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I N T R O D U C T I O N  

"A  good mathematical joke," wrote  the  Br i t i sh  mathematic ian 
John  Edensor Littlezoood ( i n  the  i?~troduct ion to  his Mathemati-  
cian's Miscellany),  " i s  better,  and bet ter  mathematics ,  t h a n  a 
dozen mediocre papers." 

T h i s  i s  a book of mathematical jokes, i f  "joke" i s  taken  in a 
sense broad enough to  include a n y  kind o f  mathematics  tha t  i s  
mixed zc~ith a strong element o f  fun. Most mathematicians relish 
such play, though o f  course they  keep it zoithin reasonable bounds. 
There  i s  a fascination about recreational mathematics  tha t  can, 
f o r  some persons, become a kind of drug.  Vladimir  Nabokov's 
great chess novel,  T h e  Defense,  i s  about such a man .  H e  permitted 
chess (one f o r m  of mathematical play) to  dominate his mind so 
completely tha t  he finally lost contact w i t h  the  real world and 
ended his miserable life-game zoith zohat chess problemists call a 
suimate or self-mate.  He  jumped out of a zoindow. I t  i s  consistent 
w i t h  the  steady disintegratiotl of Nabokov's chess mas ter  tha t  as  
a boy he had been a poor s tudent ,  even in mathematics ,  a t  the  
same t ime  tha t  he had been "extraordinarily engrossed in a collec- 
t ion of problems entitled Merry Mathematics,  in the  fantastical 
misbehavior o f  numbers  and the zoayzoard frolic o f  geometric 
lines, in everything tha t  the  schoolbook lacked." 

T h e  moral i s :  E n j o y  mathematical play, if you have the mind 
and taste f o r  it, but don't enjoy it too much.  Le t  it provide occa- 
sional holidays. Le t  it stimulate your interest  in serious science 
and mathematics .  Bzit keep it under  firm control. 

A n d  if you can't keep it under  control, you can take some com- 
for t  f r o m  the point o f  Lord Dunsany's s tory  " T h e  Chess-Player, 
t h e  Financier, and Another." A financier recalls a friend named 
Smoggs  zoho toas o n  the road to  becoming a brilliant financier un- 
til he got sidetracked by chess. " I t  came gradually at  first: he  
used to  play chess w i t h  a m a n  during the lunch hour, tohen he 
and I both zoorked for the  same firm. A n d  a f t e r  a whi le  he began 
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t o  beat t h e  fellozo. . . . A n d  t h e n  he  joined a chess club,  and  some  
k ind  o f  fasc inat ion seemed t o  come o v e r  h i m ;  some th ing ,  l ike  
d r i n k ,  o r  m o r e  l ike  poetry o r  mus ic  . . . he  could have  been a finan- 
cier. T h e y  say  i t ' s  n o  harder  t h a n  chess,  t h o u g h  chess leads t o  
no th ing .  I n e v e r  saw such  brains  zcvxsted." 

" T h e r e  are  m e n  l ike that," agrees  t h e  prison zuarden. "It 's  a 
p i ty  . . ." A n d  he  locks t h e  financier back in his  cell f o r  t h e  n i g h t .  

M y  t h a n k s  aga in  t o  Scientific American f o r  permiss ion t o  re- 
pr in t  these  t w e n t y  columns.  A s  i n  t h e  tzoo previous book collec- 
t ions ,  t h e  columns have  been expanded,  errors  corrected and m u c h  
nezu mater ia l  added t h a t  zoas sent  t o  m e  b y  readers.  I a m  gra te fu l ,  
also, t o  m y  w i f e  f o r  help in proofing; t o  m y  edi tor ,  N i n a  B o u r n e ;  
above all, t o  t h a t  st i l l-growing band o f  readers ,  scattered through-  
out  t h e  n a t i o n  and t h e  zuorld, zohose zoelcome le t ters  have  so great-  
l y  enriched t h e  mater ia l  repr inted  here. 
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C H A P T E R  O N E  

I3 

The Binary System 

A red ticket showed between wiper and windshield; I carefully 
tore it into two, four, eight pieces. 

- Vladimir Nabokov, Lolita 

THE NUMBER SYSTEM now in use throughout the civilized 
world is a decimal system based on successive powers of 10. The 
digit a t  the extreme right of any number stands for a multiple of 
100, or 1. The second digit from the right indicates a multiple of 
101; the third digit, a multiple of 102, and so on. Thus 777 ex- 
presses the sum of (7 X 100) + (7 X 101) + (7 X l o 2 ) .  The 
widespread use of 10 as a number base is almost certainly due to 
the fact that  we have ten fingers; the very word "digit" reflects 
this. If Mars is inhabited by humanoids with twelve fingers, i t  is 
a good bet that Martian arithmetic uses a notation based on 12. 

The simplest of all number systems that  make use of the posi- 
tions of digits is the binary system, based on the powers of 2. 
Some primitive tribes count in binary fashion, and ancient Chi- 
nese mathematicians knew about the system, but i t  was the great 
German mathematician Gottfried Wilhelm von Leibniz who seems 
to have been the first to develop the system in any detail. For 
Leibniz, i t  symbolized a deep metaphysical truth. He regarded 0 
as an emblem of nonbeing or  nothing; 1 as an emblem of being or 
substance. Both are  necessary to the Creator, because a cosmos 
containing only pure substance would be indistinguishable from 
the empty cosmos, devoid of sound and fury and signified by 0. 
Just  as in the binary system any integer can be expressed by a 
suitable placing of 0's and l's, so the mathematical structure of 
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the entire created world becomes possible, Leibniz believed, as a 
consequence of the primordial binary split between being and 
nothingness. 

From Leibniz's day until very recently the binary system was 
little more than a curiosity, of no practical value. Then came the 
computers! Wires either do or do not carry a current, a switch is 
on or off, a magnet is north-south or south-north, a flip-flop mem- 
ory circuit is flipped or flopped. For such reasons enormous speed 
and accuracy are obtained by constructing computers that  can 
process data coded in binary form. "Alas !" writes Tobias Dantzig 
in his book Number,  the Language o f  Science, "what was once 
hailed as a monument to monotheism ended in the bowels of a 
robot." 

Many mathematical recreations involve the binary system: the 
game of Nim, mechanical puzzles such as the Tower of Hanoi and 
the Rings of Cardan, and countless card tricks and "brainteasers." 
Here we shall restrict our attention to a familiar set of "mind- 
reading" cards, and a closely related set of punch-cards with 
which several remarkable binary feats can be performed. 

The construction of the mind-reading cards is made clear in 
Figure 1. On the left are the binary numbers from 0 through 31. 
Each digit in a binary number stands for a power of 2, beginning 
with 20 (or 1') a t  the extreme right, then proceeding leftward to 
21 (or 2 ) ,  22, 23 and so on. These powers of 2 are shown a t  the 
top of the columns. To translate a binary number into its decimal 
equivalent, simply sum the powers of 2 that  are expressed by the 
positions of the 1's. Thus 10101 represents 16 + 4 + 1, or 21. To 
change 21 back to the binary form, a reverse procedure is fol- 
lowed. Divide 21 by 2. The result is 10 with a remainder of 1. This 
remainder is the first digit on the right of the binary number. 
Next divide 10 by 2. There is no remainder, so the next binary 
digit is 0. Then 5 is divided by 2, and so on until the binary number 
10101 is completed. In the last step, 2 goes into 1 no times, with a 
remainder of 1. 

The table of binary numbers is converted to a set of mind- 
reading cards simply by replacing each 1 with the decimal num- 
ber that  corresponds to the binary number in which the 1 occurs. 
The result is shown a t  the right side of the illustration. Each 
column of numbers is copied on a separate card. Hand the five 



F I G .  I 
Numbers on a set of mind- 

reading cards (right) are based 
on the binary numbers ( left) .  

BINARY NUMBERS MIND-READING 
CARDS 
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cards to someone, ask him to think of any number from 0 to 31 
inclusive and then to hand you all the cards on which his number 
appears. You can immediately name the number. To learn it, you 
have only to add the top numbers of the cards given to  you. 

How does i t  work? Each number appears on a unique combina- 
tion of cards, and this combination is equivalent to the binary 
notation for that  number. When you total the top numbers on the 
cards, you are simply adding the powers of 2 that are indicated 
by the 1's in the binary version of the chosen number. The work- 
ing of the trick can be further disguised by using cards of five 
different colors. You can then stand across the room and tell your 
subject to put all the cards bearing his number into a certain 
pocket and all remaining cards into another pocket. You, of 
course, must observe this, remembering which power of 2 goes 
with which color. Another presentation is to put the five (un- 
colored) cards in a row on the table. Stand across the room and 
ask the spectator to turn face down those cards that bear his num- 
ber. Since you arranged the cards with their top numbers in 
order, you have only to observe which cards are reversed to know 
which key numbers to add. 

The binary basis of punch-card sorting is amusingly dramatized 
by the set of cards depicted in Figure 2. They can be made easily 
from a set of 32 file cards. The holes should be a trifle larger than 
the diameter of a pencil. I t  is a good plan to cut five holes in one 
card, then use this card as a stencil for outlining holes on the 
other cards. If no punching device is available, the cutting of the 
holes with scissors can be speeded by holding three cards as one 
and cutting them simultaneously. The cut-off corners make it 
easy to keep the cards properly oriented. After five holes have 
been made along the top of each card, the margin is trimmed 
away above certain holes as shown in the illustration. These 
notched holes correspond to the digit 1 ; the remaining holes cor- 
respond to 0. Each card carries in this way the equivalent of a 
binary number. The numbers run from 0 through 31, but in the 
illustration the cards are randomly arranged. Three unusual 
stunts can be performed with these cards. They may be trouble- 
some to make, but everyone in the family will enjoy playing with 
them. 

The first stunt consists of quickly sorting the cards so that 
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F I G .  2 
A set of punch-cards that wi l l  unscramble a message, guess a 
and solve logic problems. 

selected number 
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their numbers are in serial order. Mix the cards any way you 
please, then square them like a deck of playing cards. Insert a 
pencil through hole E and lift up an inch or so. Half the cards 
will cling to the pencil, and half will be left behind. Give the 
pencil some vigorous shakes to make sure all cards drop that  are 
supposed to drop, then raise the pencil higher until the cards are 
separated into two halves. Slide the packet off the pencil and put 
i t  in front of the other cards. Repeat this procedure with each 
of the other holes, taking them right to left. After the fifth sort- 
ing, i t  may surprise you to find that the binary numbers are now 
in serial order, beginning with 0 on the card facing you. Flip 
through the cards and read the Christmas message printed on 
them ! 

The second stunt uses the cards as a computer for determining 
the selected number on the set of mind-reading cards. Begin with 
the punch-cards in any order. Insert the pencil in hole E and ask 
if the chosen number appears on the card with a top number of 1. 
If the reply is yes, lift up on the pencil and discard all cards that 
cling to it. If no, discard all cards left behind. You now have a 
packet of sixteen cards. Ask if the number is on the card with a 
top number of 2, then repeat the procedure with the pencil in 
hole D. Continue in this manner with the remaining cards and 
holes. You will end with a single punch-card, and its binary num- 
ber will be the chosen number. If you like, print decimal numbers 
on all the cards so that you will not have to translate the binary 
numbers. 

The third stunt employs the cards as a logic computer in a 
manner first proposed by William Stanley Jevons, the English 
economist and logician. Jevons' "logical abacus," as he called it, 
used flat pieces of wood with steel pins a t  the back so that  they 
could be lifted from a ledge, but the punch-cards operate in 
exactly the same way and are much simpler to make. Jevons also 
invented a complex mechanical device, called the "logic piano," 
which operated on the same principles, but the punch-cards will 
do all that his piano could do. In fact, they will do more, because 
the piano took care of only four terms, and the cards take care of 
five. 

The five terms A, B, C, D and E are represented by the five 
holes, which in turn represent binary digits. Each 1 (or notched 
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hole) corresponds to a true term;  each 0, to a false term. A line 
over the top of a letter indicates that  the term is false ; otherwise 
i t  is true. Each card is a unique combination of true and false 
terms, and since the 32 cards exhaust all possible combinations, 
they are  the equivalent of what is called a "truth table'' for the 
five terms. The operation of the cards is best explained by show- 
ing how they can be used for solving a problem in two-valued 
logic. 

The following puzzle appears in More P~.oblematical Recrea- 
tions, a booklet issued recently by Litton Industries of Beverly 
Hills, California. "If Sara shouldn't, then Wanda would. It is 
impossible that  the statements: 'Sara should,' and 'Camille 
couldn't,' can both be true a t  the same time. If Wanda would, 
then Sara should and Camille could. Therefore Camille could. I s  
the conclusion valid ?" 

To solve this problem, s tar t  with the punch-cards in any order. 
Only three terms are  involved, so we shall be concerned with only 
the A, B and C holes. 

A = Sara should - 
A = Sara shouldn't 
B = Wanda would - 
B = Wanda wouldn't 
C = Camille could - 
C = Camille couldn't 

The problem has three premises. The first-"If Sara shouldn't, 
then Wanda wouldv- tells us that  the combination of and 3 
is  not permitted, so we must eliminate all cards bearing this com- 
bination. I t  is done as  follows. Insert the pencil in A and lift. All 
cards on the pencil bear A. Hold them as  a group, remove the 
pencil, put i t  in B and lift again. The pencil will raise all cards 
bearing b o t h x  and%, the invalid combination, so these cards are 
discarded. All remaining cards are assembled into a pack once 
more (the order does not matter) ,  and we are ready for the sec- 
ond premise. 

Premise two is that  "Sara should" and "Camille couldn't" can- 
not both be true. In other words, we cannot permit the combina- 
tion AC. Insert the pencil in A and lift up all cards b e a r i n g x .  
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These are not the cards we want, so we place them temporarily 
aside and continue with the A group that  remains. Insert the 
pencil in C and raise the f3 cards. These bear the invalid combina- 
tion A e ,  so they are permanently discarded. Assemble the re- 
maining cards once more. 

The last premise tells us that if Wanda would, then Sara should 
and Camille could. A bit of reflection will show that this eliminates 
two combinations: AB and Be .  Put the pencil in hole A, lift, and 
continue working with the lifted cards. Insert pencil in B ;  lift. 
No cards cling to the pencil. This means that the two previous 
premises have already eliminated the combination AB. Since the 
cards, all bear AB (an invalid combination), this entire packet is 
permanently discarded. The only remaining task is to eliminate 
B€+f.rom the remaining cards. The pencil in B will lift out the I3 
cards,, which are placed temporarily aside. When the pencil is put 
in C of the cards that remain, no cards can be lifted, indicating 
that  the invalid combination of B C  has already been ruled out by 
previous steps. 

We are thus left with eight cards, each bearing a combination 
of truth values for A, B and C that  is consistent with all three 
premises. These combinations are the valid lines of a truth table 
for the combined premises. Inspection of the cards reveals that C 
is true on all eight, so i t  is correct to conclude that  Camille could. 
Other conclusions can also be deduced from the premises. We can, 
for example, assert that Sara should. But the interesting question 
of w'hether Wanda would or wouldn't remains, a t  least in the 
light of available knowledge, an inscrutable binary mystery. 

For those who would like another problem to feed the cards, 
here is an easy one. In a suburban home live Abner, his wife Beryl 
and their three children, Cleo, Dale and Ellsworth. The time is 
8 P.M. on a winter evening. 

1. If Abner is watching television, so is his wife. 
2. Either Dale or Ellsworth, or both of them, are watching tele- 

vision. 
3. Either Beryl or Cleo, but not both, is watching television. 
4. Dale and Cleo are  either both watching or both not watching 

television. 
5. If Ellsworth is watching television, then Abner and Dale are 

also watching. 
Who is watching television and who is not? 
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F IG.  3 
A complementary row of holes at bottom of cards permits errorless sorting. 

A D D E N D U M  

EDWARD B. GROSSMAN, New York City, wrote to say that a vari- 
ety of commercial cards for binary filing and sorting are now 
available in large stationery supply stores. Holes are preperfo- 
rated and one can buy special punches for making the slots. The 
holes are too small to take pencils, but one can use knitting 
needles, Q-Tip sticks, opened-out paper clips or the sorting rods 
that come with some makes of cards. 

Giuseppe Aprile, a professor of engineering a t  the University 
of Palermo, Italy, sent the two photographs shown in Figure 3. 
Quick, errorless separation of the cards is made possible by a 
complementary row of holes and notches a t  the bottom edge of 
each card. Pins through complementary holes in the bottom row 
anchor the set of cards that  remains when pins through the top 
holes remove a set of cards. 
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A N S W E R S  

THE LOGIC PROBLEM can be solved with the punch-cards as fol- 
lows :: Let A, B, C, D and E stand for Abner, Beryl, Cleo, Dale and 
Ellsworth. A term is true if the person is watching television; 
otherwise i t  is false. Premise 1 eliminates all cards bearing AB; 
premise 2 eliminates DE; premise 3 eliminates BC and B e ;  
premise 4 eliminates CD and CD; premise 5 eliminates AE and 
DE. Only one card remains, bearing the combination ABCDE. 
We conclude that  Cleo and Dale are watching television, and that 
the others are not. 



C H A P T E R  T W O  

Group Theory and Braids 

THE CONCEPT OF "GROUP," one of the great unifying ideas 
of modern algebra and an indispensable tool in physics, has been 
likened by James R. Newman to the grin of the Cheshire cat. 
The body of the cat (algebra as traditionally taught) vanishes, 
leaving only an abstract grin. A grin implies something amusing. 
Perhaps we can make group theory less mysterious if we do not 
take i t  too seriously. 

Three computer programmers - Ames, Baker and Coombs - 
wish to decide who pays for the beer. Of course they can flip pen- 
nies, but they prefer a random decision based on the following 
network-tracing game. Three vertical lines are drawn on a sheet 
of paper. One programmer, holding the paper so that his friends 
cannot see what he is doing, randomly labels the lines A, B and C 
[see Fig. 4, l e f t ] .  He folds back the top of the sheet to conceal 
these letters. A second player now draws a series of random hori- 
zontal lines - call them shuttles - each connecting two of the 
vertical lines [see second illustration of figure]. The third player 
adds a few more shuttles, then marks an X a t  the bottom of one 
of the vertical lines [see third illustrationl. 

The paper is unfolded. Ames puts his finger on the top of line 
A and traces it downward. When he reaches the end of a shuttle 
(ignoring shuttles whose centers he may cross), he turns, follows 
the shuttle to its other end, t u ~ n s  again and continues downward 



FIG. 4 
The network-tracing game. 

until he reaches the end of another shuttle. He keeps doing this 
until he reaches the bottom. His path [t?*aced b y  the broken line 
in the four th  illustration] does not end on the X, so he does not 
have to buy the drinks. Baker and Coombs now trace their lines 
in similar fashion. Baker's path ends on the X, so he picks up the 
tab. For any number of vertical lines, and regardless of how the 
shuttles are drawn, each player will always end on a different line. 

A closer look a t  this game discloses that  it is based on one of 
the simplest of groups, the so-called permutation group for three 
symbols. What, precisely, is a group? I t  is an  abstract structure 
involving a set of undefined elements ( a ,  b, c . . .) and a single 
undefined binary operation (here symbolized by 0 )  that  pairs 
one element with another to produce a third. The structure is not 
a group unless i t  has the following four trai ts:  

1. When two elements of the set are  combined by the operation, 
the ~ e s u l t  is another element in the same set. This is called 
"closure." 

2. The operation obeys the "associative law": ( a 0  b)  o c  = 

a 0  ( b o c )  
3. There is one element e (called the "identity") such that  

a o e = e o a = a  
4. For every element a there is an  inverse element a' such that  

a o a '  = a ' o a  = e 
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If .in addition to these four traits the operation also obeys the 
commutative law (a o b = b o a ) ,  the group is called a commuta- 
tive or Abelian group. 

The most familiar example of a group is provided by the in- 
tegers (positive, negative and zero) with respect to the operation 
of addition. I t  has closure (any integer plus any integer is an  
integer). I t  is associative (adding 2 to 3 and then adding 4 is the 
same as adding 2 to the sum of 3 and 4 ) .  The identity is 0 and the 
inverse of a positive integer is the negative of that  integer. I t  is 
a n  Abelian group (2 plus 3 is the same as 3 plus 2 ) .  The integers 
do not form a group with respect to division: 5 divided by 2 is 
21/12, which is not an  element in the set. 

Let us see how the network game exhibits group structure. 
Figure 5 depicts the six basic "transformations" that  are  the ele- 
ments of our finite group. Transformation p switches the paths 
of A and B so that  the three paths end in the order BAG. Trans- 
formations q, r ,  s and t give other permutations. Transformation 
e is not really a change, but mathematicians call it a "transforma- 
tion" anyway, in the same sense that  a null or empty class is called 
a class. I t  consists of drawing no shuttles a t  all ; i t  is the "identity" 
change that doesn't really change anything. These six elements 
correspond to the six different ways in which three symbols can 
be permuted. Our group operation, symbolized by 0, is simply 
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that  of following one transformation with another; that is, of 
adding shuttles. 

A quick check reveals that  we have here a structure with all 
the properties of a group. I t  has closure, because no matter how 
we pair the elements we always get a permutation in the order 
of the paths that can be achieved by one element alone. For ex- 
ample, p o t = r, because p followed by t has exactly the same ef- 
fect on the path order as applying r alone. The operation of adding 
shutt,les is clearly associative. Adding no shuttles is the identity. 
Elements p, q and r are  their own inverses, and s and t are  in- 
verses of each other. (When an element and its inverse are  com- 
bined, the result is the same as drawing no shuttles a t  all.) I t  is 
not a.n Abelian group (e.g., p followed by q is not the same as q 
followed by p)  . 

r s 
FIG.  5 
The six elements of the network-game group. 
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Results of pairing elements in the network-game group. 

The table in Figure 6 provides a complete description of this 
group's structure. What is the result of following r with s?  We 
find r on the left side of the table and s at the top. The intersection 
of column and row is the cell labeled p. In other words, shuttle 
pattern r followed by shuttle pattern s has the same effect on path 
order as pattern p. This is a very elementary group that turns 
up in many places. For example, if we label the corners of an 
equilateral triangle, then rotate and reflect the triangle so t'hat it 
always occupies the same position on the plane, we find that there 
are only six basic transformations possible. These transforma- 
tions have the same structure as the group just described. 

It  is not necessary to go into group theory to see intuitively that 
the network game will never permit two players to end their 
paths on the same vertical line. Simply think of the three liries as 
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three ropes. Each shuttle has the same effect on path order as 
crossing two ropes, as though forming a braid. Obviously no 
matter how you make the braid or how long i t  is, there will always 
be three separate lower ends. 

Let us imagine that we are braiding three strands of a girl's 
hair. We can record successive permutations of strands by means 
of th~e network diagram, but i t  will not show how the strands pass 
over and under one another. If we take into account this compli- 
cating topological factor, is i t  still possible to call on group theory 
for a description of what we are doing? The answer is yes, and 
Emil Artin, a distinguished German mathematician who died in 
1962, was the first to prove it. In his elegant theory of braids the 
elements of the group are "weaving patterns" (infinite in num- 
ber) ,  and the operation consists, as in the network game, of fol- 
lowing one pattern with another. As before, the identity element 
is a pattern of straight strands - the result of doing nothing. 
The inverse of a weaving pattern is its mirror image. Figure 7 
shows a sample pattern followed by its inverse. Group theory 
tells us that when an element is added to its inverse, the result is 
the identity. Sure enough, the two weaving patterns combined 
prove to be topologically equivalent to the identity. A tug on the 
end of the braid in the illustration and all strands pull out straight. 
(Many magic tricks with rope, known in the trade as releases, 
are based on this interesting property of groups. For a good one, 
see Chapter 7 of T h e  2nd Scientific Amer ican  Book o f  Mathemati -  
cal Puzzles & Diversions.) Artin's theory of braids not only pro- 
vided for the first time a system that  classified all types of braids; 
it also furnished a method by which one could determine whether 
two weaving patterns, no matter how complex, were or were not 
topollogically equivalent. 

-- Br,aid theory is involved in an unusual game devised by the 
Danish poet, writer and mathematician Piet Hein. Cut a piece of 
heavy cardboard into the coat-of-arms shape depicted in Figure 8. 
This will be called the plaque. Its two sides must be easily dis- 
tinguished, so color one side or mark i t  with an X as shown. 
Punch three holes a t  the square end. A two-foot length of heavy 
but flexible cord (sash cord is excellent) is knotted to each hole. 
The other ends of the three strands are  attached to some fixed 
object like the back of a chair. 

FIG. 7 
Braial A is the mirror image of A'. 
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You will find that  the plaque can be given complete rotations in 
six different ways to form s ix  different braids. I t  can be rotated 
sidewise to the right or to the left; i t  can be rotated forward or 
backward between strands A and B ; i t  can be rotated forwa:rd or 
backward between strands B and C. The second illustration of 
Figure 8 shows the braid obtained by a forward rotation through 
B and C. The question arises: Is  it possible to untangle this braid 
by weaving the plaque in and out through the strands, keeping 
i t  horizontal a t  all times, X-side up, and always pointing toward 
you? The answer is no. But if you give the plaque a second rota- 
tion, in any of the six different ways, the result is a braid that can 
be untangled by weaving the plaque without rotating it. 

A B C  A B C  A B C  

F I G .  8 
Rotation at left produces braid in center; rotation in center, braid at right. 



30 Ciroup Theory and Braids 

To make this clear, assume that the second rotation is forward 
betwjeen A and B, creating the braid shown in the third illustra- 
tion of Figure 8. To remove this braid without rotating the plaque, 
first raise C a t  the spot marked Y and pass the plaque under it 
from right to left. Pull the strings taut. Next raise A a t  the spot 
mark:ed Z and pass the plaque under it from left to right. The 
result is that the cords pull straight. 

The following surprising theorem holds for any number of 
strands above two. All braids produced by an even number of 
rotations (each rotation may be in any direction whatever) can 
always be untangled by weaving the plaque without rotating i t ;  
braidls produced by an odd number of full rotations can never be 
untangled. 

I t  was a t  a meeting in Niels Bohr's Institute for Theoretical 
Physics, in the early thirties, that  Piet Hein first heard this 
theorem discussed by Paul Ehrenfest in connection with a prob- 
lem in quantum theory. A demonstration was worked out, by Piet 
Hein and others, in which Mrs. Bohr's scissors were fastened to 
the back of a chair with strands of cord. I t  later occurred to Piet 
Hein that the rotating body and the surrounding universe en- 
tered symmetrically into the problem and therefore that a sym- 
metrical model could be created simply by attaching a plaque to 
b o t h  ends of the cord. With this model two persons can play a 
topological game. Each holds a plaque, and the three strands are 
stretched straight between the two plaques. The players take 
turns, one forming a braid and the other untangling it, timing 
the operation to see how long i t  takes. The player who untangles 
the f,astest is the winner. 

The odd-even theorem also applies to this two-person game. 
Beginners should limit themselves to two-rotation braids, then 
proceed to higher even-order braids as they develop skill. Piet 
Hein calls his game Tangloids, and it has been played in Europe 
for a number of years. 

Why do odd and even rotations make such a difference? This is 
a puzzling question that is difficult to answer without going more 
deeply into group theory. A hint is supplied by the fact that two 
rotations in exactly opposite directions naturally amount to no 
rotation. And if two rotations are almost opposite, prevented 
from being so only by the way certain strings pass around the 
plaque, then the tangle can be untangled by moving those same 
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A 0 C  A B C  A B C  

FIG.  9 
Three problems of braid disentanglement. 

strings back around the plaque. M. H. A. Newman, in an article 
published in a London mathematical journal in 1942, says that  
P. A. M. Dirac, the noted University of Cambridge physicist, has 
for many years used the solitaire form of this game as a model 
"to illustrate the fact that  the fundamental group of the group of 
rotations in 3-space has a single generator of the period 2." New- 
man then draws on Artin's braid theory to prove that the cords 
cannot be untangled when the number of rotations is odd. 

You will find i t  a fascinating pastime to form braids by ran- 
domly rotating the plaque an  even number of times, then seeing 
how quickly you can untangle the cords. Three simple braids, each 
formed by two rotations, are shown in Figure 9. The braid on the 
left is formed by rotating the plaque forward twice through B 
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and C ; the braid in center, by rotating the plaque forward through 
B and C and then backward through A and B ; the braid a t  right, 
by two sidewise rotations to the right. Readers are invited to 
determine the best method of untangling each braid. 

A D D E N D U M  

IN CONSTRUCTING the device used for playing Piet Hein's game of 
Tangloids, plaques cut from flat pieces of wood or plastic are, of 
course, preferable to cardboard. Instead of three separate strands, 
Piet Hein recommends using one long single cord. Start  i t  a t  the 
first hole of one plaque (knotting the end to keep i t  from sliding 
out of the hole), run i t  through the first hole of the second plaque, 
across the plaque, through its middle hole, then to the middle 
hole of the first plaque, across to its third hole, and back to the 
third hole of the second plaque, knotting the end after it has 
passed through this last hole. Because the cord can slide freely 
through the holes, i t  is easier to manipulate the device than when 
it has three separate strands. One reader wrote to say that  he 
had joined his plaques with three strands of elastic cord, and 
found that this also made the manipulations much easier. The 
game can obviously be elaborated by adding more strands, but 
three seems to be complicated enough. 

I t  takes only a glance a t  the table in Figure 6 to see that  the 
group i t  depicts is not Abelian (commutative). Tables for Abelian 
groups are symmetrical along an axis running from upper left to 
lower right corner. That is, the triangular sections on either side 
of this diagonal are mirror images of each other. 

If the network game is played by four players instead of three, 
its group is the permutation group for four symbols. This is not, 
however, identical with the group that  describes the rotations 
and reflections of a square, because certain permutations of the 
corners of a square are not obtainable by rotating and reflecting 
it. The square transformations are a "subgroup" of the permuta- 
tion group for four symbols. All finite groups (groups with a 
finite number of elements) are either permutation groups or sub- 
groups of permutation groups. 

In Artin's 1947 paper on braid theory (see the Bibliography) 
he gives a method of reducing any braid to "normal form." This 
involves pulling the first strand completely straight. The second 
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strand is then pulled straight except for its loops around strand 1. 
Strand 3 is then pulled straight except for its loops around 
strands 1 and 2, and so on for the remaining strands. "Although 
i t  has been proved that every braid can be deformed into a sbimi- 
lar normal form," Artin says, "the writer is convinced that  any 
attempt to carry this out on a living person would only 1ea.d to 
violent protests and discrimination against mathematics." 

In  a brief letter from Dirac that I received too late to mention 
in the column on braids, he said that  he had first thought of the 
string problem about 1929, and had used i t  many times since to 
illustrate that  two rotations of a body about an axis can be con- 
tinuously deformed, through a set of motions each of which ends 
with the original position, into no motion a t  all. "It is a conse- 
quence," he wrote, "of this property of rotations that  a spinning 
body can have half a quantum of angular momentum, but cannot 
have any other fraction of a quantum." 

A N S W E R S  

THE THREE braid problems are solved as follows: (1) Pasf; the 
plaque under strand C from right to left, then under strands A 
and B from left to right. (2) Pass the plaque under the center of 
strand B from left to right. (3)  Pass the plaque, left to right, 
under all strands. 



C H A P T E R  T H R E E  

Eight Problems 

1 .  ACUTE DISSECTION 

GIVE~N A TRIANGLE with one obtuse angle, is i t  possible to cut the 
triangle into smaller triangles, all of them acute? (An acute 
triangle is a triangle with three acute angles. A right angle is of 
cour,se neither acute nor obtuse.) If this cannot be done, give a 
proof of impossibility. If i t  can be done, what is the smallest num- 
ber of acute triangles into which any obtuse triangle can be dis- 
sected ? 

Figure 10 shows a typical attempt that  leads nowhere. The tri- 
angle has been divided into three acute triangles, but the fourth 
is ob~tuse, so nothing has been gained by the preceding cuts. 

The problem (which came to me by way of Me1 Stover of Win- 
nipeg) is amusing because even the best mathematician is likely 
to be led astray by i t  and come to a wrong conclusion. My pleasure 

FIG. 10 
Can this trianale be cut into - .  - 
acute ones? 
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in working on it led me to ask myself a related question: "VVhat 
is the smallest number of acute triangles into which a square can 
be dissected?" For days I was convinced that  nine was the an- 
swer; then suddenly I saw how to reduce it to eight. I wonder 
how many readers can discover an eight-triangle solution, or 
perhaps an even better one. I am unable to prove that eight is the 
minimum, though I strongly suspect that it is. 

