of the nine digits once and 
only once, and so on. It is difficult to invent 
a problem along such lines that has not been 
industriously worked on. 

It is easy to prove, for instance, that only 
two Pythagorean triangles-6, 8, 10 and 
5, 12, 13-have perimeters that equal their 
areas. Is there a PP triangle whose hypote- 
nuse is a perfect square, and with legs such 
that their difference is also a square? Yes; 
the smallest such triangle is 119, 120, 169. 
Is there a PP triangle with a square hypot- 
enuse and legs that s u m  to a square? Yes; 
but now the smallest answer is 4,565,486,- 
027,761, 1,061,652,293,520 and 4,687,298,- 
610,289. (This last problem was posed and 
solved by Ferrnat in 1643.) The PP triangle 
with sides 693, 1,924, 2,045 has an area of 
666,666. 

No isosceles right triangle can be Pytha- 

gorean (its hypotenuse is incommensurable 
with a leg), but one can get as close to 
isosceles as one pleases. Albert H. Beiler, 
in Recreations i n  the Theorcj of Numbers,  
gives a PP triangle so nearly isosceles that 
if the sides of one of its acute angles were 
extended 100 billion light-years, the di- 
vergence from a 45-degree angle would 
still be (as Beiler points out) an inconceiv- 
ably small fraction of the radius of a proton! 
One leg in this mammoth Pythagorean tri- 
angle is 21,669,693,148,613,788,330,547,- 
979,729,286,307,164,015,202,768,699,465,- 
346,081,691,992,338,845,992,696, The other 
leg is that number plus 1. 

Some of the most challenging problems 
in the field concern PP triangles that have 
the same area. Fermat showed how to find 
a set of as many equiareal nonprimitive 
Pythagorean triangles as desired. Some 20 
years ago William P. Whitlock, Jr., worked 
out a number of ingenious formulas for 
finding pairs of equiareal primitive Pytha- 
gorean triangles. So far, however, only one 
example has been found of three ecluiareal 
PP triangles: 1,380, 19,019, 19,069; 3,059, 
8,580, 9,109; 4,485, 5,852, 7,373. Their 
comnlon area is 13,123,110. (This triplet 
was discovered in 1945 by Charles L. Shedd 
of Arlington, Massachusetts.) Is there an- 
other triplet? Are there four equiareal PP 
triangles? No one knows. 

You will want to leave these difficult 
questions to the experts. Here are four 
easy, although in some ways tricky, Pytha- 
gorem triangle problems, all answered 
in the answers section. 

1. Which has the larger area, a triangle 
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with sides 5, 5 ,  6 or one with sides 5, 5,  8? 
2. A 30, 40, 50 Pythagorean triangle has 

a perimeter of 120. Find two other Pytha- 
gorean triangles with the same perimeter. 

3. What is the smallest number of 
matches needed to form simultaneously, 
on a plane, two different (noncongruent) 
Pythagorean triangles? The matches repre- 
sent units of length and must not be broken 
or split in any way. 

4. For all Pythagorean triangles the 
diameters of inscribed and circumscribed 
circles are integral. The diameter of the 
inscribed circle is obtained by adding the 
legs and then subtracting the hypotenuse 
(for example, the diameter of the circle 
inscribed in the 3,  4 ,  5 triangle is 2). Find 
a formula for the diameter of the circum- 
scribed circle. 

Answers 

What is President James Garfield's proof 
of the Pythagorean theorem? Referring to 
the diagram on page 157, the area of the 
entire figure - trapezoid ABED - is the 
product of its base, x + y, and half the sum of 
its sides, x and y. This can be written 

The area of the trapezoid is also the sum 
of the areas of the three triangles. The 
largest triangle has an area of zV2, and each 
of the other two (congruent) triangles has 
an area of xy12. We express the trapezoid's 

area as 

The two expressions for area are equal, so 
we have the equation 

which simplifies to 

I. Carl Romer, Jr., pointed out that Gar- 
field's proof is essentially the same as the 
"look-see" proof in Figure 106. Garfield's 
figure is exactly one half of the figure on the 
left of the "look-see" illustration. 

The four problems involving Pythagorean 
triangles are answered as follows: 

1. Triangles 5, Ti, 6 and 5, 5, 8 have equal 
areas because each can be split in half to 
make two 3,  4 ,  5 triangles. 

2. The smallest Pythagorean triangles 
with the same perimeter are 30, 40, 50; 
24, 45, 51, and 20, 48, 52. Each has a pe- 
rimeter of 120. The three snlallest primi- 
tive Pythagorean triangles with equal 
perimeters are 3,255, 5,032, 5,993; 7,055, 
168, 7,057, and 119, 7,080, 7,081. 

3. Two noncongruent Pythagorean tri- 
angles - 3,4 ,  5 and 6, 8, 10 -can be formed 
simultaneously on the plane with as few as 
27 matches [see Figure 11 1 1. 

4. The diameter of a circle circumscribed 
about any right triangle is equal to the 
triangle's hypotenuse, as is evident from 
Figure 112. 



11 1 .  Answer to the match problem 
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17. Limits of Infinite Series 

The Ball laughed. If you have never heard an india-rubber ball laugh you 
won't understand. It's the sort of quicker, quicker, quicker, softer, softer, 
softer chuckle of a bounce that it gives when it's settling down when you're 
tired of bouncing it. 

E .  Nesbit, Nine Unlikely Tales 

FOR A MATHEMATICS STUDENT about to 
make the great leap from precalculus to cal- 
culus, no asset is more valuable than a firm, 
intuitive grasp of the concept of limit. The 
derivative and the definite integral, the 
fundamental tools of calculus, are both limits 
of infinite series. Every irrational number, 
such as pi, e ,  and the square root of 2, is the 
linlit of an infinite series. Perhaps an ap- 
proach to the concept by way of recreation 
will help to dispel some of the difficulties 
that caused so much metaphysical confusion 
in the early history of calculus and that are 
still stumbling blocks in the path of a stu- 
dent today. 

It was Zeno of Elea, a Greek philosopher 
of the fifth century B.c., who first demon- 

strated, with a famous series of paradoxes, 
how easily one falls into logical traps in talk- 
ing about an infinite series. How, Zeno 
asked, can a runner ever get from A to B ?  
First he must go half the distance. Then he 
must go half the remaining distance, which 
brings him to the 314 point. But before com- 
pleting the last quarter he must again go 
halfway, to the 718 point. In other words, he 
goes a distance equal to the sun1 of the fol- 
lowing series: 

The dots at the end mean that the series 
continues forever. How can a runner tra- 
verse an infinite series of lengths in a finite 
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time? If you keep adding the terms of this 
series, you will never reilch the goal of 1; 
you are always short by a distance equal to 
the last fraction added. 

Sow, there is a simple way to design an 
experiment so that in theory Zeno's con- 
tention is correct. Place a chess queen so 
that tlle center of its circular base rests on 
point A. The piece is to be pushed along a 
straight line to point B in the following way. 
First we push it a distance of 112, the11 pause 
until one second has elapsed. Then we push 
it a distance of 114 and again pause until the 
end of the second. \17e continue in this man- 
ner, beginning each push one second after 
the start of the previous push. At what time 
will the queen reach B ?  The answer is 
never. Suppose, however, we give the 
queen a constant velocity so that it covers 
half the distance in half a second, a quarter 
of the distance in a quarter of a second and 
so on. Roth time and distance are now de- 
scribed by the same halving series. Both 
simultaneously converge - or "choke off," 
as 111:itheinaticians say-at the nurnber 1. 
In one second, therefore, the queen reaches 
B. 

does a mathematician mean when 
he says that the "sum" of this halving series 
is l?  Clearly it is not a surn in the sense that 
one speaks of the sum of a finite series. 
There is 110 way to sum an infinite series in 
the usual sense of the word because there 
is no end to the terms that must be added. 
\\'hen a mathematician speaks of the sum- 
more precisely the limit-of an infinite 
series, he means a nuinber that the value of 
the series ~ipproaches, as the number of its 

terms increases without bound. By "ap- 
proach" he means that the difference be- 
tween the value of the series and its limit 
can 11e made us snzall c ~ s  one 111eu.ses. Here 
we touc-11 the heart of the matter. The value 
of an iinfinite series sornetimes reaches its 
lirnit and so~netinles goes beyond the limit. 
h simple example of the latter is obtained 
by changing alternate signs in the halving 
series to minus signs: 112 - 114 + 118 - 1/16 
+ . . . . The partial sums of this series are 
alternately more or less than its limit of 
.3333 . . . (which, incidentally, is a way of 
writing 113 as the limit of an infinite series 
of decimal fractions). The important point 
is that, in every case of an infinite series that 
chokes off, one can always find a partial sum 
that differs fro111 the lirnit by an amount 
snlaller than any fraction one cares to name. 

Finding the limit of a converging series 
is often extreinely difficult, but when the 
terrris decrease in a geometric progression, 
as in the case of the halving series, there is a 
simple dodge every reader should know. 
First let x equal the entire series. Because 
each terrrl is twice as large as the next, mul- 
tiply each side of the equation by 2: 

The new series, beyond 1, is the same as 
the oriqinal series x. So 

which reduces to x = 1. 
Let 11\ see how thi\ applies to another of 
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Zeno's paradoxes: the race of Achilles and 
the tortoise. Assume that Achilles runs ten 
times as fast as the tortoise, and that the 
animal has a lead of 100 yards. After ,4chilles 
has gone 100 yards the tortoise has moved 10. 
After Achilles has run 10 yards the tortoise 
has ~lloved 1. If Achilles takes the same 
lellgth of time to run each segment of this 
series, he will never catch the tortoise, but 
if both move at ui~iforn? speed, he will. How 
far has *4chilles gone by the time he over- 
takes the tortoise? The answer is the limit 
of the series 100 + 10 + 1 + .1 + .01+ .001 
+ . . . . Here we see at once that the sum 
is 111.111 . . . , or 1111/9 yards. Suppose 
Achilles runs seven times as fast as the tor- 
toise, which has the same head start of 100 
yards. Hocv far must Achilles go to catch the 
tortoise? 

(\Ye leave aside the question of whether 
modern lllathematics does or does not refute 
Zeno. It all depends, of course, on what one 
means in this context by "refute." The in- 
terested reader can find no better introduc- 
tion to the difficult literature on this subject 
than Bertrand Russell's brief discussion in 
Lecture 6 of O u r  Knozcleclge of  t h e  External 
1l:orld and his more advanced analysis on 
pages 336-354 of Principles of,\lclttzenlatics 
(Second edition; Necv York: \I7. \V. Norton 
and Company, 1938). Zeno's paradoxes 
raise questions about space, time and mo- 
tion that are too deep to be answered friv- 
olously, as they once were by Diogenes the 
Cynic: he stood u p  and walked from A to R.)  

Bouncing-ball problems, found in many 
puzzle books, also yielcl readily to the trick 
just esplained. Assume that an ideal ball is 

dropped from a height of one foot. It always 
bounces to 1/21 of its previous height. If 
each bounce takes a second, the ball will 
bounce forever, but since the time for each 
bounce also decreases by a convergi~lg 
series, the ball evelltually stops 1)olincing 
even though it rllakes (in theory) an infinite 
nu~xlber of bounces. The reader should have 
little difficulty determining how far this 
ideal ball travels before it comes to rest. 

Geometric exalilples of series of this type 
are legion. If the largest square in Figure 
113 has a side of 1 and the nesting continues 
indefinitely, what is the area of the infinite 
set of squares? O b v i o ~ ~ s l ~  it is 1 plus the 
halving series previously considered, or a 
total area of 2. Only a trifle more difficult is 
the following problem, presented in 1905 in 
a conlpetitiorl held annually in Hungary. A 
unit square is divided into nine equal 
squares, like a ticktacktoe board: and the 
center square is painted a color. The remain- 
ing eight squares are similarly divided and 
painted. If repetitions of this procedure con- 
tinue indefinitely [see Figtrre 1141, what is 
the limit of the painted area? 

\IThen a series does not converge, it is 
said to diverge. It is easy to see that 1 + 2 + 
3 + 4 + 5 +  . . . does not choke off. Suppose, 
however, that each new7 term, in a series 
joined by plus signs, is sn~a l l e r  than the pre- 
ceding one. I\Iust such a series converge? 
It may be hard to believe at first, but the 
answer is no. Consider the series krlown as 
the harmonic series: 

The terrns get smaller and smaller; in fact, 



113. An infinite set of nested squares 

they approach zero as a limit. Nevertheless, 
the sum increases without bound! To prove 
this we have only to consider the terms in 
groups of two, four, eight, and so on, begin- 
ning with 113. The first group, 113 + 114, 
su111s to inore than 112 because 1/:3 is greater 
than 114, and a pair of fourths sums to 112. 
Similarly, the second group, 1It5 + 116 + 117 

+ 118, is more than 112 because each term 
except the last exceeds 118, and a quadruple 
of eighths sums to 112. In the same way the 
third group, of eight terins, exceeds 112be- 
cause every term except the last (1116) is 
greater than 1116, and 8/16; is 112. Each suc- 
ceeding group can thus be  shown to exceed 
112, and since the number of such groups is 



114. What is the l imit of area for the colored portion? 

urllimitecl the series must diverge. It does 
so, however, with infuriating slowness. Tlie 
first 100 terms, for instance, total only a bit 
rnore than 5. To reach 100 requires more 
than 2""errns, but less than 2144 terms. (I  
am indebted to Daniel Asimov for s1.ipp1~- 
ing these u p ~ e r  and lower bounds.) In  1968 
John \V. TVre~lch, Jr., calculated the exact 

number of terms at \vhich the series has a 
partial sum exceeding 100. The number of 
terms is 15,092,688,622,113,788,:323,693,- 
563,264,538,101,449 ,8859,497. 

The harmonic series is involved in ari 
amusing problem that al)peared in the Pi 
1111 El~.silon Journc~l  for April, 1954, a n d  
more recently in Pzrzzle-Jlatlz, a book by 
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George Camow and hlarvin Stern. If one comblined center of gravity is above the 
brick is placed on another, the greatest off- third brick's edge, as shown by arrow B. By 
set is obtained by having the center of grav- continuing this procedure downward one 
ity of the top brick fall directly above the obtains a column that curves in the manner 
end of the lower brick, as shown by arrow shown. How large an offset can be obtained? 
A in Figure 115. These two bricks, resting Can it be the full length of a brick? 
on a third, have maxinium offset when their The unbelievable answer is that the offset 

115. The infinite-offset ' paradox 
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can be as large as one wishes! The top brick 
projects half a brick's length. The second 
projects 114, the third 116: and so on do\vn. 
LYit11 an unli~nited supply of bricks the off- 
set is .the limit of 

This is simply the harmonic series with 
each term cut in half. Since the sum of the 
harnlonic series can be made larger than 
any number we care to name, so can half 
its sum. In short, the series diverges, and 
therefore the offset can be increased with- 

out limit. As Lve have seen, slicll a series 
diverges so slowly that it would take a great 
nlany bricks to achieve even a small offset. 
FYit11 52 playing cards, the first placed so 
that its end is flush with a table edge, the 
maximum overhang is a little illore than 2l14 

card lengths [.s.ec Figure  11 6.1. Readers rnay 
enjoy seeing if they can build an offset, 
using one deck, that exceeds two card 
lengths. 

The harmonic series has inany curious 
properties. If every term containing the 
digit 9 is crossed out, the remaining terms 

116. The overhang of a deck of cards 



Mathematical Games 

form a convergent series. If tlie denomina- 
tor of each term is raised to the same power 
11, and 11 is greater than 1, the series con- 
verges. If every other sign, starting with the 
first, is changed to minus, the resulting 
series 

chokes off on tlie natural logarithm of 2, a 
number slightly smaller than .7. Does the 
value of the series ever reach (after 1, of 
course) a number that is an integer? If there 
were a sin~ple formula for expressing the 
value of the series for 11 terins, this might be 
easily answered, but there is no such for- 
mllla. -411 ingenious odd-even argllment, 
however, that goes back at least to 1915 (the 
details are given on page 48 of the i l r n e r i c a ~ ~  
J l u t l ~ e n ~ c ~ t i c a l  31011t l~/ ! j  for January, 1934) 
shows that the series never reaches an 
integral sum. 

If all the terms of an infinite series are 
positive, it clearly does not matter how the 
terms are grouped or rearranged; the lirnit 
renlains the same. But if there are neg, CI t '  ive 
terms, it sometimes makes a big difference. 
From the seventeenth century to the middle 
of tlie nineteenth, before laws of limits were 
carefully forn~ulated, all sorts of disturbing 
paradoxes were produced by juggling the 
plus and niinus terms of various infinite 
series. Luigi Cuido Grandi, a mathema- 
tician at the University of h a ,  considered 
the simple oscillating series l - 1 + 1 - l 
+ 1 - . . . . If one groups the terms (1 - 1) 
+ (1 - 1) + (1 - 1) + . . . , the limit is 0. If 
onegroupstheml-(1-1)- (1-1)-  . . . , 
changing the signs within parentheses as 

required, the sum is 1. This slio\vs, Gnindi 
said, how God could take a universe with 
parts that added up to nothing and then, by 
suital~le rearranging, create something. 

The correct lirnit for the original series, 
Grantli declared, is 112. He supported this 
11y a parable. ,4 father wills a precious stone 
to two sons with the proviso that every year 
the stone go from one to the other. If the 
value of the stone is 1, then its value to each 
son is the sum of 1 - 1 + 1 - 1 + . . . . Since 
the two brothers share the legacy equally, 
this value must be 112. l lany distinguished 
mathematicians joined in the controversy 
over this series. Both Ciottfried \T1ilhelm von 
Leibniz and Leonhard Euler agreed on the 
112, although for someu,hat different rea- 
sons. Today the series is recognized as 
divergent, so that no meaningful limit can 
be assigned to it. 

An even worse instance is provided by 
the series 1 - 2 + 4 - 8 + 16 - . . . . Group 
it 1 +- (-2 + 4) + (-8 + 16) + . . . ancl you 
obtain the series 1 + 2 + 8 + 16 + . . . , 
which diverges to positive infinity. Group it 
(1 - 51) + (4 - 8 ) +  (16-32)+ . . . and you 
get the series - 1-4- 16-64-. . . , which 
diverges to infinity in the negative clirec- 
tion! The climax to all this infernal hubbub 
came in 1854 when Georg Friedrich Rern- 
hard Riemann, the German nlathematician 
now well known for his non-Euclidean 
geonletry, proved a truly reinarkable 
theorem. Whenever the liillit of an infinite 
series can be changed by regrouping or 
rearranging the order of its terins, it is called 
c o ~ ~ d i t i o t ~ u l l y  convergent in contrast to an 
clhsolutely convergent series, which is un- 
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affected by such scrambling. Conditionally 
coilvergei~t series always have negative 
terms, and they always diverge when all 
their terins have been  rliade positive. Kie- 
Inarlil showed that any coilditiolially con- 
vergent series (such as the one previously 
cited that chokes off on the natural logarithm 
of 2) can be  suitably rearranged to give a 
limit that is any desired number whatever, 
rational or irrational, or even made to 
diverge to infinity in either direction. 

Eve11 an infinite series without negative 
terms, if it diverges, car1 cause serious trou- 
ble  if one tries to handle it with rules that 
apply only to finite and converging series. 
For exanlple, let .s be  the infinite, positive 
sulrl of 1 + 2 + 4 + 8 + 16 + . . . . Then 2x 
nlust equal 2 + 4 + 8 + 16 + . . . . This new 
series is nierely the old series ~ni l ius  1. 
Therefore 2x = x - 1, wllicli reduces to x = 

-1. Thus we  seem to have proved that -1 
is irlfiriite and positive. One  can sympathize 
with the Norwegian inathematician Niels 
Henrik Abel, who wrote in 1828: "The 
di\-ergent series are the invention of the 
devil, and it is a shame to base on thein any 
demon st ratio^^ whatever." 

Addendum 

S. W. Gololnb was the first of several mathe- 
maticia~ls to point out that I was not quite 
accurate in saying that a divergent series 
could not b e  given a nleaningful.sum. "After 
colivincirig our undergraduates that diver- 
gent series are tlie invention of the devil," 
Golomb wrote, "we let them learn in 

graduate school that these series can be  
'surn~ned' after all, if one is sufficiently care- 
ful to define new kinds of summnation rules 
(e.g., Ceshro summation, Abel summation, 
etc.)." Golomb went  011 to say that G. H.  
Hardy's Dicergerlt Series (New York: Ox- 
ford Press, 1949) is a remarkable book in 
which such sulnn~atiori techniques are ex- 
plained. The  series 1 - 1 + 1 - 1 + 1 . . . , 
for example, has both a CesAro sum and an 
A4bel sum of 112, as Leibiliz and Euler main- 
tained. Tlle reader is referred to Hardy's 
posthumous book for a fascinating survey of 
the field. 

Answers 

If Achilles runs seven tirrles as fast as the 
tortoise, which has a head start of 100 yards, 
the total distance .Achilles travels, before 
overtaking the tortoise, is the limit of the 
series 

Each terin is se\.eri tilrles the next term. 
Usiqg the trick explained: \ve l e t s  equal the 
series: then multiply each side 1)y 7: 

This series, after 700, is the original series. 
Therefore 7s  = 700 + s, or 6x = 700, and x = 

116Y3, the number of yards Ilchilles travels. 
The  hounciiig ball comes to rest after 

traveling a distalice equal to the first foot 
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that it falls, plus the sum of 213 + 219 + 
2/27 + . . . . The same procedure is applied 
(multiplying by the constant factor of 3) to 
obtain a limit of one foot for the series. Thus 
the total distance traveled by the ball, be- 
fore it comes to rest after an infinite number 
of bounces, is 1 + 1, or two feet. 

The Hungarian problem of the colored 
squares calls for the limit of the following 
series: 

This is also a geometric progression, with 
each term 918 of the next one. As before, we 
can use the algebraic trick, or-what 
amounts to the same thing-use the follow- 
ing formula for the sum of a converging 
series in geometric progression: 

where r is the ratio of adjacent terms (in this 
case 918) and x is the largest term of the 
series (in this case 119). The limit is 1. 
Therefore as the number of coloring opera- 
tions increases without bound, the colored 
area of the unit square approaches the area 
of 1. In other words, the limit is a fully 

covered square. Of course this could be 
achieved in practice only if a coloring pro- 
cedure could be devised in which the time 
required for each step would decrease in a 
converging series. 

The colored-squares problem was taken 
from Hungarian Problem Book I, translated 
by Elvira Rapaport, in the Random House 
New Mathematical Library (New York: 
Random House, 1963). 
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18. Polyiamonds 

IN 1965 CHARLES SCRTBNER'S SONS pub- 
lished Polyominoes, a book of great interest 
to mathematics puzzlers. The author is Solo- 
mon W. Golomb, a mathematician then as- 
sociated with the California Institute of 
Technology's Jet Propulsion Laboratory and 
professor of engineering and mathematics 
at the University of Southern California. It 
was in 1953 that Golomb, a student at Har- 
vard University, coined the term "polyom- 
ino" for any flat figure formed by joining 
unit squares along their edges. Since a 
"domino" consists of two attached squares, 
Golomb proposed calling a three-square 

" figure a tromino," a four-square figure a 
" tetromino" and so on. 

Among puzzle fans the 12 pentominoes - 
all the different ways of uniting five unit 
squares-proved the most popular. So in- 
triguing were the combinatorial problems 
posed by these 12 little shapes that working 
with them became something of a national 
pastime. Sets of plastic pentominoes were 
marketed both in this country and in Brit- 
ain, and Golomb found himself swamped 

with suggestions for new problems and re- 
quests for more information. Then, to the 
delight of all pentomino buffs, he assembled 
in one profusely illustrated volume every- 
thing of interest he had learned about the 
pentominoes and their square-cornered 
cousins. 

In this chapter we consider a triangular 
cousin. It is mentioned briefly in Golomb's 
book and there are scattered references to 
it in a few journals, but most of what is 
known about this new recreation has been 
discovered since 1965. It is a field with 
many fundamental problems yet to be 
solved and a rich supply of patterns and 
theorems still to be discovered. 

Golomb had pointed out as early as 1954, 
in "Checkerboards and Polyominoes," in 
The American Mathematical Monthly, 
December, 1954, that a recreation similar to 
polyominoes could be based on pieces 
formed by joining unit equilateral triangles. 
The Glasgow mathematician T. H. O'Beirne, 
writing in the New Scientist in 1961, pro- 
posed calling such shapes "polyiamonds." 
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Taking his etymological cue from Colomb, 
O'Beirne reasoned that if n "diamond" con- 
sists of two attached triangles, a figure 
forlned by three triangles should be called 
a "triamond," four triangles a "tetriamond" 
and so on up through "pentiamond," 
"hexiamond," "heptiarnond" and higher 
11-iamo~lds. Ob\~~iously there is only one 
form of diamo~~cl and trianlond, and the 
reader can quickly convince hilnself that 
there are three tetriamonds and four pent- 
iamonds. (As with polyominoes, mirror 
reflectiorls of asynlrrletrical forms are not 
usu:tlly considered different.) The hex- 
iamonds, by a pleasing coincidence with 
the penton~inoes, are exactly 12in  number. 
There are 24 heptiamonds, 66 octiamonds, 
and 160 order-0 figures (one with a hole). 
Beyond this no accurate counts have been 
established. 

The 12 hexiamonds are shown in Figure 
117. with appropriate names, most of them 
first proposed by O'Beirne. The reader is 
invited to copy these 12 shapes on a sheet 
of cardboard and carefully cut them out. 
The coloring on the shapes should be ig- 
nored. It is best to use cardboard that is 
the same on both sides, so that asymmet- 
rical pieces can be turned cn7er at will. It is 
good to have a supply of isometric paper on 
hand for ease in recordirlg patterns. 

It is obvious that any pattern formed by 
two or more hexiamonds must contain a 
nunnber of unit triangles that is evenly di- 
visible by 6. \F7e car1 go further. By coloring 
the pieces as shown we see that every piece 
except the last two (sphinx and yacht) are 
"balanced" in the sense that they contain 

11 7. The 12 hexiamonds 

three triangles of each color. Therefore any 
figure made by fitting together two or more 
balan~:ed hexian-~onds rnlist itself be bal- 
anced. The yacht and s ~ h i n x  are each un- 
balanc-ed four to two. If one of these pieces 
appears in a figure, the figure must be un- 
balanced by an excess of two triangles. If 
110th pieces are used, the figure must be 
either. balanced (the yacht and sphinx being 
so placed that they compensate for each 
other) or urlbala~lced with an excess of four 
triangles. This provides a powerful check 
for eliminating many figures that otherwise 
might be thought possible. 

Collsider, for example, the equilateral 
triangle of order-6 [Figure 118, t op] .  It con- 
tains 36 unit triangles; it is the oilly tri- 
angle within the range of the 12 hexiamonds 
that has a number of unit triangles evenly 
divisible by 6. One could waste many hours 
vainly trying to construct this triangle with 
six ht:xiamonds. If it is colored as shown, 
however, we find that it contains an excess 
of six triangles of one color. Since the maxi- 
mum achievable excess is four, the figure is 
seen ;it once to be impossible. 

Attention turns naturally to the parallelo- 
grams. Only the 3 x 3 and 6 x 6 diamonds 
(rhombi) contain the proper number of tri- 
angles. The smaller dianlond is easily found 
to be impossible, but the 6 x 6 has scores of 





known solutions. One solution, by Maurice 
J. Povah of Blackburn, England, is shown in 
Figure 120, top. It is interesting on two 
counts: all pieces except the hexagon touch 
the border, and a line divides the pattern 
into congruent halves. The halves can, of 
course, be fitted together in other ways to 
make bilaterally symmetrical figures. 

Among the rhomboids (parallelograms 
with oblique angles and unequal adjacent 
sides) these facts are known: 

1. If one side is 2, the other side must be 
a multiple of 3. The 2 x 3 is impossible. The 
2 x 6 has one solution (ignoring indepen- 
dent reflections of the two halves), shown in 
Figure 119. It is easy to prove that only 
these four pieces are usable in any rhom- 
boid with a side of 2. The rhomboidal piece 
leaves a space alongside it that cannot be 
filled, and each of the other pieces divides 
the figure into two areas, both of which con- 
tain an odd number of unit triangles. Since 
an odd number cannot be a multiple of 6, 
no other rhomboid with a side of 2 is pos- 
sible. 

2. If one side is 3, the rhomboid will con- 
tain a multiple of six triangles. The 3 x 3 is 
impossible. The 3 x 4,5,6,7,8,9, and 10 are 
all possible, each with many solutions. 

The 3 x 11 is possible, but it is so difficult 
to achieve that I leave this as an advanced 
exercise for the reader. In all known solu- 

118. Three "impossible" hexiamond patterns 
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119. The only possible rhomboid with a side of 2 

tions (one is given in the answer section) 
the bat is the piece left out. 

The 3 x 12, which calls for all 12 hex- 
iarnonds, is the outstanding unsolved prob- 
lem in the field. [See Figure  120, hotto71~.] 
No solution has bee11 found, nor has an 
impossibility proof been devised. Can any 
reader cast light on this ~?roblem? 

3 .  If one side is 4, the other must be a 
multiple of 3. The 4 x 3 (mentioned earlier Parallelograms involving all 12 hexiamonds 
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as 3 x 4) is possible. So is the 4 x 6. The  
4 X 9, which uses all l Q i e c e s ,  has man); 
solutions, one of which is shown in Figure 
120, middle. The  shaded sections call be 
reflected to give three other solutions. 

3.  If one side is 5, the only rhon~boid 
with a suital~le number of triangles is the 
3 X 6. There are many solutions. 

Charles H. Lewis of Roslyn, New York, 
was the first to propose ring-shaped figures 
such as the two in Figure 118, center and 
bottom. It  is easy to show that the triangu- 
lar ring is i~ilpossible by coloring it and 
observing that it is unbalanced by six tri- 
angles. The  hexagonal ring is balanced, but 
a simple impossibility proof was discovered 
by hleredith G. Williams of \Vashington, 
D.C. The  hexagon car1 go in only two posi- 
tions, all others being derived by rotating 
or reflecting the figure. In either position 
it is inlpossible to adcl the lobster without 
dividing the remainiqg field into two re- 
gions, neither of which has an area that is 
a multiple of 6. 

Slany patterns with threefold symmetry 
have been constructed. Hexagons of order-2 
and order-3 exist, as is evident from the 
order-3 hexagon found by Adrian Struyk of 
Paterson, New Jersey. [see "a" it1 Figzire 
121 1 .  Strurk also found several ways to 

121. Hexiamond patterns made by Adrian Struyk 
Bottom pattern covers a regular octahedron. 

make the trefoil shape shown in b in the 
illustration. This arrangement permits 
the n~oving  of one hexagon to make a 
straight chain of three joined hexagons. In 
c Struyk has bisected the trefoil into con- 
gruent halves, and in d he  has procluced a 
pattern that can be  folded around a regular 
octahedron. Figure 122 features a variety 
of striking hexiarnond patterns, of bilateral 
and threefold symmetry, discovered by 
Povah. Note that the figure at top right 
contains a solution to the problem of form- 
ing three congruent shapes using all 12 
pieces. 

The duplication probleln -forming twice- 
as-high replicas of each hexiumond by using 
four pieces - is easily solved for each figure. 
As Lewis has pointed out, the two l~alves 
of the 6 x 2 rhomboid [see  Figure 1191 can 
be fitted together in various ways to dupli- 
cate all hexiamonds except the pistol, 
crown and lobster. The  triplication prob- 
lem - forming larger replicas with nine 
pieces -cannot be solved for the s ~ h i n x  
and yacht, which are unbalanced by six 
triangles. The  other pieces are balanced, 
and triplications have been found for all 
except the butterfly. The  butterfly is be- 
lieved to be impossible. 

Figure 123 is Povah's solution to what is 
called the "three twins" problem. Figure 
124 shows a six-pointed star that has an 
eight-piece solution believed to be unique. 
It  is not difficult, and solving it is an excel- 
lent introduction to the pleasures of hexi- 
amondry. Here is a hint: Neither the snake, 
the hexagon, nor the crown can contribute 
to the star's perimeter. 





+- 122. Symmetrical hexiamond patterns 
by Maurice J. Povah 

123. A solution to the "three twins" problem 

Answers 

Daniel Dorritie of Endicott, New York, was 
the first to supply a proof that the triplica- 
tion problem for the butterfly is impossible. 
Similar proofs were found by Esther Black- 
burn of Montreal; Wade E. Philpott of Lima, 
Ohio; and Dennis C. Rarick, a student at 
Indiana University. Karl Schaffer, a ninth- 

124. A star to be made with eight pieces 

grade student in Birmingham, Alabama, was 
able to prove that the six-pointed star [Fig- 
ure 1251 is indeed the unique solution. 
All these proofs are of the exhaust-all- 
possibilities type and are too lengthy to 
give here. 

The outstanding unsolved hexiamond 
problem - the 3-by-12 rhomboid - was 
solved at the Lawrence Radiation Labora- 
tory of the University of California. A com- 
puter program written by John G. Fletcher 
had previously been set up for testing pen- 
tomino problems. A trivial modification by 
Fletcher converted this program to one 
capable of testing hexiamond patterns. The 
3-by-12 rhomboid was found to be impos- 
sible, and the 3-by-11 rhomboid was shown 
to have 24 distinct solutions, all of which 
omit the bat. [A s o l ~ ~ t i o n  is slzown in Fig- 
ure 126.1 

An earlier computer program by Mrs. 



125. The only solution for the star 

126. Forming the 3-by-1 7 rhomboid 

John ]Leech, in England, found 135 solu- 
tions for the 6-by-6 rhombus, 74 solutions 
for the 4-by-9, none for the 3-by-12. Her 
program, like Fletcher's, was a modifica- 
tion of a previous program for pentominoes. 
Andrew L. Clarke, \Vellesey, England, 
supplied proofs (without computer aid) for 
the 3-l~y-12 rhornbus, the butterfly, and the 
six-poiinted star. 

Sets of plastic hexiamonds were on sale 
ill the late 19607s, tinder various trade 
names, in England, Japan, and \l:est 
Germany. 
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19. Tetrahedrons 

AXY FOUR POISTS (4, B, C, D )  in space that 
are not all on the same plane mark the cor- 
ners of four triangles [see Figure 12'71. These 
triarlgles in turn are the faces of a tetrahe- 
dron, the simplest of all polyhedrons (solids 
bounded by polygons). If each face of a 
tetrahedron is an equilateral triangle, it is 
a regular tetrahedron, the simplest of the 
five platorlic solids. Indeed, it is so simple 
that it was known in ancient Egypt and was 
probably studied by mathematicians as 
early as the cube. 

The Greek Pythagoreans believed that 
fire was con~posed of tetrahedral particles 
too small to be seen. Because the tetrahe- 
dron has fewer faces and sharper corners 
than any other regular convex solid, they 
argued, tetrahedral particles would form 
the least stable and most "penetrating" of 
the four elements: earth, air, fire and water. 
We know better today, yet there is a. sense 
in which this Pythagorean guess, like so 
many guesses of that scl~ool, was a shrewd 
one, for the tetrahedral strlictl~re cloes turn 
up in many aspects of the n~icroworld. The 

so-called carbon atom, without which or- 
garlic molecules and life as we know it 
would not be possible, is actually an atom 
of carbon joined by chemical bonds to four 
other atoms vibrating at the vertices of a 
tetrahedro~l. For example, a molecule of 
carbon tetrachloride, the familiar cleanirlg 
fluid, consists of one carbon atoll1 bonded 
in this way to four atoms of chlorine. l lany 
crystal lattices, includiilg that of diamond, 
have a tetrahedral structure. An important 
copper ore that has a tetrahedral lattice 
is called tetrahedrite because it is foliild 
so often in large, well-developed tetra- 
hedral crystals. 

Squares of the same size fit together like 
a checkerboard to fill the plane, and in a 
similar way cubes join to fill space. Because 
equilateral triangles also tile a plane, one 
might suppose that regular and corlgruent 
tetrahedrons would also pack snugly to fill 
space. This seems so intuitively evident 
that even Aristotle, in his work On tlle 
E-lec~.cen.r., declared it to be the case. The 
fact is that among the platonic solids the 



or soda straws that are all the same length.) 
C Fuller's more famous "geodesic" domes 

are essentially tetrahedral lattices intended, 
like his octet, to achieve maximum rigidity 
at minimum weight and cost. 

Fuller is not the first well-known Ameri- 

127. A regular tetrahedron 

cube alone has this property. If the tetrahe- 
dron also had it, it would long ago have 
rivaled the cube in popularity for packaging. 

Interestingly, regular tetrahedrons and 
octahedrons (regular solids bounded by 
eight triangles) will pack to fill space if 
they are arranged alternately as shown in 
Figure 128. They are the only two regular 
solids that fit together to fill space. Note 
that every triangle in the lattice is the face 
of both a tetrahedron and an octahedron, 
and that every vertex is surrounded by 
eight tetrahedrons and six octahedrons. 
This beautifully regular structure has been 
exploited in recent years by the inventor- 
architect R. Buckminster Fuller. The canti- 
levered truss he  calls the "octet" consists 
of aluminum tubing joined in a network that 
traces the edges of an octahedral-tetrahedral 
honeycomb. (A stimulating classroom proj- 
ect is to model such a honeycomb by 
joining the ends of a large number of rods 

can inventor to be fascinated by the tetra- 
hedron's great strength-to-weight ratio. 
After Alexander Graham Bell achieved fame 
as the inventor of the telephone he devel- 
oped an almost obsessive interest in tetra- 
hedrons. Efforts to build airplanes in the 
1890's had failed because engines lacked 
the power to keep the craft airborne, 
and Bell decided that the answer lay in 
constructing enormous silk-covered, man- 
carrying kites honeycombed with a tetra- 
hedral lattice of aluminum tubing. At his 
summer home in Baddeck, Nova Scotia, he 
built and flew a fantastic variety of such 
kites. To observe his kites in flight he had 
an 80-foot-high platform constructed at 
the top vertex of a tetrahedral skeleton 
formed by three trusses, each of which was 
a tetrahedral network. On the ground he 
built a wooden observation hut also shaped 
like a tetrahedron. When the Alexander 
Graham Bell Museum was built at Baddeck 
in 1955, a tetrahedral pattern was used 
throughout the building as a basic archi- 
tectural motif. 

Bell would surely have been delighted by 
recent adaptations of the tetrahedral shape 
to packaging. If you pinch together the 
bottom of a paper tube and tape it to form 
a straight edge, then do the same thing at 
the top of the tube but at right angles, a 
tetrahedron results. If the tube's circum- 



128. Tetrahedron and octahedron (top) 
and space tesselated by the two polyhedrons 
arranged alternately (bottom) 

ference is 4 units and its height is the 
square root of 3,  the tetrahedron will be 
regular [Figure 1291. This efficient method 
of construction underlies Tetra Pak, the 
trade name for a paper container developed 
in Sweden in the mid-1950's. It first swept 
through Europe and is now being used in- 
creasingly in the U.S., chiefly as a milk 
container and coffee creamer. 

A quite different application of the tetra- 
hedral shape is shown in Figure 130. Dur- 

ing World War I1 the four-pronged device 
called a "caltrop" (it might be interpreted 
as a model of the carbon atom!) was used 
for puncturing the tires of enemy vehicles. 
Hundreds of them can be tossed along a 
road and every one will land with one spike 
pointing straight up; moreover, the shape 
permits maxirnum penetration of a tire. The 
idea is an old one. The Oxford Eiiglish 
Dictionury defines a caltrop as "an iron 
ball armed with four sharp prongs or spikes, 



129. Making a tetrahedral container 



efficient breakwaters. The S e w  York Times,  
February 21, 1965, page S19, described 
their widespread use at the Port of Ashdod 
in Israel. 

The four-dimensional analogue of the 
tetrahedron is called a pentatope. If a point 
at the center of an equilateral triangle is 
joined to each vertex, the result is a projec- 
tion on the plane of a tetrahedron's skele- 
ton. In similar fashion we can join a point 
at the center of a tetrahedron to the four 
vertices and obtain a projection in three- 
space of the skeleton of a pentatope [Figure 
1311. It is easy to see that the pentatope has 

130. Tetrahedral t~re-punctur~ng device five vertices, ten edges, ten triangular faces 

placed like the angles of a tetrahedron, so 
that when thrown on the ground it has 131. Prolect~on ~n three-space of a pentatope 

always one spike projecting upwards: Used 
to obstruct the advance of cavalry, etc." 
One of the dictionary's several quotations 
from sixteenth century documents reads: 
"The Irishmen had strawed all alongst the 
shore a great number of caltrops of iron, with 
sharp pricks standing up, to wound the 
Danes in the feet." And Oliver Wendell 
Holmes, in 1858, wrote: "One of those 
small ctlltlzrops our grandfathers used to 
sow round in the grass when there were 
Indians about . . ." 