2 .  H O W  L O N G  I S  A " L U N A R " ?  

I N  H. G. WELLS'S NOVEL T h e  First M e n  in t h e  Moon  our natural 
satellite is found to be inhabited by intelligent insect creatures 
who live in caverns below the surface. These creatures, let us 
assume, have a unit of distance that  we shall call a "lunar." I t  was 
adopted because the moon's surface area, if expressed in square 
lunars, exactly equals the moon's volume in cubic lunars. The 
moon's diameter is 2,160 miles. How many miles long is a lunar? 

3 .  THE G A M E  OF G O O G O L  

IN 1958 JOHN H. FOX, JR., of the Minneapolis-Honeywell R8egu- 
lator Company, and L. Gerald Marnie, of the Massachusetts Insti- 
tute of Technology, devised an unusual betting game which they 
call Googol. I t  is played as follows : Ask someone to take as niany 
slips of paper as he pleases, and on each slip write a different 
positive number. The numbers may range from small fractions of 
1 t o  a number the size of a "googol" (1 followed by a hundred 
0's) or even larger. These slips are turned face down and shuffled 
over the top of a table. One a t  a time you turn the slips face up. 
The aim is to stop turning when you come to the number that; you 
guess to be the largest of the series. You cannot go back and pick 
a previously turned slip. If you turn over all the slips, then of 
course you must pick the last one turned. 

Most people will suppose the odds against your finding the 
highest number to be a t  least five to one. Actually if you adopt the 
best strategy, your chances are a little better than one in tlhree. 
Two questions arise. First, what is the best strategy? (Note that 
this is not the same as asking for a strategy that will maximize 
the value of the selected number.) Second, if you follow this 
strategy, how can you calculate your chances of winning? 
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When there are only two slips, your chance of winning is 
obviously 112, regardless of which slip you pick. As the slips 
increase in number, the probability of winning (assuming that 
you use the best strategy) decreases, but the curve flattens quick- 
ly, and there is very little change beyond ten slips. The probability 
never drops below 113. Many players will suppose that they can 
make the task more difficult by choosing very large numbers, but 
a little reflection will show that the sizes of the numbers are 
irrel~evant. I t  is only necessary that the slips bear numbers that 
can be arranged in increasing order. 

The game has many interesting applications. For example, a 
girl decides to marry before the end of the year. She estimates 
that she will meet ten men who can be persuaded to propose, but 
once she has rejected a proposal, the man will not try again. 
What strategy should she follow to maximize her chances of 
accepting the top man of the ten, and what is the probability that 
she will succeed? 

The strategy consists of rejecting a certain number of slips of 
paper (or proposals), then picking the next number that exceeds 
the highest number among the rejected slips. What is needed is a 
formula for determining how many slips to reject, depending on 
the total number of slips. 

4 .  M A R C H I N G  CADETS A N D  A  T R O T T I N G  D O G  

A SQUARE FORMATION of Army cadets, 50 feet on the side, is 
marching forward a t  a constant pace [see Fig. 111. The company 
mascot, a small terrier, starts a t  the center of the rear rank 
[position A in the illustration], trots forward in a straight line to 

FIG. I 1  
How far does the dog trot? 
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the center of the front rank [posi t ion  Bl, then trots back again in 
a straight line to the center of the rear. At the instant he returns 
to position A, the cadets have advanced exactly 50 feet. Assuming 
that the dog trots a t  a constant speed and loses no time in t,urn- 
ing, how many feet does he travel? 

If you solve this problem, which calls for no more than a kn~owl- 
edge of elementary algebra, you may wish to tackle a much more 
difficult version proposed by the famous puzzlist Sam Loyd. (See 
Mathemat ical  Puzz les  o f  S a m  Lozjd, Vol. 2, Dover paperback, 
1960, page 103.) Instead of moving forward and back through 
the marching cadets, the mascot trots with constant speed around 
the outside of the square, keeping as close as possible to the square 
a t  all times. (For the problem we assume that  he trots along the 
perimeter of the square.) As before, the formation has marched 
50 feet by the time the dog returns to point A. How long izr the 
dog's path? 

Barr's belt (top) and an unsatisfactory way to fold it (bottom). 

5 .  B A R R ' S  B E L T  

STEPHEN BARR of Woodstock, New York, says that his dresssing 
gown has a long cloth belt, the ends of which are cut at 45-degree 
angles as shown in Figure 12. When he packs the belt for a trip, 
he likes to roll i t  up as neatly as possible, beginning a t  one end, 
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but the slanting ends disturb his sense of symmetry. On the 
other hand, if he folds over an end to make i t  square off, then the 
uneven thicknesses of cloth put lumps in the roll. He experiment- 
ed with more complicated folds, but t ry  as he would, he could not 
achieve a rectangle of uniform thickness. For example, the fold 
shown in the illustration produces a rectangle with three thick- 
nesses in section A and two in section B. 

"Nothing is perfect,'' says one of the Philosophers in James 
Stephens' The Crock of Gold. "There are lumps in it." Nonethe- 
less, Barr finally managed to fold his belt so that  each end was 
straight across and part of a rectangle of uniform thickness 
throughout. The belt could then be folded into a neat roll, free of 
lumps. How did Barr fold his belt? A long strip of paper, properly 
cut a t  the ends, can be used for working on the problem. 

6 .  W H I T E ,  BLACK A N D  B R O W N  

PRO~?ESSOR MERLE WHITE of the mathematics department, Pro- 
fessor Leslie Black of philosophy, and Jean Brown, a young 
sten'ographer who worked in the university's office of admissions, 
were lunching together. 

"Isn't it  remarkable," observed the lady, "that our last names 
are Black, Brown and White and that one of us has black hair, 
one brown hair and one white." 

"It is indeed," replied the person with black hair, "and have 
you noticed that not one of us has hair that matches his or her 
name?" 

"13y golly, you're right !" exclaimed Professor White. 
If the lady's hair isn't brown, what is the color of Professor 

Black's hair ? 

7 .  THE P L A N E  I N  THE W I N D  

AN .AIRPLANE FLIES in a straight line from airport A to airport B, 
then back in a straight line from B to A. I t  travels with a constant 
engine speed and there is no wind. Will its travel time for the 
same round trip be greater, less or the same if, throughout both 
flights, a t  the same engine speed, a constant wind blows from 
A to B?  
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8 .  W H A T  P R I C E  P E T S ?  

THE OWNER of a pet shop bought a certain number of hamsters 
and half that many pairs of parakeets. He paid $2 each for the 
hamsters and $1 for each parakeet. On every pet he placed 2% re- 
tail price that was an advance of 10 per cent over what he paid 
for it. 

After all but seven of the creatures had been sold, the owner 
found that he had taken in for them an amount of money exactly 
equal to what he had originally paid for all of them. His potential 
profit, therefore, was represented by the combined retail value of 
the seven remaining animals. What was this value? 

A N S W E R S  

1. A number of readers sent "proofs" that an obtuse triangle 
cannot be dissected into acute triangles, but of course it can. Fig- 
ure 13 shows a seven-piece pattern that applies to any obtuse 
triangle. 

FIG.  13 
Obtuse triangle cut into :seven 
acute ones. 

I t  is easy to see that seven is minimal. The obtuse angle must be 
divided by a line. This line cannot go all the way to the other side, 
for then it  would form another obtuse triangle, which in turn 
would have to be dissected, consequently the pattern for the 
large triangle would not be minimal. The line dividing the obtuse 
angle must, therefore, terminate a t  a point inside the triangle. 
At this vertex, a t  least five lines must meet, otherwise the angles 
a t  this vertex would not all be acute. This creates the inner penta- 
gon of five triangles, making a total of seven triangles in all. 
Wallace Manheimer, a Brooklyn high school teacher a t  the time, 
gave this proof as his solution to problem El406 in American 
Mathematical Monthly, November 1960, page 923. He also showed 
how to construct the pattern for any obtuse triangle. 
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The question arises: Can any obtuse triangle be dissected into 
sevein acute isosceles triangles? The answer is no. Verner E. Hog- 
gatt, Jr., and Russ Denman (American Mathematical Monthly, 
November 1961, pages 912-913) proved that eight such triangles 
are sufficient for all obtuse triangles, and Free Jamison (ibid., 
June-July 1962, pages 550-552) proved that eight are also nec- 
essary. These articles can be consulted for details as to conditions 
under which less than eight-piece patterns are possible. A right 
triangle and an acute nonisosceles triangle can each be cut into 
nine acute isosceles triangles, and an acute isosceles triangle can 
be cut into four congruent acute isosceles triangles similar to the 
original. 

F I G .  14 
Square cut into eight acute 

triangles. 

A square can be cut into eight acute triangles as shown in 
Figure 14. If the dissection has bilateral symmetry, points P and 
P' must lie within the shaded area determined by the four semi- 
circles. Donald L. Vanderpool pointed out in a letter that asym- 
metric distortions of the pattern are possible with point P any- 
wheire outside the shaded area provided i t  remains outside the 
two large semicircles. 

About 25 readers sent proofs, with varying degrees of formal- 
ity, that the eight-piece dissection is minimal. One, by Harry 
Lindgren, appeared in Australian Mathematics Teacher, Vol. 18, 
pages 14-15, 1962. His proof also shows that the pattern, aside 
from the shifting of points P and P' as  noted above, is unique. 
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H. S. M. Coxeter pointed out the surprising fact that for' any 
rectangle, even though its sides differ in length by an arbitrarily 
small amount, the line segment PP' can be shifted to the center 
to give the pattern both horizontal and vertical symmetry. 

Free Jamison found in 1968 that a square can be dividecl into 
ten acute isosceles triangles. See The Fibonacci Quarterly (De- 
cember 1968) for a proof that a square can be dissected into any 
number of acute isosceles triangles equal or greater than 10. 

Figure 15 shows how the pentagram (regular five-pointed 
star) and the Greek cross can each be dissected into the sm;sllest 
possible number of acute triangles. 

2. The volume of a sphere is 4 ~ 1 3  times the cube of the radius. 
Its surface is 4~ times the square of the radius. If we express the 
moon's radius in "lunars" and assume that its surface in square 
lunars equals its volume in cubic lunars, we can determine the 
length of the radius simply by equating the two formulas, and 
solving for the value of the radius. Pi cancels out on both sides, 
and we find that the radius is three lunars. The moon's radius is 
1,080 miles, so a lunar must be 360 miles. 

3. Regardless of the number of slips involved in the ganne of 
Googol, the probability of picking the slip with the largest num- 
ber (assuming that the best strategy is used) never drops below 
.367879. This is the reciprocal of e, and the limit of the probalbility 
of winning as the number of slips approaches infinity. 

If there are ten slips (a convenient number to use in playing 
the game), the probability of picking the top number is .398. The 
strategy is to turn three slips, note the largest number arnong 
them, then pick the next slip that exceeds this number. In the 
long run you stand to win about two out of every five games. 

What follows is a compressed account of a complete analysis of 
the game by Leo Moser and J. R. Pounder of the University of 
Alberta. Let n be the number of slips and p the number rejected 
before picking a number larger than any on the p slips. Nuimber 
the slips serially from 1 to n. Let k + 1 be the number of the slip 
bearing the largest number. The top number will not be chosen 
unless k is equal to or greater than p (otherwise it will be rejected 
among the first p slips), and then only if the highest number from 
1 to k is also the highest number from 1 to p (otherwise this inum- 
ber will be chosen before the top number is reached). The prob- 
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F I G .  IS 
Minimum dissections for the pentagram and Greek cross. 
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ability of finding the top number in case it is on the k + 1 slip is 
plk, and the probability that the top number actually is on the 
k + 1 slip is l l n .  Since the largest number can be on only one 
slip, we can write the following formula for the probabi1i.t~ of 
finding it : 

Given a value for n (the number of slips) we can determine p 
(the number to reject) by picking a value for p that gives the 
greatest value to the above expression. As n approaches intinity, 
p ln  approaches l l e ,  so a good estimate of p is simply the nearest 
integer to nle. The general strategy, therefore, when the ga.me is 
played with n slips, is to let n le  numbers go by, then pick the 
next number larger than the largest number on the nle  slips 
passed up. 

This assumes, of course, that  a player has no knowledge of the 
range of the numbers on the slips and therefore no bask for 
knowing whether a single number is high or low within the range. 
If one has such knowledge, the analysis does not apply. For ex- 
ample, if the game is played with the numbers on ten one-dollar 
bills, and your first draw is a bill with a number that begins with 
9, your best strategy is to keep the bill. For similar reasons, the 
strategy in playing Googol is not strictly applicable to the un- 
married girl problem, as many readers pointed out, because the 
girl presumably has a fair knowledge of the range in value of her 
suitors, and has certain standards in mind. If the first marl who 
proposes comes very close to her ideal, wrote Joseph P. Rob:inson, 
"she would have rocks in her head if she did not accept a t  once." 

Fox and Marnie apparently hit independently on a problem 
that had occurred to others a few years before. A number of 
readers said they had heard the problem before 1958 --one re- 
called working on it in 1955 - but I was unable to find any pub- 
lished reference to it. The problem of maximizing the value (of the 
selected object (rather than the chance of getting the object of 
highest value) seems first to have been proposed by the f~lmous 
mathematician Arthur Cayley in 1875. (See Leo Moser, "On a 
Problem of Cayley," in Scripta Mathematics, September-Decem- 
ber 1956, pages 289-292.) 
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4. Let 1 be the length of the square of cadets and also the time 
i t  takes them to march this length. Their speed will also be 1. Let 
x be 1;he total distance traveled by the dog and also its speed. On 
the dog's forward tr ip his speed relative to the cadets will be x - 1. 
On the return tr ip his speed relative to the cadets will be x + 1. 
Each tr ip is a distance of 1 (relative to the cadets), and the two 
trips are completed in unit time, so the following equation can be 
written : 

Th.is can be expressed as the quadratic: x2 - 22 - 1 = 0, for 
which x has the positive value of 1 + fl Multiply this by 50 to 
get the final answer: 120.7+ feet. In other words, the dog trav- 
els a total distance equal to the length of the square of cadets plus 
that  same length times the square root of 2. 

Loyd's version of the problem, in which the dog trots around 
the moving square, can be approached in exactly the same way. 
I pariaphrase a clear, brief solution sent by Robert F. Jackson of 
the Computing Center a t  the University of Delaware. 

As before, let 1 be the side of the square and also the time it 
takes the cadets to go 50 feet. Their speed will then also be 1. Let 
x be the distance traveled by the dog and also his speed. The dog's 
speed with respect to the speed of the square will be x - 1 on his 
forward trip, d m  on each of his two transverse trips, and 
x + I on his backward trip. The circuit is completed in unit time, 
so we can write this equation: 

This can be expressed as the quartic equation: x4 - 4 9  - 
2x2 + 4x + 5 = 0. Only one positive real root is not extraneous: 
4.18112+. We multiply this by 50 to get the desired answer: 
209.056+feet. 

Theodore W. Gibson, of the University of Virginia, found that 
the first form of the above equation can be written as follows, 
simply by taking the square root of each side: 
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which is remarkably similar to the equation for the first version 
of the problem. 

Many readers sent analyses of variations of this problem: a 
square formation marching in a direction parallel to the square's 
diagonal, formations of regular polygons with more than four 
sides, circular formations, rotating formations, and so on. Th~omas 
J. Meehan and David Salsburg each pointed out that the problem 
is the same as that of a destroyer making a square search palttern 
around a moving ship, and showed how easily it could be solved 
by vector diagrams on what the Navy calls a "maneuvering 
board." 

5. The simplest way to fold Barr's belt so that each end is 
straight across and part of a rectangle of uniform thickness is 
shown in Figure 16. This permits the neatest roll (the seams 
balance the long fold) and works regardless of the belt's length 
or the angles a t  which the ends are cut. 

F I G .  16 
How Burr folds his beh. 

6. The assumption that  the "lady" is Jean Brown, the s1;enog- 
rapher, quickly leads to a contradiction. Her opening remark 
brings forth a reply from the person with black hair, theirefore 
Brown's hair cannot be black. I t  also cannot be brown, for then 
it would match her name. Therefore it must be white. This 'leaves 
brown for the color of Professor Black's hair and black foir Pro- 
fessor White. But a statement by the person with black hair 
prompts an exclamation from White, so they cannot be the same 
person. 

I t  is necessary to assume, therefore, that Jean Brown is a man. 
Professor White's hair can't be white (for then i t  would .match 
his or her name), nor can i t  be black because he (or she) replies 
to the black-haired person. Therefore i t  must be brown. If the 
lady's hair isn't brown, then Professor White is not a lady. Brown 
is a man, so Professor Black must be the lady. Her hair can't be 
black or brown, so she must be a platinum blonde. 

7. Since the wind boosts the plane's speed from A to IB and 
retards i t  from B to A, one is tempted to suppose that these 
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forces; balance each other so that  total travel time for the com- 
bined flights will remain the same. This is not the case, because 
the tiirne during which the plane's speed is boosted is shorter than 
the time during which i t  is retarded, so the over-all effect is one 
of retardation. The total travel time in a wind of constant speed 
and clirection, regardless of the speed or direction, is always 
greater than if there were no wind. 

8. ]Let x be the number of hamsters originally purchased and 
also the number of parakeets. Let y be the number of hamsters 
among the seven unsold pets. The number of parakeets among 
the seven will then be 7 - ?I. The number of hamsters sold (at  a 
price of $2.20 each, which is a markup of 10 per cent over cost) 
will be x - y, and the number of parakeets sold (a t  $1.10 each) 
will be x - 7 + y. 

The cost of the pets is therefore 2x dollars for the hamsters and 
x dollars for the parakeets - a total of 3x  dollars. The hamsters 
that  were sold brought 2.2 ( x  - y) dollars and the parakeets sold 
brought 1.1 ( x  - 7 + y) dollars - a total of 3 . 3 ~  - 1.121 - 7.7 
dollars. 

We are  told that  these two totals are  equal, so we equate them 
and simplify to obtain the following Diophantine equation with 
two integral unknowns : 

3x  = l l y  + 77 

Sin'ce x and y are positive integers and y  is not more than 7, 
i t  is a simple matter to t ry  each of the eight possible values (in- 
cluding zero) for y to determine which of them makes x also 
integral. There are  only two such values: 5 and 2. Each would 
lead to a solution of the problem were i t  not for the fact that  the 
parakeets were bought in pairs. This eliminates 2 as a value for 
y because it would give x (the number of parakeets purchased) 
the odld value of 33. We conclude therefore that  y is 5. 

A complete picture can now be drawn. The shop owner bought 
44 harnsters and 22 pairs of parakeets, paying altogether $132 for 
them. He sold 39 hamsters and 21 pairs of parakeets for a total 
of $132. There remained five hamsters worth $11 retail and two 
parakeets worth $2.20 retail - a combined value of $13.20, which 
is  the answer to the problem. 



C H A P T E R  F O U R  

The Games and Puzzles 
of Lewis Carroll 

THE REVEREND Charles L. Dodgson, who wrote immortal 
fantasy under the pseudonym of Lewis Carroll, was an  undis- 
tinguished mathematician who delivered dull lectures a t  Oxford 
and penned equally dull treatises on such topics as  geometry and 
algebraic determinants. Only when he approached mathennatics 
in a less serious mood did his subject and his way of writing about 
i t  take on lasting interest. Bertrand ~ u s s e l l ' h a s  said that Car- 
roll's only significant discoveries were two logical paradoxes that  
were published as  jokes in the journal Mind. Carroll also wrote 
two books on logic for young people, each dealing with what are 
now old-fashioned topics, but containing exercise problems so 
quaint and absurd that  both books, recently combined into one 
Dover paperback, are  now winning new readers. His serious text- 
books have long been out of print, but his two volumes of original 
puzzles, A Tangled Tale and Pillozo Problems, are  also available 
today in a single Dover paperback edition. Without touching on 
any topics in these four books, or overlapping any recreational 
material in Warren Weaver's fine article "Lewis Carroll: Mathe- 
matician" (Scientific American, April 1956), let us consider some 
of the Reverend Dodgson's more obscure excursions into the game 
and puzzle field. 
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In  Sy lv i e  and B r u n o  Concluded, the second part  of Carroll's 
now almost forgotten fantasy S y l v i e  and B r u n o ,  a German pro- 
fessoi- asks a group of house guests if they are familiar with the 
curious paper r ing that  can be formed by giving a str ip a half- 
twist, then joining the ends : 

" 'I saw one made, only yesterday,' the Earl replied. 'Muriel, 
my child, were you not making one, to amuse those children you 
had to tea?' 

" 'Yes, I know that  Puzzle,' said Lady Muriel. 'The Ring has 
only one surface, and only one edge. It's very mysterious!' " 

The professor proceeds to demonstrate the close connection 
between the Moebius strip and another remarkable topological 
monstrosity, the projective plane : a one-sided surface with n o  
edges. First  he asks Lady Muriel for three of her handkerchiefs. 
Two (are placed together and held up by their top corners. The 
top edges are  sewn together, then one handkerchief is given a 
half-twist and the bottom edges are  similarly joined. The result 
is of course a Moebius surface with a single edge consisting of 
four handkerchief edges. 

The third handkerchief likewise has four edges that  also form 
a closed loop. If these four edges are  now sewn to the four edges 
of the Moebius surface, the professor explains, the result will be a 
closed, edgeless surface that  is like that  of a sphere except that  i t  
will have only one side. 

" 'I see!' Lady Muriel eagerly interrupted. 'Its ou ter  surface 
will be continuous with its i n n e r  surface! But i t  will take time. 
I'll sew i t  up after  tea.' She laid aside the bag, and resumed her 
cup of tea. 'But why do you call i t  Fortunatus's Purse, Mein Herr?' 

"The dear old man beamed upon her. . . . 'Don't you see, my 
child. . . . Whatever is ins ide  that  Purse, is outside i t ;  and what- 
ever i~ outs ide  it, is ins ide  it. So you have all the wealth of the 
world in that  leetle Purse!' " 

I t  is just as  well that  Lady Muriel never gets around to sewing 
on thle third handkerchief. I t  cannot be done without self-inter- 
section of the surface, but the proposed construction does give 
a valuable insight into the structure of the projective plane. 

Adinirers of Count Alfred Korzybski, who founded general 
semantics, are fond of saying that  "the map is not the territory." 
Carrolll's German professor explains how in his country a map 
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Lewis Carroll: a drawing by Harry Furniss, illustrator of Carroll's Sylvie and 
Bruno. 

and territory eventually became identical. To increase accuracy, 
map makers gradually expanded the scale of their maps, first 
to six yards to the mile, then 100 yards. 

" 'And then came the grandest idea of all! We actually malde a 
map of the country, on the scale of a mile to the mile !' 

" 'Have you used i t  much?' I enquired. 
" 'It has never been spread out, yet,' said Mein Herr. 'The 

farmers objected: they said i t  would cover the whole coui~try, 
and shut out the sunlight! So we now use the country itself, aLs its 
own map, and I assure you it does nearly as well.' " 

All this is Carroll's way of poking fun a t  what he thought was 
an excessive English respect for German erudition. '4Nowad:tys," 
he wrote elsewhere, "no man of Science, that  setteth any store by 
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his good name, will cough otherwise than thus, Ach ! Euch ! Auch !" 
In The Diaries of Lewis Carroll, published by the Oxford Uni- 

versity Press in 1954, are  many entries that  reflect his constant 
preoccupation with recreational mathematics. On December 19, 
1898, he wrote: "Sat up last night till 4 A.M., over a tempting 
problem, sent me from New York, 'to find three equal [in areal 
rational-sided right-angled triangles.' I found two, whose sides 
a re  20,21,29; 12,35,37;  but could not find three." Perhaps some 
readers will enjoy seeing if they can succeed where Carroll 
failed. Actually there is no limit to the number of right triangles 
that  can be found with integral sides and equal areas, but beyond 
three triangles the areas are  never less than six-digit numbers. 
Carroll came very close to finding three such triangles, as we will 
explain in the answer section. There is one answer in which the 
area involved, although greater than the area of each triangle 
cited by Carroll, is still less than 1,000. 

"I have worked out in the last few days," Carroll records on 
May 27, 1894, "some curious problems on the plan of 'lying' 
dilemma. E.g., 'A says B lies; B says C lies ; C says A and B lie.' " 
The question is: Who lies and who tells the t ru th?  One must 
assurne that  A refers to B's statement, B to C's statement, and C 
to the combined statements of A and B. 

Of several unusual word games invented by Carroll, the soli- 
taire game of Doublets became the most popular in his day, partly 
because of prize competitions sponsored by the English magazine 
Vanity Fair. The idea is to take two appropriate words of the 
same length, then change one to the other by a series of inter- 
mediate words, each differing by only one letter from the word 
preceding. Proper names must not be used for the linking words, 
and the words should be common enough to be found in the aver- 
age abridged dictionary. For example, PIG can be turned into STY 

as follows : 

PIG 
WIG 

WAG 

WAY 

SAY 

STY 
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One must strive, of course, to effect tke ehange with the small- 
est possible number of links. For readers who enjoy word pu:azles, 
here are  six Doublets from Vanity Fair's first contest. It will be 
interesting to see if any readers succeed in making the changes 
with fewer links. The Doublets are:  

Prove GRASS to be GREEN. 

Evolve M A N  from APE. 

Raise ONE to TWO. 

Change BLUE to PINK. 

Make WINTER SUMMER. 

Put  ROUGE on CHEEK. 

Like so many mathematicians, Carroll enjoyed all sorts of 
wordplay: composing anagrams on the names of famous people 
(one of his best: William Ewart  Gladstone - Wild agitator! 
Means well), writing acrostic verses on the names of little :girls, 
inventing riddles and charades, making puns. His letters to his 
child friends were filled with this sort of thing. In  one letter he 
mentions his discovery that  the letters ABCDEFGI can be rearranged 
to make a hyphenated word. Can anyone discover i t?  

Carroll's writings abound in puns, though they incline lto be 
clever rather than outrageous. He once defined a "sillygism" as  
the combining of two prim misses to yield a delusion. His virtu- 
osity in mathematical punning reached its highest point in a 
pamphlet of political satire entitled Dynamics of a Parti-cle. I t  
opens with the following definitions : 

"Plain Superficiality is the character of a speech, in which any 
two points being taken, the speaker is found to lie wholly with 
regard to those two points. Plain Anger is the inclination of two 
voters to one another, who meet together, but whose viewl3 are 
not in the same direction. When a Proctor, meeting another 
Proctor, makes the votes on one side equal to those on the other, 
the feeling entertained by each side is called Right Anger. When 
two parties, coming together, feel a Right Anger, each is said to 
be Complementary to the other (though, strictly speaking, this is 
very seldom the case). Obtuse Anger is that  which is greater than 
Right Anger." 
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Mathematical puns also provide most of the humor for another 
Carroll pamphlet, T h e  Nezo Method o f  Evaluation as  Applied t o  
T. Pi stands for the salary of Benjamin Jowett, professor of Greek 
and translator of Plato, whom many suspected of harboring un- 
orthcldox religious views. The tract satirizes the failure of Oxford 
officials to agree on Professor Jowett's salary. The following 
passage, in which J stands for Jowett, will convey the pamphlet's 
flavor : 

"It had long been perceived that the chief obstacle to the evalu- 
ation of P was the presence of J ,  and in an earlier age of mathe- 
matics J would probably have been referred to rectangular axes, 
and divided into two unequal parts- a process of arbitrary 
elimination which is now considered not strictly legitimate." 

One can almost hear the Queen of Hearts screaming: "Off with 
his head !" 

Great writers who like to indulge in wordplay are almost al- 
ways admirers of Carroll. There are many Carrollian references 
in James Joyce's Finnegans W a k e ,  including one slightly blasphe- 
mous reference to Carroll himself: "Dodgfather, Dodgson & Coo." 
I t  is not surprising to learn that Vladimir Nabokov, whose novel 
Lolitla is notable not only for its startling theme but also for its 
verbal high jinks, translated Alice's Adventures  in Wonderland 
into Russian in 1923 (not the first translation, but the best, he 
has said). There are other interesting Carroll-Nabokov links. 
Like Carroll, Nabokov is fond of chess (one of his novels, T h e  
Defense,  is about a monomaniacal chess player) and Humbert 
Humbert, the narrator of Lolita, resembles Carroll in his enthu- 
siasm for little girls. One must hasten to add that Carroll would 
surely have been shocked by Lolita. 

Doldgson considered himself a happy man, but there is a gentle 
undertow of sadness that runs beneath much of his nonsense: 
the loneliness of a shy, inhibited bachelor who lay awake a t  night 
battling what he called "unholy thoughts" by inventing compli- 
catedl "pillow problems" and solving them in his head. 

Y e t  w h a t  are all such gaieties t o  m e  
Whose  thoughts  are full o f  indices and surds? 

x2 + 7x + 53 
= 1113. 
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A D D E N D U M  

LEWIS CARROLL invented Doublets a t  Christmas 1877 for two girls 
who "had nothing to do." He published a number of leaflets and 
pamphlets about the game, which he first called Word-links. For 
details on these publications, and a history of the game, see The 
Lezois Carroll Handbook, edited by Roger L. Green, revised edi- 
tion, Oxford Press, pages 94-101. 

Doublet problems appear in scores of old and new puzzle books. 
Dmitri Borgmann, on page 155 of his recent Language on Vaca- 
tion (Scribner's, 1965), calls them "word ladders" and points out 
that the ideal word ladder is one in which the two words have no 
identical letters a t  the same positions, and the change is ac- 
complished with the same number of steps as there are letters 
in each word. He gives as an example COLD to WARM in four steps. 

I t  is not surprising to find Doublets turning up (under the 
name of "word golf") in Nabokov's Pale Fire. The novel's mad 
narrator, commenting on line 819 of the poem around which the 
novel is woven, speaks of HATE to LOVE in three steps, LASS to 
MALE in four, and LIVE to DEAD in five, with LEND in the middle. 
Solutions to the first two are provided by Mary McCarthy iin her 
remarkable review of the novel (New Republic, June 4, 11362). 
Miss McCarthy adds some new Doublets of her own, based on the 
words in the novel's title. 

John Maynard Smith, in an essay on "The Limitations of R/[olec- 
ular Evolution" (in The Scientist Speculates, edited by I. J. 
Good, Basic Books, 1962, pages 252-256), finds a strikin.g re- 
semblance between Doublets and the process by which one species 
evolves into another. If we think of the helical DNA molec~~le as 
one enormously long "word," then single mutations correspond to 
steps in the word game. APE actually changes to MAN by a process 
closely analogous to the playing of Doublets! Smith gives as an 
example the ideal change of WORD to GENE in four steps. 

A N S W E R S  

THE ANSWER in smallest numbers for Lewis Carroll's prolblem 
of finding three right triangles with integral sides and equal 
areas is 40,42 and 58 ; 24,70 and 74 ; and 15,112 and 113. In each 
case the area is 840. Had Carroll doubled the size of the two 
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triangles that  he found, he would have obtained the first two 
triangles cited above, from which the step to the third would have 
been easy. Henry Ernest Dudeney, in the answer to problem 107 
in his Canterburg Puzzles, gives a formula by which such triangle 
triplets can be easily found. 

Calrroll's truth-and-lie problem has only one answer that  does 
not lead to a logical contradiction: A and C lie; B speaks the 
truth. The problem yields easily to the propositional calculus by 
taking the word "says" as  the logical connective called equiva- 
lence. Without drawing on symbolic logic one can simply list the 
eighl; possible combinations of lying and truth-telling for the 
three men, then explore each combination, eliminating those that  
lead to logical contradictions. 

Cstrroll's solutions to the six Doublets are :  GRASS, CRASS, CRESS, 
TRESS, TREES, FREES, FREED, GREED, GREEN ; APE, ARE, ERE, ERR, EAR, 
MAR, MAN; ONE, OWE, EWE, EYE, DYE, DOE, TOE, TOO, TWO; BLUE, 
GLUE;, GLUT, GOUT, POUT, PORT, PART, PANT, PINT, PINK; WINTER, 
WINNER, WANNER, WANDER, WARDER, HARDER, HARPER, HAMPER, 
DAMIPER, DAMPED, DAMMED, DIMMED, DIMMER,, SIMMER, SUMMER ; 
ROUGE, ROUGH, SOUGH, SOUTH, SOOTH, BOOTH, BOOTS, BOATS, BRATS, 
BRAEIS, CRASS, CRESS, CREST, CHEST, CHEAT, CHEAP, CHEEP, CHEEK. 

The letters ABCDEFGI rearrange to make the hyphenated word 
BIG-FACED. 

After Carroll's answers to his Doublets appeared in Scientific 
American, a large number of readers sent in shorter answers. 
The following beautiful seven-step change of GRASS to GREEN 

was discovered by A. L. Cohen, Scott Gallagher, Lawrence 
Jase:ph, George Kapp, Arthur H. Lord, Sidney J. Osborn and 
H. S. Percival: 

GRASS 

CRASS 

CRESS 

TRESS 

TREES 

TREED 

GREED 

GREEN 
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Mrs. C. C. Gotlieb sent a similar seven-stepper in which the 
second, third and fourth words of the above solution are replaced 
by GRAYS, TRAYS, and TREYS. If the archaic word GREES is ac- 
cepted, the change can be made in four steps, as Stephen Barr, 
H. S. Percival and Richard D. Thurston independently found: 

GRASS 

GRAYS 

GREYS 

GREES 

GREEN 

Ten readers (David M. Bancroft, Robert Bauman, Frederick J. 
Hooven, Arthur H. Lord, Mrs. Henry A. Morss, Sidney J. Osloorn, 
Dodi Schultz, George Starbuck, Edward Wellen and a reader 
whose signature was illegible) sent the following excellent five- 
step change of APE to M A N :  

APE 

APT 

OPT 

OAT 

MAT 

MAN 

Many readers found seven-step changes of ONE to TWO, but 
since all contained a t  least one uncommon word, I award the palm 
to  H. S. Percival for this six-stepper : 

ONE 

OYE 

DYE 

DOE 

TOE 

TOO 

TWO 

"Oye" is a Scottish word for grandchild, but i t  appears in 
Webster 's  New Collegiate Dictionary. 
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BL,UE was turned to PINK in seven steps by Wendell Perkins 
(left) and Richard D. Thurston (right) : 

BLUE 

GLUE 

GLUT 

GOUT 

POUT 

PONT 

PINT 

PINK 

BLUE 

BLAE 

BLAT 

BEAT 

PEAT 

PENT 

PINT 

PINK 

Frederick J. Hooven found this admirable eight-step change, 
all with common words, of WINTER to SUMMER: 

WINTER 

WINDER 

WANDER 

WARDER 

HARDER 

HARMER 

HAMMER 

HUMMER 

SUMMER 

But i t  can be done in seven steps by using less familiar words 
(Mrcr. Henry A. Morss, Richard D. Thurston, and H. S. Percival) : 

WINTER 

LINTER 

LISTER 

LISPER 

LIMPER 

SIMPER (or LIMMER) 

SIMMER 

SUMMER 



The Games and Puzzles of Lewis Carra~ll 57 

Lawrence Jaseph (left) and Frederick J. Hooven (right;) re- 
duced the change of ROUGE to CHEEK to 11 steps: 

ROUGE 

ROUTE 

ROUTS 

ROOTS 

BOOTS 

BLOTS 

BLOCS 

BLOCK 

CLOCK 

CHOCK 

CHECK 

CHEEK 

ROUGE 

ROUTE 

ROUTS 

ROOTS 

COOTS 

COONS 

COINS 

CHINS 

CHINK 

CHICK 

CHECK 

CHEEK 

A maze drawn by Lewis Carroll in his early twenties. The object is to find your 
w a y  out of the central space. Paths cross over and under one another, but are 
occasionally blocked by single-line barriers. 
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Paper Cutting 

I N  T h e  2nd Scientific American Book o f  Mathematical Puzzles & 
Diversions there is a chapter on recreations that involve folding 
sheets of paper without cutting them. When a pair of scissors is 
brought into play, a wealth of interesting new possibilities open 
up, many of which serve to dramatize basic and important theo- 
rems of plane geometry in curious ways. 

For example, consider the well-known theorem which states 
that the sum of the interior angles of any triangle is a straight 
angle (an angle of 180 degrees). Cut a triangle from a sheet of 
paper. Put a dot near the vertex of each angle, snip off the cor- 
ners, and you will find that the three dotted angles always fit 
together neatly to form a straight angle [see Fig. 17aI. Try it with 
the corners of a quadrilateral. The figure may be of any shape, 
inclulding concave forms such as the one shown in Figure 17b. 
The four snipped angles always join to form a perigon: an angle 
of 36'0 degrees. If we extend the sides of any convex polygon as  
shown in Figure 17c, the dotted angles are called exterior angles. 
Regardless of how many sides the polygon may have, if its ex- 
terior angles are cut out and joined, they also will add up to 360 
degrees. 

If two or more sides of a polygon intersect, we have what is 
sometimes called a crossed polygon. The five-pointed star or 
pentagram, the fraternal symbol of the ancient Pythagoreans, is 
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How to discover theorems of plane geometry by cutting polygons. 
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a familiar example. Rule the star  as irregularly as  you please 
(you may even include the degenerate forms shown in Figure 18, 
in w'hich one or two points of the star  fail to  extend beyond the 
body), dot the five corners, cut out the s tar  and tr im off the cor- 
ners. You may be surprised to find that, as in the case of the tri- 
angle, the points of any pentagram join to form a straight angle. 
This theorem can be confirmed by another quaint empirical tech- 
nique that  might be called the sliding-match method. Draw a 
large pentagram, then place a match alongside one of the lines as 
shown in the top illustration of Figure 18. Slide the match up 
until its head touches the top vertex, then swing its tail to the 
left until the match is alongside the other line. The match has now 
alterled its orientation on the plane by an angle equal to the angle 
a t  the top corner of the star. Slide the match down to the next 
corner and do the same thing. Continue sliding the match around 
the star, repeating this procedure a t  each vertex. When the match 
is back to its original position, it will be upside down, having 
made a clockwise rotation of exactly 180 degrees. This rotation 
is clearly the sum of the pentagram's five angles. 

The sliding-match method can be used for confirming all of the 
theorems mentioned, as well as for finding new ones. It is a handy 
device for measuring the angles of any type of polygon, including 
the s tar  forms and the helter-skelter crossed varieties. Since the 
match must return to its starting position either pointing the 
same way or in the opposite direction, i t  follows (providing the 
match has always rotated in the same direction) that the sum of 
the traversed angles must be a multiple of a straight angle. If the 
match rotates in both directions during its trip, as is often the 
case with crossed polygons, we cannot obtain a sum of the angles, 
although other theorems can be stated. For instance, a match slid 
around the perimeter of the crossed octagon in Figure 19 will 
rotate clockwise a t  the angles marked A, and the same distance 
counterclockwise a t  the angles marked B. Thus we cannot arrive 
a t  the sum of the eight angles, but we can say that  the sum of the 
four A angles equals the sum of the four B angles. This can be 
easily verified by the scissors method or by a formal geometrical 
proof. 

The familiar Pythagorean theorem lends itself to many elegant 
scissors-and-paper demonstrations. Here is a remarkable one dis- 
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Sliding a match around pentagrams shows that the dotted angles add up t t ~  
180 degrees. 
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B 
F I G .  19 
On  this crossed octagon the sum of the angles marked A equals the sum of 
those ,marked 0 .  

coveired in the 19th century by Henry Perigal, a London stock- 
brokler and amateur astronomer. Construct squares on the two 
legs of any right triangle [see Fig. 201. Divide the larger square 
(or either square if they are the same size) into four identical 
parts by ruling two lines through the center, a t  right angles to 
each other and with one line parallel to the triangle's hypotenuse. 
Cut out the four parts and t_he smaller square. You will find that  
all five pieces can be shifted in position, without changing their 
orientation on the plane, to form one large square (shown by 
brokien lines) on the hypotenuse. 
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Perigal discovered this dissection in about 1830, but dicl not 
publish it until 1873. He was so delighted with it that  he had the 
diagram printed on his business card, and gave away hundreds 
of puzzles consisting of the five pieces. (Someone who hats not 
seen the diagram will have considerable difficulty fitting the 
pieces together, first to make two squares, then one large square.) 
It is amusing to learn from Perigal's obituary, in the 1899 no- 
tices of the Royal Astronomical Society of London, that his "imain 
astronomical aim in life" was to convince others, "especially 
young men not hardened in the opposite belief," that it was a 

F I G .  2 0  
Henry Perigal's scissors-and-paper demonstration of Euclid's famous 47th 
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grave misuse of words to say that the moon "rotates" as i t  re- 
volves around the earth. He wrote pamphlets, built models and 
even composed poems to prove his point, "bearing with heroic 
cheeirfulness the continual disappointment of finding none of them 
of any avail." 

The dissection of polygons into pieces that form other polygons 
is one of the most fascinating branches of recreational mathe- 
matics. I t  has been proved that  any polygon can be cut into a 
finite number of pieces that will form any other polygon of the 
same area, but of course such dissections have little interest un- 
less the number of pieces is small enough to make the change 
startling. Who would imagine, for example, that  the regular hex- 
agram, or six-pointed Star of David, could be cut [see Fig. 211 
into as few as five pieces that  will form a square? (The regular 
pentagram cannot be dissected into a square with less than eight 
pieces.) Harry Lindgren, of the Australian patent office, is per- 
haps the world's leading expert on dissections of this type. In 
Figure 22 we see his beautiful six-piece dissection of a regular 
dodecagon to a square. 

A quite different class of paper-cutting recreation, more fa- 
miliar to magicians than mathematicians, involves folding a sheet 
of paper several times, giving it a single straight cut, then open- 
ing up one or both of the folded pieces to reveal some sort of 
surprising result. For example, the unfolded piece may prove 
to be a regular geometric figure or design, or it may have a hole 



Paper Cutting] 65 

F I G .  2 2  
Harry Lindgren's dissection of a regular dodecagon to a square. 

with such a shape. In  1955 the Ireland Magic Company of Chicago 
published a small book called Paper Capers, by Gerald M. Loe, 
which deals almost entirely with such stunts. The book explains 
how to fold a sheet so that  a single cut will produce any desired 
letter of the alphabet, various types of stars and crosses, and such 
complex patterns as  a circular chain of stars, a star  within a star, 
and so on. An unusual single-cut trick that  is familiar to Arneri- 
can magicians is known as the bicolor cut. A square of t:issue 
paper, colored red and black to look like an eight-by-eight check- 
erboard, is folded a certain way, then given a single straight snip. 
The cut separates the red squares from the black and simulta- 
neously cuts out each individual square. With a sheet of onionskin 
paper (the thin paper makes i t  possible to see outlines through 
several thicknesses) i t  is not difficult to devise a method for this 
trick, as well as methods for single-cutting simple geometrical 
figures; but more complicated designs- the swastika foir in- 
stance - present formidable problems. 

An old paper-cutting stunt, of unknown origin, is illustrated in 
Figure 23. I t  is usually presented with a story about two contem- 
porary political leaders, one admired, the other hated. Both men 
die and approach the gates of heaven. The Bad Guy naturally 
lacks the necessary sheet of paper authorizing his admittance. He 
seeks the aid of the Good Guy, standing just behind him. GG folds 
his sheet of paper as shown in a,b,c,d and e, then cuts i t  allong 
the indicated dotted line. He retains the part  on the right, giving 
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F I G .  2 3  
An old paper-cutting trick. 
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the rest to BG. Saint Peter opens the BG's pieces, arranges them 
to form "Hell" as shown a t  bottom left, and sends him off. VVhen 
Saint Peter opens the paper presented by the GG, he finds i t  in the 
shape of the cross shown a t  bottom right. 

It is obviously impossible to fold a sheet flat in such a way that 
a straight cut will produce curved figures, but if a sheet is rolled 
into a cone, plane slices through i t  will leave edges in the form 
of circles, ellipses, parabolas or hyperbolas, depending on the 
angle of the cut. These of course are the conic sections studied by 
the Greeks. Less well known is the fact that a sine curve cam be 
quickly produced by wrapping a sheet of paper many times 
around a cylindrical candle, then cutting diagonally through both 
paper and candle. When unrolled, each half of the paper will have 
a cut edge in the form of a sine curve, or sinusoid, one o:€ the 
fundamental wave forms of physics. The trick is also useful to 
the housewife who wants to put a rippling edge on a sheet of 
shelf paper. 

Here are two fascinating cut-and-fold problems, both involving 
cubes. The first is easy; the second, not so easy. 

1. What is the shortest strip of paper one inch wide that  can 
be folded to make all six sides of a one-inch cube? 

2. A square of paper three inches wide is black on one side and 
white on the other. Rule the square into nine one-inch squares. 
By cutting only along the ruled lines, is i t  possible to cut a pat- 
tern that  will fold along the ruled lines into a cube that  is all lblack 
on the outside? The pattern must be a single piece, and no cuts 
or folds are  permitted that are not along the lines that divide the 
sheet into squares. 

A D D E N D U M  

THERE ARE, of course, all sorts of traditional geometric proofs 
that  the points of the three different types of pentagrams slhown 
in Figure 18 have a total of 180 degrees. The reader may enjoy 
working out some of them, if only to see how much simpleir and 
more intuitively evident the sliding-match proofs are. 

Perigal first published his Pythagorean dissection in Messenger 
of Mathematics, Vol. 2, new series, 1873, pages 103-106. For 
biographical information on Perigal, see his obituary in the 
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Monthly Notices of the Royal Astronomical Society of London, 
Vol. 59, 1899, pages 226-228. Some of his pamphlets are discussed 
by A~ugustus de Morgan in his well-known Budget of Paradoxes 
(reprinted by Dover in 1954). 

The elegant hexagram-to-square dissection was discovered by 
Edward Brind Escott, an insurance company actuary who lived 
in 0;ak Park, Illinois, and who died in 1946. He was an expert on 
number theory, contributing frequently to many different mathe- 
matical journals. His hexagram dissection is given by Henry 
Ernest Dudeney as the solution to problem 109 in Modern Puzzles 
(1926). 

For more about Lindgren's remarkable dissections, see the 
Mathematical Games department of Scientific American, Novem- 
ber 1961, and Lindgren's book on dissections (listed in the 
Biblj.ography) . 

F I G .  2 4  
How a one-inch cube can be folded from a strip one inch w ide  and seven inches 
long. 
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A N S W E R S  
THE SHORTEST strip of paper, one inch wide, that can be folded 
into a one-inch cube is seven inches. A method of folding is de- 
picted in Figure 24. If the strip is black on one side, eight inches 
are necessary for folding an all-black cube. (A way of doing this 
is shown in Recreational Mathematics Magazine, February :L962, 
page 52.) 

The three-inch-square sheet, black on one side only, can be cut 
and folded into an all-black cube in many different ways. This 
cannot be accomplished with a pattern of less than eight unit 
squares, but the missing square inch may be in any posi.tion. 
Figure 25 shows how a pattern with the missing square in the 
center can be folded into the black cube. In all solutions, the cuts 
have a total length of five units. (If the entire sheet is used for 
the pattern, the length of the cut lines can be reduced to four.) 

F I G .  2 5  
An all-black cube can be folded with the pattern at top left. Pattern is black on 
underside. 



C H A P T E R  S I X  

Board Games 

"GAMES POSSESS some of the qualities of works of art," Aldous 
Huxl.ey has written. "With their simple and unequivocal rules, 
they are like so many islands of order in the vague untidy chaos 
of ex.perience. When we play games, or even when we watch them 
being played by others, we pass from the incomprehensible uni- 
verse of given reality into a neat little man-made world, where 
everything is clear, purposive and easy to understand. Competi- 
tion adds to the intrinsic charm of games by making them excit- 
ing, while betting and crowd intoxication add, in their turn, to 
the thrills of competition." 

Huxley is speaking of games in general, but his remarks apply 
with special force to mathematical board games in which the 
outcome is determined by pure thought, uncontaminated by physi- 
cal prowess or the kind of blind luck supplied by dice, cards and 
other randomizing devices. Such games are as old as civilization 
and ;as varied as the wings of butterflies. Fantastic amounts of 
ment(a1 energy have been expended on them, considering the fact 
that until quite recently they had no value whatever beyond that  
of relaxing and refreshing the mind. Today they have suddenly 
become important in computer theory. Chess-playing and checker- 
playing machines that  profit from experience may be the fore- 
runners of electronic minds capable of developing powers as yet 
unim.aginable. 
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F I G .  26  
Relief from a tomb at Sakkara in Egypt shows a board game in profile. Relief 
dates from 2500 B.C. Courtesy of The Metropolitan Museum of Art, Rogers 
Fund, 1908. 

The earliest records of mathematical board games are found in 
the a r t  of ancient Egypt, but they convey little information be- 
cause of the Egyptian convention of showing scenes only in profile 
[see Fig. 261. Some games involving boards have been found in 
Egyptian tombs [Fig. 271, but they are not board games in the 
strict sense, because they also involve a chance element. A bit 
more is known about Greek and Roman board games, but it was 
not until the 13th century A.D. that anyone thought it important 
enough to record the rules of a board game, and it was not until 
the 17th century that the first books on games were written. 

Like biological organisms, games evolve and proliferate new 
species. A few simple games, such as ticktacktoe, may remain 
unchanged for centuries; others flourish for a time, then vanish 
completely. The outstanding example of a dinosaur diversion is 
Rithmomachy. This was an extremely complicated number game 
played by medieval Europeans on a double chessboard with eight 
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F I G .  2 7  
Board game of senet, found in Egyptian tomb of 1400 B.C., also involved 
throwing sticks. The Metropolitan Museum of Art, gift of Egypt Exploration 
Fund, 1901. 

cells on one side and sixteen cells on the other, and with pieces 
in the shapes of circles, squares and triangles. I t  traces back a t  
least to the 12th century, and as late as the 17th century it was 
mentioned by Robert Burton, in The Anatomy of Melancholy, as 
a popular English game. Many learned treatises were written 
about it, but no one plays it today except a few mathematicians 
and medievalists. 

In the U.S. the two most popular mathematical board games are 
of course checkers and chess. Both have long and fascinating his- 
tories, with unexpected mutations in rules from time to time and 
place to place. Today the American checkers is identical with the 
English "draughts," but in other countries there are wide varia- 
tions. The so-called Polish checkers (actually invented in France) 
is now the dominant form of the game throughout most of Europe. 
It  is played on a ten-by-ten board, each side having twenty men 
that capture backward as well as forward. Crowned pieces (called 
queens instead of kings) move like the bishop in chess, and in 
making a jump can land on any vacant cell beyond the captured 
piece. The game is widely played in France (where i t  is called 
dames) and in Holland, and it is the subject of a large analytical 
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literature. In  the French-speaking provinces of Canada, and in 
parts of India, Polish checkers is played on a twelve-by-twelve 
board. 

German checkers (Damenspiel) resembles Polish checkers, but 
i t  is usually played on the English eight-by-eight board. A simi- 
lar form of this "minor Polish" game, as it is sometimes c,alled, 
is popular in the U.S.S.R., where i t  is known as shashki. Spanish 
and Italian variants also are closer to the English. Turkish check- 
ers (duma) is also played on an eight-by-eight board, but each 
side has sixteen men that  occupy the second and third rows att the 
outset. Pieces move and jump forward and sideways, but not 
diagonally, and there are other radical departures from both the 
English and the Polish forms. 

Chess likewise has varied enormously in its rules, tracing back 
ultimately to an  unknown origin in India, probably in the sixth 
century A.D. True, there is today an international chess that is 
standardized, but there are still many excellent non-European 
forms of the game that obviously share a common origin with 
international chess. Japanese chess (shogi) is played as ei~thu- 
siastically in modern Japan as go, though only the latter galme is 
known in Western countries. Shogi is played on a nine-by-nine 
board, with twenty men on each side, arranged a t  the start  on the 
first three rows. The game is won, as in Western chess, by check- 
mating a piece that moves exactly like the king. An interesting 
feature of the game is that  captured pieces can be returned to the 
board to be used by the captor. 

Chinese chess (tse'ung k'i) also ends with the checkmate of a 
piece that moves like the king in Western chess, but the rules are 
quite different from those of the Japanese game. I ts  32 pieces rest 
on the intersections of an eight-by-eight board that  is divided 
across the center by a blank horizontal row called the "rivei+." A 
third variant, Korean chess (tjyang-keui), is played on the inter- 
sections of a board that  has the same pattern as the Chinese 
except that the "river" is not specially marked, so the board looks 
like an eight-by-nine checkerboard. The pieces are  the same in 
number as the Chinese pieces, with the same names and (except 
for the king) the same starting positions, but the two g<ames 
differ considerably in rules and the powers of the pieces. Devotees 
of each of the three Oriental versions of chess look upon the 
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other two versions, as  well as  Western chess, as  decidedly inferior. 
Martian chess ( "jetan"), explained by Edgar Rice Burroughs 

in the appendix to his novel The Chessmen of Mars, is an amusing 
variant, played on a ten-by-ten board with unusual pieces and 
novel rules. For example, the princess (which corresponds rough- 
ly to our king) has the privilege of one "escape move" per game 
that  permits her to flee an  unlimited distance in any direction. 

In addition to these regional variants of chess, modern players, 
momlentarily bored with the orthodox game, have invented a 
weird assortment of games known as  fairy chess. Among the 
many fairy-chess games that  can be played on the standard board 
are :  two-move chess, in which each player plays twice on his 
turn ; a game in which one side plays with no pawns, or with an 
extra row of pawns instead of a queen ; cylindrical chess, in which 
the left side of the board is considered joined to the right side (if 
the board is thought of as  having a half-twist before the sides are  
joined, i t  is called ~oeb ius - s t r ip  chess) ; transportation chess, in 
which any piece can be moved on top of the rook and carried by 
the rook to another square. Dozens of strange new pieces have 
been introduced, such as the chancellor (combining the moves of 
rook and knight), the centaur (combining bishop and knight) 
and even neuter pieces (e.g., a blue queen) that  can be played by 
either side. (In Lewis Padgett's science-fiction novel The Fairy 
Chessmen a war is won by a mathematician who makes a hobby 
of fairy chess. His mind, accustomed to breaking rules, is elastic 
enough to cope with an  equation too bizarre for his more brilliant 
but rnore orthodox colleagues.) 

An amusing species of fairy chess that  is quite old, but still 
provides a delightful interlude between more serious games, is 
played as follows. One player sets up his sixteen men in the usual 
way, but his opponent has only one piece, called the maharajah. A 
queein may be used for this piece, but its moves combine those of 
queen and knight. I t  is placed a t  the outset on any free square not 
threatened by a pawn ; then the other side makes the first move. 
The ]maharajah loses if he is captured, and wins if he checkmates 
the king. Pawns are  not permitted to be replaced by queens or 
other pieces if they advance to the last row. Without this proviso 
i t  is easy to defeat the maharajah simply by advancing the rook 
pawns until they can be queened. Since these and all the other 
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pawns are protected, there is no way the maharajah can prevent 
both pawns from becoming queens. With three queens and two 
rooks in play, the game is easily won. 

Even with this proviso, i t  might be thought that  the maharajah 
has a poor chance of winning, but his mobility is so great that  if 
he moves swiftly and aggressively, he of-ten checkmates early in 
the game. At other times he can sweep the board clean of pieces 
and then force the lone king into a corner checkmate. 

Hundreds of games have been invented that  are played on a 
standard chessboard but have nothing in common with either 
chess or checkers. One of the best, in my opinion, is the now- 
forgotten game of "reversi." I t  uses 64 counters that have con- 
trasting colors, say red and black, on their opposite sides. A crude 
set can be made by coloring one side of a sheet of cardboard, then 
cutting out small circles; a better set can be constructed by buy- 
ing inexpensive checkers or poker chips and gluing the pieces 
into red-black pairs. It is worth the trouble, because the game can 
be an exciting one for every member of the family. 

Reversi starts with an empty board. One player has 32 pieces 
turned red-side up ; the other has 32 turned black-side up. Players 
alternate in placing a single man on the board in conformity with 
the following rules : 

1. The first four men must be placed on the four central 
squares. Experience has shown that i t  is better for the first player 
to place his second man above, below, or to the side of his first 
piece (an example is shown in Figure 28) ,  rather than diagonally 
adjacent, but this is not obligatory. By the same token, i t  is wise 
for the second player not to play diagonally opposite his oppo- 
nent's first move, especially if his opponent is a novice. This gives 
the first player a chance to make the inferior diagonal move on his 
second play. Between experts, the game always begins with the 
pattern shown in Figure 28. 

2. After the four central squares are filled, players continue 
placing single pieces. Each must be placed so that  i t  is adjacent 
to a hostile piece, orthogonally or diagonally. Moreover, it must 
also be placed so that  i t  is in direct line with another piece of the 
same color, and with one or more enemy pieces (and no vacant 
cells) in between. In other words, a piece must always be placed 
so that i t  is one of a pair of friendly pieces on opposite sides of 
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F I G .  2 8  
An opening for the board game of revers;. Numbers are for reference only. 

an enemy piece or a t  opposite ends of a chain of enemy pieces. The 
enemy pieces are considered captured, but instead of being re- 
moved they are turned over, or "reversed," so that  they becom4 
friendly pieces. They are, so to speak, "brainwashed" so that they 
join their captors. Pieces remain fixed throughout the game, but 
may be reversed any number of times. 

3. If the placing of a piece simultaneously captures more than 
one chain of enemy pieces, the pieces in both chains are reversed. 

4. Pieces are captured only by the placing of a hostile piece. 
Chains that become flanked a t  both ends as a result of other 
causes are not captured. 
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F I G .  2 9  
If reversi player with colored pieces makes the next move, he can w in  six pieces. 

5. If a player cannot move, he loses his turn. He continues to 
lose his turn  until a legal move becomes possible for him. 

6. The game ends when all 64 squares are filled, or when neither 
player can move (either because he has no legal move or because 
his counters are gone). The winner is the person with the ]most 
pieces on the board. 

Two examples will clarify the rules: In Figure 28, black plays 
only on cells 43, 44, 45 and 46. In each case he captures and re- 
verses a single piece. In Figure 29, if red plays on cell 22 11e is 
compelled to reverse six pieces: 21, 29, 36, 30, 38 and 46. ,As a 
result the board, which formerly was mostly black, suddenly 
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becoines mostly red. Dramatic reversals of color are character- 
istic of this unusual game, and it is often difficult to say who has 
the better game until the last few plays are  made. The player with 
the fewest pieces frequently has a strong positional advantage. 

Some pointers for beginners: If possible, confine early play to 
the central sixteen squares, and t ry  especially to occupy cells 19, 
22, 43 and 46. The first player forced outside this area is usually 
placed a t  a disadvantage. Outside the central sixteen squares, the 
most valuable cells to occupy are the corners of the board. For 
this reason i t  is unwise to play on cells 10, 15, 50 or 55, because 
this gives your opponent a chance to take the corner cells. Next to 
the corners, the most desirable cells are  those that  are  next but 
one to the corners (3, 6, 17, 24, 41, 48, 59 and 62). Avoid giving 
your opponent a chance to occupy these cells. Deeper rules of 
strategy will occur to any player who advances beyond the novice 
stage. 

Little in the way of analysis has been published about reversi ; 
i t  is hard to say who, if either player, has the advantage on even 
a board a s  small a s  four-by-four. Here is a problem some readers 
may enjoy trying to solve. Is  i t  possible for a game tc, occur in 
which a player, before his tenth move, wins by removing all the 
enemy pieces from the board? 

Two Englishmen, Lewis Waterman and John W. Mollett, both 
claimed to be the sole inventor of reversi. Each called the other a 
fraud. In the late 1880's, whenathe game was enormously popular 
in England, rival handbooks and rival firms for the manufacture 
of equipment were authorized by the two claimants. Regardless 
of who invented it, reversi is a game that  combines complexity 
of structure with rules of delightful simplicity, and a game that  
does not deserve oblivion. 

A D D E N D U M  

THE GAME of Maharajah (which I had found in R. C. Bell's Board 
and Table Games)  can always be won by the player with conven- 
tional pieces if he plays circumspectly. Richard A. Blue, Dennis 
A. Keen, William Knight and Wallace Smith all sent strategies 
against which the maharajah could not save himself, but the most 
efficient line of play came from William E. Rudge, then a physics 
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student a t  Yale University. If Rudge's strategy is bug-free, as it 
seems to be, the maharajah can always be captured in 25 moves or 
less. 

The strategy is independent of the moves made by M (thc ma- 
harajah) except for three possible moves. Only the moves ad the 
offense are  listed: 

1. P-QR4 
2. P - QR5 
3. P -  QR6 
4. P - QR7 
5. P-K3 
6. N - KR3 
7. N-KB4 
8. B-Q3 
9. Castles 

lo .  Q-KR5 
11. N-QB3 
12. QN- Q5 
13. R- QR6 
14. P - QN4 

M is now forced to move to 
his first or second row. 

15. P -  KR3 
This move is made only if M 

is on his KN2. The move forces 
M to leave the corner-to-corner 

diagonal, permitting the fol- 
lowing move. 

16. B - QN2 
17. R - QR1 
18. R - K6 
19. KR - QR6 
20. R-K7 

M is forced to retreat to his 
first row. 

21. KR-K6 
22. B - KN7 

This move need be made on- 
ly if M is on his KB1 or KN1. 

23. P - QB3 
This move is made only if 

M is on his KN1. 
24. Q- K8 

The maharajah can now be 
captured on the next move. 

Moves 1 through 4 may be interchanged with moves 5 thr~ough 
9, provided the sequence in each group is maintained. This inter- 
change may be necessary if M blocks a pawn. Moves 15 and 22 
are stalling moves, required only when M is on the squares indi- 
cated. Move 23 is required only if M must be forced over to the 
queen's side of the board. 

Not much is known about the early history of reversi. I t  seems 
to have first appeared in London in 1870 as "The Game of Annex- 
ation," played on a cross-shaped board. A second version, using 
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the standard eight-by-eight checkerboard, was called "Annex, a 
Game of Reverses." By 1888 the name had become reversi, and 
the game was something of a fad in England. Articles about i t  
ran :in a London newspaper called The Queen in the spring of 
1888. Later, an elaboration called "Royal Reversi," using cubes 
with differently colored sides, was manufactured by the London 
firm of Jacques & Son. (For  a description of Royal Reversi and a 
pictuke of the board, see The Book of Table Games, by "Professor 
Hoffman" [Angelo Lewis], pages 621-623.) 

Reversi, and games derived from it, have been sold in more 
recent years, in the United States, under a variety of names. In 
1938 Milton Bradley introduced Chameleon, a variant of Royal 
Reversi. Tryne Products brought out reversi, about 1960, as a 
game called "Las Vegas Backfire." Exit, a game that  appeared in 
England in 1965, is reversi played on a board with circular cells. 
A fixed cover for each cell can be turned to make the cell red, 
blue or white (neutral), thus eliminating the need for pieces. 

A N S W E R S  

CAN A REVERSI PLAYER, in less than ten moves, win a game by 
eliminating every enemy piece? The answer is yes. In my Scien- 
tific American column I gave what I believed then to be the 
shortest possible reversi game (corresponding to the "fool's 
matt?" of chess), the first player winning on his eighth move. ( I  
had found the game in an old reversi handbook.) But two readers 
discovered shorter games. 

D,, H. Peregrine, of Jesus College, Oxford, sent the following 
six-mover : 

First  Player 
28 
3 6 
3 8 
54 
34 
20 

Second Player 
29 
37 
4 5 
3 5 
2 7 
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And Jon Petersen, Menlo Park, California, sent this slightly 
different six-move win : 

First  Player 
36 
37 
21 
39 
35 
53 

Second Player 
28 
29 
30 
44 
45 



C H A P T E R  S E V E N  

Packing Spheres 

SPllERES O F  identical size can be piled and packed together in 
many different ways, some of which have fascinating recreational 
features. These features can be understood without models, but if 
the reader can obtain a supply of 30 or more spheres, he will find 
them an excellent aid to understanding. Table-tennis balls are  
per:haps the best for this purpose. They can be coated with rubber 
cement, allowed to dry, then stuck together to make rigid models. 

First  let us make a brief two-dimensional foray. If we arrange 
spheres in square formation [see Fig. 30, right], the number of 
balls involved will of course be a square number. If we form a 
triangle [see Fig. 30, left], the number of balls is a triangular 
number. These are  the simplest examples of what the ancients 

15 
F I G .  3 0  
The basis of t r iangular  numbers ( le f t )  and  of square numbers (right). 25 
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F I G .  31 
Square and triangular 

numbers are related. 

called "figurate numbers." They were intensively studied by early 
mathematicians (a  famous treatise on them was written by Blaise 
Pascal), and although little attention is paid them today, they still 
provide intuitive insights into many aspects of elementary num- 
ber theory. 