A more recent use for the caltrop structure 
is provided by the "tetrapod," a monstrous 
four-limbed object made of reinforced con- 
crete and weighing many tons. It reselnbles 
a fat caltrop with flat instead of pointed 
ends. When thousands are piled together 
on a beach, they interlock to provide highly 
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and five tetrahedral cells. (In this projection 
we see four small cells and one large one. 
On the pentatope itself, if it is regular, all 
five cells are congruent.) Any five points 
in four-dimensional space that are not on 
the same three-space hyperplane mark the 
corners of a pentatope, and each set of four 
points establishes the corners of a tetrahe- 
dral cell. If the five points are so placed in 
four-space that each pair is the same dis- 
tance apart, the figure is a regular pentatope, 
one of tlie six regular convex solids of the 
fourtli dimension. 

Just as a tetrahedron's four faces call be 
unfolded to make a plane figure consisting 
of a central triarlgle with a triangle attached 
to each edge, so tlie five tetrahedral cells 
of a pentatope that f o m ~  its hypersurface 
can be "unfolded" into three-space to 
rrlake a stellated tetrahedron: a central 
tetrahedron with a tetrahedron on each 
face [see Figtire 13-31. If we only knew 
how to fold such a solid tlirougll the fourth 
dimension, we could fold it into a pentiatopal 
container for hypercream. 

A strange, little-kno\vn property of tlie 
regular tetrahedron- a property it does not 
share \slit11 any other platonic solid - is 
involved in a perplexing magic trick that 
car1 be presented as a demonstration of 
one's ability to sense color vibrations with 
the fingers. First construct a s~nall model 
of a regular tetrahedron, its faces congruent 
with the triangles in Figure 133. (A quick 
\i7a!7 to make such a rnodel has been pro- 
posed 11y Charles \I:. Trigg. Cut the pattern 
showrl in Figure 134 from stiff paper or 
light cardboard. Crease all lines the same 

way, fold tlie white triangles into a tetra- 
hedron, then tuck the shaded triangles into 
open edges to form a stable, no-paste-re- 
quirecS model.) Place the model on the l~lack 
triangle at the top of the pattern (or on a 
board rnade by copying the pattern with 
differ(-nt colors for each of the numbered 
shades). \Vl~ile your back is turned, some- 
one "rolls" the model at random over the 
pattein t ~ y  tipping it o17e1- an edge from tri- 
angle to triangle. He stops whenever he 
131easc-s, notes the color on which it rests 
and lets it remain there while he courlts 
slowl:): to 10. Then he slides the tetrahedron 
back ;to the black triangle. You turn arouncl, 
pick up the tetrahedron, feel its u~iderside 
and name the color on \ilhich it last rested. 

The secret combines geometry with a 
card hustler's dodge. A coinrrlon method 
of marking a deck of cards while a game is 
in progress is to obtain a smear of what is 
callecl "daulj" on the tip of a finger, then 
press it to the margin of a card at a spot 
that codes the card's value. The daub leaves 
only ;I dim smudge, indistinguishable from 
the kind of dirt rrlarks that normally dull 
the margins of cards that have been much 
used. hlake some daub by rubbing a pencil 
point heavily over the sarne spot on a piece 
of paper. Slide a fingertip over the graphite, 
then press the tip liglitly against the corner 
of onle face of the tetrahedron. The idea is 
to leave such a faint snludge that no one 
but ymou will ever notice it. 

Place the secretly marked tetrahedron 
on the black triangle with tlie mark at the 
top corner and facing the pattern. At the 
elid of the trick the location of the smudge 



132. Pentatope unfolded into three-space 



133. Board pattern for the magic trick 

134. Pattern for folding a tetrahedral counter 

will code the color on which the model 
last rested. As you pretend to feel the base 
of the model, look directly down at it. The 
smudge will be at one of four positions, 
each of which indicates a different color 
[see Figure 1351. I leave it to the reader to 
discover why the trick cannot fail. 

The following puzzles involving tetra- 
hedrons are not difficult, but some have 
surprising solutions. 

1. A regular tetrahedron is cut simul- 
taneously by six different planes. Each 
slices the solid exactly in half by passing 
through one edge and bisecting the opposite 
edge. How many pieces result? 

2. Can any triangle cut from paper be 
folded along three lines to form a (not 
necessarily regular) tetrahedron? If not, 
give the conditions that must be met. 



POSITION OF SMUDGE 

AT TOP CORNER 

ON BASE (NOT VISIBLE) 

AT LEFT OF A BASE CORNER 

135. The key to the magic trick 

3. Inside a room shaped like a regular 
tetrahedron a bug crawls from point A to 
point B [see Figure 1361. The room is 20 
feet on a side and each point is seven feet 
from a vertex, on an altitude of a triangular 
wall. What is the length of the bug's 
shortest path? 

4. What is the largest number of spots 

COLOR 

that can be painted on a sphere so that the 
distance between every pair is the same? 

5. If a regular tetrahedron one inch on 
a side is cut from each corner of a tetrahe- 
dron with a side of two inches, what kind 
of solid is left? 

6. Is it possible to label each face of a 
tetrahedron with a different number so 



136. The bug problem 

that the sun1 of the three faces meeting at 
eacli vertex is the same? Is it possible to 
label eacli edge so that the sum of tlle three 
edges meeting at each vertex is the same? 
In both cases numbers may be rational 
or irrational. 

7.  \I.:hat is the le~lgth of the side of the 
largest regular tetrahedron that can be 
packed into a cul~ical space one foot on 
a side? 

8. How many different tetraliedrol~s can 
be made by joining four equilateral card- 
board triangles each of \vliich has a different 
color? Two tetrahedrolls are considered 
alike otlly if one can be turned and placed 
beside the other so that tlle color patterns 
of the two figures match. If the patterns 
can be made to niatcli only by mirror re- 
flection, they are considered different. 

9. If each side of a regular tetrahedron 
is painted either red or blue, it is easy to 
see th,lt oilly five different nlodels can be 
made: one all red, one all blue, one wit11 
one red side, one witli one blue side, nnd 
one with two red arld two blue sides. If 
each side is paiiltecl either red, white, or 
blue, how marly different models can be 
made? As before, rotations are not regarded 
as different. 

1. A regular tetrahedron cut by six planes, 
each passing through an edge and bisecting 
the opposite edge, will be sliced into 24 
pieces. This is easily seen when one re- 
alizes that each face is dissected into six 
triangles, as in cc in Figure 137, each of 
which is the base of a tetrahedron witli its 
apex at tlle model's center. (This problem 
was contributed by Harry Larlginail to 
Scriptu Jlutlze~~zrrtict~ for hlarch-June, 
1951.) 

2. Any paper triangle, if all its angles 
are acute, can be folded into a tetrahedron. 

3. The bug's shortest path from ,4 to B 
is XO feet, as s1io1~11 on the ur~folded tetra- 
hedron at 1, in Figure 137. This is shorter 
by .64.+ feet than the shortest path that 
does not touch a third face. 

4. Four is the largest number of spots 
that call be placed on a sphere so that every 
pair is the same distilllce apart. The spots 
Illark  the corners of an inscribed regular 
tetra1it:droli. 



137. Answers to the tetrahedron problems 
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3. If one-inch regular tetrahedrons are 
sliced from the four corners of a two-inch 
regular tetrahedron, the remaini~lg solid 
is a regular octahedron. 

6. It is not possible to label the sides of a 
tetrahedron with four different numbers so 
that the sum of the three faces at each vertex 
is the same. Consider ally two sides il and 
B. They meet side C at one vertex and side 
D at another. For the sums at both vertices 
to be corlstant the ilumhers on sides C and 
D urould have to be the same, but this 
violates the condition that the four numbers 
must be different. 

h proof (from Leo Aloser) that the edges 
of a tetrahedron ca~nlot be labeled with six 
different numbers to yield corlstant corner 
sums is a bit more involved. First label the 
edges as shown at c in Figure 137. Assume 
that the problenl can he solved. Then (1 + b 
+ c = ( ~ + e + d ,  thereforeb+c=e+d.  Simi- 
larly, f'+ 12 + tl = f  + e + c, therefore b + d = 

e + c. Add the two equations: 

The sum reduces to 11 = e ,  \vhich of course 
violates the assumption that no tlvo 11~111- 
11ers are the same. 

7. The largest regular tetrahedron that 
call 11e placed inside a Illlit cube has a side 
the length of which is the square root of 
2 ["cl" i l l  Figure 1371. 

8. Four equilateral cardboard triangles 
of four different colors will combine to 
make two different tetrahedrons, one a 
mirror image of the other. 

9. If each side of a regular tetrahedron 
is painted red, white or blue, it is possible 
to paint 15 different models: three will be 
all one color, three will have red-blue faces, 
three will have red-white faces, three will 
have 1)lue-white faces, and three will have 
red-white-blue faces with two faces of the 
same c:olor. The formula for the number of 
different tetrahedrons (counting mirror 
reflectiorls but not rotations as being dif- 
ferent) that can be made with 1 1  colors is 
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20. Coleridge's Apples and 
Eight Other Problems 

1. Coleridge's Apples 

\t7110 would have thought that the poet 
Samuel Tilylor Coleridge would have been 
interested in recreational mathematics? Yet 
the first entry in the first volume of his 
private notebooks (published in 1957 by 
Pantheon Books) reads: "Think any nurn- 
ber you like - double - add 12 to it -halve 
it- take away the original number- and 
there remains six." Several years later, 
in a newspaper article, Coleridge spoke 
of the value of this simple trick in teaching 
pri~lciples of arithinetic to the "very young." 

The notebook's second entry is: "Go into 
an Orchard-in which there are three 
gates -thro' all of which you must pass - 
Take a certain number of apples-to the 
first man [presumably a man stands b y  each 
gate] I give half of that nun~ber  & half an 
apple - to the 211d [nlan I give] half of what 
remain & half an apple- to the third [man] 
half of what remain & half an apple-and 
yet I never cnt one Apple." 

How long will it take the reader to deter- 

mine the smallest nuinl~er of apples Cole- 
ridge could atart with and fulfill all thc 
stated conditions? 

2. Reversed Trousers 

Each end of a 10-foot length of rope is tied 
securely to a man's ankles. Il'ithout cutting 
or untying tlle rope, is it possible to reinove 
his trousers, turn them inside out on the 
rope and put thein back on correctly? Party 
guests should try to answer this confusing 
topological questio~l before initiating any 
empirical tests. 

3. Coin Game 

The two-person garne shown in Figure 138 
has been designed to illustrate a principle 
that is often of decisive importance in the 
end ganles of checkers, chess, and other 
mathematical board games. Place a penny 
on the spot nun~bered 2, a dime on spot 15. 



PENNY 

138. Can the penny always trap the dime? 

Players alternate turns, one rnovirrg tlre he must do so before Ire makes his sever~tlr 
perriry, tlre other the dirne. Moves are rnade move. If after six of his rnoves he has failed 
along a solid black line to an adjacent spot. to cattrli the clime, lle loses. 
The penny player always moves first. His Therc is a sirrlple strategy by which orlc 
object is to capture tlrc clirne 1)y rnoving player can always wirr. Carl the reader 
onto the spot occupied 11y tlre clirne. To win discover it? 
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4. Truthers, Liars, and Randomizers 

Logic problems involving truth-tellers and 
1. 1 2 ~ s  .. are legion, hut  the following unusual 

variation - first called to my attention b y  
Howard De IJolrg of West Hartford, Co11- 
necticnt-had not to rrly kirowledge been 
printr:d before it appeared in Scicr~ti$c 
Anlerica~c. 

Three Inen stand hefore yo11. One always 
answers cllrestiorls truthfully, one always 
respoi~cls with lies and one raridoinizes 
his answers, sometimes lying and some- 
tiirlcs not. You do not know which inan does 
which, but the men themselves do. IIow 
can you identify all three men I,y asking 
three questioirs? Each question n1ay I)e 

tlii-ected toward any lrlarl you choose, and 
each must h e  a question that is a~rswerecl 
by "Yes" or "No." 

5. Gear Paradox 

T h e  rnecharlical device shown ill Figure 
139 was constructed by J a ~ n c s  Fcrgusor~, 
an eigllteerrtlr-centul-y Scottish astronorner 
well known in his time as a popl~lar  lec- 
turer, author and inventor, and for tllc 
remarkable fact that although h e  was a 
merril~er of tlrc Royal Society his fonnal 
scliooling had consisted of no more thari 
three rnontlis in grarnniar school. (One of 
his 1)iographies is calletl The Sto1.y of the 

139. James Ferguson's gear paradox 



Y e c l . ~ ( ~ ~ l t - R o y  Philoso)~lier.) His device is 
given here as a puzzle that, once solved, 
will be seen to be a most curious paradox. 

\%%eel A and its axis are firmly fixed so 
that wheel A cannot turn. \IThen the device 
is rotated clockwise around wheel A by 
nleans of the handle, wheel B will of course 
rotate in the same direction. The teeth of 
B engage the teeth of three thinner wheels 
C, D, and E, each of which turns indepen- 
dently. A, B, and E each have 30 teeth. C 
has 29 teeth, D has 31. All wheels are of 
the sarne diameter. 

As seen by someone looking down on the 
device as it is turned clockwise, each of 
the thin wheels C ,  D, and E must turn on 
its axis (with respect to the observer) 
either clockwise, counterclockwise, or not 
at all. \\'itllout constructirlg a model, de- 
scribe the motion of each wheel. If the 
reader wishes to build a nlodel eventually, 
it is not necessary that the wheels have 
the exact nu~nber  of teeth given. It is only 
necessary that A and E have the same nurn- 
ber of teeth, C at least one less, and D at 
least one more. 

6. Form a Swastika 

During LVorld \I1ar I1 a gag problem that 
111ade the rounds was: How can you make 
a Nazi cross with five matches? One answer 
was ''Push four of them up his rear end and 
light them with the fifth." Here is a some- 
what similar prol~lem, although one that 
does not hinge on wordplay. 

The reader is asked to take four cigarettes 

140. Model for the swastika 

and eight sugar cubes,  lace them on a dark- 
surfaced table top and forrn the best pos- 
sible I-eplica of the swastika (a mirror image 
of the Nazi symbol) shown in Figure 140. 
,411 12 object, must be used and none must 
be damaged in any way. 

7. Blades of Grass Game 

According to a recent book b y  two Soviet 
mathematicians, the following method of 
fortune-telling was once popular in certain 
rural areas of the U.S.S.R. A girl would hold 
in her fist six long blades of grass, the ends 
protruding above and below. Another girl 
woultl tie the six upper ends in pairs, 
choosing the pairs at random, and then tie 
the six lower ends in a like manner. If this 
produced one large ring, it indicated that 
the girl who did the tying would be married 
within a year. 

A pencil-and-paper betting garne (a pleas- 
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ant way to decide who pays for drinks) can 
be based on this procedure. Draw six: verti- 
cal lines on a sheet of paper. The  first 
player joins pairs of upper ends in any 
manner, then folds back the top of the paper 
to conceal the connecting lines from his 
opponent. The  second player now joins 
pairs of bottom ends as shown at tlle left 
in Figure 141. The  sheet is unfolded to see 
if the second player has won by forming one 
large closed loop. (The  illustration at the 

141. A pencil-and-paper betting game 

right of Figure 141 shows such a win.) If 
even money is bet, whom does the game 
favor and what is his probability of winning? 

8. Casey at the Bat 

During a baseball game in hludville, Casey 
was lludville's lead-off batter. There were 
no substitutions or changes in the batting 
order of the nine hludville inen throughout 



142. Change the pattern at the left to the one at the right 

the 1lir1c-irrrring qalnc. It turned out that 
Cawy  came to ].)at ill every inning. What 
i\ tlie least number o f  run\ l l ~ ~ d v i l l e  co l~ ld  
have \cored? C h a ~ l e s  Vandeli Eyndcn of 
the CTniver\ity of Ari7on't originated this 
ainuri~lg l)~ol)lcnl. 

9. The Eight-Block Puzzle 

Sam Loycl's well-known 14-15 Pnzzle was 
mentioned in this 11ook's chapter on sliding- 
l~ lock  puzzles. For all plizzles of this type, 
irr wlricl~ tinit S(ltliireS are shifted allout 
inside a rectarlgle by virtue of a "hole" that 
is also a unit square, there is a quick parity 
check for deterrnirri~rg if one pattern can 
bc  olltained from another. For example, 
on the s i ~ n ~ > l e s t  nontrivial scpiare field 
showrr i l r  Figlire 142 car1 tlic pattern at 
thc lcft (with the blocks in clcscclidi~~g 
orcler) changed to the pattern at tlie 

right!' To  answer this we  switch pairs of 
nurnl:~ers (by removi~rg ant1 replacing 1)locks) 
until the desired pattern is achieved, 
counting the switches as we go along. This 
call b e  done in helter-skeltcr ftishion, wit11 
no attempt at efficiency. If the rltunl)er of 
switches is even (as it always will b e  in 
this case), the cllange by slidiirg is pas- 
sible. Otherwise it is not. 

But what is tlie sr,lcrllest nurnl)cr of slid- 
ing rrloves sufficient to ~ i iakc  this c l ~ a ~ ~ g e ?  
Sllrprisingly little work has becn clone on 
~netllods for mi~lirnizilrg sucli solutions. The  
prol~leln given here - reversirig the order 
of the digits-car1 be sllowlr to require at 
least 26 moves. If each square takes the 
shortlest path to its destination, 16 moves 
are used. But 4 ancl 5 are :icljace~lt ant1 can- 
not 1)c excharrged in fewer than four inoves, 
alld the same reasoning applics to 3 and 6. 
This lifts the lower l i~n i t  to 20. Two rnovcs 
2i1-e lost by the opening lilove of 1 or 3 and 
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two more by the last ~novc  of 8 or 6, siirce 
iir each case a scluare lrlust occupy :t cell 
outside its sllortest path. This raises the 
lower limit to 23. Finally, if one co~~structs 
it tree graph for opening lines of play, it is 
apparent that two more movcs lriust be lost 

the ninth move. Tlie puzzle tl~~erefore 
can~iot be solved ill k w e r  than 26 moves. 
Because the hole returns to its original 
position, it car1 be sllow~i that cvcry solution 
will have an ever1 irl~inl~r:r of 11lovt.s. 

The 1)est solntion on record (it is the 
solution to problenl 253 in Henry Ernest 
Dudelley's postlll~rnol~s collection, E'rixale.~ 
critcl O'ZIT~OILS I ' T o ~ ) / c ~ I L s )  requires 36 inoves. 
Recortletl as a chain of digits to show the 
order in which the pieces are ~rioved, it is 
as follows: 12533 12376 12376 12375 48123 
65765 84785 6. I have good reason to Ile- 
lievc, liowcvcr, that it can bc done in fewer 
nlovcs. 

To work on the problern one can Inove 
sltiall cardl~oard scluares, nrirr~bered 1 
through 8, on a sclliare field sketched on 
paper, or work wit11 r~iile plityillg cards on 
a rectanglllar field. I shall be grate-ful if 
readers who do better than IIncleney will 
scrrd tlrcir solutioi~s to rne. 

Answers 

1. 

Seven is the \iiiallest 1lu1rll)er of .ulq,le\ 
(we rule out "negative apple\") that sati5- 
fies thc conclitions ot Coleridge'\ prol~le~n. 

To reverse a marl's trousers while his ankles 
are joined 1)y rope, first slide tlie trousers 
off onto the ropc, the11 prlsh onc leg tllrol~gll 
the other. The outsidc leg is reversed twice 
in this process, leaving the trousers on the 
rope right sicle out but with the legs ex- 
changed ant1 poi~rtirlg towartl the man's 
feet. 1icac.h into the trousers froirr tllc waist 
and tliril l~otlr legs irrsitle out. The trousers 
are now revcrscd on the rope alrd ill posi- 
tion to bc ~ l i ~ , ~ ) e c l  [lack on tlie initrr, zipper 
i r r  frorrt as origi~tally I I I I ~  with the Icgs 
interchanged. 