For  example, i t  takes only a glance a t  Figure 30, left, to see 
that  the sum of any number of consecutive positive integers, be- 
ginning with 1, is a triangular number. A glance a t  Figure 30, 
right, shows that  square numbers are formed by the addition of 
consecutive odd integers, beginning with 1. Figure 31 rnakes 
immediately evident an interesting theorem known to the ancient 
Pythagoreans: Every square number is the sum of two conLsecu- 
tive triangular numbers. The algebraic proof is simple. 11 tri- 
angular number with n units to a side is the sum of 1 + 21 + 3 
+ . . . n, and can be expressed by the formula 1 n ( n  it 1 ) .  

2 
The preceding triangular number has the formulal- n ( n  .- 1 ) .  

2 
If we add the two formulas and simplify, the result is n?  Are 
there numbers that are simultaneously square and triangular? 
Yes, there are  infinitely many of them. The smallest (not count- 
ing 1, which belongs to any figurate series) is 36;  then the aeries 
continues: 1225,41616, 1413721, 48024900 . . . I t  is not so easy to 
devise a formula for the nth term of this series. 

Three-dimensional analogies of the plane-figurate numbers are  
obtained by piling spheres in pyramids. Three-sided pyramids, 
the base and sides of which are equilateral triangles, are models 
of what a re  called the tetrahedral numbers. They form the series 



84 Packing Spheres 

1, 4, 10, 20, 35, 56, 8 4 . .  . and  can be represented by the for- 

mulal. n ( n  + 1) ( n  + 2 ) ,  where n is the number of balls along 
6 

an eclge. Four-sided pyramids, with square bases and equilateral 
triangles for sides (i.e., half of a regular octahedron), represent 
the (square) pyramidal numbers 1, 5, 14, 30, 55, 91, 140.  . . They 

have the formula I n ( n  + 1) (2n + 1 ) .  Just  as a square can be 6 
divided by a straight line into two consecutive triangles, so can a 
square pyramid be divided by a plane into two consecutive tetra- 
hedral pyramids. (If you build a model of a pyramidal number, 
the bottom layer has to be kept from rolling apart. This can be 
done by placing rulers or other strips of wood along the sides.) 

M~lny old puzzles exploit the properties of these two types of 
pyrainidal number. For example, in making a courthouse monu- 
ment out of cannon balls, what is the smallest number of balls 
that  can first be arranged on the ground as a square, then piled in 
a square pyramid? The surprising thing about the answer (4,900) 
is that i t  is the onlv answer. (The proof of this is difficult, and 
was not achieved until 1918.) Another example: A grocer is dis- 
playing oranges in two tetrahedral pyramids. By putting together 
the oranges in both pyramids he is able to make one large tetra- 
hedral pyramid. What is the smallest number of oranges he can 
have? If the two small pyramids are the same size, the unique 
answer is 20. If they are different sizes, what is the answer? 

Imagine now that we have a very large box, say a crate for a 
piano, which we wish to fill with as many golf balls as we can. 
What packing procedure should we use? First  we form a layer 
packed as shown by the unshaded circles with light gray circum- 
ferences in Figure 32. The second layer is formed by placing balls 
in alternate hollows as indicated by the shaded circles with black 
rims. In  making the third layer we have a choice of two different 
procedures : 

1. We place each ball on a hollow A that is directly above a ball 
in the first layer. If we continue in this way, placing the balls of 
each layer directly over those in the next layer but one, we pro- 
duce a structure called hexagonal close-packing. 

2. We place each ball in a hollow B, directly above a hollow in 
the first layer. If we follow this procedure for each layer (each 
ball will be directly above a ball in the third layer beneath i t ) ,  
the result is known as cubic close-packing. Both the square and 
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the tetrahedral pyramids have a packing structure of this type, 
though on a square pyramid the layers run parallel to the sides 
rather than to the base. 

In forming the layers of a close-packing we can switch back 
and forth whenever we please from hexagonal to cubic packing to 
produce various hybrid forms of close-packing. In  all these forms 
- cubic, hexagonal and hybrid - each ball touches twelve other 
balls that  surround it, and the density of the packing (the ratio 
of the volume of the spheres to the total space) is rr/Vql8 = 

.74048 +, or almost 75 per cent. 
Is this the largest density obtainable? No denser packing is 

known, but in an article published in 1958 (on the relation of 
close-packing to froth) H. S. M. Coxeter, of the University of 
Toronto, made the startling suggestion that  perhaps the densest 
packing has not yet been found. I t  is t rue that  no more than 
twelve balls can be placed so that  all of them touch a central 
sphere, but a thirteenth ball can almost be added. The large lee- 
way here in the spacing of the twelve balls, in contrast to the 
complete absence of leeway in the close-packing of circles on a 
plane, suggests that  there might be some form of irregular pack- 
ing that  would be denser than .74. No one has yet proved that  no 
denser packing is possible, or even that  twelve point-contad~s for 
each sphere are necessary for densest packing. As a result of 

F I G .  3 2  
In hexagonal close-packing, balls go in hollows labeled A; in cubic, in hc~llows 
labeled 6. 
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Coxet,er's conjecture, George D. Scott, of the University of To- 
ronto, recently made some experiments in random packing by 
pouring large numbers of steel balls into spherical flasks, then 
weighing them to obtain the density. He found that stable ran- 
dom-packings had a density that  varied from about .59 to .63. So 
if there is a packing denser than .74, i t  will have to be carefully 
constructed on a pattern that  no one has yet thought of. 

Assuming that  close-packing is the closest packing, readers 
may like to test their packing prowess on this exceedingly tricky 
little problem. The interior of a rectangular box is ten inches on 
each side and five inches deep. What is the largest number of steel 
spheres one inch in diameter that can be packed in this space? 

If close-packed circles on a plane expand uniformly until they 
fill the interstices between them, the result is the familiar hex- 
agonal tiling of bathroom floors. (This explains why the pattern 
is so common in nature : the honeycomb of bees, a froth of bubbles 
between two flat surfaces almost in contact, pigments in the 
retina, the surface of certain diatoms and so on.) What happens 
when closely packed spheres expand uniformly in a closed vessel, 
or are subjected to uniform pressure from without? Each sphere 
becon~es a polyhedron, its faces corresponding to planes that were 
tangent to its points of contact with other spheres. Cubic close- 
packing transforms each sphere into a rhombic dodecahedron [see 
Fig. t33, top], the twelve sides of which are congruent rhombi. 
Hexagonal close-packing turns each ball into a trapezo-rhombic 
dodecahedron [see Fig. 33, bottom], six faces of which are rhombic 
and six trapezoidal. If this figure is sliced in half along the gray 
plane and one half is rotated 60 degrees, i t  becomes a rhombic 
dodecahedron. 

In 1727 the English physiologist Stephen Hales wrote in his 
book Vegetable Staticks that he had poured some fresh peas into 
a pot, compressed them and had obtained "pretty regular dodeca- 
hedrons." The experiment became known as the "peas of Buffon" 
(because the Comte de Buffon later wrote about a similar experi- 
ment) ,  and most biologists accepted i t  without question until 
Edwin B. Matzke, a botanist a t  Columbia University, repeated 
the experiment. Because of the irregular sizes and shapes of peas, 
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their nonuniform consistency and the random packing that re- 
sults when peas are poured into a container, the shapes of the 
peas after compression are too random to be identifiable. In ex- 
periments reported in 1939 Matzke compressed lead shot and 
found that  if the spheres had been cubic close-packed, rhornbic 
dodecahedrons were formed; but if they had been randomly 
packed, irregular fourteen-faced bodies predominated. These re- 
sults have important bearing, Matzke has pointed out, on the 
study of such structures as foam, and living cells in undifferen- 
tiated tissues. 
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The problem of closest packing suggests the opposite question: 
What is the loosest packing; that is, what rigid structure will 
have the lowest possible density? For the structure to be rigid, 
each sphere must touch at  least four others, and the contact points 
must not be all in one hemisphere or all on one equator of the 
sphere. In his Geometry and the  Imagination, first published in 
Germany in 1932, David Hilbert describes what was then be- 
lieved to be the loosest packing: a structure with a density of 
.123. In the following year, however, two Dutch mathematicians, 
Heinrich Heesch and Fritz Laves, published the details of a much 
looser packing with a density of only .0555 [see Fig. 341. Whether 
there are still looser packings is another intriguing question that, 
like the question of the closest packing, remains undecided. 

F I G .  3 4  
The Heesch and Laves loose-packing. Large spheres are  first packed as shown on 
left, then each sphere is replaced by three smaller spheres to obtain the 
packing shown on right. It has a density of .055+. 
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A D D E N D U M  

THE UNIQUE ANSWER of 4,900 for the number of balls tha.t will 
form both a square and a square-based pyramid was proved by 
G. N. Watson in Messenger of Mathematics, new series, Vol. 48, 
1918, pages 1-22. This had been conjectured as  early as 1875 by 
the French mathematician Edouard Lucas. Henry Ernest Dudeney 
makes the same guess in his answer to problem 138, Amusements 
in  Mathematics (1917). 

There is a large literature on numbers that  are  both triangular 
and square. Highlights are  cited in an  editorial note to  problem 
E1473, American Mathematical Monthly, February 1962, page 
169, and the following formula for the nth square triangular 
number is given : 

The question of the densest possible regular packing of spheres 
has been solved for all spaces up through eight dimensions. (See 
Proceedings of Symposia in Pure Mathematics, Vol. 7, American 
Mathematical Society, 1963, pages 53-71.) In 3-space, the ques- 
tion is answered by the regular close-packings described earlier, 
which have a density of .74+. But, as  Constance Reid notes in 
her Introduction to Higher Mathematics (1959), when 9-space is 
considered, the problem takes one of those sudden, mysterious 
turns that so often occur in the geometries of higher Euclidean 
spaces. So f a r  as  I know, no one yet knows how to regularly close- 
pack hyperspheres in 9-space. 

Nine-space is also the turning point for the related problem 
of how many congruent spheres can be made to touch another 
sphere of the same size. I t  was not until 1953 that  K. Schiitte and 
B. L. van der Waerden (in Das Problem der dreixehn K ~ g e l n ,  
Math. Ann., Vol. 125, 1953, pages 325-334) first proved that  the 
answer in 3-space is 12. (For  a later proof, see "The Probllem of 
the 13  Spheres" by John Leech, in Mathematical Gazette, Vol. 
40, No. 331, February 1956, pages 22-23.) The corresponding 
problem on the plane has the obvious answer of 6 (no more than 
six pennies can touch another penny), and if we think of a 
straight line as a degenerate "sphere," the answer for 1-space is 
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2. In  four-dimensions i t  has been proved that 24 hyperspheres 
can touch a 25th sphere, and for spaces of 5, 6, 7 and 8 dimen- 
sions, the maximum number of hyperspheres is known to be 40, 
72, 126 and 240 respectively. But in 9-space, the problem remains 
unsolved. 

A N S W E R S  

THE SMALLEST NUMBER of oranges that will form two tetrahedral 
pyramids of different sizes, and also one larger tetrahedral pyra- 
mid, is 680. This is a tetrahedral number that  can be split into 
two smaller tetrahedral numbers: 120 and 560. The edges of the 
three pyramids are 8,14 and 15. 

A box ten inches square and five inches deep can be close-packed 
with one-inch-diameter steel balls in a surprising variety of ways, 
each accommodating a different number of balls. The maximum 
number, 594, is obtained as follows: Turn the box on its side and 
form the first layer by making a row of five, then a row of four, 
then of five, and so on. I t  is possible to make eleven rows (six 
rows of five each, five rows of four each), accommodating 50 balls 
and leaving a space of more than .3 inch to spare. The second 
layer also will take eleven rows, alternating four and five balls to 
a row, but this time the layer begins and ends with four-ball rows, 
so that the number of balls in the layer is only 49. (The last row 
of four balls will project .28+ inch beyond the edge of the first 
layer, but because this is less than .3 inch, there is space for it.) 
Twelve layers (with a total height of 9.98+ inches) can be placed 
in the box, alternating layers of 50 balls with layers of 49, to 
make a grand total of 594 balls. 



C H A P T E R  E I G H T  

The Transcendental Number Pi 

Pi's face w a s  masked ,  and it w a s  understood t h a t  none could be- 
hold it and live. Bzit piercing eyes looked out  f rom the  m a s k ,  
inexorable,  cold, and enigmatic.  

- Bertrand Russell, 
"The Mathematician's Nightmare," 
in Nigh tmares  of E m i n e n t  Persons 

THE RATIO of a circle's circumference to its diameter, synnbol- 
ized by the Greek letter pi, pops up in all sorts of places that have 
nothing to do with circles. The English mathematician Augustus 
de Morgan once wrote of pi as  "this mysterious 3.14159 . . . which 
comes in a t  every door and window, and down every chimney." 
To give one example, if two numbers are picked a t  random ]from 
the set of positive integers, what is the probability that  they will 
have no common divisor? The surprising answer is six divided by 
the square of pi. I t  is pi's connection with the circle, however, that  
has made i t  the most familiar member of the infinite class of 
transcendental numbers. 

What is a transcendental number? I t  is described as  an  irra- 
tional number that  is not the root of an algebraic equation that  
has rational coefficients. The square root of two is irrational, but 

:t ion it is an  "algebraic irrational" because i t  is a root of the equ t' 
x2 = 2. Pi  cannot be expressed as  the root of such an equation, 
but only as the limit of some type of infinite process. The decimal 
form of pi, like that of all irrational numbers, is endless and 
nonrepeating. 
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No fraction, with integers above and below the line, can exactly 
equal pi, but there are  many simple fractions that  come amazingly 
close. The most remarkable was recorded in the fifth century A.D. 

by T,su Ch'ung-Chih, a famous Chinese astronomer, and was not 
discovered in the Occident until 1,000 years later. We can obtain 
this fraction by a kind of numerological hocus-pocus. Write the 
first three odd integers in pairs: 1, 1, 3, 3, 5, 5 ;  then put the last 
three above the first three to make the fraction 3551113. I t  is hard 
to believe, but this gives pi to an  accuracy of six decimal places. 
There are also roots that  come close to pi. The square root of 10 
(3.162 . . . ) was widely used for pi in ancient times, but the cube 
root of 31 (3.1413.. . ) is much closer. (More numerology: 31 
comprises the first two digits of pi.) A cube with a volume of 31 
cubic inches would have an edge that  differed from pi by less than 
a thousandth of an  inch. And the sum of the square root of 2 and 
the square root of 3 is 3.146+, also not a bad approximation. 

Ea,rly attempts to find an exact value for pi were closely linked 
with attempts to solve the classic problem of squaring the circle. 
Is  it possible to construct a square, using only a compass and a 
straightedge, that  is exactly equal in area to the area of a given 
circle? If pi could be expressed as a rational fraction or as the 
root of a first- or second-degree equation, then i t  would be pos- 
sible, with compass and straightedge, to construct a straight line 
exactly equal to the circumference of a circle. The squaring of the 
circle would quickly follow. We have only to construct a rectangle 
with one side equal to the circle's radius and the other equal to 
half the circumference. This rectangle has an  area equal to that  
of the circle, and there are simple procedures for converting the 
rectangle to a square of the same area. Conversely, if the circle 
couldl be squared, a means would exist for  constructing a line seg- 
ment exactly equal to pi. However, there are  ironclad proofs that  
pi is transcendental and that  no straight line of transcendental 
length can be constructed with compass and straightedge. 

There are  hundreds of approximate constructions of pi, of 
which one of the most accurate is based on the Chinese astron- 
omer's fraction mentioned earlier. In  a quadrant of unit radius 
draw the lines shown in Figure 35 so that  bc is 718 of the radius, 
dg is 112, de is parallel to ac, and d f  is parallel to be. The distance 
f g  is easily shown to be 161113 or .1415929+. Since 3551113 is 
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F I G .  3 5  
H o w  t o  construct a straight l ine w i t h  a length that  differs from p i  by less tlran 
.0000003. 

3 + 161113, we draw a line that is three times the radius, extend 
i t  by the distance fg ,  and we have a line differing from pi by less 
than a millionth of a unit. 

Circle squarers who thought they had discovered an exact value 
for pi are legion, but none has excelled the English philosopher 
Thomas Hobbes in combining height of intellect with depth of 
ignorance. Educated Englishmen were not taught mathematics in 
Hobbes's day, and i t  was not until he was 40 that he looked into 
Euclid. When he read a statement of the Pythagorean theorem, 
he first exclaimed : "By God, this is impossible !" Then he threaded 
his way backward through the proof until he became convinced. 
For the rest of his long life Hobbes pursued geometry with all the 
ardor of a man in love. "Geometry hath in it something like wine," 
he later wrote, and i t  is said that  he was accustomed, when better 
surfaces were wanting, to drawing geometrical figures on his 
thighs and bedsheets. 
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Had Hobbes been content to remain an amateur mathematician, 
his later years would have been more tranquil, but his monstrous 
egotism led him to think himself capable of great mathematical 
disco~veries. In 1655, a t  the age of 67, he published in Latin a book 
titlecl De corpore (Concerning B o d y )  that  included an ingenious 
method of squaring the circle. The method was an excellent ap- 
proximation, but Hobbes believed that  i t  was exact. John Wallis, 
a distinguished English mathematician and cryptographer, ex- 
posed Hobbes's errors in a pamphlet, and thus began one of the 
longest, funniest and most profitless verbal duels ever to engage 
two ]brilliant minds. I t  lasted almost a quarter of a century, each 
man writing with skillful sarcasm and barbed invective. wallis 
kept i t  up partly for his own amusement, but mainly because i t  
was a way of making Hobbes appear ridiculous and thus casting 
doubt on his religious and political opinions, which Wallis detested. 

Hobbes responded to Wallis' first attack by reprinting his book 
in English with an  addition called S i x  Lessons to  the  P r o f e s s o ~ s  
of Mathematics. .  . . ( I  trust the reader will forgive me if I shorten 
the endless 17th-century titles.) Wallis replied with Due Correc- 
t ion for Mr .  Hobbes in School Discipline for no t  saqing his Lessons 
r ight .  Hobbes countered with Marks  o f  the  Absurd Geometry ,  
Rurc!l Langz~age,  Scottish Chztrch Politics, and Barbarisms o f  
John Wall is;  Wallis fired back with Hobbiani Punct i  Dispunctio! 
or the  Undoing o f  Mr .  Hobbes's Points. Several pamphlets later 
(meztnwhile Hobbes had anonymously published in Paris an  ab- 
surd method of duplicating the cube) Hobbes wrote: "I alone am 
mad, or they [the professors of mathematics] are  all out of their 
senses: so that  no third opinion can be taken, unless any will say 
that  we are  all mad." 

"It needs no refutation," was Wallis' answer. "For if he be 
mad, he is not likely to be convinced by reason ; on the other hand, 
if we be mad, we are  in no position to attempt it." 

The battle continued, with momentary periods of cease-fire, un- 
til Hobbes's death a t  the age of 91. "Mr. Hobbes has been always 
f a r  from provoking any man," Hobbes wrote in one of his later 
attacks on Wallis [as a matter of fact, in social relations Hobbes 
was excessively timid], "though, when he is provoked, you find 
his pen as  sharp as  yours. All you have said is error and railing; 
that is, stinking wind, such as a jade lets fly when he is too hard 
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gir t  upon a full belly. I have done. I have considered you now, but 
will not again. . . ." 

This is not the place to go into details about Hobbes's c;urious 
"incapacity," as Wallis phrased it, "to be taught what he doth not 
know." Altogether, Hobbes published about a dozen different 
methods of squaring the circle. His first, and one of his best, is 
shown in Figure 36. Inside a unit square, draw arcs AC and BD. 
These are quarter arcs of circles with unit radii. Bisect arc  B F  a t  
Q. Draw line RQ parallel with the side of the square and extend 
i t  so QS equals RQ. Draw line FS, extending i t  until i t  meets the 
side of square a t  T. BT, Hobbes asserted, is exactly equal to a rc  
BF. Since arc B F  is 1/12  the circumference of a circle with unit 
radius, pi will be six times the length of BT. This gives pi s value 
of 3.1419 +. 

One of the philosopher's major difficulties was his inability to  
believe that  points, lines and surfaces could be regarded in the 
abstract as  having less than three dimensions. "He seems to have 
gone down to the grave," writes Isaac Disraeli in his Qua~rels of 

F I G .  3 6  
Hobbes's First Method of squaring the circle. 
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eadra tu ra  Circuli, 
Cubatio Sphara, 
Duplicatio Cubi, 

B reviter demonltraca. 

AuA. THO. H O B B E S .  

L O N D I N Z :  

Excudebat 7. C. Sumptibuc Andraa Crook,. 1669 . 
No. 67 

-- ~ 

Title page of one of Hobbes's books that contains a method of circle squaring. 
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Authors, "in spite of all the reasonings of the geometricians on 
this side of it, with a firm conviction that  its superficies had both 
depth and thickness." Hobbes presents a classic case of a man of 
genius who ventures into a branch of science for which he :is ill 
prepared and dissipates his great energies on pseudo-scientific 
nonsense. 

Although the circle cannot be squared, figures bounded by cir- 
cular arcs often can be; this fact still arouses false hopes in many 
a circle squarer. An interesting example is shown in Figure 37. 

How many square units does this figure contain? 
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The lower part of this vase is three-quarters of the circumference 
of a circle with a diameter of, say, ten inches. The upper half is 
bounded by three quarter-arcs of a circle the same size. How 
quickly can the reader give, down to the last decimal, the exact 
length of the side of a square that has the same area as this figure? 

C:lose cousins to the circle squarers have been the pi computers ; 
men who devoted years to computing by hand the decimals of pi 
beyond all previous computations. This can be done, of course, 
by using any infinite expression that converges on pi. Wallis him- 
self discovered one of the simplest : 

The upper terms of these fractions are  even numbers in se- 
quence, taken in pairs. (Note the fortuitous resemblance of the 
first five lower terms to the digits in the Chinese astronomer's 
fraction!) A few decades later the German philosopher Gottfried 
Wilhelm von Leibniz found another beautiful formula: 

The most indefatigable of pi computers was the English mathe- 
matician William Shanks. Over a 20-year period he managed to 
calculate pi to 707 decimals. Alas, poor Shanks made an error on 
his 1528th decimal, and all the rest are  wrong. (This was not dis- 
covered until 1945, so Shanks's 707 decimals are still found in 
many current books.) In 1949 the electronic computer ENIAC 
was used for 70 machine hours to calculate pi to more than 2,000 
decimals; later another computer carried i t  to more than 3,000 
decimals in 13 minutes. By 1959, a computer in England and an- 
other in France had computed pi to 10,000 decimal places. 

One of the strangest aspects of Shanks's 707 decimals was the 
fact that  they seemed to snub the number 7. Each digit appeared 
about 70 times in the first 700 decimals, just as i t  should, except 
7, which appeared a mere 51 times. "If the cyclometers and the 
apocalyptics would lay their heads together," wrote De Morgan, 



'"until they came to a unanimous verdict on this phenorn~enon, 
and would publish nothing until they are of one mind, they would 
earn the gratitude of their race." I hasten to add that the cor- 
rected value of pi to 700 places restored the missing 7's. Tlhe in- 
tuitionist school of mathematics, which maintains that  you cannot 
say of a statement that  i t  is "either true or false" unless there is 
a known way by which i t  can be both verified and refuted, has 
always used as its stock example: "There are three consecutive 
7's in pi." This must now be changed to five 7's. The new figures 
for pi show not only the expected number of triplets for each 
digit, but also several runs of 7777 (and one unexpected 999999). 

So f a r  pi has passed all statistical tests for randomness. This is 
disconcerting to those who feel that  a curve so simple and beauti- 
ful as the circle should have a less-disheveled ratio between the 
way around and the way across, but most mathematicians believe 
that no pattern or order of any sort will ever be found in pi's 
decimal expansion. Of course the digits are not random in the 
sense that  they represent pi, but then in this sense neither are the 
million random digits that have been published by the Rand 
Corporation of California. They too represent a single number, 
and an integer a t  that. 

If i t  is true that the digits in pi are random, perhaps we are justi- 
fied in stating a paradox somewhat similar to the assertion that if 
a group of monkeys pound long enough on typewriters, they will 
eventually type all the plays of Shakespeare. Stephen Barr has 
pointed out that if you set no limit to the accuracy with .which 
two bars can be constructed and measured, then those two bars, 
without any markings on them, can communicate the entire Ency- 
clopaedia Britannica. One bar is taken as unity. The other dliffers 
from unity by a fraction that is expressed as a very long decimal. 
This decimal codes the Britannica by the simple process of assign- 
ing a different number (excluding zero as a digit in the number) 
to every word and mark of punctuation in the language. Zero is 
used to separate the code numbers. Obviously the entire Britan- 
nica can now be coded as a single, but almost inconceivably long, 
number. Put  a decimal point in front of this number, add 11, and 
you have the length of the second of Barr's bars. 

Where does pi come in?  Well, if the digits in pi are really ran- 
dom, then somewhere in this infinite pie there should be EL slice 
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that  contains the Britannica; or, for that  matter, any book that  
has been written, will be written, or could be written. 

A D D E N D U M  

ON JULY 29, 1961, a year after the preceding chapter appeared in 
Scientific American, pi was carried to 100,265 decimal places by 
a n  IEIM 7090 system a t  the IBM Data Center in New York. The 
work was done by Daniel Shanks (no relation to William Shanks ; 
just amother of those strange numerological coincidences that  dog 
the history of pi) and John W. Wrench, Jr. The running time 
was one minute more than eight hours, then an additional 42 min- 
utes .were required to get the binary results into decimal form. 
Computing pi to a few thousand decimals is now a popular device 
for testing a new computer or training new programmers. "The 
mysterious and wonderful pi," writes Philip J. Davis (in his book 
The Lore of Large Numbers), "is reduced to a gargle that  helps 
computing machines clear their throats." 

I t  will probably not be long until pi is known to a million deci- 
mals. In  anticipation of this, Dr. Matrix, the famous numerologist, 
has sent me a letter asking that  I put on record his prediction that  
the uiillionth digit of pi will be found to be 5. His calculation is 
based on the third book of the King James Bible, chapter 14, 
verse 16 (i t  mentions the number 7, and the seventh word has 
five letters), combined with some obscure calculations involving 
Euler's constant and the transcendental number e. 

Norman Gridgeman, of Ottawa, wrote to point out that  Barr's 
bars can be reduced to a single bar with a scratch on it. The 
scratch divides the bar into two lengths, the ratio of which codes 
the Britannica in the manner previously described. 

A N S W E R S  

IT WAS suggested that  the reader give the side of a square equal in 
area to the vase-shaped figure in Figure 38, bounded by arcs of 
a circle with a diameter of ten inches. The answer is also ten 
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How to square the vase. 
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inches. If we draw the broken squares shown in the illustration, 
it is obvious that segments A, B, C will fit into spaces A', B', C' to 
form two squares with a combined area of 100 square inches. 
Figure 39 shows how the vase can be "squared" by cutting it into 
as few as three parts that will form a ten-inch square. 

FIG.  519 
Three-piece vase-to-square. 



C H A P T E R  N I N E  

Victor Eigen: Mathemagician 

Luzhin had no dificulty i n  learning several card tricks. . . . He 
found a mysterious pleasure, a vague promise of still unfathomed 
delights, i n  the crafty and accurate way a trick would come 
out. .  . . 

- Vladimir Nabokov, The Defense 

AN INCREASING number of r~athematically inclined amateur 
conjurers have lately been turning their attention toward "mathe- 
magic" : tricks that  rely heavily on mathematical principles. l?ro- 
fessional magicians shy away from such tricks because they are  
too cerebral and boring for most audiences, but as parlor stunts 
presented more in the spirit of puzzles than of feats of ma~gic, 
they can be interesting and entertaining. My friend Victor Ei:gen, 
an  electronics engineer and past president of the Brotherhooid of 
American Wand Wielders, manages to keep posted on the latest 
developments in this curious field, and i t  was in the hope of find- 
ing some off-beat material for  this department that  I paid him a 
visit. 

The front door was opened by Victor - a plump, gray-haired 
man in his mid-fifties with humorous creases around his eyes. 
"Do you mind sitting in the kitchen?" he asked as he led me 
toward the back of his apartment. "My wife's absorbed in a 
television program and I think we'd best not disturb her until 
it's over. How do you want your bourbon?" 

We sat on opposite sides of the kitchen table and clinked glass- 
es. "To mathemagic," I said. "What's new?" 

Victor lost no time in taking a deck of cards from his shirt 
pocket. "The latest thing out in cards is the Gilbreath principle. 
It's a whimsical theorem discovered by Norman Gilbreat'h, a 
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youi~g California magician." As he talked, his short fingers skill- 
fully arranged the deck so that red and black cards alternated 
thro'ughout. "You know, I'm sure, that riffle shuffling is notori- 
ously inefficient as a method of randomizing." 

"IXo, I didn't realize that." 
Victor's eyebrows went up. "Well, this ought to convince you. 

Please give the deck one thorough riffle shuffle." 
I cut the deck into two parts and shuffled them together. 
Y"ke a look a t  the faces," he said. "You'll see that  the alter- 

nating color arrangement has been pretty well destroyed." 
"Of course." 
"Now give the deck a cut," he went on, "but cut between two 

c a d s  of the same color. Square up the pack and hand i t  to me face 
down." 

I  did as he suggested. He held the deck under the table where i t  
was out of sight for both of us. "I'm going to t ry  to distinguish 
the colors by sense of touch," he said, "and bring out the cards 
in rled-black pairs." Sure enough, the first pair he tossed on the 
table consisted of one red and one black card. The second pair 
likewise. He produced a dozen such pairs. 

"13ut how . . . ?" 
Victor interrupted with a laugh. He slapped the rest of the 

deck: on the table and started taking cards from the top, two a t  
a time, tossing them face up. Each pair contained a red and a 
bladk card. "Couldn't be simpler," he explained. "The shuffle and 
cut -- remember, the cut must be between two cards of the same 
cololr - destroys the alternation of red and black all right, but i t  
leaves the cards strongly ordered. Each pair still contains both 
colors." 

"I can't believe i t  !" 
"Well, think about i t  a bit and you'll see why i t  works, but it's 

not so easy to state a proof in a few words. By the way, my 
friend Edgar N. Gilbert, of Bell Telephone Laboratories, included 
an interesting puzzle along similar lines in a recent unpublished 
paper of his on card shuffling and information theory. Here, I've 
jotted i t  down for you." 

He handed me a sheet on which was printed: 

T I i V E H E D I N S A G M E L R L I E N A T G O V R A R  
G I A N E S T Y O F O F I F F O S H H R A V E M E V S O  
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"That's a garbled sentence," he said, "from a Scientific Ameri- 
can article of five years ago. Gilbert wrote each letter on a card, 
then arranged the deck so i t  spelled the sentence from top down. 
He cut the cards into two piles, riffled them together, then c:opied 
down the new sequence of letters. I t  takes, he tells me, the aver- 
age person about half an hour to unscramble them. The point is 
that one riffle shuffle is such a poor destroyer of information con- 
veyed by the original sequence of cards, and the redundancy of 
various letter combinations in English is so high, that  it's ex- 
tremely unlikely - in fact, Gilbert computes the exact proba,bility 
in his paper - that  the message one finds is different from the 
correct one." 

I rattled the ice cubes in my glass. 
"Before we refill," Victor said, "let me show you an ingenious 

experiment in precognition. We'll need your glass and nine play- 
ing cards." He arranged nine cards, with values from one to nine, 
on the table in the form of the familiar three-by-three magic 
square [see Fig. 401. The cards were all hearts, except for th.e five 
of spades in the center. He took an envelope from his pocket and 
placed i t  beside the square. 

"I want you to put your glass on any one of the nine cards," he 
said, "but first let me explain that in this envelope is a file card on 
which I have jotted down some instructions. The instructions are 
based on my guesses as to the card you're going to choose, and 
how you are  going to move the glass a t  random from card to card. 
If my guesses are correct, your glass will end on the card in the 
center." He tapped his finger on the five of spades. "Now put, your 
glass on any card, including the center one if you wish." 

I placed my glass on the two of hearts. 
"Just as I expected," he chuckled. He took the file card fro:m the 

envelope and held i t  so I could read the following instructio:ns: 

1. Take away the seven. 
2. Move seven times and take away the eight. 
3. Move four times, take away the two. 
4. Move six times, take away the four. 
5. Move five times, take the nine. 
6. Move twice, take the three. 
7. Move once, take the six. 
8. Move seven times, take the ace. 