In  aiialyzing the toI)ological properties of  
a ~retwork with a11 111ills11;il p:tttcrri it is 
so~nctimes helpfi~l to trairsform the network 
to a tol)ologically ecluivaleilt one that cx- 
liil~its tl~c: iictwork's regl~larities 1)cbttc.r. 
7 7 

I h c  pattern of the perr~ly-dilue game [ c ~ t  
t o p  of Figurc 1431 is readily seen to be 
equivalent to the board at the 1)ottorn in tlrt. 
ill~~stration. If the penny movcs directly 
toward the dime, it caiii~ot trap it 1)ccatist: 
the dime h ~ ~ s  what in chess a r~d  cl~eckers 
is cnllcd tllc "opposition." The illea~li~ig 
of this term is brought out by coloring every 
other spot. As long as both pieces avoid thrt 
triairglc at the Ilpper right the tliinc~'s nlove 
will always carry it to a spot of the same 
color as the spot occl~l,ied by the peiiily; 
therefore the penny, oil its next niove, can 
never catcli tlic dirrre. 'l'o gain the ol)l)osi- 
tion thc ~ ~ c i l n y  inirst move orrce alorig the 



PENNY 

143 Analysls of the penny-dlme game D I M E  



Coleridge's Apples 

long outside arc that joins the two colored 
spots numbered 1 and 3. Because this alters 
the relative parity of the two pieces it is 
then a simple matter for the penny to corner 
the dirne. 

Translating back to the original board, 
this rnearls tliat the penny's best strategy 
is to move either first to 1, then all around 
the outside circle to 3, or first to 3 and tlien 
around to 1. In  either case the perlr~y will 
then have no  difficulty trapping the dime, 
on spot 6, 9 or 15, before the seventh move. 

Label the three men,  ,a, H ,  C ,  and let T 
stand for truth-teller, L for liar, and R for 
randornizer. There  are six possible permuta- 
tions of T, L, a11d R :  

.Ask rZ "Is B rnore likely to tell the truth 
than C?" If h e  answers, "Yes," lines 1 and 
4 are eli~xiinated and you know that C is not 
the randomizer. If h e  answers "So," lines 
2 and 3 are eliminated and you know that 
B is not the randomizer. I n  either case, 
turn to the man who is not the randomizer 
and ask any question for which you both 
know the answer. For example: "Are you 
the  randomizer?" His answer will establish 

~vhe the r  h e  is the truth-teller or the liar. 
Knowing this, yo11 can ask llirn if a certain 
one of his cornpalliorls is t l ~ e  randomizer. 
His answer will establish the identities of 
the other two men.  

l l any  readers sent different solutions. 
The  most unusual, by Kenneth O'Toole, 
was passed along to me by l l a ry  S. Bern- 
stein. A man is asked, "If 1 asked each of 
you if I had on a hat, and your two compan- 
ions gave the saIne answer, would your 
answer agree \ ~ i t h  theirs?" The  truther 
says no, the liar yes, and the randomizer 
cannot reply l~ecause  h e  kno~vs  his corn- 
paniorls callllot agree. Here we  encounter 
ainl~iguity because, in a sense, any answer 
by the randomizer \vould be  a "lie." As- 
suming, however, tliat the randornizer 
renlairis silent, the cluestion need lje asked 
of only two rnen to identify all three. 

\\'hen Jallies Ferguson's curious n~ecllaili- 
cal device is turned clockwise, wheel C 
rotates clockwise in relation to the ob- 
server, D rotates counterclockwise, and 
E does not rotate at all! 

Four cigarettes and eight sugar cubes can 
be  placed on a dark surface to form an ex- 
cellent replica of a s~vastika, as shown in 
Figure 144. 



144. Solution of the swastika puzzle 

\\'hat is the probability of fornling one ring 
11y a raridonl joining of pairs of upper ends 
of six blades of grass, follo\ved by a random 
joining of pairs of lower ends? Regardless 
of how the upper erlcls are joined, we can 
always arrange the blades as shown in 
Figure 14Fi. \Ve now have only to determine 
the l~roba\,ility that a random pairing of 
lower ends will make a ring. 

If end A is joined to B, the final outcome 
cannot be one large ring. If, however, it 
is joined to C ,  D, E ,  or F ,  the ring remains 
11ossil)le. There is therefore a probability 
of 415 that the first join will not be clisas- 
trous. Assume that A is joined to C. B may 
now join D, E, or F. Only I) is fatal. The 
probability is 21-3 that it will join E or F, 
and in either case the reiuaining pair of 
ends must cornplete the large ring. The 

145. The blades-of-grass problem 

same would hold if A had been joined to D, 
E, or 2; instead of to C. Therefore the prob- 
ability of completing the ring is 415 X 213 = 

8/15 == .53+. That the probability is better 
than half is somewhat unexpected. This 
means that in the l>encil-and-paper version 
expla.ined earlier the second player has a 
slight advantage. Since nlost people lvould 
expect the contrary, it makes a sneaky game 
to propose for deciding who picks up the 
tab. Of course you magnanimously allow 
your c:ompanion to play first. 

The problenl generalizes easily. For two 
blades of grass the l~rohal,ility is 1 (certain), 
for four blades it is 213, for six it is 213 x 
415, and for eight blades, 213 x 4/,5 x 617. 
For each additional pair of blades simply 
add another fraction, easily determined 
because the numerators of this series 
are tlne even ~lunlbers in sequence and 
the denominators are the odd numbers 
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in sequence! For a derivation of this sirnple 
formula, and the use of Stirling's formula 
to approximate the probal~ility when very 
large rlurl~bers of fractions must bc multi- 
plied, see C h i l l l e ~ i g i l ~ g  Mcltl~emc~tical Proh- 
lems w i t h  Elen~erttclr!~ Solrltiot~s, Vol. I ,  by 
the Russia11 twin l~rothcrs A. M. ant1 I. M. 
Yaglom. (Tt is No. 78 in the English 
translation by Jarncs h/lcCawlcy, Jr.; San 
Francisco: Holden-Day, 1064.) 

Waldean Schulz iilcluded the following 
additional twist to this prol~lem in a paper 
titled "Brain Teasers and Information The- 
ory" that he wrote for a l~l~i losoph~i  class 
at the Urliversity of Colorado taught by 
Ilavid Hawkins. Suppose you are the second 
player. How can you join the lower ends 
in such a way that yo11 can ask :I singlc yes- 
no cluestion which, if ar~sweretl by the first 
player, will tell you if you woil or lost? 

The answer is to join the two outside 
lines, the two next-to-outside lines, an(! 
thc two middle lines. The question is: Ilid 
you connect the upper ends in a bilaterally 
syrl~inetric way? A yes answer means you 
lost, a no answer nlealls there is a single 
loop ancl you win. It is surprising that one 
"bit" of infornlution is sufficient to distill- 
gnish between winning and losing patterns. 

The Mudville teain could llavc. scored a s  
few as no runs at all even though (hsey, 
the lead-off man, cane  to bat every i~ining. 
In the first irlrling Casey and the next two 
batters walk and the r~cxt thi-ee strikle o11t. 
In the second inning the first three inerr 

walk  gain, which brings Cnstty back to bat. 
But each runner is culight off base by the 
pitcher, so Casey is back at the plate at 
the start of tlie third inning. This pattern 
is now repeated until the game ends wit11 
no joy in Ml~tlville, cvcr~ t11011gh tllc mighty 
Casey never once strikes out. 

There are, of course, marly other ways 
the game coulcl he played. Robert Kaplan, 
Cambridge, h,lnssachnsetts, wrote the fol- 
lowing letter: 

Dear Mr. Garchler: 
That was indeed an amusing prohlcn~ con- 

ccriling Casey ancl tht. hludville r r i r ie -a~~~l~s ing,  
that is, to a11 save lovers of hluclville. For on 
tlre u~iforturrate day described in your ~ ~ r o b l e m ,  
Mlrdvillc scored rrot a rlllJ. Tlris is what Imp- 
penetl: 

In the first inning, Casey anti two of his corl- 
freres r e ~ c h e d  base, I ~ u t  l~ntters four thro~rgh 
six struck, fliccl, or othcrwisc lnade out. No  runs. 

In the secontl inning, I~atters sevcn and cight 
struck out, let us say, but tlir h~lndville pitcher, 
to the sl~rprise of ;ill, reacl-led bast. on a bob1,led 
inficld roller. Casey c;lmc up to bat, frowning 
mightily. With tlre coulit two ant1 two, tlie per- 
fidious rival pitcher, igr~orir~g the best interests 
of poetry, l)asel~all mythology and hludville, 
whirled toward first and picked off his opposite 
number, who, clrea~ning of Cooperstow~r arid 
the Elall of Fame, had strolled too far from the 
I~ag.  The crowd sighed, (:;isey glocvcrcd, ancl 
the inning was over: n o  runs. 

Now as you k ~ ~ o w ,  if an inning ends wit11 a 
pick-off play at a n y  ljase, the ljatter w l ~ o  was in 
thc box at the tirrie I~ecorries the first batter next 
inning. So it was with Casey; once again h111d- 
ville loaded the I~ases; but once again three onts 
were nrade wit11 rro rllils scoring, so that thc 
inning eildecl with hatter six rnaking thc last out. 
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Life may be linear hut fate is cyclic: innings foul; 
six, and eight followed precisely the same pattern 
as i r l ~ ~ i i ~ g  two ( t l ~ o u g l ~  you 111;1y be sure that after his 
sccoild iniscuc in thc fourth, thc Mudvillc pitchcr 
was lifted and his relief was responsible not only for 
the flood of ri1115 (he oppoileills \cored, bill for sinl- 
ilar cloud-gazing 011 the base-paths). .kltl of course, 
Casey led off the fifth, se\-enth, arlcl ilintll i~liliilgs as 
he had the third-ancl again, Rllldx-ille wollld load 
the bases, but could not deliver (if I remember cor- 
rectly, the gentleirlen responsible for this orgy of 
weak hitting were Cooney,  burro^\-s, B l a k  and 
Fly1111). Grant1 total for \,fud\-ille: a goose egg. 

Si~lcerelj tllough sorrort fillh J ours, 
ROBERT KAPLAN 

P.S. I see in rereading the problem that there 
were 110 substitutio~~s or  cl~ar~ges ill the Mudville 
batting ordcr during thc gamc. How thcn, you 
might just ly ask, did the crowd or the manager tol- 
erate such flagrail1 clisdaii~ of firs1 base or1 (he par1 
of their pitcl~er? Tlle allslver is that he was rliarrietl 
to the on-i~er's dauglltec and no one could say him 
nay. 

Tlle shtlmg-block puzzle call be sol\ ed in 30 
mo\ e5. I hail llopetl I could 11<t the Ilairles of 
all reatlers XI ho fount1 a 30-nlol e 5olutioi1, but 
the letters kept coining until there were far too 
nlailv names for the available qpace. All 
together reatlei-\ fount1 ten different 30- 
inolzers. Ther are shown paired in Figure 146, 
because, as many readers pointed out, each 
solution has its inverse, obtained by substitut- 
ing for each digit its difference fi-on1 9 and tak- 

la .  34785 21743 74863 86521 47865 21478 

I b .  12587 43125 87431 63152 65287 41256 

146. Minimum-move sliding-block solutions 

ing ~ l l c  digils in rcvcrsc ordcr. Nolc lhal of ~ h c  
four possible t~1.o-move openings, only 3,G 
tloes not lead to a minimum-move solution. 
Solutions 2a and 3 b  proretl to be the easiest to 
find. Tlle rnost elusive soh~tion, ju,  was discov- 
ered bj- only ten readers. Only two readers, H. 
L. Fry and George E. Raynor, found all ten 
without the help of a computer. 

Doilaltl Michie of the University of Etlin- 
burgh has been  sing thic eight-block 
puzzle il l  his work on garile-learning ma- 
c l~ i i~es .  His colleague Peter Scl~ofield, of 
the university's corr~~)lltei- unit. 11atl written 
prograin for tletei-rr~ir~irlg i ~ ~ i n i i n u n ~  so111- 
tions for all the 20,160 patterns that begin 
a n d  end  with the  hole in  the center .  (Of 
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these patterns, 60 require 30 moves, the 
inaxinluill for center-hole problems.) \\'it11 
the aid of this program Scllofield was able 
to find all ten solutions, but this (lid not 
rule out the possibility of others, or e17en 
of a shorter solution. The matter was first 
laid to rest by \\'illiarn F. Dernpster, a 
computer progra~nrner at the Lawrence 
Radiation Laboratory of the University 
of California at Berkeley, with a program for 
an IBhl 7094. It first rail off all solutioi~s 
of 30 moves or fewer, printing out the ten 

solutions in 2l12 minutes, h seconcl run, for 
all solutioils of 34 moves or fewer, took 15 
minutes. It produced 112solutions of 32 
rnoves and 51.3 solritioils of 34 moves. There 
are therefore 634 solutioils superior to the 
36-mo\.er given by Henry Ernest Dudeney, 
who first posed the pro1)lern. The ten 30- 
mo\7ers were later coilfirilled 11y ahout a 
dozen other computer programs. It is not 
yet known if there are starting and ellding 
patterns, with the hole in the corner or 
side cell, that require rnore tlla~l 30 ino\Tes. 



The Lattice of Integers 

THE SIRIPLEST of all lattices in a plane- 
taking the word "lattice" ill its crystallo- 
graphic sense- is an array of points in square 
formation. This is often called the "lattice 
of integers," because if we think of the 
plane as a Cartesian coordinate system, the 
lattice is merely the set of all points on 
the plane whose x and 11 coordi~iates are 
integers. Figure 147 shows a finite portion 
of this set: the 441 points whose coordi- 
nates range from 0 to 20. 

Think of the 0,0 point as the southwest 
corner of a square orchard, fenced on its 
south and west sides, but illfinite in its 
exteilsion to the north and east. At each 
lattice point is a tree. If you stand at 0,O 
and peer into the orchard, some trees will 
be visible and others will be hidden behind 
closer trees. Here, of course, our analogy 
breaks down, because the trees must be 
taken as points and we consider any tree 
"visible" to one eye at 0,0 if a straight 
line from that point to the tree does not pass 
through another point. The colored dots 
mark all lattice points visible fi-om 0,O; the 

u~lmairked grid iiltersectioils represent 
points that are not visit~le. 

If we identify each point with a fraction 
formed by placing the point's ZJ coordinate 
over its x coordinate, nlaliy interesting 
properties of the lattice (properties first 
called to my attention by Kobert B. Ely of 
Philadelphia) begin to emerge. For example, 
each visible point is a fraction whose 
nunlcrator and denornillator are coprime; 
that is, they have no common factor other 
than L and therefore cannot be reduced to 
a simpler form. Each invisible point is a 
fraction that can be simplified-and each 
simplification corresponds to a point on 
the line connecting the fraction with 0,O.  
Consider the point 619 (ZJ = 6, x = 9). It is 
not visible from 0,O because it can be simpli- 
fied to 213. Place a straightedge so that it 
joins 0,O and 619 and you will see that the 
visibility of 619 is blocked by the point at 

147. The infinite orchard and the points visible 
from 0,O on the lattice of integers 
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2//3.  All points along the diagonals that ex- 
tend up and to the right from 011 and 110 
are visible because no fraction whose num- 
erator and denominator differ by 1 can he 
simplifiecl. 

Note that many of the diagonals running 
the other way-from upper left to lower 
right-consist entirely of visible points 
except for their ends. A11 these diagonals, 
Ely poi~lts out, cut the coordinate axes at 
priine numbers. Every visible point along 
such a diagonal is a fraction formed two 
numbers that sum to the prinle indicated 
b y  the diagonal's ends. Two nurn1)ers that 
suin to a prirne olwiously must be coprime 
(if they had a conlmon factor, then that 
factor would also evenly divide the sum), 
so such fractions c:innot 1)e simplified. \'er- 
tical and llorizoiltal lines that cut an axis at 
a prime get progressively denser with vis- 
ible lattice spots as the primes get larger, 
because such lines ha\re invisible lattice 
points 0111). where the other coordinate is 
a multiple of the prirne. 

Is it possible to stand at O,O and look 
into this infinite orchard along a line that 
will never, even ~vhen  extended to infinity, 
intersect a "tree"? Yes; not only is there 
an infinity of such lines but also there are 
infinitely more of thein than there are lines 
that hit trees! Consequently if the directioil 
for a line of sight is determined randon~ly, 
the probability of finding a tree along that 
line is virtually zero. How can we define 
such a line? \j7e have only to slope it so 
that every point along it has coordinates 
that are incoinmensurable with each other; 
in other words, so that the ylx fraction of 

any point - which is the same as the tangent 
of the angle that tlie sloping line rnakes with 
the m axis-is irrational. For example, we 
move to the right along the x axis to, say, 
10, then up to a point with a y coordinate 
of 10 times pi. If we join this point to 0,0, 
we produce a line that cantlot, 110 matter 
how far it is extended, hit a point because 
10pi/110 equals pi, an irrational number. 
(It would take some fine drawing and a 
sul>erpowered n~ ic rosco~e  to detect how 
far tlie line misses the point at 3551113. This 
fraction gives pi to six decimal places!) 

The black line shown in the illustration 
has a :,lope of fl. It is easy to prove that a 
bullet traveling this line could not, from 
here to eternity, strike a tree. Tlle right tri- 
angle shown in Figure 148 has a base of 1 
and an altitude of a s o  the tangent of angle 
H is 'L'Z If we extend the hypotenuse as 
shown by the broken line to forin any larger 
right triangle on the extended base line, 
the altitude and base of the larger triangle 
will have the salne irrational ratio. The 
bases and altitudes of all such triangles 
correspond to the two coordinates of the 
sloping line with a tangent of a. There- 
fore, no matter how far the sloping line is 
extencled into the lattice of integers, the 
coordinates of any point along that line will 
form the salne irrational fraction. But every 
lattice point represents a rcltionul fraction; 
therefore no lattice point can be on the line. 

Observe, however, that 1,y searching for 
near rnisses we c:in find fractions that are 
excellerlt approximations of the irrational 
slope. Think of the fl line as a taut rope 
anchored at infinity. If we hold the end at 
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148. Tangent of angle H equals ~5 

0,0 and move the rope east, it will press 
against trees that represent fractions smaller 
than m, or 1.4142136. . . , but that get 
closer to fi a\ one moves away from 0,0. 
The first tree it touches is 111, or 1, a poor 
appr~xirn~ltion. The next is 413, a bit better, 
and the next is 715, or 1.4, which is not bad. 
Similarly, if we move the end of the rope 
northward, it presses against fractions larger 
than 1.4142136. . . , but the excess ap- 
proaches 0 as we move toward infinity. The 
first fraction, 211, or 2, is not very good; 312 
is better, 1017 still better and 17112, or 
1.41666. . . , misses <by only .0024+. 

One of the simplest ways to express 
is b y  the endless continued fraction 

If we start at the top and form partial sums 
(1, 1 + 1, 1 + 1/2, 1 + 1/3 and so on), me 
get just those fractions nlentioned above: 
1, 2, 3/2, 4/3, 7 /5 ,  10/7, 17/12. They come 
closer and closer to ~2 as their lattice points 
come closer and closer to the sloping line. 

The discussion of irrational numbers 
suggests the followillg problem: Let the 
coordinates of a point be y = V'E ,  x = fi. 
Does the infinite line passing from the origin 
through this point cut any points other than 
0,0? 

If a billiard ball is placed at 0,0 and 
stroked so that it travels up the inaii~ diag- 
onal at an angle of 45 degrees, it will 
of course continue forever, passing only 
through lattice points whose fractions re- 
duce to 1 (the tangent of 45 degrees). Now 
suppose we confine the lattice to rectangles 
of arbitrary size, provided that heights and 
widths are integral, and assume that the 
ball rebounds from all sides and rolls with- 
out friction over the surface of the latticed 
billiard table. It is not hard to show, by a 
reflection technique depicted in Hugo 
Steinhaus' Alathenzc~tical Snallsl~ots, that 
whatever the dimensions of the rectangle, 
the ball will strike one of the table's 
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other three corners after a finite number 
of bounces. 

This statemeilt can be made stronger. Re- 
gardless of the angle of the first shot, if the 
ball strikes the first cushion at a point that is 
a rational distance from a corner, it will 
eventually strike one of the table's corners. 
Rut if it hits the first cushioli at an irrational 
spot, every rebound will be at an angle with 
an irrational tangent and the path will never 
touch a lattice point. Since the corners are 
lattice points, the ball will never strike a 
corner. There are infinitely more irrational 
points on a line than there are rational 
points. Therefore tlie probability is infinitely 
close to zero that an ideal ball (we must 
think of the ball 21s a point) shot from tlie 
corner at a random angle will strike the first 
cushion at a rational point. Imagine the 
table covered with a fine screen of lattice 
points - billions of them, all with rational 
coorclinates. The randomly shot ball will 
move forever around the table, never going 
over a path twice, never once touching a 
single lattice point. 

Here we are concerned only with the 
simpler case of a ball traveling along diag- 
onals that form 4ij-degree angles with the 
table's sides. An intriguing question (first 
sent to me by Joseph Becker of hlilwaukee) 
immediately arises. Given the table's di- 
mensions, how can one predict which of the 
three corners the ball will hit? We can al- 
ways draw a graph arld find out, but if the 
table has, say, a width of 10,175 units and a 
length of 11,303 units, graphillg a solutioii 
would be tedious. 

As Becker points out, if at least one side of 

the table is odd, a clever parity check leads 
to simple rules for determining which cor- 
ner the ball will hit. Suppose both sides are 
odd. We color the 0,0 point and every sec- 
ond lattice point [see "a" i l l  Figzl1.e 1491. 
Clearly the ball will pass through the col- 
ored points only. Of the three possible ter- 
minating corners, only the northeast corner 
is colored, so this must be the corner the 
ball will strike. (The reader can verify this 
by continuing the ball's path through the 
colored points.) If one side of the table is 
even and the other odd, the same parity 
coloring ["b" and "c"] shows that the ball 
must strike the corner adjacent to the origin 
and on the table's even side. 

When both sides of the table are even, we 
run into an unforeseen difficulty. There are 
colored spots or1 al l four  corners [ d l .  Which 
of the three possible terminal corners will 
the ball hit? A little experimenting on graph 
paper will show that all three can be reached 
on various even-even tables. Can the reader 
devise an arithmetical rule for quickly de- 
termining, on any table with even sides, 
which corner the ball will hit? 

A hint for the solution to this problem lies 
in the curious fact that the point on the 
table's longest side that is nearest the origin, 
and on the ball's path as well, is always ex- 
actly twice the greatest conlmon divisor 
(gcd) of the two sides. If the two sides are 
coprime, then of course the gcd is 1. This is 
the case in a and c of Figure 149. Sure 
enough, on the longest side we see that the 
point on the ball's path nearest to 0,0 is 2, 
or twice the gcd. 

This property of 45-degree paths of a 
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149. Parity coloring checks 
for billiard-ball paths 



150. Zavrotsky's device for finding greatest common divisors 

bouilcirlg ball ir~side a rectangular lattice of 
integers suggested to Andr6s Zavrotsky, of 
the Urliversity of the Andes in Venezuela, 
an optical device for finding the greatest 
connnori divisors of pairs of integers. A 
sketch of his invention (U.S. patent 2,978,- 
816, April 11, 1961) is shown in Figure 150. 
Four mirrors with integral scales on their 

edges can be adjusted to form a rectangle 
with sides equal to the pair of numbers 
under investigation. A pencil of light is 
illtroduced through a crack at one corner, as 
shown. It rebouilds at an angle of45 degrees 
from the corner- the zero point on the two 
scales meeting at that corner- and contin- 
ues its path from mirror to mirror until it 
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terminates at one of the other three corners. 
The illuminated mark closest to the corner 
of origin of what Zavrotsky calls the "op- 
tical billiard" on the rectangle's long side is 
twice the gcd. Zavrotsky intended his in- 
vention to serve as a teaching device. Read- 
ers should have little difficulty proving that 
the device cannot fail to work, and solving 
this problem: Given the rectangle's sides, 
find a formula for the total length of the 
light's path, from 0,0 to the corner; also find 
a formula for the number of times the "op- 
tical billiard" rebounds from a side. 

By connecting pairs of lattice points with 
straight lines one can draw an infinite vari- 
ety of simple polygons [see Figure 1511. 
("Simple" here means that no side crosses 
another.) The area of such a "lattice poly- 
gon" can be calculated by the tiresome 
method of cutting it up into simpler figures, 
but again there is an easier and more amus- 
ing way to do it. We apply the following 
remarkable theorem: The area of any lattice 
polygon is one-half the number of lattice 
points on its border, plus the number of 
points inside its border, minus one. The 
unit of area is the area of the "unit cell" of 
the lattice. 

This beautiful theorem, which Steinhaus 
says was first published by one G. Pick in 
a Czechoslovakian journal in 1899, belongs 
to "affine" geometry, a geometry that plays 
an important role in the mathematics of 
relativity. This means that the theorem holds 
even when the lattice is distorted by stretch- 
ing and shearing. For example, the formula 
applies to the connect-the-dot polygon on 
the lattice shown in Figure 152. As before, 

the unit area is the unit cell, in this case the 
little parallelogram to the right. This T- 
polygon, like the T in Figure 151, has 24 
points on its border and 9 inside; according 
to Pick's formula, its area is 12 + 9 - 1 = 20 
unit cells, as is easily verified. Readers may 
enjoy seeing if they can devise a complete 
proof of the theorem. An outline of one such 
proof is given in H. S. M. Coxeter's Intro- 
duction to Geometry (New York: John 
Wiley and Sons, 1961; page 209). 

One is tempted to suppose that it would 
be easy to extend Pick's formula to poly- 
hedrons drawn on integral lattices in three 
dimensions. Figure 153 quickly dispels this 
illusion. It shows the unit cell at the 0,0,0 
corner of a three-space cubical coordinate 
system. The four points 0,0,0, 1,0,0, 0,1,0, 
and 1,1,1 mark the corners of a lattice tetra- 
hedron. If we raise the apex of this pyramid 
to 1,1,2, we increase the tetrahedron's vol- 
ume but no new lattice points appear on its 
edges or faces or in the interior. Indeed, by 
raising the apex higher along the same co- 
ordinate the volume can be made as large 
as we please without increasing the number 
of lattice points involved. It is possible, 
however, to find a formula by introducing 
a secondary lattice. The interested reader 
will find this explained in "On the Volume 
of Lattice Polyhedra," by J. E. Reeve, in 
Proceedings of the London Muthemutical 
Society; July, 1957, pages 378-395. For an 
extension of the formula to still higher 
spaces, see "The Volume of a Lattice Poly- 
hedron," by I. G. Macdonald, in Proceed- 
ings of the Cambridge Philosophical So- 
ciety; October, 1963; pages 719-726. 



151. Find the area of these "lattice polygons" 



152. "Affine" transformation of lattice polygon 

A final problem: On the square lattice of 
integers, connect exactly 12 lattice points to 
form a lattice polygon of the same shape as 
the T-polygon in Figure 151 but with an 
area of ten square units. (According to Pick's 
formula, it must surround exactly five lattice 
points.) 

Answers 

A line from 0,0 on the lattice of integers, 
with a slope of V m l f i ,  will pass through an 
infinity of lattice points. Because = 

= 3 fl, the fraction m1 fl reduces 
to 311, a rational fraction. The first lattice 
point on this slope is y = 3, x = 1. 

On a rectangular lattice with even sides, 
a ball leaving the origin at a 45-degree 
angle will travel through lattice points 
separated (along coordinate lines) by a dis- 
tance equal to twice the greatest common 
divisor (gcd) of the sides. If we mark these 
points with spots as in Figure 154, we see 

153. Lattice tetrahedrons 

that only one of the three possibIe terminal 
corners receives a spot, and it therefore 
must be the corner the ball will hit. To 
determine which corner this will be, we 
divide each side by the gcd. If both results 
are odd, the ball strikes the corner diago- 
nally opposite the origin. If one result is 
even (both cannot be even), the ball strikes 
the corner on that side and adjacent to the 



154. Solution to the "even-even" problem 155. Finding the length of the ball's path 

origin. For rules governiilg the more general 
case, when the ball's path may be at any 
angle with a rational slope, see ?\I.  S. 
Klamkin7\ solutioll to his problem No. 116 
in the Pi Alu Epsi lo~l  Journal, Spring, 1963. 

Formulas for the length of the ball's path 
and the number of rebounds are intuitively 
evident in Figure 155, adapted from Hugo 
Steinhaus' Alatlze~znticnl S~tapshots .  \\'hat- 

ever the integral dilllensions of a rectangle, 
a square can always be formed by placing a 
finite ilunlber of replicas of the rectangle 
side by side as shown at the top in the illus- 
tration. The sinallest square formed in this 
way will have a side that is the lowest com- 
mon multiple of the rectangle's two sides. 

Think of each rectangle as a mirror reflec- 
tion of each rectangle adjacent to it. The 
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diagonal line froin A, where the ball starts 
its 45-degree path, to the opposite corner 
will then be the "unfolded" path, so to 
speak, of the ball as it rebounds from side 
to side. If we cut out just those rectangles 
that contain the path (lozcer left), fold them 
along the broken lines and then hold the 
packet up to a strong light, the diagonal line 
will trace the actual path of the ball around 
the rectangle (lou;er r igh t ) .  

Since the diagonal line AD, on the large 
square, is the hypotenuse of a right isosceles 
triangle with a side equal to the lowest 
common multiple of the sides of the rec- 

tangle, we see at once that the length of the 
path is this lowest conlillon multiple times 
v2. 

The spots shown along the diagonal, 
minus the end spots, represent points of 
rebound. It is easy to see that the number of 
rebounds must be 

where (1 and h are the sides of the original 
rectangle and gcd is their greatest common 
divisor. 

Figure 156 sl~ows the only way to draw 
the T-polygon on a square lattice so that 
there are 12 points on the border and five 
inside: an area of ten square units. 

156. The T-polygon solution 
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Infinite Regress 

Chairman of a meeting of the Society of Logicians: "Before we put the 
motion: 'That the motion be now put,' should we not first put the motion: 
'That the motion: "That the motion be now put" be now put'?" 

From an old issue of Punch 

THE ISFINITE REGRESS, along which 
thought is coillpelled to march backward in 
a never ending chair1 of identical steps, has 
always aroused mixed emotions. Witness 
the varied reactions of critics to the central 
sylnbol of Broadway's most talked-about 
1964 play, Edward Albee's Tiny Alice. The 
principal stage setting-the library of an 
enormous castle owned by Alice, the 
world's richest woman - is dominated by a 
scale model of the castle. Inside it lives 
Tiny Alice. When lights go on and off in the 
large castle, corresponding lights go on and 
off in the small one. A fire erupts simulta- 
neously in castle and model. Within the 
model is a smaller model in which a tinier 
Alice perhaps lives, and so on down, like a 
set of nested Chinese boxes. ("Hell to 

clean," comments the butler, \vl~ose name 
is Butler.) Is the castle itself, into which 
the play's audience peers, a model in a 
still larger model, and that in turn . . .?  A 
similar infinite nesting is the basis of E. 
Nesbit's short story, "The Town in the 
Library in the Town in the Library" (in her 
Mine Unlike ly  Tales);  perhaps this was the 
source of Albee's idea. 

For many of the play's spectators the end- 
less regress of castles stirs up feelings of 
anxiety and despair: Existence is a mysteri- 
ous, impenetrable, ultimately meaningless 
labyrinth; the regress is an endless corridor 
that leads nowhere. For theological stu- 
dents, who are said to be flocking to the 
play, the regress deepens an awareness of 
what Rudolf Otto, the German theologian, 
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called the n1ysteriz~~11 tremeizdum: the 
ultimate mystery, which one must approach 
with awe, fascination, humility and a sense 
of "creaturehood." For the mathematician 
and the logician the regress has lost n~ost  of 
its terrors; indeed, as we shall soon see, it is 
a powerful, practical tool even in recrea- 
tional mathematics. First, however, let us 
glance at some of the roles it has played in 
Western thought and letters. 

Aristotle, taking a cue from Plato's Par- 
me~zides, used the regress in his famous 
"third man" criticism of Plato's doctrine of 
ideas. If all inen are alike because they have 
something in common with hlan, the ideal 
and eternal archetype, how (asked Aristotle) 
can we explain the fact that one man and 
hlan are alike without assuming another 
archetype? And will not the same reason- 
ing demand a third, fourth, and fifth arche- 
type, and so on into the regress of inore and 
more ideal worlds? 

A similar aversion to the infinite regress 
underlies Aristotle's argument, elaborated 
by hundreds of later philosophers, that the 
cosmos niust have a first cause. William 
Paley, an eighteenth-century English theo- 
logian, put it this way: "A chain co~nposed 
of an infinite number of links can no more 
support itself than a chain con~posed of a 
finite number of links." A finite chain does 
indeed require support, mathematicians 
were quick to point out, but in an infinite 
chain every link hangs securely on the one 
above. The question of what supports the 
entire series no more arises than the ques- 
tion of what kind of number precedes the 
infinite regress of negative integers. 

Agrip~a,  an ancient Greek skeptic, ar- 
gued that nothing can be proved, even in 
mathematics, because every proof must be 
proved valid and its proof must in turn be 
proved, and so on. The argument is repeated 
by Lewis Carroll in his paper "What the 
Tortoise Said to Achilles" (Mind, April, 
1895). After finishing their fanlous race, 
which involved an infinite regress of smaller 
and smaller distances, the Tortoise traps 
his fellow athlete in a more disturbing 
regress. He refuses to accept a simple de- 
duction involving a triangle until Achilles 
has written down an infinite series of hypo- 
thetical assumptions, each necessary to 
make the preceding argument valid. 

F. H. Bradley, the English idealist, argued 
(not very convincingly) that our mind can- 
not grasp any type of logical relation. We 
cannot say, for example, that castle A is 
smaller than castle B and leave it at that, 
because "sn~aller than" is a relation to 
which both castles are related. Call these 
new relations c and d.  Now we have to re- 
late c and d to the two castles and to "small- 
er than." This demands four more relations, 
they in turn call for eight more, and so on, 
until the shaken reader collapses into the 
arms of Bradley's Absolute. 

In recent philosophy the two most revolu- 
tionary uses of the regress have been made 
by the mathematicians Alfred Tarski and 
Kurt Giidel. Tarski avoids certain trouble- 
some paradoxes in semantics by defining 
truth in terms of an endless regress of 

,, "metalanguages, each capable of discuss- 
ing the truth and falsity of statements on 
the next lower level but not on its own 
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level. As Bertrand Russell once explained 
it: "The Inan who says 'I an1 telling a lie of 
order 11' is telling a lie, but a lie of order 
n + 1." In a closely related argument 
Giidel was able to show that there is no 
single, all-inclusive mathematics 1,ut only 
an infinite regress of richer and richer 
systems. 

Tlie endless hierarchy of gods implied by 
so nlany mythologies and by the child's 
inevitable question "Who made God?" has 
appealed to many thinkers. Lt'illiam Janles 
closed his I7clrieties of Religious E.t.)~erience 
by s~lggestirlg that existence includes a col- 
lection of many gods, of different degrees 
of inclusiveness, "with no absolute unity 
realized in it at all. Thus would a sort of 
polytheism return upon us. . . ." T11e no- 
tion turns up in unlikely places. Benjamin 
Franklin, in a quaint little work called 
Articles of Belief and Acts 0.f Religion, 
wrote: "For I believe that rnan is not the 
most perfect being but one, but rather that 
there are Inany degrees of beings superior 
to him." Our prayers, said Franklin, should 
be directed only to the god of our solar 
system, the deity closest to us. \fany writ- 
ers have viewed life as a board galne in 
which we are the pieces moved by higher 
intelligences who in turn are the pieces in 
a vaster game. The prophet in Lord Dun- 
sany's story "The South LVind" observes the 
gods striding through the stars, but as 11e 
worships them he sees the outstretclled 
hand of a player "enorn~ous over Their 
heads." 

Graphic artists have long enjoyed the 
infinite regress. \Tho car1 look at the striking 

cover of the April, 1965, issue of Scietltific 
Anlericatl (showing the magazine co\?er re- 
flected in the pupil of an eye) without recall- 
ing, from his childhood, a cereal box or 
inagazirle cover on which a similar trick was 
played? The cover of the November, 1964, 
Yzitzclz showed a magician pulling a rabbit 
out of a hat. The rabbit in turn is pulling a 
sn~aller rabbit out of a smaller hat, and this 
endless series of rabbits and hats rnoves up 
and off the edge of the page. It is not a bad 
pictllre of contemporary particle physics. 
The latest theory proposes a smaller, yet un- 
detected, group of particles called "quarks" 
to explain the structure of known particles. 
Is the cosnlos itself a particle in some un- 
thinkably vast variety of matter? Are the 
laws of physics an endless regress of hat 
tricks? 

The play within the play, the puppet 
show witl~in the puppet show, the story 
within the story have amused countless 
writers. Luigi Pirandello's Six Churtlcters 
in Search of all Author is perhaps the best- 
known stage example. The protagonist in 
hliguel de Unamuno's novel Jlist, antici- 
pating his death later in the plot, visits 
Unamuno to protest and troubles the author 
with the thought that he too is only the fig- 
ment of a higher imagination. Philip 
Quarles, in Aldous Huxley's Point Cozrnter 
Poirzt, is writing a novel suspiciously like 
Poi~lt Counter Point. Edouard, in Andrt 
C;ide's The Counte~feiters, is writing The 
Cout~terfeiter.~. Norman hlailer's story "The 
Notebook" tells of an argument between 
the writer and his girl friend. As they argue 
he  jots in his notebook an idea for a story 
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that has just come to him. It is, of courqe, a 
story about a writer who is arguing with hi\ 
girl friend when he gets an idea. . . . 

J. E. Littlewood, in A Alutl~enzaticinn's 
Jliscellany, recalls the following entry, which 
won a newspaper prize in Britain for the 
best piece on tlie topic: "FT7hat would you 
most like to read on opening the morniilg 
paper?" 

OUR SECOND COhlPETITION 

The First Prize in the second of this 
year's compet i t io~~s  goes to Mr. Arthur 
Robinson, whose witty entry was easily the 
best of those we received. His choice of 
what he would like to read on or~ening his 
paper was headed "Our Second Compe- 
tition" and was as follows: "The First 
Prize in the second of this year's compe- 
titions goes to Slr. Arthur Robinson, whose 
witty entry was easily the best of those we 
received. His choice of what he  would like 
to read on opening his paper was headed 
'Our Second Competition,' but owing to 
paper restrictions we cannot print all of 
it." 

One way to escape the torturing implica- 
tions of the endless regress is by the topo- 
logical trick of joining the two ends to make 
a circle, not necessarily vicious, like tlie 
circle of weary soldiers who rest themselves 
in a bog by each sitting on the lap of the mall 
behind. Albert Einstein did exactly this 
when he triecl to abolish the erldless regress 
of distance by bending three-dimensional 
space around to form the hypersurface of a 
four-dimensional sphere. One can do the 
same thing with time. There are Eastern 

religions that view history as an endless re- 
currence of the same events. In the purest 
sense one does not even think of cycles 
followi~lg one another, because there is no 
outside time by which the cycles can be 
counted; the same cycle, the scime time go 
around and around. In a similar vein, there 
is a sketch by the Dutch artist hlaurits C. 
Escher of two hands, each holding a pencil 
and sketching the other [see Figure 1571. In 
Tllrozigh the Looking Class Alice dreams of 
the Red King, but the King is himself asleep 
and, as Tweedledee points out, Alice is only 
a "sort of thing" in lzis dream. Fiilnegnils 
Itizkc ends in the middle of a sei~tence that  
carries the reader back for its completion to 
the broken sentence that opens the book. 

Since Fitz-James O'Brien wrote his pio- 
neer yarn "The Dia~nond Lens" in 1858 al- 
most countless writers have played with the 
therrie of an infinite regress of worlds on 
smaller and sinaller particles. In Henry 
Hasse's story "He \Vho Shrank" a man on a 
cos~nic level rnuch larger than ours is the 
victilll of a scientific experiment that has 
caused him to shrink. After diminishing 
through hundreds of subuniverses he lin- 
gers just long enough in Cleveland to tell 
his story before lie vanishes again, wonder- 
ing how loilg this will go on, hoping that the 
levels are joined at their ends so that he can 
get back to his original cosmos. 

Even the irlfinite hierarchy of gods has 
been bent into a closed curve by Dunsany 
in his wonderful tale "The Sorrow of 
Search." One night as the prophet Shaun is 
observing by starlight the four mountain 
gods of old-Asgool, Trodath, Skull, and 
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Rhoog-he sees the shadowy forms of three perceives across the plain an enormous, 
larger gods farther up the slope. He leads solitary god looking angrily toward the 
his disciples up the mountain only to 011- mountain. Down the mountain and across 
serve, years later, two larger gods seated at the plain goes Shaun. While he is carving on 
the summit, from which they point and rock the story of how his search has ended at 
mock at the gods below. Shaun takes his last with the discovery of the ultimate god, 
followers still higher. Then one night he he sees in the far distance the dim forms of 
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four higher deities. As the reader call guess, 
they are Asgool, Trodath, Skun, and Rhoog. 