F I G .  4 0  
Cards and a glass arranged for a demonstration of precognition. 

A "'move," he explained, consists of transferring the glass to an 
adjacent card above, below or on either side, but not diagonally. 
I followed the instructions carefully, making all moves as  random 
as  I could. To my vast surprise the glass never rested on a card 
that I: was asked to remove, and after eight cards had been taken 
away, there was my glass, resting on the five of spades just as  
Victor had predicted ! 

"You've befuddled me completely," I admitted. "Suppose I had 
originally placed my glass on the seven of hearts, the first card 
removed ?" 

"I must confess," he said, "that a bit of nonmathematical 
chicanery is involved. The magic-square arrangement has noth- 
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ing to do with the trick. Only the positions of the cards matter. 
Those in the odd positions -the four corners and the center - 
form one se t ;  those in the even positions form a set of opposite 
parity. When I saw that  you first placed your glass on a card in 
the odd set, I showed you the instructions you see here. If you 
had placed your glass on a card in the even set, I would have 
turned over the envelope before I took out the file card." 

He flipped over the card. On its back was a second set oJf in- 
structions. They read : 

1. Take away the six. 
2. Move four times and take away the two. 
3. Move seven times, take away the ace. 
4. Move three times, take away the four. 
5. Move once, take the seven. 
6. Move twice, take the nine. 
7. Move five times, take the eight. 
8. Move three times, take the three. 

"You mean that  these two sets of instructions - one to use if 
I start  on an even-positioned card, and the other if I start  om an 
odd - will always guide the glass to the center?" 

Victor nodded. "Why don't you print both sides of the card in 
your department and let your readers figure out why the t,rick 
has to work?" 

After refilling our glasses, Victor said: "Quite a number of 
ESP-type tricks exploit a parity principle. Here's one that  seems 
to require clairvoyance." He handed me a blank sheet of paper 
and a pencil. "While my back is turned, I want you to draw a 
complicated closed curve that  crosses itself a t  least a dozen tiimes, 
but never more than once a t  any one point." He turned his chair 
so that  he faced the wall while I drew the curve [see  Fig. 41 I. 

"Label each intersection with a different letter," he said lover 
his shoulder. 

I did as  I was told. 
"Now put your pencil on any spot along the curve and start  

tracing it. Each time you come to a crossing, call out the letter. 
Keep this up until you've traced the entire curve, but a t  some 
point along the way - i t  doesn't matter where - switch two 



letters as you call them. The two letters must be adjacent along 
the path. Don't tell me when you switch them.'' 
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I started a t  point N, moved up to P and continued along: the 
curve, calling out the letters as I came to them. I could see that 
Victor was jotting them down on a pad. When I approached B 
for the second time, I saw that the letter after i t  was I?, so I 
called out F and then B. I made the switch without a break in the 
timing of my calls, so that Victor would have no clue as to which 
pair had been switched. 

As soon as I finished he said: "You switched B and F." 
"Amazing!" I said. "How did you know?" 
Victor chuckled and turned back to face me. "The trick's based 

on a topological theorem that's important in knot theory,'" he 
said. "You'll find it neatly proved in Hans Rademacher and Otto 
Toeplitz's book T h e  E n j o y m e n t  o f  Mathem,atics." He tossed over 
the pad on which he had jotted down the letters. They were 
printed alternately above and below a horizontal line like this: 

N S G Q I R T K D M L F C F H O V P U J A E  

P I B H L S C U E R G Q K B T J A O D N M V  

"If no switch is made," he explained, "then every letter must 
appear once above and once below the line. All I have to do is look 
for a letter that  appears twice above, and a letter that appears 
twice below. Those will be the two letters that are exchanged.." 

"Beautiful !" I said. 
Victor opened a box of soda crackers, took out two and placed 

them on the table, one to his right and one to his left. On both 
crackers he drew an arrow pointing north [see Fig. 421. He held 
the cracker on the left between his thumb and middle finger as 
shown, then with the tip of his right forefinger he pressed down 
on corner A to turn the cracker over. I t  rotated on the diagonal 
axis between the two corners that  were held. He drew on the 
cracker another arrow that  also pointed north. 

Next, he held the cracker on his right in similar fashion, -with 
his right hand, and rotated it by pushing with his left forefinger 
on corner B. This time, however, instead of drawing an arrou7 
that pointed north, he drew one that  pointed south. 

"Now we're all set," he said, smiling, "for an amusing stunt 
involving the symmetry rotations, of a square. You'll note tha.t on 
the left I have a cracker with a north arrow on both sides." He 
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picked up the cracker with his left hand and rotated i t  several 
times to show that  on both sides the arrow pointed north. "And 
on my right we have north and south arrows." He picked up the 
cracker with his right hand and rotated i t  rapidly several times 
to show that the two arrows pointed in opposite directions. 

Victor returned the cracker to the table. Then, slowly and with- 
out altering their orientation, he switched the positions of the two 
crackers. "Please rotate them yourself," he requested. "I want you 
to verify the fact that  the cracker with the two north arrows is 
now on my right, and the other cracker on my left." 

He handed me each cracker and I rotated i t  in exactly the same 
way he had done, one in my right hand and one in my left. Yes, 
the crackers had been exchanged. 

Victor placed the crackers in front of him, then snapped his 
fingers and commanded the crackers to return invisibly to their 
former positions. He rotated the cracker on his left. I was startled 
to see that  the arrows now pointed north on both sides! And 
when he rotated the other cracker, its arrows jumped back and 
fort:h from north to south! 

"Try it," Victor said. "You'll find that i t  works automatically. 
Actually, both crackers are exactly alike. The difference in ap- 
pearance depends entirely on which hand is holding them. When 
you ask your spectator to check on the crackers, be sure he takes 
the cracker on your right in his left hand, and the cracker on your 

FIG.. 42  
How soda crackers are held for the trick of the transposed arrows. 
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left in his right hand. And see that he puts down the north-south 
cracker so the arrow on the top side points north." 

I drained my glass. There was just enough left in the bottle 
for one more highball. The kitchen wobbled slightly. 

"Now let me show you one," I said, taking another cracker 
from the box. "It's a test of probability. I'll toss this cracker into 
the air. If i t  falls rough side up, you get the rest of the bourbon. 
If i t  falls smooth side up, you get the rest of the bourbon. If i t  
falls with neither side up" ( I  held the cracker perpendicular to 
the table but made no comment about i t ) ,  "then I get the last 
drink." 

Victor looked wary. "Okay;" he said. 
I squeezed the cracker in my fist and tossed the crumbs into the 

air. 
Dead silence. Even the refrigerator stopped humming. "I ob- 

serve that  most of both sides came down on your head," Victor 
said a t  last, unsmiling. "And I must say it's a pretty crumby 
trick to play on an old friend." 

A D D E N D U M  

THE GILBREATH principle and its use in the trick described were 
first explained by Norman Gilbreath in an article, "Magnetic Col- 
ors," in a magic periodical called The Linking Ring, Vol. 38, No. 
5, page 60, July 1958. Since then, dozens of clever card tricks have 
been based on the simple principle. For those with access to 
magic journals, here are a few references: 

Linking Ring, Vol. 38, No. 11, pages 54-58, January 1958. 
Tricks by Charles Hudson and Ed Marlo. 

Linking Ring, Vol. 39, No. 3, pages 65-71, May 1959. Tricks by 
Charles Hudson, George Lord and Ron Edwards. 

Ibidem (A Canadian magic periodical), No. 16, March 1959. 
Trick by Tom Ransom. 

Ibidem, No. 26, September 1962. Trick by Tom Ransom. 
Ibidem, No. 31, December 1965. Trick by Allan Slaight. 
The principle can be proved informally as follows. When the 

deck is cut for a riffle shuffle, there are two possible situations: 
The bottom cards of the two halves are either the same color or 
different. Assume they are  different. After the first card fall,s, the 
bottom cards of the two halves will then be the same color, and 
opposite to that of the card that  fell. It makes no difference, there- 
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fore, whether the next card slips past the left or right thumb; in 
either case, a card of opposite color must fall on the previous one. 
This places on the table a pair of cards that  do not match. The 
situation is now exactly as before. The bottom cards of the halves 
in the hands do not match. Whichever card falls, the remaining 
botto:m cards will both have the opposite color. And so on. The 
argument repeats for each pair until the deck is exhausted. 

Now suppose that  the deck is initially cut so that  the two bot- 
tom cards are the same color. Either card may fall first. The 
previ'ous argument now applies to all the pairs of cards that  fol- 
low. One last card will remain. It must, of course, be opposite in 
color to the first card that  fell. When the deck is cut between two 
cards of the same color ( that  is, between the ordered pairs), the 
top and bottom cards of the deck are brought together, and all 
pairs are  now intact. 

Th'ere are many different ways of presenting the trick with the 
cards and the glass. Ron Edwards, of Rochester, New York, 
writes that  he has nine cards selected a t  random and formed into 
a square. The spectator then places a miniature skull on one of 
the cards. There is a hole in the top of the skull into which 
Edwards places a rolled slip of paper on which he has written his 
prediction: the name of the center card. The proper instruction 
card is then taken from his pocket (the two cards are in different 
pockets). The instructions designate the positions (rather than 
names) of the cards to be removed a t  each step. 

After this trick appeared in Scientific American, Hal Newton, 
Rochester, New York, worked out a version called "Voice from 
Another World" in which a phonograph record is played to give 
instr.uctions to a spectator as he moves an object back and forth 
on nine cards that  bear the names of the nine planets. The record 
can, of course, be played on either side. The trick was put on the 
mark:et in 1962 by Gene Gordon's magic shop in Buffalo. 

A N S W E R S  

THE CARD-SHUFFLED sentence deciphers as : "The smelling organs 
of fish have evolved in a great variety of forms." I t  is the first 
sentence of the last paragraph on page 73 of the article "The 
Homing Salmon," by Arthur D. Hasler and James A. Larsen, in 
Scie%!tific American for August 1955. 



C H A P T E R  T E N  

The Four-Color Map Theorem 

H u e s  
A r e  w h a t  ma thema t i c ians  u se  
( W h i l e  h u n g r y  patches gobble ' e m )  
F o r  t h e  4.-color problem. 

A Clerihew by 
J. A. Lindon, Surrey, England 

O F  ALL the great unproved conjectures of mathematics,, the 
simplest - simple in the sense that  a small child can unders'tand 
i t  - is the famous four-color theorem of topology. How rnany 
colors are  needed for coloring any map so that  no two countries 
with a common border will have the same color? I t  is easy to con- 
struct maps that  require four colors, and only a knowledge of 
elementary mathematics is required to follow a rigorous proof 
that  five colors are sufficient. But are  four colors both necessary 
and sufficient? To put i t  another way, is i t  possible to consltruct 
a map that  will require five colors? Mathematicians who are  in- 
terested in the matter think not, but they are  not sure. 

Every few months I receive in the mail a lengthy "proof" of the 
four-color theorem. In almost every case i t  turns out that  the 
sender has confused the theorem with a much simpler one which 
states that  i t  is impossible to draw a map of five regions in such 
a way that  each region is adjacent to the other four. (Two regions 
that  meet a t  a single point are  not considered adjacent.) I myself 
contributed in a small way to this confusion by once writing a 
science-fiction story entitled "The Island of Five Colors," a.bout 
an  imaginary island divided by a Polish topologist into five re- 
gions that  all had common borders. I t  is not difficult to prove that  
a map of this sort cannot be drawn. One might suppose that  the 
four-color theorem for all maps would now follow automatically, 
but such is'not the case. 
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To see why this is so, consider the simple map a t  a in Figure 43. 
(Thle actual shapes of the regions do not matter;  only the man- 
ner in which they are connected is significant. The four-color 
theorem is topological precisely because it deals with a property 
of plane figures that  is unaltered by distorting the surface on 
which they are  inscribed.) What color shall we use for the blank 
region? Obviously u7e must color it either red or a fourth color. 
Suppose we take the second alternative and color i t  pink as 
shown a t  b in the illustration. Then we add another region. 
I t  is now imposgible to complete the map without using a fifth 
color. Let us go back, then, to a,  and instead of putting pink for 
the lblank region, use red. But this gets us into difficulty if two 
more regions touch the first four, as shown a t  c. Clearly fourth 
and fifth colors are necessary for the two blank areas. Does all 
this prove that  five colors are necessary for some maps? Not a t  
all. :[n both cases we can manage with four colors, but only by 
going back and altering the previous color scheme. 

In  coloring complicated maps, with dozens of regions, we find 
ourselves constantly running into blind alleys of this sort that  
require a retracing of steps. To prove the four-color theorem, 
ther~efore, one must show that  in all cases such alterations can 
a1wa.y~ be made successfully, or devise a procedure that  will 
eliminate all such alterations in the process of coloring any map 
with four colors. Stephen Barr  has suggested a delightful two- 
person topological game that  is based on the difficulty of fore- 
seeing these color cul-de-sacs. Player A draws a region. Player B 
coloi-s i t  and adds a new region. Player A colors the new region 
and adds a third. This continues, with each player coloring the 
last region drawn by his opponent, until a player loses the game 
by being forced to use a fifth color. I know of no quicker way to 

.reco,gnize the difficulties involved in proving the four-color theo- 
rem than to engage in this curious game. 

I t  is often said that cartographers were the first to realize that  
no more than four colors are  required for any map, but this has 
been questioned by Kenneth 0. May, a mathematician a t  Carleton 
College. After extensive research on the origin of the four-color 
theorem, May failed to find any statement of the theorem in 
early books on cartography, or any indication that  the theorem 
was recognized. I t  seems to have been first formulated explicitly 
by Francis Guthrie, a student a t  Edinburgh. He mentioned i t  to 
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In making a map with four colors it is often necessary to start over again with 
different colors. 

his brother Frederick (who later became a chemist), and F'red- 
erick in turn passed i t  on, in 1852, to his mathematics teacher, 
Augustus de Morgan. The conjecture became well known after 
the great Arthur Cayley admitted in 1878 that  he had worked on 
the theorem but had been unable to prove it. 

In 1879 the British lawyer and mathematician Sir Alfred 
Kempe published what he believed to be a proof, and a year later 
he contributed to the British journal Nature an article with the 
overconfident title "How to Colour a Map with Four Colours." For 
ten years mathematicians thought the problem had been disposed 
o f ;  then P. J. Heawood spotted a fatal flaw in Kempe's p:roof. 
Since that  time the finest minds in mathematics have grappled 
unsuccessfully with the problem. The tantalizing thing about the 
theorem is that  i t  looks as  though i t  should be quite easy to prove. 
In his autobiographical book Ex-Prodigy Norbert Wiener writes 
that  he has tried, like all mathematicians, to find a proof of the 
four-color theorem, only to find his proof crumble, as he exprt lsses 
it, to fool's gold in his hands. As matters now stand, the theorem 
has been established for all maps with no more than 38 regions. 
This may Seem like a small number, but i t  becomes less trivial 
when we realize that  the number of topologically different rnaps 
with 38 or less regions would run to more than Even a 



FIG.  4 4  
Seven colors make a map on a torus 
(c).  The sheet ( a )  is first rolled into a 

modern electronic computer would not be able to examine all these 
configurations in a reasonable length of time. 

The lack of proof for the four-color theorem is made even more 
exasperating by the fact that analogous proofs have been found 
for surfaces much more complicated than the plane. (The surface 
of a sphere, by the way, i's the same as a plane so far as this 
problem goes; any map on the sphere can be transformed to an 
equivalent plane map by puncturing the map inside any region 
and then flattening the surface.) On one-sided surfaces such as 
the Moebius strip, the Klein bottle and the projective plane it 
has been established that six colors are necessary and sufficient. 
On the surface of the torus, or anchor ring, the number is seven. 
Such a map is shown in Figure 44. Note that each region is 
bounded by six line segments and that every region is adjacent 
to the other six. In fact;the map-coloring problem has been solved 
for every higher surface that has been seriously investigated. 

I t  is only when the'theorem is applied to surfaces topologically 
equivalent to a plane or surface of a sphere that its proof con- 
tinues to frustrate topologists; and what is worse still, there is 
no apparent reason why this should be so. There is something 
spooky about the way in which attempted proofs seem to be work- 
ing out beautifully, only to develop an infuriating gap just as the 
deductive chain is about to be completed. No one can predict what 
the future will decide about this famous problem, but we can be 
sure that world fame awaits the first person who achieves one of 
three possible breakthroughs : 

1. A map requiring five colors will be discovered. "If I be so 
bold as to make a conjecture," writes H. S. M. Coxeter in his 



excellent article "The Four-Color Map Problem, 1840-1890," "I 
would guess that a map requiring five colors may be possible, but 
that  the simplest such map has so many faces (maybe hundreds 
or thousands) that nobody, confronted with it, would have the 
patience to make all the necessary tests that  would be required to 
exclude the possibility of coloring it with four colors." 

2. A proof of the theorem will be found, possibly by a new 
technique that may suddenly unlock many another bolted door of 
mathematics. 

3. The theorem will be proved impossible to prove. This may 
sound strange, but in 1931 Kurt Gijdel established that in every 
deductive system complicated enough to include arithmetic there 
are mathematical theorems that  are "undecidable" within the 
system. So f a r  very few of the great unsolved conjectures of 
mathematics have been shown to be undecidable in this sense. Is  
the four-color theorem such a theorem? If so, i t  can be accepted 
as  "true" only by adopting it, or some other undecidable theorem 
closely linked to it, as a new and unprovable postulate of an en- 
larged deductive system. 
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U:nfortunately the proof that  five colors are  sufficient for plane 
maps, or that  six or more colors are necessary and sufficient for 
certain higher surfaces, is too lengthy to include here. But per- 
haps the following clever proof of a two-color theorem will give 
the :reader some notion of how one can go about establishing a 
map-coloring theorem. 

Consider all possible maps on the plane that can be formed by 
strafght lines. The ordinary checkerboard is a familiar example. 
A lelss regular pattern is shown in the left illustration of Figure 
45. Are two colors sufficie~lt for all such maps? The answer is yes, 
and i t  is easily shown. If we add another straight line ( e . g . ,  the 
heavy black line in the same illustration) to any properly colored 
stra:ight-line map, the line will divide the plane into two separate 
maps, each correctly colored when considered in isolation, but 
with pairs of like-color regions adjacent along the line. To restore 
a proper coloration to the entire map, all we have to do is ex- 
change the two colors on one side (i t  doesn't matter which) of the 
line. This is shown in the right illustration. The map above the 
bladk line has been reversed, as though a negative print had been 
changed to a positive, and, as you can see, the new map is now 
properly colored. 

To complete the proof, consider a plane that  is divided into two 
regions by a single line. I t  can of course be constructed with two 
colors. We draw a second line and recolor the new map by re- 
versing the colors on one side of the line. We draw a third line, 
and so on. Clearly this procedure will work for any number of 
lines, so by a method known as "mathematical induction" we have 
esta'blished a two-color theorem for all possible maps drawn 
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Two colors suffice for any map drawn with lines that cut across the entire surface. 
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with straight lines. The proof can be generalized to cover less 
rigid maps, such as the one in Figure 46, which are drawn with 
endless lines that either cut across the entire map or lie on it as 
simple closed curves. If we add a line that  crosses the map, we 
reverse the colors on one side of the line as before. If the new line 
is a closed curve, we reverse the colors of all regions inside the 
curve or, if we prefer, the colors of regions outside the curve. 
The closed curves may also intersect themselves, but then the re- 
coloring procedure becomes more complicated. 

Note that all the two-color maps shown here have even vertices ; 
that is, a t  each vertex an even number of lines meet. I t  can be 
proved that any map on the plane can be colored with two coIors 
if and only if all its vertices are even. This is known as the "two- 
color map theorem." That i t  does not hold on the torus is e<asily 
seen by ruling a square sheet of paper into nine smaller squares 
(like a ticktacktoe field) and rolling it into a torus in the manner 
previously described. This checked doughnut has even vertices 
but requires three colors. 

Now, more for amusement than for enlightenment, here are 
three map-coloring problems that are not difficult, although each 
has a "catch" element of some sort that makes the solutionl not 
quite what one would a t  first expect: 

1. How many colors are required for the map in Figure 47 
(devised by the English puzzlist Henry Ernest Dudeney) so that 
no two regions of the same color bordir on each other? 
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How many colors are needed 
for this map? 

2. Stephen Barr  writes about the painter who wished to com- 
plete on a huge canvas the nonobjective work of a r t  shown in 
outline in Figure 48. He decided to limit himself to four colors, 
and to fill each region with one solid color in such a way that  
there would be a different color on each side of every common 
border. Each region had an area of eight square feet, except for 
the top region, which was twice the size of the others. When he 
checlted his paint supplies, he found that  he had on hand only the 
follo.wing: enough red to cover 24 square feet, enough yellow to 
cover the same area,  enough green to cover sixteen square feet 
and (enough blue to paint eight square feet. How did he manage 
to complete his canvas? 

3. Leo Moser, a mathematician a t  the University of Alberta, 
asks: How can a two-color map be drawn on a plane so that  no 
matter where you place on i t  an  equilateral triangle with a side 
of 1, all three vertices never lie on points of the same color? 

F I G .  4 8  
How many are needed for this 
abstraction? 
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A D D E N D U M  

THE ASSERTION that five regions cannot be drawn on the ]plane 
so that  every pair has a common border was made by Moebius in 
an  1840 lecture. He gave i t  in the form of a story about an 
Eastern prince who willed his kingdom to five sons on conclition 
that  i t  be divided into five regions, each bordering the others. The 
problem is equivalent to the following problem in graph theory: 
Is  i t  possible to place five spots on the plane and join each to the 
others by straight lines that do not intersect? Proofs of impossi- 
bility are not difficult, and can be found in any book on elementary 
graph theory. An easy-to-follow proof is given by Heinrich 
Tietze in his chapter "On Neighboring Domains" in Famous  
Problems o f  Mathemat ics .  Essentially the same proof is sketched 
by Henry Dudeney in his solution to problem 140 in Mathematical 
Puzzles.  Dudeney goes on to argue, mistakenly, that  this implies 
a proof of the four-color theorem. 

The looseness of my language in speaking of the four-color 
theorem as "Godel-undecidable" prompted the following lletter 
from the British cosmologist Dennis Sciama (Scient i f ic  Amer i -  
can, November 1960, page 2 1 )  : 

S i r s  : 
I have  been enjoying M a r t i n  Gardner's  article o n  t h e  four-  

color problem. Actual ly  it i s  impossible t o  prove t h a t  it i s  
impossible t o  prove t h e  theorem.  F o r  i f  t h e  theorem i s  false, 
t h i s  can undoubtedly  be s h o w n  explicit ly b y  exhibi t ing a 
m a p  t h a t  cannot be colored w i t h  f o u r  colors. Hence i f  t h e  
theorem i s  unprovable  it m u s t  be t rue .  T h i s  m e a n s  t h a t  zue 
cannot prove it t o  be unprovable ,  f o r  t h i s  i s  tan tamount  to  
proving it t o  be t rue ,  w h i c h  i s  a contradiction. 

T h e  same  r e m a r k  holds for a n y  theorem whose falsity 
could be demonstrated b y  a gegenbeispiel;  e.g., Fermat 's  last 
theorem.  S u c h  theorems m a y  be unprovable ,  but  only i f  t h e y  
are  true .  We can t h e n  n e v e r  k n o w  t h a t  t h e y  are  unprovable ,  
so t h a t  mathemat ic ians  zuould endlessly t r y  t o  prove t h e m .  
T h i s  i s  a t e r r i f y i n g  s ta te  o f  a f fa i r s .  Doing physics m i g h t  
s e e m  t o  be a good alternative,  bu t  Godelry m a y  invade that 
rea lm yet .  . . . 
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These worries have now been laid to rest. In 1976 Wolfgang 
Haken and Kenneth Appel, a t  the University of Illinois, proved the 
four-color theorem. Their proof required a computer program that 
ran for 1,200 hours. Someone may someday find a simple, elegant 
way t,o prove the theorem, or i t  may be that there is no simpler way. 
It is possible that a subtle flaw may be concealed in the Haken- 
Appel proof, but so many top mathematicians have examined i t  and 
pronc~unced it valid that this seems extremely unlikely. For more on 
map coloring, see my Scientific American column for February 1980. 

A N S W E R S  

THE ANSWERS to the three map-coloring problems follow (the 
first two answers refer to illustrations that  accompanied the 
probllems) : 

1. The swastika map could be colored with two colors were i t  
not for one small line a t  the lower left corner. At this spot three 
regioins touch one another, so three colors are  required. 

2. 'The artist colored his abstraction by mixing all his blue 
paint with one-third of his red paint to obtain enough purple 
to color sixteen square feet of canvas. After the large region a t  
the top of the canvas and the area in the center are  painted yel- 
low, it is a simple matter to color the remaining regions red, 
green1 and purple. 

3. To color the plane with two colors so that no three points 
of the same color mark the corners of an equilateral triangle with 
a side of 1, the simplest method is to divide the plane into parallel 
stripes, each with a width of d q 2 ,  then color them alternately 
black and white as shown in Figure 49. This does not solve the 
problem, however, until the concept of open and closed sets is 
intro~duced. A continuum of real numbers - say from 0 to 1 - is 
called a closed interval if i t  includes 0 and 1, and an open interval 
if i t  excludes them. If i t  includes one and not the other, i t  is said 
to be closed a t  one end and open a t  the other. 

The stripes on the map are closed along their left edge; open 
along their right. The black stripe on the left has a width that  
starts a t  0, measured on the line below the map, and goes to fl12. 
I t  includes 0, but does not include d q 2 .  The next stripe has a 
width that includes f i t 2  but does not include 2fil2, and so on 
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for  the other stripes. In other words, each vertical line belongs 
only to the stripe on its right. This is necessary to take care of 
cases in which the triangle, shown in color, lies with all thiree of 
its corners on boundary lines. 

Leo Moser, of the University of Alberta, who sent this problem, 
writes that  i t  is not known how many colors are  required for 
coloring the plane so that  no tzoo points, a unit distance apart,  lie 
on the same color. Four colors have been shown necessary, and 
seven sufficient. (That  seven are  sufficient is evident from a reg- 
ular tiling of hexagons, each with the radius of its circumscribing 
circle a trifle less than unity, and each surrounded by hexagons 
that  differ in color from it  and from each other.) The garp be- 
tween four and seven is so large that  the problem seems al long 
way from being solved. 

F I G .  4 9  
Solution to the problem of the triangle and the two-color map.  



C H A P T E R  E L E V E N  

Mr. Apollinax Visits New York 

W h e n  Mr.  Apol l inax  visited t he  Uni ted  S ta t e s  
H i s  laughter  t inkled among the  teacups.  

- T. S. Eliot 

P. BERTRAND APOLLINAX, the brilliant prot6g6 of the cele- 
brate~d French mathematician Nicolas Bourbaki, was little known 
even in France until the spring of 1960. I t  was then, as  everyone 
knows, that  the mathematical world was shattered by the dis- 
closui*e, in a French mathematical journal, of what is now known 
as  the Apollinax function. By means of this remarkable function 
Apollinax was able a t  one stroke to (1) prove Fermat's last 
theorem, (2)  provide a counterexample (a map with 5,693 re- 
gions) to the famous four-color theorem of topology, (3) lay the 
groundwork for Channing Cheetah's discovery, three months later, 
of a 5,693-digit integer - the first of its kind known - that  is 
both .perfect and odd. 

The reader will understand my excitement when Professor 
Cheetah, of New York University, invited me to his apartment 
for an  afternoon tea a t  which Apollinax would be guest of honor. 
(Cheetah's apartment is in Greenwich Village, in a large brown- 
stone building off Fifth Avenue. The building is owned by Mrs. 
Orville Phlaccus, widow of the well-known financier, and is called 
Ph1ac;cus Palace by students a t  nearby N.Y.U.) When I arrived, 
the tea was in full swing. I recognized several members of the 
N.Y.U. mathematics faculty and guessed that  most of the younger 
people present were graduate students. 
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The mystery of the disappearing tile. 

There was no mistaking Apollinax. He was the obvious center 
of attention: a bachelor in his early thirties, tall, with rugged 
features that  could not be called handsome but nevertheles,~ con- 
veyed a strong impression of physical virility combined with 
massive intellect. He had a small black goatee and rather large 
ears with prominent Darwin points. Under his tweedy jacltet he 
sported a bright red vest. 

While Mrs. Phlaccus served me a cup of tea, I heard a :young 
woman say: "That silver ring on your finger, Mr. Apollinax. Isn't 
it a Moebius strip?" 

He removed the ring and handed it to her. "Yes. It was made 
by an artist friend of mine who has a jewelry shop on the Left 
Bank in Paris." He spoke with a husky French accent. 

"It's crazy,'' the girl said as  she handed back the ring. "Aren't 
you afraid it will twist around and your finger will disappear?" 

Apollinax chuckled explosively. "If you think that's crazy, then 
I have something here you'll think even crazier." He reached into 
his side pocket and took out a square, flat wooden box. It was 
filled with seventeen white plastic tiles that  fitted snugly together 
[see Fig. 50, l e f t ] .  The tiles were of such thickness that  the five 
small pieces in the center were cubes. Apollinax called attention 
to the number of cubes, dumped the tiles onto a nearby table, 
then quickly replaced them in the box in the manner shown in the 
illustration a t  right. They fitted snugly as before. But now there 
were only four cubes. One cube had completely vanished! 
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The young woman stared a t  the pattern with disbelief, then a t  
Apollinax, who was shaking with high-pitched laughter. "May I 
study this for a while?" she asked, taking the box from his hand. 
She carried i t  off to a quiet corner of the room. 

"Who's the chick?" Apollinax said to Cheetah. 
"I beg your pardon?" replied the professor. 
"T:he girl in the sweat shirt." 
"Oh. Her name is Nancy Ellicott. A Boston girl. She's one of 

our undergraduate math majors." 
"V~ery attractive." 
"Ylou think so? I've never seen her wear anything but dun- 

garees and that  same dirty sweat shirt." 
"I like your Village nonconformists," Apollinax said. "They're 

all so much alike." 
"Sometimes," remarked someone in the group, "it's hard to 

distinguish nonconformity from neurosis." 
"Tlhat reminds me," I said, "of a mathematical riddle I just 

heardl. What's the difference between a psychotic and a neurotic?" 
Nobody said anything. 
"A psychotic," I went on, "thinks that  two plus two is five. A 

neurotic knows that it's four, but i t  makes him nervous." 
Thlere was some polite laughter, but Apollinax looked grave. 

"He 'has good reason to be nervous. Wasn't it Alexander Pope 
who .wrote: 'Ah why, ye gods! should two and two make four?' 
Why indeed? Who can say why tautologies are  tautological? And 
who can say that  even simple arithmetic is free from contradic- 
tion?" He took a small notebook from his pocket and jotted down 
the following infinite series : 

"What," he asked, "is the sum of this series? If we group the 
numb~ers like this, 

the sum is obviously zero. But if we group them so, 
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the sum is clearly four. Suppose we t ry  them still another way: 

Now the sum of the series is four minus the sum of the same 
series. In other words, twice the sum is equal to four, so the sum 
must be equal to half of four, or two." 

I started to make a comment, but Nancy pushed her way back 
through the group and said: "These tiles are driving me batty. 
What happened to that  fifth cube?" 

Apollinax laughed until his eyes teared. "I'll give you a hint, 
my dear. Perhaps it slid off into a higher dimension." 

"Are you pulling my leg?" 
"I wish I were," he sighed. "The fourth dimension, as  you 

know, is an extension along a fourth coordinate perpendicular to 
the three coordinates of three-dimensional space. Now cons-ider a 
cube. I t  has four main diagonals, each running from one corner 
through the cube's center to the opposite corner. Because of the 
cube's symmetry, each diagonal is clearly a t  right angles to the 
other three. So why shouldn't a cube, if i t  feels like it, slide along 
a fourth coordinate?" 

"But my physics teacher," Nancy said with a frown, "told us 
that  time was the fourth dimension." 

"Nonsense !" Apollinax snorted. "General relativity is as dead 
as  the dodo. Hasn't your professor heard about Hilbert Dongle's 
recent discovery of a fatal flaw in Einstein's theory?" 