No  branch of mathematics is i i n m ~ ~ n e  to 
the infinite regress. Numbers 011 both sides 
of zero gallop off to infinity. In rnodular 
aritllrrletics they go around and around. 
Every infinite series is an infinite regress. 
The regress underlies tlle technique of 
mathematical induction. Ckorg Cantor's 
trarisfirlite ~iurnbers form an endless hier- 
archy of richer infinities. A beautiful mod- 
ern example of how the regress enters into 
a mathematical proof is related to the diffi- 
cult problem of dividing a square into other 
squares no two of which are alike (see Chap- 
ter 17 of my Second Scienl(fic Americc~n 
Rook of Ll/latl~emclticclI Puzzles and Diver- 
s io t~s;  New York: Simon and Schuster, 1965). 
The question arises: Is it possi1)le similarly 
to cut a cube illto a finite nurnl~er of smaller 
cubes no two of which are alike? Were it not 
for tlre deductive power of the regress, 
mathematicians might still be searching in 
vain for ways to do this. The proof of iin- 
possibility follows. 

Assume that it is possible to "cul~e tlle 
cube." Tlie bottom face of sucll a dissected 
cube, as it rests on a table, will necessarily 
11e a "squared scluarc." Consider the small- 
est square in this pattern. It cannot be a cor- 
ner square, t)ecause a larger square on one 
side keeps any larger square from bordering 
thc other side [see "(1" in  Figlire I F i r i ] .  Sim- 
ilarly, the smallest square cannot be clse- 
where on tlic border, l~etween corners, 
becar~se larger squares on two sides prevent 
a third larger square from touching the third 
side [b]. The smallest square rriust therefore 

be somewhere in the pattern's interior. This 
in turn reqtiires that the smallest c u l ~ e  
touching the table must be surrounded by 
cubes larger than itself. This is possible [ c ] ,  
but it means that four walls must rise above 
all four sides of the small cube - preventing 
a larger cube from resting on top of it. There- 
fore on this srrlallest cube there rntist rest a 
set of smaller cubes, the bottoms of which 
will form another pattern of scluares. 

The same argtirnent is now repeated. In 
the new pattern of squares the smallest 
square must be somewhere in the interior. 
On this srnallest square must rest the small- 
est cube, and the little cul,es on top of i t  
will for111 another pattern of squares. Clearly 
the argument leads to an entlless regress of 
smaller cubes, like the endless hierarchy of 
fleas in Dean Swift's jingle. This contra- 
dicts the original assllmption that the prob- 
lem is solvable. 

Ceo~netric constructions such as this one, 
involving an infinite regress of smaller fig- 
ures, sonletimes lead to startling resr~lts. 
Carl a closed curve of infinite length en- 
close :L finite area of, say, one square inch? 
Such pathological curves are infinite in 
number. Start with an equilateral triangle 
[see "a" in  Figure 15!)] and on the central 
third of each side crect a smaller equilateral 
triangle. Erase the base lines and you have 
a six-pointed star [h] .  Repeating tlre con- 
struction on each of the star's 12 sides pro- 
duces a 48-sided polygon [c]. The third step 
is shown in d. Tlie limit of this infinite con- 
strnction, called the snowflake curve, 
I>ounds an area 815 that of the original tri- 
angle. It is easy to show that successive 
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159. The snowflake curve 



160. The cross-stitch curve 

additions of length form an infinite series 
that diverges; in short, the length of the 
snowflake's perimeter is infinite. (In 1956 
W. Grey Walter, the British physiologist, 
published a science-fiction novel, The 
Curoe of the Snowflake, in which a solid 

analogue of this crazy curve provides the 
basis for a timetravel machine.) 

Here are two easy puzzles about the less 
well known square version of the snow- 
flake, a curve that has been called the cross- 
stitch. On the middle third of each side of a 
unit square erect four smaller squares as 
shown at the top of Figure 160. The second 
step is shown at the bottom. (The squares 
will never overlap, but corners will touch.) 
If this procedure continues to infinity, how 
long is the final perimeter? How large an 
area does it enclose? 

Answers 

The cross-stitch curve has, like its analogue 
the snowflake, an infinite length. It bounds 
an area twice that of the original square. The 
drawing at the left in Figure 161 shows its 
appearance after the third construction. 
After many more steps it resembles (when 
viewed at a distance) the drawing at the 
right. Although the stitches seem to run 
diagonally, actually every line segment in 
the figure is vertical or horizontal. Similar 
constructions of pathological curves can be 
based on any regular polygon, but be- 
yond the square the figure is muddied by 
overlapping, so that certain conventions 
must be adopted in defining what is-meant 
by the enclosed area. 

Samuel P. King, Jr., of Honolulu, supplied 
a good analysis of curves of this type, in- 
cluding a variant of the cross-stitch dis- 
covered by his father. Instead of erecting 
four squares outwardly each time, they are 
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erected inwardly from the  sides of each 
square. T h e  limit curve has an  infinite 
length, b u t  encloses zero area. 
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23. O'Gara, the Mathematical Mailman 

I 'm seen in the country, I'm seen 
in the town, 

I'm servant of all from pauper 
to crown. 

Take one letter from me, and still 
my good name 

In spite of your action continues 
the same. 

Take from me two letters, then three 
and then four, 

My name will continue the same 
as before. 

In fact, you can take all the letters 
I've got 

And my name you will not have altered 
one jot! 

I \VAS LEAFING through a stack of unopened 
envelopes on my desk, looking for unusual 
foreign postage stamps, when a bright red 
sticker caught my eye. It said: "Please 
notify P. 0. immediately if this gummed 
label has fallen off in transit." 

This had such an unmistakable flavor of 
an "Irish bull" (the essence of which is 
logical contradiction) that I was not sur- 
prised to discover that "P. 0." stood not for 
"Post Office" but for the sender, one Patrick 
O'Gara of Brooklyn. His letter began with 
the charade at left, which he said a grand- 
father in Ireland had clipped from an En- 
glish newspaper half a century ago. O'Gara 
was a postman by profession but a recrea- 
tional mathematician by avocation. He en- 
tertained himself on his daily rounds, he 
said, by creating unusual puzzles. \Vould 
I be interested in discussing some of them 
with him? 

The intersection set of all people inter- 
viewed in this book and the set of all exist- 
ing individuals is, I must confess, empty. 
This, however, has never discouraged me 
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from further interviews. Moreover, I was 
psychologically prepared for meeting a re- 
markable mailman, having recently reread 
one of my favorite Father Brown stories, 
"The Invisible Man." In this G. K. Chester- 
ton murder mystery four witnesses swear 
that no one has entered or left a certain 
building because they all take the postman 
so much for granted that they do not con- 
sider him worth mentioning, "Nobody ever 
notices postmen, somehow," as Father 
Brown put it, "yet they have passions like 

, , other men. . . . 
Although O'Gara's major passion was rec- 

reational mathematics, he minored in phi- 
lately. He turned out to be a young, ath- 
letically built chap with sandy hair and a 
face heavily freckled by the sun. His educa- 
tion had not gone beyond high school, but 
the small study in his bachelor apartment 
in Brooklyn Heights overflowed with old 
and new books on mathematical puzzles, 
and after a few minutes of conversation it 
was obvious that he was well informed in 
the field. 

"Are you a stamp collector?" he asked. 
"No," I replied, "but my ten-year-old son 

has just started an album." 
" Encourage him to specialize," said 

O'Gara. "The big thing now, you know, is 
what is called thematic or topical collecting. 
Nobody collects miscellaneously anymore. 
Let me show you some of my topicals." 

His largest collection concerned mathe- 
matics. I was amazed by the number of 
eminent mathematicians whose portraits 
had appeared on these little engravings 
ever since Germany, in 1926, had issued the 

first nlathematical stamp: a 40-pfennig 
violet with the head of Leibniz. O'Gara had 
French stamps honoring Descartes, Pascal, 
Buffon, Carnot, Laplace, Poincare and many 
others; Italian stamps showing scenes from 
the life of Galileo; Dutch stamps with faces 
of Huygens, Lorentz and others; Russian 
stamps honoring such notables as Euler, 
Chebyshev and Lobachevski. A striking set 
of four Norwegian stamps commemorated 
the centenary in 1929 of Ahel's death. Two 
stamps issued by the Irish Free State in 
1943 bore portraits of Hamilton to celebrate 
the centenary of his discovery of quater- 
nions. Gauss appeared on a German stamp 
in 1955. A Romanian mathematics journal, 
Gazeta h4aterr~atica, was honored on its 
50th birthday with a pair of stamps, and in 
1955 Greece commemorated the 2,500t11 
anniversary of the Pythagorean school by 
putting a 3-4-5 right triangle on four 
stamps [see Figure 16'21. A French stamp 
honoring Descartes in 1937 is of special 
interest because the first issue showed an 
incorrect title of his greatest work. (The title 
was corrected on the second issue.) 

"Has the United States ever honored a 
mathematician with a commemorative 
stamp?" I asked. 

O'Gara shook his head. "Neither has En- 
gland, but of course England has an excuse. 
She limits her stamp portraits to members of 
the royal family." (In 1966 a U.S. 8-cent 
purple bore Einstein's picture, but Einstein 
was not primarily a mathematician.) 

One of O'Gara's most amusing topical 
collections contained what he called "sci- 
ence goofers" - stamps on which someone 



162. A 1955 Pythagorean postage stamp 

had made a whopping scientific mistake. 
The British colony Saint Kitts-Nevis issued 163, Serbian and U,S. that hidden 

a stamp in 1903 showing Columbus, on pictures when turned upside down 
deck, searching for land with a telescope, 
which had not yet been invented. A skier's 
ears, on a 1934 Austrian stamp, are upside 
down. The constellation of the Southern [see Figure 1631. A range of mountains on a 
Cross somehow got reversed when it ap- 1934 U.S. National Parks issue becomes a 
peared on a 1940 Brazilian stamp. A U.S. man's profile when rotated 90 degrees. A 
Transcontinental Railroad comme~norative 1935 Boulder Dam stamp, inverted, looks 
of 1944 shows smoke from a locomotive bil- like the Liberty Bell. On a West German 50- 
lowing to one side and a flag blowing the pfennig of 1964 a tiny face of Hitler is con- 
other way. cealed in some tree foliage. O'Gara had 

Another unusual thematic collection con- scores of others. 
sisted of "hidden pictures." In 1904 Serbia When a postman goes on a holiday, the 
issued a famous "death mask" stamp: the fictional detective Charlie Chan used to 
profiles of Karageorge and Peter I Kara- say, he takes long walks. During a vacation 
georgevich, upside down, merge to form a in Europe a few years ago O'Gara had ac- 
death mask of the Serbian king Alexander I tually made, he told me, a special trip to the 
Obrenovich - who had been murdered the Baltic seaport of Kaliningrad (formerly 
year before by Karageorgevich's supporters. Konigsberg, the capital of East Prussia) for 
On a 1932 U.S. three-cent, the tie and shirt- the sole purpose of tramping over the fam- 
front of Daniel Webster turn into the face ous seven bridges of Kiinigsberg in one con- 
of Fu Manchu when viewed upside down tinuous path without going over any bridge 



164. What is the best route for delivering to each home? 

twice. He was able to do this, he explained, 
because an eighth bridge had been built 
across the Pregel River since Leonhard 
Euler first proved that the original problem 
was unsolvable. On a day off last winter, 
fortified by some Irish whisky, O'Gara had 
conducted extensive investigations of ran- 
dom-walk problems in a large open field 
of snow somewhere in Brooklyn. 

"I'm very good at visualizing geometric 
patterns," he told me. "Used to play a lot 
of blindfold chess as a boy. So I work on my 
graph puzzles in my head while ,, I'm making 
my rounds. For instance . . . 

He paused to sketch for me an aerial view 
of a housing development where he had at 
one time delivered mail [see Figure 1641. 
There were houses in every second block, 



165. A minimum-length route with right turns only 

ancl each llol~sc required a delivery, as 
shown on the map. "It's easy to apply 
Eulcr's rules hcre," said O'Gara. "They 
show that it's not possit)le to make rnail de- 
liveries along all eight streets without walk- 
ing some of the blocks more than orlce." (To 
trace a network in an unbroken path, with- 
out going over any part twice, there must be 
either r l o  intersections where an odtl rium- 

1)er of paths mect or exc~ctllj t 2 t i 0  S ~ I C ~  inter- 
sections.) "But llow short can the path be? 
I soon convinced myself it couldn't be less 
than 27 blocks. Every clay for rnonths I tried 
to find new 27-hlock paths that would meet 
various restraints. For example, I found all 
sorts of ways to cover the eight streets in a 
27-block path without ever making a left 
turn [see Figure 1651. Finally I hit on two 



O'Gara, the Mathematical Mailman 

pretty problems that I believe your readers 
might like." 

The first problem, O'Gara explained, is to 
find a path that covers all the streets in the 
minimal length of 27 blocks and that also 
has the minimal number of turns. The path 
in the illustration, for instance, has 19 turns 
-far more than necessary. A "tur11" occurs 
at any point where the path changes direc- 
tion; turns rnay be left or right, and the path 
may be open at the ends or "reentrant" 
(with ends joined). The second problem is 
to find a 27-block path with the maximum 
number of turns. In both problems the en- 
tire length of each of the eight streets must 
be traversed. 

"When I get bored looking for best paths," 
O'Gara went on, "I like to look for worst 
ones. For example, I used to deliver mail to 
ten houses that were spaced at equal dis- 
tances along one side of a street. What's the 
longest path a postman can take if he starts 
at any house, walks straight to anothel; then 
to a third and so on until he's gone once to 
each house?" 

He made the sketch shown in Figure 166 

to show how he had first tried it: from house 
1 to house 6 along a path of 45 unit intervals. 
"A4nd there are paths worse than that?" I 
asked. 

O'Gara nodded. "You might ask your 
readers to see if they can find the worst one. 
If they like this kind of combinatorial puz- 
zle, they can try the harder problelll of find- 
ing a formula for the longest path as a 
function of 11 houses." 

"Splendid," I said, scribbling in my note- 
book. "But I don't want to overload this 
interview with route problems. Have you 
invented any good puzzles involving other 
things? House nunibers, for instance?" 

O'Gara pulled open a drawer in which he 
seemed to have hundreds of problenls 
neatly recorded on file cards. Here is one 
he showed me. 

A long street runs east and west, with 
houses on both sides. Houses on one side 
have odd numbers in serial order, starting 
wit11 1. Houses on the other side have even 
numbers starting with 2. On each side there 
are more than SO houses arid fewer than 500. 
S~llith lives on the odd side. The sum of all 

166. A "worst-route" problem 
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the odd house numbers east of him exactly 
equals the sum of all the odd numbers west 
of him. The same situation holds for Jones, 
who lives on the even side: the house num- 
bers west of him, on his side of the street, 
have the same sum as all the house numbers 
east of him. What are the house numbers of 
Smith and Jones? 

"Have you ever mentioned in your de- 
partment," asked O'Gara, "the old problem 
of the person who writes 11 letters, addresses 
11 envelopes and then inserts the letters into 
the envelopes at random?" 

"Yes," I replied, "although I gave it in 
terms of siil~ultaneously dealing two decks 
of shuffled cards. As I recall, as 11 increases, 
the probability that no letters and envelopes 
will match approaches the limit of lie." 

"Right," said O'Gara. "With only four 
letters it's easy to show that the probability 
that one letter or more gets mailed to the 
right person is 515, and the probability that 
exuctly one letter goes to the right person is 
113." 

"1'11 take your word for it," I said. 
"Can you tell me," he continued, smiling 

faintly, "the probability that exactly one of 
the four letters is mailed incorrectly?" 

I started to jot down a list of all the permu- 
tations of A, B, C ,  D but O'Gara seized my 
wrist. "You have to do it in your head," he 
said, "and in less than 10 seconds." 

I was startled for a moment, but then I 
broke into a laugh. Does the reader see why? 

I had walked from the subway to O'Gara's 
apartment in a heavy downpour. When I 
took my leave, it was still raining. "\$'ell," 
I said as we pumped hands, "you'll observe 

that neither snow nor rain, nor heat, nor 
night can stay this courier from the swift 
completion of his appointed rounds." 

"Ah, yes," he said, wincing. "Most every- 
body, I suppose, knows that statement 
you're paraphrasing so badly. But can you 
tell me who first said it?" 

I could not, and I leave O'Gara's parting 
remark as my closing question. 

Answers 

A minimum-length path covering all eight 
streets in a square area three blocks on a 
side, making the minirnull~ number of turns, 
can be solved with as few as ten turns, as 
shown in Figure 167. The solution is unique 
except for reflections and rotations. To 
prove that ten is minimal, note first that the 
network has eight vertices where an odd 
number of paths meet. According to well- 
known rules, the graph cannot be traversed 
by one continuous path (without going over 
any portion of the graph twice) unless the 
odd vertices are reduced to two or none. 
This can be accomplished by doubling seg- 
ments of the graph, but we must do it in a 
way that adds as little as possible to the 
total length of the lines. It is easy to see that 
the shortest path is obtained by doubling 
three segments as shown in Figure 168. The 
doubled segments indicate portions of the 
original graph that must be traversed twice. 
This minimal path is 27 blocks long, with 
A and B (the two remaining odd vertices) 
as its end points. Many readers ignored the 
proviso that the entire lengths of all eight 



blocks must be traversed. If halves of blocks
are allowed to remain untraversed, the post-
man can reach all his delivery spots in a mini-
mal-length path of 23 blocks. The illustration
was misleading because the problem was
intended to be one of network tracing.

Five streets can be traversed their full
length without a turn. If we call any segment

traveled without a turn a “move,”it is clear
that these five streets demand at least five
moves. Each of the remaining three streets
requires at least two moves because each has a
middle block that must be traversed twice.
Therefore any continuous path from A to B
must have at least 11 moves, which is the same
as saying it must have at least 10 turns.
Suppose we start at A and proceed to C. We
cannot turn left at C because then two moves
would be necessary to complete the right two-
thirds of the top street, making three moves
in all for this street, whereas the minimum-
turn path limits this street to two. So we must
turn right. Continuing in this way, analyzing
all alternatives at each juncture, we find that
only two travel patterns complete the trip in
ten turns. One pattern is a mirror image of
the other. Figure 169 shows a 27-block path
with the maximum number of turns: 26. This
too is unique except for reflections, rotations,
and spots where the loops meet.

The longest path for visiting the row of

237

167.  Minimum-turn solution

168.  Minimum-turn proof

169.  Maximum-turn solution



170. Answer to the "worst-path" problem 

ten l~ouses, in the secoild problem, is shown 
in Figure 170. It has a length of 49 units. 
\\'hen the numl~er of houses is even, the 
length of the "\vorst" path is l i 2 (1r2  - 2); 
when it is odd, the length is li2(n2 - 3). For 
the derivation of both formulas see proble~n 
No. 64 in Hugo Steinhaus' One Hundred 
Prob1em.s in Elernciitclry J~l2.lnthenzatics (New 
York: Basic Books, 1964). \Yhen n is even, 
one end of the path must be at one of the 
two middle houses. \{'hen n is odd it must 
be at one of the three middle houses. As 
R. H. Shudde pointed out, the paths are not 
unique when 12 is greater than 4. 

Smith's house number is 239, in a row of 
169 houses. Jones's is 408, in a row of 288 
houses. The solution for Smith involves 
finding integral solutior~s of 2xL 1 = y L ;  for 
Jones, integral solutions of 2 x W  2x = y', 
where x is the i~uinber of houses and the 
house number. Both Diophantine equations 
have an infinity of solutions, but we were 
told that the number of l~ouses ill each case 
is between 50 and 500. This restricts each 
equation to one pair of values for x and y. 

The prol~ability that exactly one letter 
will go into the wrong envelope, if four are 
inserted at random into four envelopes, is 
zero, because it is impossible for three let- 

ters to match their eilvelopes and the re- 
inairiirlg one not to match. 

The quotation, "Neither snow nor rain 
nor heat nor gloom of night . . . ," which is 
carved on the facade of New York City's 
General Post Office Building at Eighth 
,4venue and 33rd Street, is from the Greek 
historian Herodotus. It appears in his Nis- 
tor[/, Book i7111, Section 98. 
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Op Art 

OP (FOR "OPTICAL") topped Pop (for "popu- 
lar") as the fashioilable gallery art of the 
mid-1960's; its patterns quivered in ad- 
vertisements and on dresses, bathing suits, 
ties, stockings, window shades, draperies, 
wallpaper, floor coverings, package designs, 
covers of math textbooks, and what have 
you. Op art, as everyone surely knows by 
now, is the name for a form of hard-edge 
abstractionism that has been around for 
half a century. Its distinguishing feature is 
a strong emphasis on nlathematical order. 
Sometimes it is accornpaslied by effects in- 
tended to dazzle and wrench the eye: vivid 
colors that generate strong afterimages 
when the eye shifts, optical illusions, 
striped and dotted patterns that torture the 
brain like the retinal scintillations of mi- 
graine. One branch of Op art deals with 
moire patterns of the type described in 
Scientific Anzericun by Gerald Oster and 
Yasunori Nishijima (see "3loirb Patterns," 
%lay, 1963) and by C. L. Stong ("The Ama- 
teur Scientist," November, 1964). Indeed, 

Oster's shimineriilg patterns have been 
exhibited in several New York art galleries. 

The Op trend, many critics say, is inore 
that1 just a rebellion (like Pop) against the 
randomness of abstract expressionism; it 
reflects the growing extent to which mathe- 
matics, science and technology press on 
our lives. Scieliti3c Americcln, it has been 
observed, has been presenting 011 art for 
years. Consider the following magazine 
covers: "Perfect" Rectangle, Sovember, 
1958; Reactor Fuel Elements, February, 
1959; "Craeco-Latin" Square, November, 
1959; "Visual Cliff" (with its distorted 
checkerboards, a Op motif), April, 
1960; Spark Chamber, August, 1962; 
hloirk Pattern, hlay, 1963; and Afterimage 
Test Pattern, October, 1963. These covers 
are almost pure 011. They leave little doubt 
about Op's close kinship with modern 
science. 

Althought Op art is sometimes rich and 
warm with colors, its appeal seems to lie 
more in its cold, rigid, precise, unemo- 
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tional and impersonal qualities. Its astonish- 
ing popularity revives ancient questions 
about art and mathematics. To what extent 
is art ruled by mathematical laws? To what 
extent call pure mathematical structure 
arouse aesthetic emotions? "The chief 
forms of beauty are order and symmetry 
and precision," wrote Aristotle in his 
Rletuplzysics (Book 13), "which the mathe- 
matical sciences demonstrate in a special 
degree." "A mathematician . . . ," declared 
G. H. Hardy in A 3latltei?zuticic1n's Apology,  
". is a maker of patterns. . . . [His] patterns, 
like the painter's or the poet's, must be 
beaut i fu l ;  the ideas, like the colors or the 
words, must fit together in a harmonious 
way. Beauty is the first test: there is no 
permanent place in the world for ugly 
mathematics." 

We are surrounded on all sides, say the 
defenders of Op, by hard-edge squares 
and circles, ellipses and rectangles. The 
windows of a skyscraper, the streets of a 
city, the fronts of file cabinets, all form 
orthogonal patterns like a checkerboard. 
Why should these basic geometric designs 
not be reflected in our art? Opponents 
counter: But we want to escape from, not 
be reminded of, the low-order curves and 
90-degree angles of a technological culture. 
Our eyeballs ache for random curves, im- 
pure colors and soft edges; for the patterns . 
of leaves and clouds and water in motion. 
\T7ho can write an equation for the shape of 
an oak tree? The mathematical structure 
is still there, but in nature, as in less rigid 
abstract art, it is more complex, more care- 
less, and- say Op's detractors - aestl~etically 

less boring. (See the cover of T h e  N e w  
Yorker, August 14,1965, for Saul Steinberg's 
illustration of this idea.) 

\{'hatever one's attitude toward Op, 
there is no denying its fascination. Nor is 
it surprising that many Op patterns are 
cIosely related to problems of recreational 
mathematics. Consider, for example, the 
nested and rotating squares (or rectangles) 
that appear in so many Op paintings and 
fabric designs and that whirl inward on the 
cover of Scientific Arrlericc~i~, July, 1965. 
The pattern can be interpreted as an illus- 
tration for the well-known "four-bug prob- 
lem," which appears in Chapter 12 of my 
Scientific American Book of  Mathematical 
Puzzles aitd Dicersions (New York: Simon 
and Schuster, 1959). Four bugs at the cor- 
ners of a square start to crawl clockwise 
(or counterclockwise) at a constant rate, 
each moving directly toward its neighbor. 
At ally instant, as the bugs march toward a 
meeting point at the center, they mark the 
corners of a square, and as they crawl the 
square they delineate both diminishes and 
rotates. Each bug travels on a logarithmic 
spiral with a length exactly equal to the 
side of the original square. 

If n bugs start at the corners of any regu- 
lar n-sided polygon, their positions at any 
instant during their march will mark the 
corners of a similar polygon. Like the 
square, this polygon will shrink and turn 
as the bugs spiral inward. A design based 
on the triangular case is shown in Figure 
171, originally dra\.r~n for an old issue of 
S c ~ i p t a  &lathematicu by Rutherford Boyd. 
The picture contains nothing but triangles, 



171. Design based on the "three-bug problem" 



Mathemalical Games 

but they are hard to see because the eye 
is so strongly dorilinated by the spiral 
curves. I11 this case each logarithmic spiral 
is 213 of the original triangle's side. 

For regular polygons of more than four 
sides the length of each bug's path is greater 
than a side. ,Is J. Charles Clapham pro\.ed 
in the now defunct Recreutionul Alathemat- 
i c s  Alagazitte (August, 1962), the length 
of the path of a bug starting at corner A can 
be found trigonometrically 1,y extending a 
side AB [see Figzrre 17-31 and locating on it 

a point X such that the angle AOX is 90 
degrees. The distance AX-which is equal 
to r tirnes the secant of angle 8-is the dis- 
tance the bug travels. As the illustration 
shows, on a hexagon each bug's path is 
twice the length of a side. 

Claphain's sirnple formula also applies to 
the square and triangular cases, and even to 
the degenerate "two-sided polygon" -a 
straight line with a zero angle O and bugs 
at each end that trarnp toward each other 
until they bump head on. At the other ex- 



173. Baravalle's circular "checkerboard" 

treme, the circle can be considered a de- 
generate "infinite-sided polygon" with 
bugs at an infinite number of "corners." 
These bugs march forever around the circle 
like the Pine Processionary caterpillars in 
a famous experiment of Jean Henri Fabre's, 
which trailed each other for eight days 
around the rim of a large vase. When we 
apply Clapham's right triangle to the circle, 
sure enough, angle % is 90 degrees and 
the hypotenuse is infinite. 

One suspects that Op painters both here 

and abroad have yet to discover the thou- 
sands ofeye-twisting patterns that lie 1)uriecl 
in scientific and mathematical textbooks 
and back copies of academic journals. Early 
issues of Sci.iptu Jlcrtl~c~nc~ticcr, for example, 
vibrate with exciting pre-Op. Figure 173 
shows a striking pattern the mathematician 
Hernlann Bariivalle obtained by ruling 
parallel lines across concentric circles and 
then coloring the regions in checkerboard 
fashion. One might think that this pattern is 
topologically the sanle as a square checker- 



174. Elliptical "checkerboard" 
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board-in other words, that a square 
checkerboard on a rubber sheet could be  
continuously deformed to produce the pat- 
tern. This is not the case, but it suggests 
a pretty ~ u z z l e .  Can you cut the pattern 
into two parts with one straight cut so that 
each part is topologically equivalent to a 
square checkerboard? Figure 174 shows 
how Torbjiirn Johansson, a Swedish com- 

mercial artist, applied Baravalle's coloring 
technique to an ellipse. 

In Figure 175 Baravalle has inverted 
every point P that lies outside the circle 
on the checkerboard into a corresponding 
point P' inside the circle, such that OP x 
OP' = $, where 0 is the circle's center and 
r its radius. Every point on the plane out- 
side the circle is thus put into one-to-one 

175. Checkerboard inversion pattern 
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correspondence with every point inside. 
A+I line extending outward from the board 
to infinity corresponds to a line inside the 
central white space, extending inwitrcl 
toward the center but never reaching it. 

Inversion geometry can, of course, be 
applied to three-space as easily as to the 
plane. An old nlathernatical joke says that 
to catch a lion you just t)uild a cage and 
perform an in\~ersion operation 011 the beast. 
The cosmos itself can be inverted and corn- 
pressed inside a tennis ball. In this country 
during the 1870's a religious cult was ac- 
tually founded on the belief that such an 
inverted three-space reflects the true state 
of affairs. Cyrus Reed Teed's "Koreshanity" 
put the entire uni\,erse iil.~idc the earth. 
\Ye imagine ourselves on the outside of 
the earth looking out at gigantic stars 
scattered through an infinite space; the 
truth, said Teed, is that we are on the in- 
side of a hollo\v earth looking i l l  at srnall 
stellar bodies moving in a space that is the 
geoinetrical inverse of the space of ortho- 
dox astronomy. Teed defended his views 
in many books and articles; years later his 
ideas attracted a following in Nazi Ger- 
many. (For inore details on this crazy cult 
see Chapter 2 o f  my Fuels c~nd Fallacies i iz 

tlie S ( ~ i l ~ e  of Scieilce; New York: Dover, 
1957.) 

Figure 176 shows two exa~llples of rrlany 
vertigo-inducing patterns that were studied 
by psychologists more than 50 years ago. 
They are kilowrl as "twisted-cord illusions" 
because they were first discovered by twist- 
ing l~lack ;ind white string into a single cord 
that was then arranged in various ways 011 

differently patterned backgrounds. The top 
part of the figure consists of concentric 
circles (as you can prove with a compass); 
in the one at the bottorn a spiral is made up 
of straight horizontal and vertical "cords" 
(as you can prove with a ruler). 

Tesselations of the plane created by 
fitting together replicas of the same basic 
shape have long been used in design and 
are now turning up in many of the latest 
013 fabrics. The cross-pentomino appears 
on an 013 dress advertised in 1965 by Bon- 
wit Teller. All polyominoes and polyia- 
inonds (polyiamonds are formed by joining 
equilateral triangles instead of squares) 
of order six or less will fit together to cover 
the plane, but so far I have seen only the 
cross-pentomino and the L-tromino (the 
latter on a scarf sold by Gimbels in New 
York City) on 013 fabrics. The reader can 
easily create his own new Op patterns by 
fillding ways to tile the plane with each of 
the 12 pentominoes and the 12 hexiamonds 
(for the hexiamond shapes see this book's 
chapter on polyiamonds). 

\lost, but not all, of the 108 heptominoes 
(for their diagrams see Solon1o11 W. C;olomb's 
book Polyonainoes, pages 108-109) will tile 
the plane. Several British mathematicians 
are working on the difficult question of 
which of thern are 11ot plane-fillers. The 
corresponding problem for the 24 lleptia- 

176. "Twisted cord" concentric circles 
( top) and spiral (bottom) 
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monds [see Figure 1771 was proposed by 
T. H. O'Beirne and was solved this year 
by Gregory J.  Bishop of Boston. Only one 
of the 24 shapes is not a plane-filler. Can the 
reader identify it and prove that it ca~lnot 
tesselate the plane? 

The Op pattern that covers the plane with 
convex noncongruent heptagons [Figure 
1781 embodies a curious paradox that twid- 
dles the brain even more than the eye. If 

this pattern is repeated infinitely, what is 
the average angle in it? Since the plane 
contains nothing but heptagons, and since 
the interior angles of any heptagon sum to 
900 degrees, it follows that the average 
angle is 90017 or 1284/7 degrees. Note, 
however, that every point on the pattern 
is a meeting of three angles. This surely 
requires that the average angle be 36013, 
or 120 degrees. Explain! 

177. The 24 heptiamonds. 
Which cannot tile a plane? 

p v a  
I T W  
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178. Tesselation of convex heptagons 

Answers corltinuously distorted to produce a check- 
erboard is evident from the fact that the 

Were you able to make one straight cut number of its cells, 392, is not a square. 
across the circular Op pattern [see tlie Note also that the two cells inside the 
drazoirrg at left in  Figure 1791 so as to bull's-eye are each three-sided; any dis- 
divide the pattern into two parts, each tortion that turns one of these cells into a 
topologically equivalent to a square check- \quare would turn the other into a non- 
erboard? That the pattern itself cannot be convex figure. It is therefore necessary 



180. Proof that the V-heptiamond will not tile the plane 



that the cut separate these two cells. The 
only straight cut that does this is one along 
the horizontal diameter of tlie large circle. 
The figure in the middle is topologic;illy 
the same as the one at the left. It is easy 
to see that a single cut along AB produces 
two halves, each of which is topologically 
the same as a square checkerboard 14 
cells on a side [Figure 179, right]. 

The only heptiamond that will not tile 
the plane is the \'-shaped figure shown at a 
in Figure 180. The proof, hy Gregory J. 
Bishop, an electrical engineering student 
at Northeastern University, is simple. A 
second piece can fill the colored triangular 
concavity of the first one only as shown at 
b. ( b 7 e  ignore a mirror reversal of the second 
piece.) The colored triangle of the second 
piece can now be filled only by placing a 
third piece as shown at c. The colored tri- 
angle of this figure illust in turn be filled 
by placing a fourth piece as shown at d,  
and there is a similar lack of choice in 
positioning pieces 5 and 6. Now we are 
stuck. There is no way to fill the colored 
triangle associated with piece 6. 

Tessellations for tlie other 23 heptia- 
monds are too numerous to illustrate. The 
reader may have discovered the useful 
trick of pairing two pieces to form a pattern 
that periodically tiles the plane. For ex- 
ample, five different heptiarnonds can be 
paired to fit the sanle periodic tessellation. 
(Figure 181 shows four; can the reader 
discover the fifth?) Bishop has also estab- 
lished that each of the 66 octiamoiids will 
tile the plane, and that all but four of the 
108 heptominoes will do so. 

181. Tesselation for four heptiamond pairs 

The paradox of the heptagon tessella- 
tion was taken from Hugo Steinhaus' One 
Hundred Problems in Elemel~tary Alnthe- 
matics. The paradox arises from the fact 
that a rearrangement of terms in an infinite 
series can lead to a different calculation 
of the average term. Steinhaus gives as 
an example the series 1, 0, 1 ,0 ,  1,O . . . for 
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which 112 is the average. But the two in- 
finite sets of ones and zeroes can also be 
arranged 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,0, 
0, 0, 0, 1 . . . (where successive sets of 
zeros have cardinal numbers that are squares 
of 1, 2, 3 . . .), in which case the average 
is 0. It is easy to form other arrangements 
to make the average any desired integral 
value between 0 and 1. In the heptagon 
pattern two different arrangements of two 
infinite sets of angles are considered, and 
there is no reason why the calculation of 
an average angle should be the same in each. 

References 

"Pursuit Curves and Mathematical Art." I. J. 
Good. The Muthemutical Gazette, Vol. 43, 
No. 343; February, 1959. Pages 34-35. 

"Two Hexagonal Designs." Prakash Chandra 
Sharma. The Mathematical Guzette, Vol. 45, 
No. 351; February, 1961. Pages 26-27. 

"Op Art: Pictures That Attack the Eye." Time, 
Vol. 84, No. 17; October 23, 1964. Pages 78-84. 

"Op Art." Life, Vol. 57, No. 24; December 11, 
1964. Pages 132-140. 

"Art That Pulses, Quivers and Fascinates." 
John Canaday. The New York Times Magazine, 
Vol. 114, No. 39,110; February 21,1965. Pages 
12-59. 

"Optical Art." Gerald Oster. Applied Optics, 
Vol. 4, No. 11; November, 1965. Pages 1359- 
1369. 

Optical illusions and the Visual Arts. Ronald G. 
Carraher and Jacqueline B. Thurston. New 
York: Reinhold, 1966. 

Cc/I.)ernetic Serendipity: The Coi~zputer and the 
Arts. Edited by Jasia Reichardt. London: 
Studio International, 1968. (Special issue.) 



25. Extraterrestrial Communication 

Across the gulf of space, minds that are to our minds as ours are to those of 
the beasts that perish, intellects vast and cool and unsympathetic, regarded 
this earth with envious eyes, and slowly and sureiy drew their plans against us. 

H .  G .  Wells, The War of the Worlds 

IN 1898, WHEN WELLS'S NOVEL was first 
published, a number of distinguished as- 
tronomers seriously believed Mars was in- 
habited by creatures with "intellects vast 
and cool" and superior to our own. The 
Italian astronomer Giovanni Schiaparelli 
(the uncle of the dress designer Elsa 
Schiaparelli) had reported in 1877 that he 
saw fine lines crisscrossing the red planet. A 
wealthy Bostonian, Percival Lowell, became 
so excited by Schiaparelli's continued dis- 
closures that he decided to abandon 
Oriental studies and become an astronomer. 
In 1894, when Mars was unusually close to 
the earth, Lowell established his own 
observatory on "Mars Hill" in Flagstaff, 
Arizona. 

Lowell too saw the lines Schiaparelli 

had called "canali." (The word, which 
means "channels," had been subtly mis- 
translated "canals.") Indeed, he saw them 
in fantastic profusion; eventually he mapped 
more than 500. In three books -Mars (1895), 
Mars and Its  Canals  (1906) and Mars as 
t h e  Abode  of  Life (1908)-Lowell argued 
that the lines he saw were wide bands of 
vegetation bordering enormous irrigation 
ditches constructed to bring water from 
melting polar caps to the dry Martian 
deserts. "That Mars is inhabited by be- 
ings of some sort or other," he wrote, "we 
may consider as certain as it is uncertain 
what those forms may be." Lowell's Mars 
books had an enormous influence on early 
science fiction; the canals turned up every- 
where, from Wells's 1897 short story "The 
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Crystal Egg" to the later llartian romances 
of Edgar Rice Burroughs. 

There is no doubt about Lowell's compe- 
tence as an astronomer. Calculations he 
made in 1915 led to the discovery of Pluto 
by Clyde \V. To~ilbaugh in 1930-at the 
Lowell Observatory. ("Pluto" was chosen 
as the planet's name because its first two 
letters are Lowell's initials and its last 
two the beginning letters of Tombaugh; 
Pluto's syrnbol, E ,  conlbines P and L.) But 
as Jonathan Norton Leonard observes in 
his book F l i g h t  illto Spc~ce,  Lowell's tem- 
perarnent was closer to that of his sister 
Amy, the cigar-smoking poet, than to that 
of his cautious, conservative brother 
Abbott Lawrence, who became president 
of Harvard. Although some astronomers 
e~lthusiastically confirmed Lowell's ob- 
servations of llartian canals, others with 
better telescopes and better eyes could 
see no canals at all. Even in today's best 
telescopes hlars is a tiny, jiggling spot of 
light, and in those rare, fleeting niomellts 
when the image holds still, one's mind 
can play strange tricks. Photographs are 
no help because the earth's turbulent 
atmosphere blurs the image. 

The consensus aillong astronomers today 
is that Scliiaparelli, Lowell and their fol- 
lowers were the victims of optical illusions 
induced by irregular splotches on the red 
planet and elaborated by astigmatism and 
psychological self-deception. 

Among the few living scientists who 
continue to take Lowell's speculatioils 
seriously the most vocal is \Veils Alan Webb, 
a California cheinist. In his book 31ars, t h e  

N e w  Frontier: Lowell's Hypot1zesi.s (1956) 
and in many magazine articles and lectures 
he has reported on an interesting topologi- 
cal aiialysis of canal drawings made by 
Lowell and by one of his leading sup- 
porters, Robert J. Trumpler. Considering 
the maps of these two astrononlers as geo- 
inetrical networks, Webb determined the 
percentage of vertices at which three, four, 
five, six, seven, and eight rays came to- 
gether. On the maps drawn by both men 
vertices of order 4 (four lines meeting at a 
point) predominate: they constitute about 
43 percent of the vertices on Trumpler's 
maps and about 35 percent on Lowell's. 
A similar analysis of networks found in 
nature- mud cracks, shrinkage cracks of 
glazed chinaware, cracks in ancient lava 
beds, rivers, and so on-sho\vecl order-3 
vertices leading their percentage list. Only 
in networks constructed by living things, 
such as spider webs and animal trails, did 
Webb find the order-4 points predominat- 
ing. The networks that are topologically 
most like the Lowell-Trumpler maps are 
such man-made ones as railroad lines and 
air travel routes. Thus does topology, 
Webb argues, back 11p Lowell's intuitive 
conviction that the canals must have been 
the work of high-order intellects. 

Webb's arguments assume, of course, a 
correspondence between the Martian sur- 
face and the Lowell-Trumpler maps. But 
if these maps are no more than doodles of 
what Lowell and Trumpler imagined they 
saw, their topological similarity to rail- 
road lines is easily understood. At this 
writing the first television pictures of hlars 
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are being received from Afuri~zer IV, but 
they have not yet established whether or 
not there are lines on the planet. Certainly 
few astronomers expect the pictures to 
show anything like Lowell's cobwebs; if 
they do, the great canal controversy will 
surely break out again. 