"I doubt it,'' Nancy replied. 
"It's easy to explain. If you spin a sphere of soft rubber rapidly, 

what happens to its equator? It bulges. In relativity theory, you 
can explain the bulge in two different ways. You can assume that 
the cosmos is a fixed frame of reference - a so-called inertial1 sys- 
tem. Then you say that  the sphere rotates and inertia makes the 
equator bulge. Or you can make the sphere a fixed frame of :refer- 
ence and r'egard the entire cosmos as  rotating. Then y0.u say 
that  the masses of the moving stars set up a gravitational tensor 
field that  exerts its strongest pull on the equator of the motionless 
ball. Of course-" 

"I would put it a bit differently," Cheetah interrupted. "I would 
say that  there is a relative movement of sphere and stars, an'd this 
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relative motion causes a certain change in the space-time struc- 
ture of the universe. I t  is the pressure, so to speak, of this space- 
time matrix that  produces the bulge. The bulge can be viewed 
either as  a gravitational or inertial effect. In both cases the field 
equations are  exactly the same." 

"Very good," Apollinax replied. "Of course, this is exactly what 
Einstein called the principle of equivalence - the equivalence of 
gravity and inertia. As Hans Reichenbach liked to put it, there's 
no truth distinction between the two. But now let me ask you this : 
Does not relativity theory make i t  impossible for physical bodies 
to have relative motions greater than the speed of light? Yet if 
we make the rubber ball our fixed frame of reference, i t  takes 
only a slow spin of the ball to give the moon a relative motion 
much faster than the speed of light." 

Cheetah did a slow double-take. 
"You see," Apollinax continued, "we just can't keep the sphere 

still while we spin the universe around it. This means that  we 
have to regard the ball's spin as  absolute, not relative. Astrono- 
mers run into the same sort of difficulty with what they call the 
transverse Doppler effect. If the earth rotates, the relative trans- 
verse velocity between the observatory and a ray of light from a 
distant star  is very small, so the Doppler shift is small. But if 
you view the cosmos as  rotating, then the transverse velocity of 
the distant star  relative to the observatory is very great, and the 
Doppler shift would have to increase accordingly. Since the 
transverse Doppler shift is small, we must assume i t  is the earth 
that  rotates. Of course, this defenestrates relativity theory." 

"Then," Cheetah mumbled, looking a trifle pale, "how do you 
account for the fact that  the Michelson-Morley experiment failed 
to  detect any motion of the earth relative to a fixed space?" 

"Quite simple," Apollinax said. "The universe is infinite. The 
earth spins around the sun, the sun speeds through the galaxy, 
the galaxy gallumphs along relative to other galaxies, the galaxies 
are  in galactic clusters that  move relative to other clusters, and 
the clusters are  parts of superclusters. The hierarchy is endless. 
Add together an  infinite series of vectors, of random speeds and 
directions, and what happens? They cancel each other out. Zero 
and infinity are close cousins. Let me illustrate." 

He pointed to a large vase on the table. "Imagine that  vase 
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empty. We start  filling i t  with numbers. If you like, you can think 
of small counters with numbers on them. At one minute to noon 
we put the numbers 1 through 10 into the vase, then take out 
number 1. At one-half minute to noon, we put in numbers 11 to 
20 and take out number 2. At one-third minute to noon we put in 
21 to 30, take out 3. At  one-fourth minute to noon we put in 31 to 
40, take out 4. And so on. How many numbers are in the vase a t  
noon ?" 

"An infinity," said Nancy. "Each time you take one out, you 
put in ten." 

Apollinax cackled like an  irresponsible hen. "There would be 
no th ing  in the vase! Is  4 in the vase? No, we took i t  out on the 
fourth operation. Is  518 in the vase? No, i t  came out on the 1318th 
operation. The numbers in the vase a t  noon form an empt;y set. 
You see how close infinity is  to zero?" 

Mrs. Cheetah approached us, bearing a tray with assorted 
cookies and macaroons. "I think I shall exercise Zermelo's a.xiom 
of choice," said Apollinax, tugging on his goatee, "and take one 
of each kind." 

"If you think relativity theory is dead," I said a few minutes 
later, "what is your attitude toward modern quantum theory? Do 
you think there's a fundamental randomness in the behavior of 
the elementary particles? Or is the randomness just an expression 
of our ignorance of underlying laws?" 

"I accept the modern approach," he said. "In fact, I go imuch 
further. I agree with Karl Popper that  there are  logical reasons 
why determinism can no longer be taken seriously." 

"That's hard to believe," someone said. 
"Well, let me put i t  this way. There are  portions of the future 

that  in principle can never be predicted correctly, even if one 
possessed total information about the state of the universe. Let 
me demonstrate." 

He took a blank file card from his pocket, then, holding i t  so no 
one could see what he was writing, he scribbled something on the 
card and handed i t  to me, writing side down. "Put that  in your 
right trouser pocket." 

I did as  he directed. 
"On that  card," he said, "I've described a future event. It hasn't 

taken place yet, but i t  positively either will or will not take place 
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before" - he glanced a t  his wrist watch - "before six o'clock." 
He took another blank card from his pocket and handed i t  to 

me. "I want you to t ry  to guess whether the event I just described 
will take place. If you think i t  will, write 'Yes' on the card you 
hold, If you think it won't, write 'No.' " 

I started to write, but Apollinax caught my wrist. "Not yet, old 
chapl. If I see your prediction, I might do something to make i t  
fail. Wait until my back is turned, and don't let anyone see what 
you write." He spun around and looked a t  the ceiling until I had 
finished writing. "Now put the card in your left pocket, where no 
one can see it." 

He turned to face me again. "I don't know your prediction. You 
don't know what the event is. Your chance of being right is one 
in tvvo." 

I nodded. 
"?'hen I'll make you the following bet. If your prediction is 

wrong, you must give me ten cents. If it's right, I'll give you one 
million dollars." 

Everyone looked startled. "It's a deal," I said. 
"FVhile we're waiting," Apollinax said to Nancy, "let's go back 

to relativity theory. Would you care to know how you can always 
wear a relatively clean sweat shirt, even if you own only two 
sweat shirts and never wash either of them?" 

"I'm all ears," she said, smiling. 
"You have other features," he said, "and very pretty ones too. 

But let me explain about those sweat shirts. Wear the cleanest 
one, say sweat shirt A, until i t  becomes dirtier than B. Then take 
i t  ofl' and put on the relatively clean sweat shirt B. The instant B 
is dirtier than A, take off B and put on the relatively clean sweat 
shirt A. And so on." 

N;ancy made a face. 
"I really can't wait here until six," Apollinax said. "Not on a 

warm spring evening in Manhattan. Would you by any chance 
know if Thelonious Monk is playing anywhere in the city tonight?" 

Nancy's eyes opened wide. "Why, yes, he's playing right here in 
the 'Village. Do you like his style?" 

"I dig it," Apollinax said. "And now, if you'll kindly direct me 
to a nearby restaurant, where I shall pay for your dinner, we will 
eat, I will explain the mystery of the tiles, then we will go listen 
to the Monk." 
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After Apollinax had left, with Nancy on his arm, word o:f the 
prediction bet spread rapidly around the room. When six o'clock 
arrived, everyone gathered around to see what Apollinax a.nd I 
had written. He was right. The event was logically unpredictable. 
I owed him a dime. 

The reader may enjoy trying to figure out just what future 
event Apollinax described on that  card. 

A D D E N D U M  

MANY READERS took Apollinax seriously (even though I said he 
was a prot6g6 of Bourbaki, the well-known, nonexistent French 
mathematician) and wrote to ask where they could find out a.bout 
the "Apollinax function." Both Apollinax and Nancy, as well as 
others a t  the tea, are  straight out of T. S. Eliot's two poems, "Mr. 
Apollinax" and "Nancy," which appear on facing pages in Eliot's 
Collected Poems:  1909-1962 (Harcourt Brace, 1963). 

"Mr. Apollinax," by the way, is a poem about Bertrand Russell. 
When Russell visited Harvard in 1914, Eliot attended his lectures 
on logic, and the two met a t  a t ea ;  the tea Eliot describes iii his 
poem. A mathematician a t  Trinity College, Cambridge, wrote to 
ask me if the name "Phlaccus" was a portmanteau word com- 
bining "flaccid" and "phallus"; I mention this as a minor con- 
tribution to Eliot exegesis. Hilbert Dongle derives from Herbert 
Dingle, the British physicist who has been arguing in recent years 
that  if the clock paradox of relativity theory is true, then rela- 
tivity isn't. (See my chapter on the clock paradox in Relat iv i ty  
for t h e  Million, now a Pocket Books paperback.) Thelonious 
Monk is Thelonious Monk. 

Apollinax's reasoning about Nancy's dirty sweat shirt is bor- 
rowed from a small poem by Piet Hein, who is mentioned earlier 
in the chapter on braids. The paradox about the numbers in the 
vase comes from J. E. Littlewood's A Mathematician's Miscellany. 
I t  illustrates a case in which the subtraction of the transiinite 
number aleph-null from ten times aleph-null results in zero. If 
the numbered counters are  taken out of the vase in the order 
2, 4, 6, 8 . . . , an aleph-null infinity remains, namely, all the odd 
numbers. One can also remove an infinite set of counters in such 
a way as  to leave any desired finite number of counters. If one 
wishes to leave, say, exactly three counters, he merely takes out 
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numbers in serial order, but beginning with 4. The situation is 
an amusing illustration of the fact that when aleph-null is taken 
from aleph-null, the result is indeterminate; i t  can be made zero, 
infinity, or any desired positive integer, depending on the nature 
of the two infinite sets that are involved. 

The pattern for the vanishing-cube paradox is one that  I based 
on a, little-known principle discovered by Paul Curry, of New 
Yorlr City, and which is discussed a t  length in the chapters on 
"Geometrical Vanishes" in my Dover paperback, Mathematics,  
Magic and Mystery .  

My dramatization of the prediction paradox as a bar bet was 
first published in Ibidem,  a Canadian magic magazine, No. 23, 
March 1961, page 23. I contributed a slightly different version, 
involving a card mailed to a friend, to T h e  Br i t i sh  Journal f o r  the  
Phillosophy o f  Science, Vol. 13, page 51, May 1962. 

A N S W E R S  

THE PARADOX of the tiles, demonstrated by P.  Bertrand Apollinax, 
is explained as follows. When all seventeen tiles are formed into 
a square, the sides of the square are not absolutely straight but 
convex by an imperceptible amount. When one cube is removed 
and the sixteen tiles re-formed into a square, the sides of the 
square are  concave by the same imperceptible amount. This ac- 
counts for the apparent change in area. To dramatize the paradox, 
Apo'llinax performed a bit of sleight of hand by palming the fifth 
cube as he rearranged the pattern of the tiles. 

In his prediction bet the event that Apollinax described on the 
file card was : "You will place in your left trouser pocket a card on 
which you have written the word 'No.' " The simplest presenta- 
tion of the same paradox is to ask someone to predict, by saying 
yes or no, whether the next word that he utters will be no. Karl 
R. F'opper's reasons for thinking that  part of the future is in 
principle unpredictable are not based on this paradox, which is 
simply a version of the old liar paradox, but on much deeper con- 
siderations. These considerations are given in Popper's "Indeter- 
minism in Quantum Physics and in Classical Physics," in T h e  
Br i t i sh  Journal f o r  the  Philosophy o f  Science, Vol. 1, No. 2 and 
3, 1950, and will be discussed more fully in his forthcoming book 
Postscript: A f t e r  Tzoenty Years .  A prediction paradox essentially 
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the same as  Apollinax's, except that  i t  involves a computer and 
electric fan instead of a person and card, is discussed in Chapter 
11 of John G. Kemeny's A Philosopher Looks a t  Science, publiished 
by D. Van Nostrand in 1959. 

The paradox of the infinite series of fours, alternately added 
and subtracted, is explained by the fact that  the sum of this series 
does not converge but oscillates back and forth between the v;slues 
of zero and four. To explain the rotation paradoxes would require 
too deep a plunge into relativity theory. For  a stimulating pres- 
entation of a modern approach to these classic difficulties, Dennis 
Sciama's recent book, The Unity of the Universe, published by 
Doubleday & Company, Inc., is recommended. 



C H A P T E R  T W E L V E  

Nine Problems 

1 .  THE G A M E  O F  H I P  

THE GAME of "Hip," so named because of the hipster's reputed 
disdain for "squares," is played on a six-by-six checkerboard as 
follows : 

One player holds eighteen red counters; his opponent holds 
eighteen black counters. They take turns placing a single counter 
on any vacant cell of the board. Each tries to avoid placing his 
counters so that  four of them mark the corners of a square. The 
square may be any size and tipped a t  any angle. There a re  105 
possible squares, a few of which are  shown in Figure 51. 

A player wins when his opponent becomes a "square" by 
forming one of the 105 squares. The game can be played on a 
board with actual counters, or with pencil and paper. Simply 

F I G .  5 1  
Four of the 105 ways to 

become "square" in the 

game of Hip. 
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draw the board, then register moves by marking X's and 0 ' s  on 
the cells. 

For months after I had devised this game I believed that it was 
impossible for a draw to occur in it. Then C. M. McLaury, a 
mathematics student a t  the University of Oklahoma, demonst1:ated 
that the game could end in a draw. The problem is to show how 
the game can be drawn by dividing the 36 cells into two sets of 
eighteen each so that  no four cells of the same set mark the cor- 
ners of a square. 

F I G .  5 2  
A puzzle in operations research. 

2 .  A S W I T C H I N G  P U Z Z L E  

THE EFFICIENT switching of railroad cars often poses frustrating 
problems in the field of operations research. The switching puz- 
zle depicted in Figure 52 is one that  has the merit of combining 
simplicity with surprising difficulty. 

The tunnel is wide enough to accommodate the locomotive but 
not wide enough for either car. The problem is to use the locomo- 
tive for switching the positions of cars A and B, then return the 
locomotive to its original spot. Each end of the locomotive can be 
used for pushing or pulling, and the two cars may, if desired, be 
coupled to each other. 
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The best solution is the one requiring the fewest operations. An 
"operation" is here defined as any movement of the locomotive 
between stops, assuming that  i t  stops when i t  reverses direction, 
meets a car to push i t  or unhooks from a car i t  has been pulling. 
Movements of the two switches are  not counted as operations. 

A convenient way to work on the puzzle is to place a penny, a 
dime and a nickel on the illustration and slide them along the 
tracks, remembering that  only the coin representing the loco- 
motive can pass through the tunnel. In the illustration, the cars 
were drawn in positions too close to the switches. While working 
on the problem, assume that  both cars are f a r  enough east along 
the track so that  there is ample space between each car and 
switch to accommodate both the locomotive and the other car. 

No "flying switch" maneuvers are  permitted. For example, you 
are not permitted to turn the switch quickly just after the engine 
has pushed an unattached car past it, so that  the car goes one way 
and Ithe engine, without stopping, goes another way. 

3 .  BEER S I G N S  O N  THE H I G H W A Y  

SMITH DROVE a t  a steady clip along the highway, his wife beside 
him. "Have you noticed," he said, "that those annoying signs for 
Flatz beer seem to be regularly spaced along the road? I wonder 
how f a r  apart  they are." 

Mrs. Smith glanced a t  her wrist watch, then counted the num- 
ber of Flatz beer signs they passed in one minute. 

"PvThat an  odd coincidence!" exclaimed Smith. "When you mul- 
tiply that  number by ten, it exactly equals the speed of our car in 
miles per hour." 

Assuming that  the car's speed is constant, that  the signs are 
equally spaced and that  Mrs. Smith's minute began and ended 
with the car midway between two signs, how fa r  is it between one 
sign and the next? 

4 .  'THE SLICED CUBE A N D  THE SLICED D O U G H N U T  

AN E:NGINEER, noted for his ability to visualize three-dimensional 
structure, was having coffee and doughnuts. Before he dropped a 
sugar cube into his cup, he placed the cube on the table and 
thou.ght: If I pass a horizontal plane through the cube's center, 
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the cross section will of course be a square. If I pass i t  vertically 
through the center and four corners of the cube, the cross section 
will be an  oblong rectangle. Now suppose I cut the cube this way 
with the plane. . . . To his surprise, his mental image of the cross 
section was a regular hexagon. 

How was the slice made? If the cube's side is half an  inch, what 
is the side of the hexagon? 

After dropping the cube into his coffee, the engineer turned his 
attention to a doughnut lying flat on a plate. "If I pass a plane 
horizontally through the center," he said to himself, "the cross 
section will be two concentric circles. If I pass the plane vertically 
through the center, the section will be two circles separated by the 
width of the hole. But if I turn the plane so. . . ." He whistled with 
astonishment. The section consisted of two perfect circles th,at in- 
tersected ! 

How was this slice made? If the doughnut is a perfect t,orus, 
three inches in outside diameter and with a hole one inch across, 
what a re  the diameters of the intersecting circles? 

The monad. Yin is dark and 
Yang is light. 

5 .  B I S E C T I N G  Y I N  A N D  Y A N G  

Two MATHEMATICIANS were dining a t  the Ying and Yang, a Chi- 
nese restaurant on West Third Street in Manhattan. They chatted 
about the symbol on the restaurant's menu [see Fig. 531. 

"I suppose it's one of the world's oldest religious symbols,"' one 
of them said. "It would be hard to find a more attractive w,ay to 
symbolize the great polarities of nature: good and evil, male and 
female, inflation and deflation, integration and differentiation." 
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"Isn't i t  also the symbol of the Northern Pacific Railway?" 
"Yes. I understand that one of the chief engineers of the rail- 

road saw the emblem on a Korean flag a t  the Chicago World's 
Fair  in 1893 and urged his company to adopt it. He said i t  symbol- 
ized the extremes of fire and water that  drove the steam engine." 

"Do you suppose it inspired the construction of the modern 
baseball ?" 

"I wouldn't be surprised. By the way, did you know that  there 
is an elegant method of drawing one straight line across the circle 
so that  i t  exactly bisects the areas of the Yin and Yang?" 

Assuming that the Yin and Yang are separated by two semi- 
circles, show how each can be simultaneously bisected by the same 
straight line. 

6 .  T H E  B L U E - E Y E D  S I S T E R S  

IF YOU HAPPEN to meet two of the Jones sisters (this assumes that 
the two are random selections from the set of all the Jones sis- 
ters) ,  i t  is an exactly even-money bet that  both girls will be 
blueeyed. What is your best guess as to the total number of blue- 
eyed Jones sisters? 

7 .  H O W  O L D  I S  T H E  R O S E - R E D  C I T Y ?  

Two PROFESSORS, one of English and one of mathematics, were 
having drinks in the faculty club bar. 

"It is curious," said the English professor, "how some poets can 
write one immortal line and nothing else of lasting value. John 
William Burgon, for example. His poems are so mediocre that no 
one reads them now, yet he wrote one of the most marvelous lines 
in English poetry: 'A rose-red city half as old as Time.' " 

The mathematician, who liked to annoy his friends with im- 
proviised brainteasers, thought for a moment or two, then raised 
his glass and recited: 

" A  rose-red ci ty  half as  old as T ime .  
One billion years ago the  city's age 
W a s  just two-fi f ths o f  w h a t  Time's  age zuill be 
A billion years from now.  C a n  you compute 
Hozv old the  cr imson city i s  today?" 
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The English professor had long ago forgotten his algebra, so he 
quickly shifted the conversation to another topic, but readers of 
this department should have no difficulty with the problem. 

8 .  T R I C K Y  T R A C K  

THREE HIGH SCHOOLS -Washington, Lincoln and Roosevelt - 
competed in a track meet. Each school entered one man, and one 
only, in each event. Susan, a student a t  Lincoln High, sat in the 
bleachers to cheer her boy friend, the school's shot-put champion. 

When Susan returned home later in the day, her father asked 
how her school had done. 

"We won the shot-put all right," she said, "but Washington 
High won the track meet. They had a final score of 22. We fin- 
ished with 9. So did Roosevelt High." 

"How were the events scored?" her father asked. 
"I don't remember exactly," Susan replied, "but there was a 

certain number of points for the winner of each event, a smaller 
number for second place and a still smaller number for third 
place. The numbers were the same for all events." (By "number" 
Susan of course meant a positive integer.) 

"How many events were there altogether?" 
"Gosh, I don't know, Dad. All I watched was the shot-put.'" 
"Was there a high jump?" asked Susan's brother. 
Susan nodded. 
"Who won it?" 
Susan didn't know. 
Incredible as i t  may seem, this last question can be answered 

with only the information given. Which school won the high 
jump? 

9 .  T E R M I T E  A N D  2 7  C U B E S  

IMAGINE a large cube formed by gluing together 27 smaller wood- 
en cubes of uniform size [see  Fig. 541. A termite starts a t  the ten- 

ter of the face of any one of the outside cubes and bores a path 
that  takes him once through every cube. His movement is always 
parallel to a side of the large cube, never diagonal. 

Is  i t  possible for the termite to bore through each of the 26 
outside cubes once and only once, then finish his tr ip by entering 
the central cube for the first time? If possible, show how i.t can 
be done; if impossible, prove it. 
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F I G .  5 4  
The problem of the termite 

and the cube. 

I t  is assumed that the termite, once it has bored into a small 
cube, follows a path entirely within the large cube. Otherwise, i t  
could crawl out on the surface of the large cube and move along 
the surface to a new spot of entry. If this were permitted, there 
would, of course, be no problem. 

A N S W E R S  

1. Figure 55 shows the finish of a drawn game of Hip. This 
beautiful, hard-to-find solution was first discovered by C. M. 
McLaury, a mathematics student a t  the University of Oklahoma 
to wlnom I had communicated the problem by way of Richard 
Andree, one of his professors. 

TWO readers (William R. Jordan, Scotia, New York, and Don- 
ald 1,. Vanderpool, Towanda, Pennsylvania) were able to show, 
by an exhaustive enumeration of possibilities, that  the solution 
is un:ique except for slight variations in the four border cells indi- 
cated by arrows. Each cell may be either color, provided all four 
are  not the same color, but since each player is limited in the 
game to eighteen pieces, two of these cells must be one color, two 
the other color. They are arranged here so that  no matter how 
the stquare is turned, the pattern is the same when inverted. 

The order-6 board is the largest on which a draw is possible. 
This was proved in 1960 by Robert I. Jewett, then a graduate 
student a t  the University of Oregon. He was able to show that  a 
draw is impossible on the order-7, no matter how many cells of each 
color. Since all higher squares contain a seven-by-seven subsquare, 
draws are clearly impossible on them also. 

As a playable game, Hip on an order-6 board is strictly for 
the squares. David H. Templeton, professor of chemistry a t  the 
Univlersity of California's Lawrence Radiation Laboratory in 
Berkeley, pointed out that  the second player can always force a 
draw by playing a simple symmetry strategy. He can either make 
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each move so that  i t  matches his opponent's last move by reflec- 
tion across a parallel bisector of the board, or by a 90-degree 
rotation about the board's center. (The latter strategy could lead 
to the draw depicted.) An alternate strategy is to play in the 
corresponding opposite cell on a line from the opponent's last 
move and across the center of the board. Second-player draw 
strategies were also sent by Allan W. Dickinson, Richmond 
Heights, Missouri, and Michael Merritt, a student a t  Texas 
A. & M. College. These strategies apply to all even-order :fields, 
and since no draws are  possible on such fields higher than 6, the 
strategy guarantees a win for the second player on all even-order 
boards of 8 or higher. Even on the order-6, a reflection str,ategy 
across a parallel bisector is sure to win, because the unique draw 
pattern does not have that  type of symmetry. 

Symmetry play fails on odd-order fields because of the central 
cell. Since nothing is known about strategies on odd-order boards, 
the order-7 is the best field for actual play. I t  cannot end in a 
draw, and no one a t  present knows whether the first or second 
player wins if both sides play rationally. 

I n  1963 Walter W. Massie, a civil engineering studeint a t  
Worcester Polytechnic Institute, devised a Hip-playing program 
for the IBM 1620 digital computer, and wrote a term paper about 
it. The program allows the computer to play first or second on any 
square field of orders 4 through 10. The computer takes a raindom 
cell if i t  moves first. On other plays, it follows a reflection strategy 
except when a reflected move forms a square, then it makes ran- 
dom choices until i t  finds a safe cell. 

C 

F I G .  5 5  
Answer to the problem of the 
drawn game of Hip.  
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On all square fields of order n, the number of different squares 
that can be formed by four cells is (n" - 2 )  112. The derivation 
of this formula, as well as a formula for rectangular boards, is 
given in Harry Langman, Play Mathematics, Hafner, 1962, pages 
36-37. 

As f a r  as I know, no studies have been made of comparable 
"tria~ngle-free" colorings on triangular lattice fields. 

2. The locomotive can switch the positions of cars A and B, and 
return to its former spot, in sixteen operations: 

1. Locomotive moves right, hooks to car A. 
2. Pulls A to bottom. 
3. Pushes A to left, unhooks. 
4. Moves right. 
5. Makes a clockwise circle through tunnel. 
6. Pushes B to left. All three are hooked. 
7. Pulls A and B to right. 
8. Pushes A and B to top. A is unhooked from B. 
9. Pulls B to bottom. 
101. Pushes B to left, unhooks. 
11. Circles counterclockwise through tunnel. 
12. Pushes A to bottom. 
13. Moves left, hooks to B. 
14. Pulls B to right. 
161. Pushes B to top, unhooks. 
161. Moves left to original position. 

This procedure will do the job even when the locomotive is not 
permitted to pull with its front end, provided that a t  the start  the 
locornotive is placed with its back toward the cars. 

Howard Grossman, New York City, and Moises V. Gonzalez, 
Miami, Florida, each pointed out that if the lower siding is elim- 
inated completely, the problem can still be solved, although two 
additional moves are required, making eighteen in all. Can the 
reader discover how it is done? 

3. The curious thing about the problem of the Flatz beer signs 
is that i t  is not necessary to know the car's speed to determine the 
spacing of the signs. Let x be the number of signs passed in one 
minute. In an hour the car will pass 60x signs. The speed of the 
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e cube-a problem. 

car, we are told, is lox miles per hour. In lox miles i t  will pass 
60x signs, so in one mile it will pass 60x/10x, or 6, signs. The signs 
therefore are 116 mile, or 880 feet, apart. 

4. A cube, cut in half by a plane that passes through the mid- 
points of six sides as shown in Figure 56, produces a cross section 
that is a regular hexagon. If the cube is half an inch on the side, 
the side of the hexagon is da4 inch. 

To cut a torus so that the cross section consists of two inter- 
secting circles, the plane must pass through the center and be 
tangent to the torus above and below, as shown in Figure 517. If 
the torus and hole have diameters of three inches and one inch, 
each circle of the section will clearly have a diameter of two inches. 

This way of slicing, and the two ways described earlier, are the 
only ways to slice a doughnut so that the cross sections are circu- 
lar. Everett A. Emerson, in the electronics division of National 
Cash Register, Hawthorne, California, sent a full algebraic proof 
that there is no fourth way. 

5. Figure 58 shows how to construct a straight line that bisects 
both the Yin and the Yang. A simple proof is obtained by draw- 
ing the two broken semicircles. Circle K's diameter is half that of 
the monad; therefore its area is one-fourth that of the monad. 
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TOP VIEW 
FIG.  5 7  
Answer to the doughnut-slicing problem. 
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Take region G from this circle, add H, and the resulting region is 
also one-fourth the monad's area. It follows that  area G equals 
area H, and of course half of G must equal half of H. The bisect- 
ing line takes half of G away from circle K, but restores the same 
area (half of H)  to the circle,-so the black area below the bisect- 
ing line must have the same area as circle K. The small circle's 
area is one-fourth the large circle's area, therefore the Yin is 
bisected. The same argument applies to the Yang. 

The foregoing proof was given by Henry Dudeney in his answer 
to problem 158, Amusements in  Mathematics. After i t  appeared 
in Scientific American, four readers (A. E. Decae, F. J. Hooven, 
Charles W. Trigg and B. H. K. Willoughby) sent the following 
alternative proof, which is much simpler. In Figure 58, draw a 
horizontal diameter of the small circle K. The semicircle below 
this line has an  area that  is  clearly 118 that  of the large circle. 
Above the diameter is a 45-degree sector of the large circle 
(bounded by the small circle's horizontal diameter and the diag- 
onal line) which also is obviously 118 the area of the large circle. 
Together, the semicircle and sector have an area of 114 that  of 
the large circle, therefore the diagonal line must bisect both Yin 
and Yang. For ways of bisecting the Yin and Yang with curved 
lines, the reader is referred to Dudeney's problem, cited above, 
and Trigg's article, "Bisection of Yin and of Yang," in Mathe- 
matics Magazine, Vol. 34, No. 2, November-December 1960, pages 
107-108. 

The Yin-Yang symbol (called the T'ai-chi-t'u in China and the 
Tomoue in Japan) is usually drawn with a small spot of Y i ~ i  in- 
side the Yang and a small spot of Yang inside the Yin. This sym- 

F I G .  5 8  
Answer to the Yin-Yang 
problem. 
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bolizes the fact that  the great dualities of life are seldom pure; 
each usually contains a bit of the other. There is an  extensive 
Oriental literature on the symbol. Sam Loyd, who bases several 
puzzles on the figure (Sam Loyd's Cyclopedia of Puzzles, page 
26),  calls i t  the Great Monad. The term "monad" is repeated by 
Dud.eney, and also used by Olin D. Wheeler in a booklet entitled 
Wonderland, published in 1901 by the Northern Pacific Railway. 
Wheeler's first chapter is devoted to a history of the trademark, 
and is filled with curious information and color reproductions 
fronn Oriental sources. For more on the symbol, see Schuyler 
Carnmann, "The Magic Square of Three in Old Chinese Philoso- 
phy and Religion," History.of Religions, Vol. 1, No. 1, Summer 
19611, pages 37-80, my Ambidextrous Universe (Basic Books, 
1965), pages 249-250, and George Sarton, A History of Science, 
Vol. 1 (Harvard University Press, 1952), page 11. Carl Gustav 
Jun:g cites some English references on the symbol in his introduc- 
tion to the book of I Ching (1929), and there is a book called The 
Chinese Monad: I ts  History and Meaning, by Wilhelm von Hohen- 
zollern, the date and publisher of which I do not know. 

6. There are probably three blue-eyed Jones sisters and four 
sisters altogether. If there are n girls, of which b are blue-eyed, 
the probability that two chosen a t  random are blue-eyed is: 

We are told that this probability is 112, so the problem is one 
of finding integral values for b and n that will give the above 
expiression a value of 112. The smallest such values are  n = 4, 
b = 3. The next highest values are n = 21, b = 15, but i t  is ex- 
tremely unlikely that  there would be as many as 21 sisters, so four 
sisters, three of them blue-eyed, is the best guess. 

7. The rose-red city's age is seven billion years. Let x be the 
city"s present age;  y, the present age of Time. A billion years 
ago the city would have been x - 1 billion years old and a billion 
years from now Time's age will be y + 1. The data in the prob- 
lem permit two simple equations: 
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These equations give z, the city's present age, a value of seven 
billion years; and y, Time's present age, a value of fourteen bil- 
lion years. The problem presupposes a "Big Bang" theory of the 
creation of the cosmos. 

8. There is space only to suggest the procedure by which it can 
be shown that Washington High won the high jump event in the 
track meet involving three schools. Three different positive in- 
tegers provide points for first, second and third place in each 
event. The integer for first place must be a t  least 3. We know 
there are a t  least two events in the track meet, and that Lincoln 
High (which won the shot-put) had a final score of 9, so the in- 
teger for first place cannot be more than 8. Can it be 8 ?  No, be- 
cause then only two events could take place and there is no way 
that Washington High could build up a total of 22 points. I t  can- 
not be 7 because this permits no more than three events, and 
three are still not sufficient to enable Washington High to reach 
a score of 22. Slightly more involved arguments eliminate 6, 4 
and 3 as the integer for first place. Only 5 remains as a possibility. 

If 5 is the value for first place, there must be a t  least five events 
in the meet. (Fewer events are not sufficient to give Washington 
a total of 22, and more than five would raise Lincoln's total to 
more than 9.) Lincoln scored 5 for the shot-put, so its four other 
scores must be 1. Washington can now reach 22 in only two ways : 
4, 5, 5, 5, 3 or 2, 5, 5, 5, 5. The first is eliminated because it gives 
Roosevelt a score of 17, and we know that this score is 9. The 
remaining possibility gives Roosevelt a correct final tally, so we 
have the unique reconstruction of the scoring shown in the Gable 
[Fig. 591. 

F I G .  5 9  
Answer to the track-meet 

problem. 



148 Nine Problems 

Washington High won all events except the shot-put, conse- 
quently i t  must have won the high jump. 

Many readers sent shorter solutions than the one just given. 
Two readers (Mrs. Erlys Jedlicka, Saratoga, California, and 
Albert Zoch, a student a t  Illinois Institute of Technology) noticed 
that there was a short cut to the solution based on the assumption 
that the problem had a unique answer. Mrs. Jedlicka put it this 
way : 

Dear Mr.  Gardner: 
Did you know th i s  problem can be solved wi thou t  a n y  cal- 

culation whatever?  T h e  necessary clue i s  in the  last para- 
graph. T h e  solution to  the  integer  equations m u s t  indicate 
wi thout  ambigui ty  zohich school w o n  the  h igh  jump.  T h i s  
can only be done if one school has w o n  all the  events,  no t  
counting the shot-put; otherwise the  problem could no t  be 
solved w i t h  the  information given, even a f t e r  calculating the  
scoring and n u m b e r  of events.  Since the  school tha t  w o n  the  
shot-put zoas no t  the  over-all winner ,  it i s  obvious tha t  the  
over-all w inner  w o n  the  remaining events.  Hence zoithout 
calculation it can be said tha t  Wash ing ton  H i g h  w o n  the  h igh  
jump. 

9. It is not possible for the termite to pass once through the 
26 olutside cubes and end its journey in the center one. This is 
easi1.y demonstrated by imagining that  the cubes alternate in 
color like the cells of a three-dimensional checkerboard, or the 
sodium and chlorine atoms in the cubical crystal lattice of ordi- 
nary salt. The large cube will then consist of 13 cubes of one color 
and 14 of, the other color. The termite's path is always through 
cubes that  alternate in color along the way; therefore if the path 
is to include all 27 cubes, i t  must begin and end with a cube be- 
longing to the set of 14. The central cube, however, belongs to the 
13 set;  hence the desired path is impossible. 

T:he problem can be generalized as follows: A cube of even or- 
der (an even number of cells on the side) has the same number of 
cells of one color as i t  has cells of the other color. There is no cen- 
tral cube, but complete paths may start  on any cell and end on 
any cell of opposite color. A cube of odd order has one more cell 
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of one color than the other, so a complete path must begin and end 
on the color that  is used for the larger set. In odd-order cubes of 
orders 3,7,11,15,19 . . . the central cell belongs to the smaller set, 
so it cannot be the end of any complete path. In odd-order cubes 
of 1, 5, 9, 13, 17 . . . the central cell belongs to the larger set, so it 
can be the end of any path that starts on a cell of the same color. 
No closed path, going through every unit cube, is possible on. any 
odd-order cube because of the extra cube of one color. 

Many two-dimensional puzzles can be solved quickly by similar 
"parity checks." For example, it is not possible for a rook to start 
at  one corner of a chessboard and follow a path that carries i t  
once through every square and ends on the square a t  the diag- 
onally opposite corner. 



C H A P T E R  T H I R T E E N  

Polyominoes and Fault-Free 
Rectangles 

POL,YOMINOES - the intriguing shapes that  cover connected 
squares on a checkerboard - were introduced to the mathemati- 
cal world in 1954 by Solomon W. Golomb, now a professor of en- 
gineering and mathematics a t  the University of Southern Cali- 
fornia. They were first discussed in Scientific American in 1957. 
Since then they have become an enormously popular mathemati- 
cal recreation, and hundreds of new polyomino puzzles and un- 
usua.1 configurations have come to light. The following communi- 
cation from Golomb discusses some of these recent discoveries. 

"The shapes that cover five connected squares," Golomb writes, 
"are called pentominoes. There are twelve such shapes. If they are  
arranged as shown in Figure 60, they resemble letters of the 
alphabet, and these letters provide convenient names for the 
pieces. For mnemonic purposes, one has only to remember the 
end of the alphabet (TUVWXYZ) and the word FILiPiNo. 

"In previous articles i t  was shown that  the twelve pentominoes, 
which have a total of 60 squares, can form such patterns as  a 
three-by-twenty rectangle, a four-by-fifteen rectangle, a five- 
by-twelve rectangle and a six-by-ten rectangle. They can all be 
fitted onto the eight-by-eight checkerboard, with the four excess 
squares of the board forming a two-by-two square a t  any specified 
location on the board. Given any pentomino, nine of the others 
can be used to triplicate it, that  is, to form a scale model three 
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FIG. 6 0  

times as  long and three times as high as  the selected pentonnino. 
I t  is also possible to arrange the twelve pentominoes into two 
rectangles, each five by six." 

[This last configuration is known as a superposition problem, 
because it involves shapes that  can be superposed. Golomb re- 
ports on five new superposition problems, here published foir the 
first time. If the reader has not yet discovered the fascination of 
playing with pentominoes, he is urged to make a set of them from 
cardboard and t ry  his skill on some of the puzzles that  follo~v. In 
all such puzzles, pieces may be placed with either side up.] 

"1. Divide the twelve pentominoes into three groups of four 
each. Find a 20-square shape that  each of the three groups will 
cover. One of several solutions is depicted in Figure 61. 
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"2. Divide the twelve pentominoes into three groups of four 
each[. Subdivide each group into two pairs of shapes. For  each 
group find a 10-square region that  each of the two pairs will 
cover. One solution is shown in Figure 62. Can the reader find 
other solutions, including one without holes? 

F I G .  6 3  

"3. Divide the twelve pentominoes into three groups of four 
each. To each group add a monomino (a single square),  and form 
a three-by-seven rectangle. Figure 63 shows the solution. I t  is 
known to be unique except that  in the first rectangle the mono- 
mino and Y pentomino can be rearranged and can still occupy the 
same region. 

"The uniqueness proof follows a suggestion by C. S. Lorens. 
To begin with, in the pattern shown in Figure 64, the X pento- 
mino can be used only in conjunction with the U pentomino. Next, 
neither the F nor the W pentomino can be used to complete this 
re~t~angle.  Also, with the U pentomino needed to support the X, 
i t  is impossible to use F and W in the same three-by-seven rec- 
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tangle. Hence, of the three three-by-seven rectangles, one will con- 
tain X and U, another will contain W (but not U) and the third 
will contain F (but not U).  When all possible completions of these 
three rectangles are  listed and compared (a  very time-consuming 
enterprise), it is found that  the solution shown is the only pos- 
sible one. 

"4. Divide the twelve pentominoes into four groups of three 
each. Find a 15-square region which each of the four groups will 
cover. No solution to this problem is known; on the other hand, 
the problem has not been proved impossible. 

F I G .  6 5  

"5. Find the smallest region on the checkerboard onto which 
each of the twelve pentominoes, taken one a t  a time, will fit. The 
minimum area for such a region is nine squares. There are only 
two examples of such a region [Fig. 651. 

"The adequacy of each region is proved by observing that  each 
pentomino in turn will fit on it. The impossibility of fewer than 
nine squares is proved as follows: If i t  were possible to use a re- 
gion with fewer than nine squares, then in particular the I ,  X and 
V pentominoes would fit on a region of no more than eight squares. 
The I and X pentominoes will then have three squares in comlmon. 
(Otherwise either nine squares are needed, or else the longest 
straight line has six squares, a needless extravagance.) This can 
happen in only two distinct ways [Fig. 661. In either case, how- 
ever, the fitting of the U pentomino would require a ninth square. 
Thus eight squares are not enough, whereas nine squares have 
been shown by example to be sufficient. 
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"Recently the resources of modern electronic computing have 
been turned loose on various pentomino problems. The chapter 
on polyominoes in T h e  Scientific American Book of Mathematical 
Puzzles & Diversions contains a brief account of how Dana S. 
Scott programed the MANIAC computer a t  Princeton University 
for cletermining all the ways that  twelve pentominoes can be 
fitted onto the eight-by-eight checkerboard, leaving a two-by-two 
hole in the center. It was discovered that there are  65 basically 
different solutions in the sense that  two solutions differing only 
by rotation or refiection are not regarded as distinct. More re- 
cently, C. B. Haselgrove, a mathematician a t  the University of 
Manchester, programed a computer to find all possible ways to 
form a six-by-ten rectangle with the twelve pentominoes. Ex- 
cludiing rotations and reflections, he found 2,339 basically dif- 
ferent solutions! He also verified Scott's program for the eight- 
by-eight checkerboard problem. 

"Several special pentomino configurations make excellent puz- 
zles. Figure 67 shows a 64-square pyramid that can be formed 
with the twelve pentominoes and the two-by-two square tetro- 
mino. The cross in Figure 68 requires only the twelve pentomin- 
oes, a~nd is unusually difficult. Still unsolved (neither constructed 
nor proved impossible) is the pattern shown in Figure 69. Even 
if the monomino hole is moved to another location, no solution 
has been found. The closest approximation yet known is pictured 
in Figure 70. Also believed impossible is Herbert Taylor's con- 
figuration, shown in Figure 71, though no one has yet found an 
impossibility proof. 

"Fortunately not all such problems are undecided. The pattern 
shown in Figure 72, for example, was proved by R. M. Robinson, 
a mathematician a t  the University of California, to be incapable 
of formation by the twelve pentominoes. I t  has 22 edge squares 
that form its border. If the pentominoes are examined separately, 
and the maximum number of edge squares that  each could con- 
tribute to the pattern are listed, the total proves to be 21, just one 
short of the required number. This type of reasoning is used in 
working jigsaw puzzles. It is common practice to separate the 
edge pieces from the interior pieces so that the picture's border 
can be made first. 
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F I G .  73 

"Polyominoes that  cover four squares of the checkerboard are 
called tetrominoes. Unlike the pentominoes, the five distinct tetro- 
minoes will not form a rectangle. To prove this, color the squares 
of a four-by-five rectangle and a two-by-ten rectangle (the only 
two rectangles with a 20-square area) in checkerboard fashion 
[Fig. 731. Four of the five tetrominoes [Fig. 741 will always cover 
two dark and two light squares, but the T-shaped tetromino al- 
ways covers three squares of one color and one square of the other 
color. Altogether, therefore, the five shapes will cover an  odd 
number of dark squares and an odd number of light squares. 
Howlever, the two rectangles in question have ten squares of each 
color, and 10 is an  even number. 

"On the other hand, any of several different pentominoes can 
be combined with the five tetrominoes to form a five-by-five 
square. Two examples are  shown in Figure 75. This raises an 
interesting question: How many different pentominoes can be 
used in this manner? 

"Robert I. Jewett, a graduate student in mathematics a t  the 
University of Oregon (he was mentioned in the answer to the 
first problem of the previous chapter), has proposed a problem 
involving dominoes (2-square polyominoes) that  is quite different 
from any of the problems just discussed. Is  i t  possible to form a 
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rectangle with dominoes in such a way that  there is no straight 
line, vertical or horizontal, that joins opposite sides of the rec- 
tangle? For example, in Figure 76 there is a vertical line jn the 
center that  extends all the way from top to  bottom. If dominoes 
are  thought of as bricks, such a line represents a structural Tweak- 
ness. Jewett's problem is thus one of finding rectangular masonry 
patterns without 'fault lines.' Many people who t ry  this problem 
soon give up, convinced that there are no solutions. Actually, 
there are infinitely many." 

The reader is invited to make or obtain a set of dominoes --the 
standard set of 28 dominoes is more than sufficient - and see if 
he can determine the smallest possible "fault free" rectangle that  
can be made with them. The solution to this beautiful problem 
will be given in the answer section, together with a remarkable 
proof, devised by Golomb, that  there are no fault-free six-by-six 
squares. 

FAULT LINE 

4 

FIG.  7 6  

A D D E N D U M  

SINCE THIS chapter appeared in Scientific American, much prog- 
ress has been made in the study of polyominoes and fault-free rec- 
tangles. The interested reader is urged to look into Golomb's book 
Polyominoes, published by Scribner's in 1965, in which the field 
is thoroughly covered and many new results given. 

The Herbert Taylor configuration [Fig. 7'11 and the jagged 
square [Fig. 691 have both been proved impossible, though no 
short, elegant proofs have yet been found for either pattern. On 
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the Taylor configuration I received proofs from Ivan M. Ander- 
son, ]Leo J. Brandenburger, Bruce H. Douglas, Micky Earnshaw, 
John G. Fletcher, Meredith G. Williams and Donald L. Vander- 
pool. Impossibility proofs for the jagged square came from Bruno 
Antonelli, Leo J. Brandenburger, Cyril B. Carstairs, Bruce H. 
Douglas, Micky Earnshaw, E. J. Mayland, Jr.,  and Robert Nelson. 

J. A. Lindon, Surrey, ~nglan 'd ,  found a solution of the jagged 
square with the monomino (hole) on the border, adjacent to a 
corner (his solution appears on page 73 of Golomb's book). Other 
readers found solutions with the monomino a t  the corner. D. C. 
and 13. G. Gunn, of Sussex, England, sent sixteen different pat- 
terns of this type. I t  is not yet known if the monomino can be on 
the border and next to the corner but one. 

William E. Patton, a retired hydraulics engineer living in 
South Boston, Virginia, wrote that  he had been investigating 
fault-free domino rectangles since 1944. He sent me summaries 
of solme of his results, many of them suggesting interesting prob- 
lems. What, for instance, is the smallest fault-free rectangle with 
the same n u d e r  of horizontal and vertical dominoes? The an- 
swer is the five-by-eight. Readers may like to search for solutions. 

The concept of the fault-free domino square suggests a variety 
of games, none of which, as f a r  as I know, have been investigated. 
For example, players take turns placing dominoes on a square, 
check:ed board. The winner is the first to complete a fault line, 
eitheir vertically or horizontally. Or the game can be played in 
reverse: The first to complete a fault line loses. 

A N S W E R S  

ANSVVERS to the pyramid and cross puzzles are depicted in Fig- 
ures 77 and 78. Neither solution is unique. Readers were asked 
to determine which individual pentominoes can be combined with 
the five tetrominoes to form a five-by-five square. This is possible 
with all pentominoes except the I, T, X and V. 

Th'e smallest fault-free rectangle (a  rectangle with no straight 
line joining opposite sides) that can be formed with dominoes is 
a five-by-six. The two basically different solutions are shown in 
Figure 79. 
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An answer to the pyramid puzzle. 

F I G .  7 8  F I G .  7 9  
An answer to the cross puzzle. Answers to the fault-free rectangle puzzle. 
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"It is not difficult to show," writes Solomon W. Golomb, "that 
the minimum width for fault-free rectangles must exceed 4. 
(Cases of width 2, 3 and 4 are  best treated separately.) There- 
fore, since five-by-five is an odd number of squares, and dominoes 
always cover an even number of squares, the five-by-six rectangle 
is the smallest solution. 

"A five-by-six rectangle can be extended to an eight-by-eight 
checkerboard and still satisfy the fault-free condition. An exam- 
ple is shown in Figure 80. Surprisingly, there are no fault-free 
six-by-six rectangles. For this there is a truly remarkable proof. 

"In~agine any six-by-six rectangle covered entirely with dom- 
inoes. Such a figure contains eighteen dominoes (half the area) 
and ten grid lines (five horizontal and five vertical). It is fault- 
free if each grid line intersects a t  least one domino. 

"The first step is to show that in any fault-free rectangle of 
even sides each grid line must cut an even number of dominoes. 
Consider any vertical grid line. The area to the left of i t  (ex- 
pressed in number of unit squares) is even (6, 12, 18, 24 or 30). 
Dominoes ent ire ly  to the left of this grid line must cover an  even 
area because each domino covers two squares. Dominoes cut by 
the grid line must also occupy an even area to the left of it, be- 
cause this area is the difference between two even numbers (the 
total area to the left, and the area of the uncut dominoes to  the 
left). Since each cut domino occupies one square to the left of the 
grid line, there must be an e v e n  number of dominoes cut by the 
grid line. 

"The six-by-six square has ten grid lines. To be fault-free, each 
line must intersect a t  least two dominoes. No domino can be cut 
by more than one grid line, therefore a t  least twenty dominoes 
must be cut by grid lines. But there are only eighteen dominoes 
in a six-by-six square ! 

"Similar reasoning shows that for a fault-free six-by-eight rec- 
tangle to exist, every grid line must intersect exact ly  two domi- 
noes. Such a rectangle is shown in Figure 81. 

"The most general result is the following: If a rectangle has 
even area, and both its length and width exceed 4, i t  is possible to 
find a fault-free covering of the rectangle with dominoes, except  
in the case of the six-by-six square. Actually, coverings for all 
larger rectangles can be obtained from the five-by-six rectangle 
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and the six-by-eight, using a method of enlarging either the 
length or width by 2. This method is easiest to explain by Figure 
82. To extend i t  horizontally by 2, a horizontal domino is placed 
next to each horizontal domino a t  the old boundary, while vertical 
dominoes are  shifted from the old boundary to the new, with the 
intervening space filled by two horizontal dominoes. 

"The reader may find i t  interesting to study trominoes as  
bricks. In particular, what is the smallest rectangle that  can be 
covered by two or more 'straight trominoes' (one-by-three rec- 
tangles) without any fault lines?" 

ANGLE 

3 

FAUL 

F I G .  8 0  F I G .  81  
A fault-free rectangle on an eight-by-eight board. A fault-free six-by-eight redcrngle. 

F I G .  8 2  
A general solution to the fault-free rectangle puzzle. 
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Euler's Spoilers: The Discovery of an 
Order-10 Graeco-Latin Square 

THE: HISTORY of mathematics is filled with shrewd conjectures 
- intuitive guesses by men of great mathematical insight - that  
often wait for centuries before they are proved or disproved. 
When this finally happens, it is a mathematical event of first 
magnitude. Not one but two such events were announced in April 
1959. a t  the annual meeting of the American Mathematical So- 
ciety. We need not be concerned with one of them ( a  proof of a 
conjlecture in advanced group-theory), but the other, a disproof 
of a famous guess by the great Swiss mathematician Leonhard 
Euler (pronounced "oiler"), is related to many classical problems 
in recreational mathematics. Euler had expressed his conviction 
that  Graeco-Latin squares of certain orders could not exist. Three 
mathematicians (E .  T. Parker, of Remington Rand Univac, a divi- 
sion of the Sperry Rand Corporation, and R. C. Bose and S. S. 
Shrikhande, of the University of North Carolina) completely de- 
molished Euler's conjecture. They have found methods for con- 
structing an infinite number of squares of the type that  experts, 
following Euler, for 177 years had believed to be impossible. 

The three mathematicians, dubbed "Euler's spoilers" by their 
colleagues, have written a brief account of their discovery. The 
following quotations from this account are interspersed with 
cominents of my own to clarify some of the concepts or to sum- 
marize the more technical passages. 
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"In the last years of his life Leonhard Euler (1707-1783)  rote 
a lengthy memoir on a new species of magic square: Recherches 
su r  une nouvelle espBce de qunrres mngiques. Today these con- 
structions are  called Latin squares after  Euler's practice of label- 
ing their cells with ordinary Latin letters (as distinct from Greek 
letters). 

"Consider, for example, the square a t  the left in Figure 83. The 
four Latin letters a, b, c and d occupy the sixteen cells of the 
square in such a way that  each letter occurs once in every. row 
and once in every column. A different Latin square, its cells 
labeled with the four corresponding Greek letters, is shown in the 
middle of the illustration. If we superpose these two squares, as  
shown a t  the right, we find that  each Latin letter combines once 
and only once with each Greek letter. When two or more ]Latin 
squares can be combined in this way, they are  said to be orthog- 
onal squares. The combined square is known as  a Graeco-:Latin 
square." 

The square a t  the right provides one solution to a popular card 
puzzle of the 18th century: Take all the aces, kings, queens and 
jacks from a deck and arrange them in a square so that  every 
row and column will contain all four values and all four suits. 
Readers may enjoy searching for another solution in whiclh the 
two main diagonals also show one of each suit and one of each 
value. 

"In general a Latin square of order n is defined as an  n-by-n 
square, the n2 cells of which are  occupied by n distinct symbols, 
such that  each symbol occurs exactly once in each row and once 

F I G .  8 3  
The Graeco-Latin square (right) is formed by superposing two Latin squares (left 
and center). 

a b c d  

b a d c  

c d a b  

d c b a  
- 
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Four nnutually orthogonal lat in squares of order 5 .  

in each column. There may exist a set of two or more Latin 
squares such that  any pair of them is orthogonal. In Figure 84 are  
shown four mutually orthogonal Latin squares of order 5, which 
use digits for their symbols." 

In Euler's day i t  was easy to prove that  no Graeco-Latin square 
of order 2 is possible. Squares of orders 3, 4 and 5 were known, 
but what about order 6 ?  Euler put i t  this way: Each of six dif- 
ferent regiments has six officers, one belonging to each of six 
different ranks. Can these 36 officers be arranged in a square 
formation so that  each row and file contains one officer of each 
rank and one of each regiment? 
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"Euler showed that  the problem of n2 officers, which is the 
same as the problem of constructing a Graeco-Latin square of 
order n, can always be solved if n is odd, or if n is an  'evenly even' 
number (that is, a number divisible by 4 ) .  On the basis of exten- 
sive trials he stated : 'I do not hesitate to conclude that  it is impos- 
sible to produce any complete square of 36 cells, and the same 
possibility extends to the cases of n = 10, n = 14 and in general 
to all unevenly even numbers' (even numbers not divisible bly 4 ) .  
This became famous as  Euler's conjecture. It may be stated more 
formally as follows: There does not exist a pair of orthogonal 
Latin squares of order n = 4k + 2 for any positive integer k." 

In  1901 the French mathematician Gaston Tarry  published a 
proof that  Euler's conjecture did indeed hold for a square of order 
6. Tarry, assisted by his brother, did it the hard way. He simply 
listed all the possible ways of constructing an order-6 :Latin 
square, then showed that  no pair would form a Graeco-:Latin 
square. This, of course, strengthened Euler's conjecture. Several 
mathematicians even published "proofs" that  the conjecture, was 
true, but the proofs were later found to contain flaws. 

The labor involved in settling the question by exhaustive pencil- 
and-paper enumeration goes up rapidly as  the order of the square 
increases. The next unknown case, the order 10, was fa r  too com- 
plex to be settled in this way, and in 1959 it was almost beyond 
the range of computers. At  the University of California a t  Los 
Angeles, mathematicians programed the SWAC computer to 
search for order-10 Graeco-Latin squares. After more than 100 
hours of ruaning time, i t  failed to find a single one. The search 
was confined, however, t o  such a microscopic portion of the total 
possible cases that  no conclusion could be drawn. I t  was estimated 
that, if Euler's conjecture were true, i t  would take the fastest 
1959 computer, using the program SWAC had used, a t  le,ast a 
century to prove it. 

"The last sentence of Euler's memoir reads: 'At this point I 
close my investigations on a question, which though of little use 
in itself, led us to rather important observations for the doctrine 
of combinations, as well as for the general theory of magic 
squares.' I t  is a striking example of the unity of science that  the 
initial impulse which led to a solution of Euler's conjecture (came 
from the practical needs of agricultural experimentation, and 
that  the investigations which Euler thought useless have proved 
to have enormous value in the design of controlled experiments." 
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Siir Ronald Fisher, now professor of genetics a t  the University 
of Cambridge and one of the world's leading statisticians, was the 
first to show (in the early 1920's) how Latin squares could be 
used in agricultural research. Suppose, for example, one wishes 
to test with a minimum waste of time and money the effects of 
seven different agricultural chemicals on the growth of wheat. 
One difficulty encountered in such a test is that  the fertility of 
different patches of soil usually varies in an  irregular way. How 
can we design an experiment that  will simultaneously test all 
seven chemicals and a t  the same time eliminate any "bias" due 
to these fertility variations? The answer: Divide the wheat field 
into "plots" that are the cells of a 7-by-7 square, then apply the 
seven "treatments" in the pattern of a randomly chosen Latin 
square. Because of the pattern a simple statistical analysis of the 
results will eliminate any bias due to variations in soil fertility. 

Suppose that  instead of one variety of wheat for this test we 
have seven. Can we design an experiment that  will take this 
fourth variable into account? (The other three variables are  row 
fertility, column fertility and type of treatment.) The answer is 
now a Graeco-Latin square. The Greek letters show where to 
plant the seven varieties of wheat and the Latin letters where to 
apply the seven different chemicals. Again the statistical analysis 
of results is simple. 

Graeco-Latin squares are now widely used for designing ex- 
periments in biology, medicine, sociology and even marketing. 
The "plot" need not, of course, be a piece of land. I t  may be a cow, 
a patient, a leaf, a cage of animals, the spot where an injection is 
made, a period of time or even an observer or group of observers. 
The Graeco-Latin square is simply the chart of the experiment. 
Its rows take care of one variable, columns take care of another, 
the Latin symbols a third and the Greek symbols a fourth. For 
example, a medical investigator may wish to test the effects of 
five different types of pill (one a placebo) on persons in five dif- 
ferent age brackets, five different weight groups and five different 
stages of the same disease. A Graeco-Latin square of order 5, 
selected randomly from all possible squares of that  order, is the 
most efficient design the investigator can use. More variables can 
be accommodated by superposing additional Latin squares, though 
for a.ny order 12 there are  never more than n - 1 squares that  are  
mutually orthogonal. 
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The story of how Parker, Bose and Shrikhande managed to find 
Graeco-Latin squares of orders 10, 14, 18, 22 (and so on) begins 
in 1958, when Parker made a discovery that  cast grave doubt on 
the correctness of Euler's conjecture. Following Parker's lead, 
Bose developed some strong general rules for the construction of 
large-order Graeco-Latin squares. Then Bose and Shrikhande, ap- 
plying these rules, were able to construct a Graeco-Latin square of 
order 22. Since 22 is an  even number not divisible by 4, Euler's 
conjecture was contradicted. I t  is interesting to note that  the 
method of constructing this square was based on the solution of a 
famous problem in recreational mathematics called Kirkman's 
schoolgirl problem, proposed by T. P. Kirkman in 1850. A school- 
teacher is in the habit of taking her fifteen girls for a daily walk, 
always arranging them three abreast in five rows. The problem 
is to arrange them so that for seven consecutive days no girl will 
walk more than once in the same row with any other girl. The 
solution to this problem is an  example of an important type of 
experimental design known as  "balanced incomplete blocks.'' 

When Parker saw the results obtained by Bose and Shrikhande, 
he was able to develop a new method that  led to his construction 
of an  order-10 Graeco-Latin square. I t  is shown in Figure 85. The 
symbols of one Latin square are  the digits 0 to 9 on the left side 
of each cell. The digits on the right side of each cell belong to the 
second Latin square. With the aid of this square, the very exist- 
ence of which is denied in many current college textbooks on 
experimental methods, statisticians can now design for the first 
time experiments in which four sets of variables, each with ten 
different values, can be kept easily and efficiently under control. 

(Note that  the order-3 square a t  the lower right corner of the 
order-10 square is an order-3 Graeco-Latin square. All order-10 
squares that  were first constructed by Parker and his collabora- 
tors contained an order-3 subsquare in the sense that  one could 
always form the smaller square by permuting the rows and col- 
umns of the larger one. Changing the order of rows or colu~mns 
obviously does not affect the properties of any Graeco-Latin 
square. Such permutations are  trivial; if one square can be ob- 
tained from another by shifting rows or columns, the two squares 
a re  considered the "same" square. For  a while it was an open 
question whether all order-10 Graeco-Latin squares possessed 
order-3 subsquares, but this conjecture was shown false vvhen 
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man:{ squares were discovered that  did not have this feature.) 
"A.t this stage," the three mathematicians conclude their re- 

port, "there ensued a feverish correspondence between Bose and 
Shrikhande on the one hand and Parker on the other. Methods 
were refined more and more; i t  was ultimately established that  
Euler's conjecture is wrong for all values of n = 4k + 2, where n 
is greater than 6. The suddenness with which complete success 
came in a problem that  had baffled mathematicians for almost two 
centuries startled the authors as  much as anyone else. What 
makes this even more surprising is that  the concepts employed 
were not even close to the frontiers of deep modern mathematics." 

F I G .  8 5  
E. T .  Parker's Graeco-Latin square of order 10, a counter-example to Euler's 
conjecture. 
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A D D E N D U M  
I N  THE YEARS following 1959, computer speeds increased enor- 
mously, as well as  the ingenuity of mathematicians in devising 
more efficient methods of programing. Using a technique called 
"backtrack," Parker planned a program for the UNIVAC 1206 
Military Computer that  was able to take a given order-10 'Latin 
square and complete an  exhaustive search for an  orthogonal com- 
panion in from 28 to 45 minutes of running time. This impiroved 
on the search time of the old SWAC program by a factor of about 
one trillion ! Result : the production of hundreds of new Graeco- 
Latin squares of order 10. Indeed, i t  turned out that such squares 
are  quite common. UNIVAC found orthogonal mates for more 
than half of the randomly constructed order-10 Latin squares 
that  were fed to it. "Thus Euler guessed wrong by a large mar- 
gin," Parker has written, "and the evidence from early computa- 
tion demonstrated only that  the search is of large magnitude." 

The big disappointment in the. recent computer work on Graeco- 
Latin squares is that, so far ,  no triplet of mutually ortho.gona1 
Latin squares of order 10 has been found. I t  had earlier been 
proved that  for any order n, the largest possible number of mu- 
tually orthogonal Latin squares is n - 1. A set of n - 1 such 
squares is known as a "complete set." For example, the order-2 
Latin square has a complete set that  consists of the single square 
itself. The order-3 square has a complete set of two ortho.gona1 
squares, and the o r d e r 4  square has a complete set of thrlee. A 
complete set of four mutually orthogonal Latin squares of order 5 
is shown in Fig. 84. (Any pair of these will, of course, combine 
to produce a Graeco-Latin square.) No complete set of order 6 
exists; indeed, not even a pair. Complete sets do exist for  orders 
7, 8 and 9. Order 10, therefore, is the lowest for which i t  is not yet 
known if a complete set is possible. I t  is not even known if a set 
of three exists. 

The question takes on added interest because of its connection 
with what are called "finite projective planes." (The interested 
reader will find these fascinating structures explained in several 
of the references listed in the bibliography for this chapter.) I t  
has been shown that  if a complete set of mutually ortho.gona1 
Latin squares exists for a given order n, i t  is possible to derive 
from it  a construction of a finite projective plane of order n. Con- 
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versely, if a finite projective plane is known for order n, one can 
construct a complete set of mutually orthogonal Latin squares of 
order n. Since Tarry showed that not even two orthogonal Latin 
squares of order 6 are possible, it follows that no finite projective 
plane of order 6 is possible. Complete sets (and hence finite pro- 
jective planes) exist for orders 2, 3, 4, 5, 7, 8 and 9. The lowest- 
order finite projective piane, the existence of which has been 
neither proved nor disproved, is order 10. The discovery, there- 
fore, of a complete set of nine order-10 Latin squares would simul- 
taneously answer a major unsolved problem about finite projec- 
tive planes. At the moment, the question is beyond the scope of 
computer programs, and not likely to be solved unless computer 
speeds greatly increase or someone discovers a new approach that 
leads to a breakthrough. 

Scientific American's cover for November 1959 reproduced a 
striking oil painting by the magazine's staff artist, Emi Kasai, 
showing the order-10 Graeco-Latin square that is given here in 
Figure 85. The ten digits were replaced by ten different colors, 
so that each cell contained a unique pair of colors. Fig. 86 shows 
a handsome needlepoint rug made in 1960, by Mrs. Karl Wihtol, 

FIG. 86  
A needlepoint rug based on Parker's Graeco-Latin square. 



F I G .  8 7  
A solution to card problem. 

Middletown, New Jersey, that duplicates the cover painting:. ( I t  
is equivalent to the square in Figure 85 after  i t  has been given a 
clockwise quarter-turn.) The outside colors of each cell form one 
Latin square, the inside colors form the other. In every row and 
column each color appears only once as an  outside color and only 
once as an inside color. Miss Kasai's original painting was pur- 
chased by Remington Rand and presented as  a gift to Parker. 

A N S W E R S  

FIGURE 87 shows one way of arranging the sixteen highest play- 
ing cards so that  no value or suit appears twice in any row, col- 
umn or the two main diagonals. Note that  the four cards a t  each 
corner, a s  well as  the four central cards, also form sets in which 
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each value and suit a re  represented. I t  would be nice if a solution 
also permitted the colors to be alternated checkerboard fashion, 
but this is not possible. 

W. W. Rouse Ball, in Mathematical Recreations and Essays 
(current edition, page 190),  cites a 1723 source for the problem 
and says that  it has 72 fundamentally different solutions, not 
counting rotations and reflections as  different. But Henry Ernest 
Dudeney, in Amusements in Mathematics, problem 304, traces the 
puzzle back to a 1624 edition of a book by Claude Gaspar Bachet, 
and .points out the error in the computation of 72 different solu- 
tions. There are  144. This was independently worked out by 
Bernard Goldenberg, of Brooklyn, after I had given the incorrect 
figure in my answer. 