Fro111 1880 to 1925, when interest in 
hlartian canals was high, all sorts of pro- 
posals were put forward for establishing 
contact with llartians. Two frequent sug- 
gestions were that a potverful searchlight 
be built that would blink a code message, 
or that a chain of bright lights be stretched 
across a vast area to make a diagram, visible 
in Martian telescopes, of the Pythagorean 
theorem. There was much discussion about 
radio contacts: sending a series of beeps to 
represent the counting numbers (beep; 
beep, beep; beep, beep, beep; . . .) or 
such arithmetical trivia as two plus two 
equals four. In 1900 Sikola Tesla declared 
that he had received radio signals from in- 
telligent beings on llars. Twenty-one years 
later Guglielmo Marconi made a similar 
announcement. Spiritualists too were ~ I I  

frequent contact with minds on the red 
planet. The most remarkable was Hdl6ne 
Smith, a Swiss medium, whose strange story 
is told in the book From Ind ia  to the Planet 
Mars: ,4 Study of a Case oj'Somrztlnzbulisrn 
with Glossol(lliu (1900) by the Swiss psy- 
chologist Thkodore Flournoy. In her 
trances Heli.ne seeined to be under hlartiail 
control, speaking and writing a complex 
Xlartian language, complete with its own 
alphabet. (On Hekne ,  and other mediunls 
who claimed hlartian contacts, see also 

Chapter 8, "From Kensington to the Planet 
liars," in Harry Price's Cor!fessiotas of u 
Ghos t -Hu~ ter ;  S e w  York: Putnan~, 1936.) 

Sow that we are close to landing ex- 
ploratory robots on llars and are expecting 
to find, at the most, only a low-grade vege- 
tation, interest in extraterrestrial cornmuni- 
cation has shifted to planets in other solar 
systems. In 1960 Project Ozma failed to 
detect any radio messages fro111 outer space 
after several months of listening near the 
frequency at which free hydrogen radiates. 
(For various reasons this frequency, with 
its \vavelength of 21 centimeters, seeins to 
be the ideal frequency for interstellar 
communication.) Severtheless, interest 
both in sending and in searching for such 
messages continues, and much abstruse 
work is being done on the best methods of 
exchanging illforination with an alien cul- 
ture once contact is established. It is a 
fascinating problem, almost the exact op- 
posite of devising wartime codes. The pur- 
pose of a code is to transmit information 
in such a wa~7 as to make it as difficult as 
possible for anyone not knowing the key 
to understa~ld the message. The purpose 
of an interstellar code is to communicate 
with minds that know nothing of our lan- 
guage, and in such a way as to make it as 
ecr.yy as possible for them to understand. 

Many of the papers in Interstellur Com- 
nltlrzication, edited by A. C,. LV. Cameron 
(1963), are concerned with this task. ,411 
experts agree that messages had best start 
with simple arithmetic. One assumes that 
units can be counted by any type of intel- 
ligent creature, and that arithmetical laws 
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are uniform throughout the galaxy. Of course 
one cannot assume that any given method 
of symbolizing numt~ers - such as our posi- 
tional notation based on 10 -would be 
universal. It would be foolish, for example, 
to try to get extraterrestrial attention by 
transmitting a decimal expansion of pi; the 
aliens might use a different base system 
and our pi would seem at first to be no more 
than a series of random symbols. Hans 
Freudenthal, a Dutch mathematician, has 
invented an elaborate artificial language he 
calls Lincos (for "lingua cosmica") that 
starts out with arithmetic and simple logic, 
proceeds to more advanced mathematics 
and ultimately is capable of communicating 
all human knowledge. The first volume of 
his work, Lincos: Design of u Language for 
Cosmic Intercoz~rse, was published in the 
Ketherlands in 1960. 

Most of Freudenthal's efforts may prove 
to be irrelevant because of the great ease 
with which pictures can be sent by a simple 
code of two symbols. This does not require 
that beings receiving such a code have eyes 
sensitive to light but only that they have 
some means of mapping the shape of things; 
our visual pictures could be translated by 
them into whatever sensory technique 
provides their best way of observing the 
world. Perhaps the simplest way to transmit 
a shape is by a two-symbol message giving 
directions for scanning a rectangular ma- 
trix of cells, one symbol indicating that a 
cell is filled and the other that it is empty. 
Indeed, this is the technique by which pic- 
tures are now transmitted by radio as well 
as the basis of television-screen scanning. 

Consider the following 100-symbol message. 

The 100 symbols suggest the 10-by-10 ma- 
trix shown in Figure 182. If the reader will 
scan the cells from left to right, top to bot- 
tom, darkening every cell indicated by 1, he 
will produce a picture of a familiar object 
and the English word for it. It is easy to see 
that once the principle of picture scanning 
is grasped, ease in communication advances 
by leaps and bounds. 

Since it might take hundreds or thousands 
of years for a message to travel from the 
earth to a planet in another solar family, 
it obviously is impossible to chat back and 
forth the way one does on a telephone. 
hlessages would have to open with some- 
thing designed to catch attention - the 
counting numbers or a series of primes- 
followed by simple arithmetic leading 
quickly to picture scanning, then on to 
encyclopedic transfers of information. But 
what sort of information should be sent first? 
Here we come up against a curious situa- 
tion. One might suppose that the simplest 
knowledge to send would be about things 
physicists call "observables" - information 
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182. 10-by-10 scanning matrix 

derived from our senses, often aided by 
relatively simple observational devices such 
as telescopes and microscopes. But suppose 
the minds on Planet X have as their most 
highly developed sense some method of 
mapping the world that evolution here 
has failed to exploit, say by magnetic forces 
or some type of radiation not yet known to 
us. Our pictures of the world, derived from 
our observables, might have less meaning 
on Planet X than information about such 
"unobservables" as electrons, protons and 
neutrons. If so, the inhabitants of Planet X 
might understand a description of the peri- 
odic table of elements more readily than a 
description of a house or tree. From one 
point of view the colors, shapes and sounds 
of our world are the bedrock facts and the 
electron a shadowy abstraction. The prob- 
lems arising here suggest the opposite. The 
mathematical structure of a helium atom 

may be more uni\,ersally understood than 
the color, smell, taste and shape of an apple, 
not just because apples are unlikely to grow 
on other planets but because other minds 
may map their worlds with senses that have 
little in common with sight, smell, taste 
and touch. Inferred entities such as particles 
and electromagnetic fields might be easier 
for extraterrestrials to understand than the 
familiar sights and sounds of our world. 

In 1960 Ivan Bell, an Englishman teach- 
ing English in Tokyo, read about the plans 
for Project Ozina. To amuse his friends he 
devised a simple interplanetary message 
of 24 symbols. It was printed in The Japan 
Tintes of January 22, 1960, and readers 
were asked if they could decipher it. Four 
complete solutions were received. One 
was from hlrs. Richard T. Field, now living 
in Bridgeton, New Jersey, who sent me a 
photocopy of Bell's article. 

Bell's message is reproduced in Figure 
183. It is much easier to decipher than it 
looks, and readers are urged to try it. Let- 
ters fro111 A through Z (omitting 0 and X )  
provide the 24 symbols. (Each symbol is 
presumably radioed by a combination of 
beeps, but we need not be concerned with 
those details.) The punctuation marks are 
not part of the message but indications of 
time lapses. Adjacent letters are sent with 
short pauses between them. A space be- 
tween letters means a longer pause Com- 
mas, semicolons, and periods represent 
progressively longer pauses. The loilgest 
time lapses come between paragraphs, 
wl~ich are numbered for the reader's con- 
venience; the numbers are not part of the 
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1. A . 3 . C  D  E . F . G . Y . 1 . d . K . - M . N . P Q . P . S . T . U . V . W . Y . Z .  
--- -- 

2. C A , B ; A A C , C , A C C A , D , P C A A A , E ; A P P P P A , F , k P L P k C C , G ;  

A A A C P A A A , H ; P A A A A A C A A . l ; A L i A C A A A P A A , , .  - 
3. A K A - B , P K C K A L C ; A K A Y A Y A L D  A K A - B ; B K A L C ; C K k L D ;  

D Y A L E  B K E L G , G - E Y B . F K D - J ; J L F K D .  

4. C M G L B , D M A - C , M C L B .  

12. U L W P ; U P B L W B ; A W D M A L W D L D P U . V L W N A ; V P C L W N C .  
V Q d L WNNA; V Q S L  WNNNA. J P EWFGY I EFWGY; S P EWFGH L  EFCWH. 

13. G I W H  Y HN;  T K  C  Y T. Z Y CWADAF. 

183. Ivan Beli's interplanetary message 
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message.  T o  minds  i n  a n y  solar sys tem t h e  
message shou ld  1)e crystal c lear  except  for 
t h e  last paragraph, wh ich  is somewha t  
ambiguous;  e v e n  if properly dec iphe red ,  
it could  be unders tood fully only  by  in- 
habitants of o n e  of o u r  solar system's 
planets. (hlrs .  F ie ld  wrote  h e r  answer  in  
t h e  same  c o d e  a n d  s igned off b y  saying-in 
the code- tha t  s h e  l ived o n  Jupi ter . )  T h e  
key  to  Bell's message a n d  a comple te  trans- 
lation will  be found  i n  t h e  answer  section.  

Addendum 

T h e  following exchange,  p rompted  b y  m y  
writ ing abou t  t h e  foregoing topics,  was  
pr in ted  i n  t h e  Let ters  co lumn of Scier~tific 
American, January ,  1966: 

Sirs: 
I strongly disagree with some statenierlts made 

by hfartin Gardner in the "llathematical Games" 
section of your August [1965] issue. 

It is quite fashionable to relegate the RIartian 
canals to illusions. The people who subscribe to 
such a view have little or no experience in ac- 
tually looking at planetary detail. There are 
several observing parameters necessary to see 
the delicate subdivisions i r ~  Saturn's rings, the 
intricate "festootls" on Jupiter, canals and oases 
on Mars, and minute clefts and craters on the 
moon. 

Cardner writes: "rilthough some astro~lomers 
enthusiastically confirmed [Percival] Lowell's 
observations of llartian canals, others with 
better telescopes and better eyes could see no 
canals at all." The latter part of this state~nent 
is incorrect. The Hartmann tests and the optical 
performance of the 24-inch Lowell and 36-inch 

Lick refractors show that these telescopes are 
of extraordinary optical quality. I have spent 
several hundred hours observing the moon and 
the planets with the Lowell 24-inch refractor. 
Only during the rarest nlome~lts of freedom 
from our own atmospheric turbulence are the 
finest recorded details visible. I would estimate 
that such quality seeing exists for less t11;ul a 
hundredth of one percent of the time one spends 
looking through the eyepiece. Now, what are 
the chalices of an astronomer's seeing very fine 
planetary detail if he  takes a look at a planet for 
a few minutes before beginning his stellar pro- 
gram of observing for the night? 

The late Dr. Robert T r u l n ~ l e r  of the Lick 
Obselvatorv was doubtful of the canals on l lars  
in his younger days. Theri he  decided to observe 
l lars carefully throughout the 1924 opposition. 
He saw and recorded a great riunlber of canals, 
as attested by his niaps of llars. Dr. E. C. 
Slipher also had keen eyes and saw well. 

You learn to see fine planetary detail 115; much 
looking through a good telescope, not by sitting 
in an armchair in a warm office. A Derson with 
normal eyesight call see canals when the seeing 
is extraordinarily good, provided that the optical 
parameters of the telescope are proper. Anyorle 
who uses a large aperture with too low a mag- 
nifying power obtains a dazzlingly brilliant 
image. This drowns out delicate dark detail 
because of the fierce irradiation from the over- 
brilliant surrounding area on the planet's disk. 

In all probability the callals are likely to be 
discontinuous dark patches in an alignment. hly 
studies of l lars indicate that the callals are 
crustal faults arid are discontil~uous where dust 
has covered up portions of them. The boundaries 
of the angular maria are exactly aligned with 
canals that proceed across the Martian deserts 
for hundreds of miles to dark sl~ots called "oases," 
which are probably large impact craters (see 



Mathematical Games 

The Astronomical Journal, October, 1950, page 
184). 

There are certainly portions of canals visible 
on some of the Mariner IV pictures. You cannot 
measure truth by popular vote, because only a 
few learn the difficult techniques of seeing fine 
planetary detail from much patience and ex- 
perience. The stronger canals of Mars are also 
recorded on photographs. One does not solve a 
scientific phenomenon by wishing it out of 
existence. 

Obsercatory 
N e u  Mexico State Uniaersity 
Uniaersity Park, Kew Alexico 

Sirs: 
The controversy among astronomers, between 

the small minority who report seeing straight 
lines on Mars and the majority who have been 
unable to see them, has been a bitter one that is 
not yet laid to rest. "The only possible explana- 
tion of the differences," wrote the eminent Brit- 
ish astronomer H. Spencer Jones in his Life on 
Other Worlds, "is that the observation of these 
faint elusive details is subject to complex per- 
sonal differences. . . . Subconscious interpreta- 
tion of what is faintly glimpsed may be very dif- 
ferent for two different persons. The eye of one 
may tend to bridge the gap between faint details 
and to draw a marking as a uniform, straight, con- 
tinuous line unless he can clearly see that there 
are irregularities, bends and discontinuities in 
it. Another may only draw it in this way when he 
can see beyond the possibility of doubt that it is 
uniform, straight and continuous." Jones cites 
an experiment in which dots, shady patches and 
short lines were randomly drawn on a sheet of 
paper, and a class of children was asked to draw 

what it saw. Many of the children, particularly 
those in back seats, connected the prominent 
features with straight lines. 

One of the strongest indications that Giovanni 
Schiaparelli and Percival Lowell, the first two 
astronomers to map the Martian "canals," were 
victims of optical illusions is that both men re- 
ported an unaccountable "doubling" of canals. 
Over a period of days, or even hours, certain 
canals were mysteriously and temporarily trans- 
formed into two parallel lines. Lowell reported 
seeing hundreds of such instances, although it 
was pointed out at the time that the distances on 
Mars, between pairs of parallel lines, were much 
too small for the resolving power of the lenses he 
was using. 

Dr. Tombaugh's more moderate view, that 
there are linear structures on Mars and that they 
are crustal faults connecting impact craters, is 
similar to one advanced by Alfred Russel Wal- 
lace in a fascinating and perhaps prophetic little 
book called Is lZrlars Inhabitable? (London, 
1907). Wallace disagreed with Lowell's belief 
that the canals were the work of intelligent 
beings - indeed, he concluded that Mars was 
not only uninhabited but also "absolutely un- 
inhabitable" - although he did not question the 
existence of a canal network. He argued that 
Mars had been so heavily pelted by meteors that 
its surface became molten. As the planet cooled, 
meteors continued to fall, causing more craters 
that became weak spots in the crust. As the crust 
continued to cool and shrink, it cracked along 
straight lines that joined these large impact 
craters. 

In the next few years we may learn exactly to 
what extent linear features exist on the Martian 
surface, although the controversy could drone on 
as a cloudy semantic quarrel over whether cer- 
tain features should be called "linear." In my 
opinion the word "canal" should be reserved for 
the long, sharply defined, extremely straight 
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threadlike lines mapped by Schiaparelli, Lowell, 
Trumpler and others and not applied to the 
broad, hazy, irregular markings that show on 
some photographs. 

Answers 

The key to the 24 symbols in Ivan Bell's in- 
terplanetary message is shown in Figure 
184. The message translates as follows: 

1. [This simply states the 24 symbols.] 

2. [This identifies the first 10 symbols (A 
through J) with the numbers 1 through 10.1 

3. [Symbols for "plus" and "equals" are 
introduced.] 1 + 1 = 2; 1 + 1 + 1 = 3; 1 + 1 + 
1 + 1 = 4 . 1 + 1 = 2 ; 2 + 1 = 3 ; 3 + 1 = 4 ; 4 + 1  
=5 .2+5=7 ;  7=5+2 .6+4=10 ;  10=6+4. 

4. [The minus sign is introduced.] 3 - 1 
= 2 ;  4 -  1 = 3 ;  9 - 7 = 2 .  

5. [Zero is introduced.] 3 + 0 = 3; 8 + 0 
= 8 . 4 - 4 = 0 ;  5 - 5 = 0 .  

6. [Positional notation, based on 10, is 
introduced. J =AN translates] into the deci- 
malform 10.1 10+1=11; 10+2=12; l l+1  
= 12. 10+ 10=20; 10+ 10+ 10=30.60+7 
= 67. 

7. [The multiplication symbol is intro- 
duced.] 2 x 3 = 6; 5 x 2 = 10; 6 x 10 = 60. 

8. [The division symbol is introduced.] 
6 + 2 = 3 ;  1 0 + 2 = 5 ;  6 0 + 6 = 1 0 .  

9. [Exponents are introduced.] = 9; 
25 = 32. 

G 7 
H 8 
1 9  

J 10 
K + 
L = 

M - 

N 0 
P x 
Q + 
R to the power of 
S 100 
T 1,000 
u 1/10 
v I/lOO 
W . [decimal point] 

Y r [is approximately equal to] % 

z [pi1 

184. Key to the interplanetary dessage 

10. [Symbols for 100 and 1,000 are in- 
troduced.] 10 x 10 = 102 = S = 100; 10 X 10 
x 10 = 10" T = 1,000. 10 x 100 = 1,000; 10 
x 1,000 = lo4. 

11. [Symbols for 1/10 and 11100 are in- 
troduced.] 1 t 10 = 1/10; 1/10 +- 10= 1 + 100 
= 11100. 
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12. [The deci~nal sign is introduced.] 
1/10 = .1; 1/10 X 2 = .S; 1.4 - 1 = .4 = 4 X 

1/10. 1/100 = .01; 1/100 x 3 = .03. 11100 + 
10 = .001; 11100 + 100 = .0001. 10 x 5.678 = 

rj6.78; 100 X 3.678 = 567.8. 

13. [The sign for "approximately equal 
to" is introduced.] 79.98 = 80; 1,000 + 3 z 
1,000. [The sign for pi is introduced.] .ir z 
3.1416. 

The final statement is the formula for the 
volume of a sphere with a radius of ,0092. 
As Bell recognized when he gave the an- 
swer to his message (Japan  Times, January 
29, 1960), there is an ambiguity here that 
could have been avoided only if information 
about the use of brackets or the order in 
which arithmetical operations are to be per- 
formed had been given previously. The 
formula suggests that an actual sphere is 
being described. If the receivers of the mes- 
sage are on a planet in our solar system, they 
should be clever enough to deduce that the 
sun's radius is providing the unit of length, 

and that the radius of the third planet from 
the sun is .0092 of the sun's radius. The ex- 
pression therefore gives the volume of the 
earth and is a sign-off statement indicating 
the source of the message. 
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'' D evotees will know that there is a good deal 
more in these articles than is customarily 
described under the heading of 'mathema- 

tical games'; but one feels that for this author all 
mathematics-r, at least, all worth-while mathema- 
tics-is a game. . . . In this collection one gets, be- 
sides the original articles, commentaries based on 
subsequent correspondence and (too temptingly ac- 
cessible!) solutions. . . . There are those who claim 
that we could (and even should) teach all our 
mathematics through games. One may not agree 
with this point of view, but it is harder to refute 
after reading this book."-D. A. Quadling, Matbema- 
tics Gazette 

Martin Gardner, the master magician of math, led 
millions through the labyrinth of mathematics with 
charm and wit in his popular Scientgic American col- 
umn. In this selection from those columns, Gardner 
instructs as he entertains and provides readers the 
opportunity to experience the essence of mathemati- 
cal thinking-the pleasure of intellectual stimulation 
and free play. 

"In Gardner's writing, numbers break out of their 
gray procession toward infinity and take on personal- 

The University of Chicago Press 

ities: the measured march of the square numbers; the 
primes in their unfathomable progression; the irra- 
tionals always a decimal away from being captured; 
the imaginaries occupying the nonexistent gaps be- 
tween the reals. Out of numbers and their near rela- 
tives, letters, Gardner conjures problems that are 
both profound and silly, exquisite truths and out- 
rageous absurdities; paradoxes, anagrams, palin- 
dromes and party tricks. "-Newsweek 

"Gardner is the clown prince of science. . . . His 
Mathematical Games column in Scientific American is 
one of the few bridges over C. P. Snow's famous 
'gulf of mutual incomprehension' that lies between 
the technical and literary cultures."-Time 

Martin Gardner is the author of numerous articles 
for Scientgic American, New York Times Book Revzeul, 
and the New York Review of Books. His other books 
include Logic Machines and Diagrams and Martin 
Gardneri- New Mathematical Diversions from Scientqic 
American, both published by the University of 
Chicago Press. 
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