If only rows and columns are considered (and the two main 
diagonals ignored), i t  is  possible to find solutions in which the 
colors alternate like a checkerboard. Adolf Karfunkel, of New 
York: City, sent me several such solutions of which the following 
is onle : 

One can obtain other solutions merely by switching rows 3 
and 4, or rows 1 and 2, in the picture on the previous page. 



C H A P T E R  F I F T E E N  

The Ellipse 

A circle no  doubt has a certain appealing simplicity a t  the  f i r s t  

glance, but  one look a t  a n  ellipse should have conzlinced even the  
most  mystical o f  astronomers t ha t  the  perfect simplicity of the  
circle i s  a k i n  to the  vacant smile of complete idiocy. Compared to 
w h a t  a n  ellipse can tell u s ,  a circle has little to  say.  Possibly our 
o w n  search for cosmic simplicities in the  physical universe i s  of 
th is  same circular kind - a projection of our uncomplicated 
mental i ty  on  a n  infinitely intricate external world. 

- Eric Temple Bell, 
Mathemat ics:  Queen and Servan t  of Science 

MATHEMATICIANS have a habit of studying, just for  the fun 
of it, things that seem utterly useless; then centuries later their 
studies turn out to have enormous scientific value. There is no 
better example of this than the work done by the ancient Gireeks 
on the noncircular curves of second degree: the ellipse, parabola 
and hyperbola. They were first studied by one of Plato's pupils. 
No important scientific applications were found for them until the 
17th century, when Kepler discovered that  planets move in ellipses 
and Galileo proved that  projectiles travel in parabolas. 

Apollonius of Perga, a third century B.C. Greek geometer, vvrote 
the greatest ancient treatise on these curves. His work Conics was 
the first to show how all three curves, along with the circle, could 
be obtained by slicing the same cone a t  continuously varying 
angles. If a plane is passed through a cone so that  it is parallel to 
the base [see Fig. 881, the section is a circle. If the plane is tipped, 
no matter how slightly, the section becomes elliptical. The more 
the plane is tipped, the more elongated the ellipse becomes, or, as 
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F I G .  8 8  

ELLIPSE 

HYPERBOLA 

The four conic sections. \ 
the mathematician puts it, the more eccentric. One might expect 
that as the plane became steeper the curve would take on more 
of a pear shape (since the deeper the slice goes, the wider the 
cone), but this is not the case. I t  remains a perfect ellipse until the 
plane becomes parallel to the side of the cone. At this instant the 
curve ceases to close on itself; its arms stretch out toward infinity 
and the curve becomes a parabola. Further tipping of the plane 
causes it to intersect an inverted cone placed above the other one 
[see bot tom o f  Fig. 881. The two conic sections are now the two 
branches of a hyperbola. ( I t  is a common mistake to suppose that 
the plane must be parallel to the cone's axis to cut a hyperbola.) 
They vary in shape as the cutting plane continues to rotate until 
finally they degenerate into straight lines. The four curves are  
called curves of second degree because they are the Cartesian 
graph forms of all second-degree equations that relate two vari- 
ables. 

The ellipse is the simplest of all plane curves that are not 
straight lines or circles. I t  can be defined in numerous ways, but 
perhaps the easiest to grasp intuitively is this: An ellipse is the 
locus, or path, of a point moving on a plane so that the sum of its 
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distances from two fixed points is constant. This property under- 
lies a well-known method of drawing an ellipse. Stick two thumb- 
tacks in a sheet of paper, put a loop of string around them and 
keep the string taut with the point of a pencil as shown in Figure 
89. Moving the pencil around the tacks will trace a perfect ellipse. 
(The length of the cord cannot vary; therefore the sum of the 
distances of the pencil point from the two tacks remains con- 
stant.) The two fixed points (ta<ks) are called the foci of the 
ellipse. They lie on the major axis. The diameter perpendicular 
to this axis is the minor axis. If you move the tacks closer to- 
gether (keeping the same loop of cord), the ellipse becomes less 
and less eccentric. When the two foci come together, the ellipse 
becomes a circle. As the foci move farther apart, the ellipse be- 
comes more elongated until it finally degenerates into a straight 
line. 

MINOR AXIS The simplest way to draw an eillipse. 
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F IG.  90 
An ellipsograph made with a circular cake pan and a cardboard disk. 

There are  many other ways to construct ellipses. One curious 
method can be demonstrated with a circular cake pan and a card- 
board disk having half the diameter of the pan. Put  friction tape 
or mlasking tape around the inside rim of the pan to keep the disk 
from slipping when it is rolled around the rim. Anchor a sheet of 
paper to the bottom of the pan with strips of cellophane tape a t  
the edges. Punch a hole anywhere in the disk with a pencil, place 
the ?point of the pencil on the paper and roll the disk around the 
pan [ see  Fig. 901. An ellipse will be drawn on the paper. It is best 
to hold the pencil lightly with one hand while turning the disk 
s l o ~ l y  with the other, keeping i t  pressed firmly against the rim 
of the pan. If the hole is a t  the center of the disk, the pencil point 
will of course trace a circle. The nearer the hole is to the edge of 
the disk, the greater the eccentricity of the ellipse will be. A point 
on the circumference of the disk traces an ellipse that  has degen- 
erated into a straight line. 

Here is another pleasant way to obtain an  ellipse. Cut a large 
circle from a sheet of paper. Make a spot somewhere inside the 
circle, but not a t  the center, then fold the circle so that  its circum- 
ference falls on the spot. Unfold, then fold again, using a different 
point on the circumference, and keep repeating this until the 
paper has been creased many times in all directions. The creases 
form a set of tangents that  outline an ellipse [see Fig. 911. 
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F IG.  91 
Folding a paper circle so that its edge falls on an off-center spot makes an emllipse. 

Though not so simple as the circle, the ellipse is nevertheless 
the curve most often "seen" in everyday life. The reason is that  
every circle, viewed obliquely, appears elliptical. In addition, all 
closed noncircular shadows cast on a plane by circles and splheres 
are ellipses. Shadows on the sphere itself - the inner curve of a 
crescent moon, for example - are bordered by great circles,, but 
we see them as  elliptical arcs. Tilt a glass of water ( i t  doesn't 
matter if the glass has cylindrical or conical sides) and the sur- 
face of the liquid acquires an elliptical outline. 

A ball resting on a table top [see Fig. 921 casts an  elliptical 
shadow that  is a cross section of a cone of light in which the ball 
fits snugly. The ball rests precisely on one focus of the shadow. 
If we imagine a larger sphere that  is tangent to the surface from 
beneath and fits snugly into the same cone, the larger sphere will 
touch the shadow a t  the other focus. These two spheres provide 
the following famous and magnificent proof (by G. P. Dantlelin, 
a 19th-century Belgian mathematician) that  the conic section is 
indeed an ellipse. 

Point A is any point on the ellipse. Draw a line [shown in color 
in the illustration] that  passes through A and the apex of the cone. 
This line will be tangent to the spheres a t  points D and E. Draw 
a line from A to point B, where the small sphere touches the 
shadow, and a similar line from A to C, where the large sphere 
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By mebans of larger sphere it can be shown that shadow of smaller sphere is an 
ellipst?. 

touches the shadow. AB is equal to AD because both lines are 
tangents to a sphere from the same fixed point. AE equals AC for 
the same reason. Adding equals to equals : 

Now AD + A E  is the same as the straight line DE. Because of 
the symmetry of cone and spheres, this line has a constant length 
regardless of where point A is chosen on the ellipse. If the sum of 
AD and AE is constant, then the above equation makes the sum 
of AB and AC a constant also. Since AB and AC are  the distances 
of point A from two fixed points, the locus of A must be an  ellipse 
with B and C as  its two foci. 
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In  physics the ellipse turns up most often as the path of an  ob- 
ject moving in a closed orbit under the influence of a central force 
that  varies inversely with the square of the distance. Planets and 
satellites, for  example, have elliptical orbits with the center of 
gravity of the parent body a t  one of the foci. When Kepler first 
announced his great discovery that  planets move in ellipses, i t  ran 
so counter to the general belief that  God would not permit the 
paths of heavenly bodies to be less perfect than circles that  Ktepler 
found i t  necessary to apologize. He spoke of his ellipses as dung 
that  he had been forced to introduce in order to sweep frorn as- 
tronomy the larger amount of dung that  had accumulated around 
attempts to preserve circular orbits. Kepler himself never dis- 
covered why the orbits were elliptical; i t  remained for Newton 
to deduce this from the nature of gravity. Even the great Galileo 
to his dying day refused to believe, in the face of mounting evi- 
dence, tha t  the orbits were not circular. 

An important reflection property of the ellipse is made clear in 
Figure 93. Draw a straight line that  is  tangent to the ellipse a t  
any point. Lines from that  point to the foci make equal angles 
with the tangent. If we think of the ellipse as a vertical strip of 
metal on a flat surface, then any body or wave pulse, moving in a 
straight line from one focus, will strike the boundary and re- 
bound directly toward the other focus. Moreover, if the bocly or 
wave is moving toward the boundary a t  a uniform rate, regard- 
less of the direction i t  takes when i t  leaves one focus, i t  is sure to 
rebound to the other focus after the same time interval (sinc~e the 
two distances have a constant sum).  Imagine a shallow elliptical 
tank filled with water. We start  a circular wave pulse by dipping 
a finger into the water a t  one focus of the ellipse. A moment later 
there is a convergence of circular waves a t  the other focus. 
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Path of bail driven over focus of ellipse. 

Path of bail that does not go between foci. 

Path of ball that does pass between foci. 

Lewis Carroll invented and published a pamphlet about a cir- 
cular billiard table. I know of no serious proposal for an elliptical 
billiard table, but Hugo Steinhaus (in his book Mathematical 
Snapshots, recently reissued in a revised edition by the Oxford 
University Press) gives a surprising threefold analysis of how 
a ball on such a table would behave. Placed a t  one focus and shot 
(witchout English) in any direction, the ball will rebound and 
pass over the other focus. Assuming that  there is no friction to 
retard the motion of the ball, i t  continues to pass over a focus 
with each rebound [see top illustration o f  Fig. 941. However, after 
only a few trips the path becomes indistinguishable from the 
ellipse's major axis. If the ball is not placed on a focus, then 
driven so that i t  does not pass between the foci, i t  continues for- 
ever along paths tangent to a smaller ellipse with the same foci 
[see middle illustration o f  Fig. 941. If the ball is driven between 
the foci [see bottom illustration o f  Fig. 941, i t  travels endlessly 
along paths that never get closer to the foci than a hyperbola 
with the same foci. 
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In  The  Mikado there are lines about a billiard player forced to 
play 

O n  a cloth un true  
W i t h  a twisted cue, 
And  elliptical billiard balls! 

In A Portrait  o f  the Ar t i s t  as a Young  Man James Joyce has a 
teacher quote these lines, then explain that  by "elliptical" 7V. S. 
Gilbert really meant "ellipsoidal." What is an ellipsoid? There are 
three principal types. An ellipsoid of rotation, more properly 
called a spheroid, is the surface of a solid obtained by rotating an 
ellipse around either axis. If the rotation is around the minor 
axis, i t  generates an oblate spheroid, which is flattened alt the 
poles like the earth. Rotation around the major axis generates the 
football-shaped prolate spheroid. Imagine a prolate sph'eroid sur- 
face that  is a mirror on the inside. If a candle is lighted a t  one 
focus, a piece of paper a t  the other focus will burst into fla,mes. 

Whisper chambers are  rooms with spheroidal ceilings. Faint 
sounds originating a t  one focus can be heard clearly a t  the other 
focus. In the U. S. the best-known whispering gallery is in Statu- 
ary Hall of the Capitol in Washington, D.C. (No guided tour is 
complete without a demonstration.) A smaller but excellent whis- 
per chamber is a square area just outside the entrance to the 
Oyster Bar on the lower level of New York's Grand Central Sta- 
tion. Two people standing in diagonally opposite corners, facing 
the wall, can hear each other distinctly even when the square area 
bustles with activity. 

F I G .  9 5  
Each section of ellipsoid is 
elliptical. 

Both the oblate and prolate spheroids have circular cross sec- 
tions if sliced by planes perpendicular to one of the three coordi- 
nate axes, elliptical cross sections if sliced by planes perpendicular 
to the other two axes. When all three axes are unequal in length, 
and sections perpendicular to each are ellipses, the shape is a true 
ellipsoid [see Fig. 951. This is the shape that pebbles on a beach 
tend to assume after long periods of being jostled by the waves. 
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Elliptical "brainteasers" are rare. Here are two easy ones. 
1. Prove that no regular polygon having more sides than a 

square can be drawn on a noncircular ellipse so that each corner 
is on. the perimeter of the ellipse. 

2. In the paper-folding method of constructing an ellipse, ex- 
plained earlier, the center of the circle and the spot on the circle 
are the two foci. Prove that the curve outlined by the creases is 
really an ellipse. 

A D D E N D U M  

HENRY DUDENEY, in problem 126 of Modern Puzzles, explains the 
string-and-pins method of drawing an ellipse, then asks how one 
can iuse this method for drawing an ellipse with given major and 
minor axes. The method is simple: 

First  draw the two axes. The problem now is to find the two 
foci, A and B, of an ellipse with these axes. Let C be an end of 
the minor axis. Points A and B are symmetrically located on the 
major axis a t  spots such that AC and CB each equals half the 
length of the major axis. I t  is easy to prove that a loop of string 
with a length equal to the perimeter of triangle ABC will now 
servle to draw the desired ellipse. 

Elliptical pool tables actually went on sale in the United States 
in 1964. A full-page advertisement in The Nezo York Times (July 
1, 1964) announced that on the following day the game would be 
introduced a t  Stern's department store by Broadway stars Jo- 
anne Woodward and Paul Newman. Elliptipool, as it is caIled, 
is the patented invention of Arthur Frigo, Torrington, Connecti- 
cut, then a graduate student a t  Union College in Schenectady. 
Because the table's one pocket is a t  one of the foci, a variety of 
weird cushion shots can be made with ease. 

The eleventh edition of Enczjclopaedia Britannica in its article 
on billiards has a footnote that  reads : "In 1907 an oval table was 
introduced in England by way of a change." Neither this table 
nor Lewis Carroll's circular table had a pocket, however. A de- 
sign patent (198,571) was issued in July 1964 to Edwin E. Robin- 
son, Pacifica, California, for a circular pool table with four 
pockets. 
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A N S W E R S  

1. No regular polygon with more sides than a square can k~e in- 
scribed in an ellipse for this reason: The corners of all regular 
polygons lie on a circle. A circle cannot intersect an ellipse a t  
more than four points. Therefore, no regular polygon with imore 
than four corners can be placed with all its corners on an ellipse. 
This problem was contributed by M. S. Klamkin to Mathematics 
Magazine for September-October 1960. 

2. The proof that the paper-folding method of constructing an 
ellipse actually does produce an ellipse is as follows. Let point A 
in Figure 96 be any point on a paper circle that is not the circle's 
center ( 0 ) .  The paper is folded so that any point (B)  on the cir- 
cumference falls on A. This creases the paper along XY. Because 
XY is the perpendicular bisector of AB, BC must equal AC. 
Clearly OC + AC = OC + CB. OC + CB is the circle's raldius, 
which cannot vary, therefore OC + AC must also be constant. 
Since OC + AC is the sum of the distances of point C from two 
fixed points A and 0 ,  the locus of C (as point B moves around the 
circumference) must be an ellipse with A and 0 as the two foci. 

The crease XY is tangent to the ellipse a t  point C because i t  
makes equal angles with the lines joining C to the foci. This is 
easily established by noting that  angle XCA equals angle XCB, 
which in turn equals angle YCO. Since the creases are always 
tangent to the ellipse, the ellipse becomes the envelope of thle in- 
finite set of creases that can be produced by repeated folding of 
the paper. This proof is taken from Donovan A. Johnson's blook- 
let Paper Folding f o r  t he  Mathematics Class, published in 1957 
by .the National Council of Teachers of Mathematics. 



C H A ' P T E R  S I X T E E N  

The 24 Color Squares 
and the 30 Color Cubes 

IN THE U.S. a standard set of dominoes consists of 28 oblong 
black: tiles, each divided into two squares that are either blank or 
marked with white spots. No two tiles are alike, and together they 
represent the 28 possible ways in which numbers from 0 to 6 can 
be combined two a t  a time. The tiles can be regarded as line seg- 
ments that  are placed end to end to form linear chains; in this 
sense all domino games are strictly one-dimensional. When the 
domino concept is extended to two- and three-dimensional pieces, 
all s~orts of colorful and little-known recreations arise. Percy 
Alexander MacMahon, a British authority on combinatorial anal- 
ysis, devoted considerable thought to these superdominoes, and 
i t  is from his book New Mathematical Pastimes, published in 
1921, that  much of the following material is taken. 

Fo'r a two-dimensional domino the equilateral triangle, square 
and l~exagon are the most convenient shapes because in each case 
identical regular polygons can be fitted together to cover a plane 
completely. If squares are  used and their edges are labeled in all 
possible ways with n different symbols, a set of %n(n + 1) 
(n" n + 2)  squares can be formed. Figure 97 shows the full 
set of 24 square dominoes that results when n = 3. If the reader 
constructs such a set from cardboard he will have the equipment 
for a, first-rate puzzle. Colors are easier to work with than sym- 
bols, so i t  is suggested that  colors be used instead of symbols. The 
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FIG. 97  
A set of square dominoes using three colors. 
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problem is to fit together all 24 squares into a four-by-six rec- 
tangl'e, with two provisos : (1) each pair of touching edges must 
be the same color; (2)  the border of the rectangle, all the way 
around, must be the same color. I t  is assumed that  the cardboard 
squares are  colored on only one side. Any color may be picked for 
the border, and with each choice, a large number of different solu- 
tions are  possible. 

The four-by-six rectangle is the only one that  can be formed 
under the given restrictions. A two-by-twelve is obviously im- 
possible because i t  would require that  each square have a triangle 
of the border color. Can the reader, simply by looking over the 24 
color squares in Figure 97, prove that  the three-by-eight rectangle 
is also impossible? 

In three dimensions, cubes are  the only regular solids that  will 
press together to fill a three-dimensional space completely; for this 
reason they are  the most satisfactory shapes for 3-D dominoes. 
If two colors are used for the faces, no more than ten different 
cubes can be painted - a numb.er too small to be of interest. On 
the other hand, too many cubes (57) result if three colors are 
used. With six colors the number jumps to 2,226, but from this 
set we can pick a subset of 30 that  is ideal for our purposes. I t  
consists of cubes that  bear all six colors on their six faces. 

I t  is easy to see that  30 is the maximum number. There must 
be, say, a red face on each cube. opposite this face can be any one 
of five different colors. The remaining four colors can be arranged 
in six different ways, so the total number of different cubes must 
be 5 X 6 = 30. (Two cubes are  considered different if i t  is im- 
possible to place them side by side in such a way that  all corre- 
sponding faces match.) Figure 98 shows the 30 cubes in "unfold- 
ed" form. 

The 30 cubes, apparently discovered by MacMahon, have be- 
come a classic of recreational geometry. I t  is a chore to make a 
set, but the effort brings rich rewards. A set of neatly painted 
cubes is an  endlessly fascinating family toy;  it requires no bat- 
teries' and is unlikely to wear out for decades. Wooden or plastic 
blocka, preferably with smooth sides, can be bought a t  most toy 
counters or obtained from a friend with access to a buzz saw. An 
alternative to painting is to paste squares of colored paper on the 
cubes. 
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FIG. 98 
The 30 color cubes unfolded. 
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For an  introductory exercise, pick any one of the 30 cubes. 
Now find a second cube that  can be placed face to face with the 
first one so that  the touching faces match, the end faces are a 
second color and the other four colors are  on the four sides, each 
side a solid color. It is always possible to do this. Since the two 
cubes a re  mirror images of each other, this means that  every 
cube, like every fundamental particle of matter, has its anticube. 

(In searching for a certain type of cube, much time can be 
saved by lining them up in rows and turning an entire row a t  
once by applying pressure a t  the ends. For example, suppose you 
are  looking for cubes with red and blue on opposite sides. Arrange 
a group of cubes in a row with red on top, give the row two 
quarter-turns and take out all cubes that  now show blue on top. 
Or suppose you wish to work with cubes on which blue, yellow 
and green touch a t  the same corner. Arrange a row with all blue 
on top, invert i t  and discard the greecs and yellows. Turn the 
remaining cubes to show green on top, invert them and discard 
the blues and yellows. The cubes left will be of the desired type.) 

It is not possible to form a straight chain of more than two 
cubes and have each of the four sides a solid color, but a row of 
six is easily made that  has all six colors on each side. A pretty 
problem is to do this with all touching faces matching and the 
two end faces also matching. 

NOW for a more difficult puzzle. Choose any cube and place i t  t o  
one side. From the remaining 29 select eight that  can be formed 
into a two-by-two-by-two cube that  is an  exact model of the 
chose11 one except twice as high. In addition, each pair of touch- 
ing faces must match. (MacMahon credits the discovery that  this 
can always be done, regardless of which cube is chosen, to his 
friend Colonel Julian R. Jocelyn.) 

Only one set of eight cubes will do the trick, and they are not 
easy 'to find without a systematic procedure. The following is 
perhaps the best. Note the three pairs of opposite faces on the 
prototype, then eliminate from the 29 cubes all those that  have a 
pair of opposite faces corresponding to any of the three pairs on 
the prototype. Sixteen cubes will remain. Turn the prototype so 
that  one of its top corners points toward you and only the three 
faces meeting a t  that  corner are visible. Among the sixteen cubes 
you will find two that  can be placed so that  the same three faces 
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are in the same position as the three on the prototype. Put these 
two aside. Turn the cube so that  another top corner points toward 
you and find the two cubes that  match this corner. The eight 
cubes selected in this way - two for each top corner of the pro- 
totype - are the cubes required. I t  is now a simple task to build 
the model. 

Actually there are two essentially different ways to build the 
model with these eight cubes. L. Vosburgh Lyons, a Manhattan 
neuropsychiatrist, devised the ingenious procedure, depicted in 
Figure 99, by which any model can be changed to its second form. 
The two models are related in remarkable ways. The 24 outside 
faces of each model are the 24 inner faces of the other, and when 
the two models are similarly oriented, each cube in one is diago- 
nally opposite its location in the other. 

Lyons has discovered that after a model has been built i t  is 
always possible to select a new prototype from the remaining 21 
cubes, then build a two-by-two-by-two model of the new proltotype 
with eight of the remaining twenty. Few succeed in doing this 
unless they are tipped off to the fact that  the new proltotype 
must be a mirror image of the first one. The eight cubes needed 
for the model are the eight rejected from the sixteen in the last 
step of the procedure by which the cubes were chosen for the first 
prototype. 

Many other color-cube construction puzzles have been proposed. 
The following two-by-two-by-two models, all possible, are taken 
from Das Spiel der 30 Bunten Wurfel, by Ferdinand Winter, a 
book on the color cubes, published in Leipzig in 1934. In  all these 
models the cubes must obey the domino rule of having touching 
faces of like color. 

1. One color on left and right faces, second color on frorit and 
back, third color on top, fourth on bottom. 

2. One color on two opposite faces, different colors on the other 
four. 

3. One color on left and right faces, second color on frorit and 
back, the remaining four colors on top (each square a different 
color), and the same four colors on bottom. 

4. Each face is four-colored, the same four colors on every face. 
Apparently it is not possible to build a two-by-two-by-two cube 

with one color on front and back, a second color on left and right, 



1 MODEL SHOWN HERE HAS RED ON TOP, BLACK ON BOTTOM TURN SO INTERIOR RED 
AND BLACK FACES ARE IN POSITION SHOWN MOVE TOP HALF OF MODEL TO RIGHT. 

2 GIVE EACH COLUMN A QUARTER-TURN IN DIRECTION SHOWN BY ARROW.TO FORM RED 
FACE ON BOTTOM OF LEFT SQUARE, BLACK FACE ON TOP OF RIGHT SQUARE 

3 UNFOLD EACH SQUARE, BRINGING ENDS "A" TOGETHER TO FORM TWO ROWS 

4 MOVE A CUBE FROM LEFT TO RIGHT END OF EACH ROW 

5 FOLD EACH ROW IN HALF, BRINGING BLACK FACES TOGETHER 
ON LEFT, RED FACES TOGETHER ON RIGHT 

F I G ; .  9 9  p 
The Lyons method of 

transforming a model to its 
second form. 

6 PUT RIGHT SQUARE ON TOP OF LEFT SECOND FORM OF MODEL IS NOW COMPLETE 
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third on top and bottom, and all touching faces matching. I t  is 
possible to build a three-by-three-by-three cube with each face a 
different color, but not without violating the domino rule about 
touching faces. 

Games of the domino type can be played with any species of 
two- or three-dimensional domino; in fact, Parker Brothers still 
sells a pleasant game called Contack (first brought out by them 
in 1939), which is played with equilateral-triangle tiles. Olf sev- 
eral games that  have been proposed for the color cubes, a game 
called Color Tower seems the best. 

Two players sit opposite each other. Each has in front of him 
a screen that  is easily made by taking a long strip of card.board 
about ten inches wide and folding the ends to make it stand up- 
right. The cubes are  put into a container in which they cannot 
be seen but from which they can be taken one a t  a time. A paper 
bag will do, or a cardboard box with a hole in the top. 

Each player draws seven cubes from the container and places 
them behind his screen, where they are  hidden from his opponent. 
The first player opens the game by placing a cube in the middle 
of the table. (The privilege of opening can be decided by rolling 
a cube after a player has named three colors. If one of the three 
comes up, he plays first.) The second player then places a cube 
against the side of the first one, touching faces matching. Players 
alternate turns, each adding one cube to the structure, and in this 
way build a tower that rests on a square base of four cubes. A 
player's object is to get rid of all his cubes. 

The rules are  as follows : 
1. Each tier of four cubes must be completed before starting 

the next tier. 
2. A cube may be placed in any open spot on a tier, provided 

that  i t  meets two conditions: all touching faces must match, and 
i t  must not make impossible any remaining play on the tier. In 
Figure 100, for example, cube A would be illegally played if any 
of its faces met a t  right angles with an exposed face of the same 
color. 

3. If a player cannot play any of his cubes, he must draw one 
from the container. If the drawn cube is playable, he may play i t  
if he wishes. If he cannot or does not wish to play it, he awaits 
his next turn. 



F I G .  100 
The game of Color Tower. 

4. If for strategic reasons a player wishes to pass up his turn, 
he may do so a t  any time, but he must draw a cube from the 
container. 

5. 'The game ends when one player is rid of all his cubes. He 
scores 3 points for winning, plus the number of cubes that  remain 
in his opponent's hand. 

6. If all cubes are drawn from the container, turns alternate 
until one player is unable or unwilling to play. The other player 
then plays until his opponent is able or willing to continue. If both 
are unable or unwilling to play, the game ends and the person 
with the smallest hand is the winner. He scores the difference 
between hands. 

7. 'The goal of a set of games can be any agreed-upon number 
of points. If played as a gambling game, the winner collects after 
each game an amount equal to his score. 

Vai?ious strategies occur to anyone who plays Color Tower for a 
while. Suppose your opponent has just started a new tier. You 
have two cubes left. It would be unwise to play diagonally op- 
posite his cube in such a way as to make your last cube unplayable 
in either of the remaining three-face plays. I t  may be necessary to 
play alongside his cube to keep open the possibility of going out 
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on your next move. The discovery of such strategies makes the 
learning of Color Tower a stimulating experience and leads to a 
skill in play that  greatly increases one's, probability of winning. 

If any reader has suggestions for improving Color Tower I 
would enjoy hearing about them, as well a s  about any other games 
or unusual new puzzles with the cubes. The 30 color cubes have 
been around for more than 70 years, but they probably contain 
many more surprises. 

A D D E N D U M  

WHEN I explained MacMahon's puzzle with the 24 color squares, 
I made the blunder (I had misinterpreted one of MacMahon's 
comments) of saying that  i t  had only one solution. This proved 
to be the greatest understatement ever made in the column. First, 
I heard from about fifty readers who sent more than one pattern. 
Thomas O'Beirne devoted his column, "Puzzles and Paradoxes," 
in The New Scientist (February 2, 1961) to the puzzle and 
showed how dozens of solutions could be obtained. 

In Buenos Aires the problem caught the interest of Federico 
Fink. He and his friends found hundreds of distinct solutions 
(rotations and reflections are not, of course, counted as  different), 
and over the months his list grew into the thousands. On Novem- 
ber 20, 1963, he wrote to say that  he estimated the total number 
of different patterns to be 12,224. 

The matter was settled early in 1964. Fink suggested to Gary 
Feldman, a t  Stanford University's Computation Center, that  he 
write a computer program for the puzzle. Feldman did. The 
center's B5000, using a program written in ALGOL and running 
about 40 hours, produced a complete list of all possible patterns. 
There are  12,261. Fink missed by only 37, a truly amazing pre- 
diction. Feldman's account of his program, "Documentation of 
the MacMahon Squares Problem," a Stanford Artificial Intelli- 
gence Project Memo No. 12, was issued as an eight-page type- 
script by the Computation Center on January 16, 1964. 

It would take many pages to summarize the main results of 
Fink's analysis of the 12,261 solutions. None of the patterns, re- 
gretfully, exhibits bilateral symmetry. The maximum number of 
"diamonds" (single-color squares formed by two right triangles) 
that  can come together to form a polyomino of one color is twelve. 
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Figure 101, left, shows such a pattern; the order-12 polyomino 
has bilateral symmetry and resembles a lobster. The minimum 
number of "isolated diamonds7' (diamonds completely surround- 
ed by other colors) is three. Figure 101, middle, is a pattern in 
which each of the three isolated diamonds is a different color. 
The maximum number of isolated diamonds is thirteen, as  ex- 
emplified by Figure 101, right. 

Note that all three patterns show a horizontal b~idge of three 
diamonds, of the border color, that join right and left borders. 
O'Beirne, in his Nezu Scientist column, proved that every solu- 
tion must have such a bridge. The bridge's position, together 
with the other spots of border color, provide a convenient classifi- 
cation of twenty different species of solution. (O'Beirne listed 
eighteen, but Fink later found two more.) 

Many recreations involving color cubes await exploration. For 
instance, from the set of 57 cubes with one, two and three colors, 
one can pick the 27 that bear no more than two different colors 
on any one cube. Since 27 cubes form one three-by-three-by-three, 
there may be some good construction problems here. Or one could 
work with the subset of 30 that have three different colors on 
each cube. Some of the constructions not possible with the 30 
six-color cubes may be possible with these 30 three-color cubes. 
Can an all-red cube be made, for example, under the usual re- 
striction that touching faces be the same color? 

F I G .  I 0 1  
Three of the 12,261 solutions to the color-square problem: the lobster ( left) ,  
three isolated diamonds of different colors (middle), and 13 isolated diamonds 
(right). 
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MacMahon, who presumably invented the 30-color-cube recrea- 
tion, was a major in England's Royal Artillery who taught mathe- 
matics a t  the Royal Military Academy. He is best known for his 
In t roduc t ion  t o  C o m b i n a t o r y  A n a l y s i s  and his article on the 
topic in the eleventh edition of Encyc lopaed ia  Br i tann ica .  He died 
in 1928. Thomas O'Beirne informs me that  a set of eight color 
cubes, to be formed into one larger cube according to certain 
provisos, was once sold in England as the Mayblox puzzle, with 
credit on the box's cover to MacMahon as the inventor. 

A popular puzzle often found on sale in different countries, 
under various trade names, consists of four cubes, each colored 
with four different colors. The puzzle is to arrange them in one 
row so that all four colors (in any order) appear on each side 
of the four-by-one square prism. Sometimes symbols, such as the 
four card suits or advertising pictures of products, appear instead 
of colors. For descriptions of such puzzles, see R. M. Abraham, 
Divers ions  a n d  P a s t i m e s ,  Dover, 1964, page 100; and Anthony 
Filipiak, 100 Puzz l e s ,  A. S .  Barnes, 1942, page 108. A thorough 
analysis of puzzles of this type will be found in Chapter 7, 
"Cubism and Colour Arrangements," of O'Beirne's Puzz les  and  
Paradoxes ,  Oxford University Press, 1965. 

A N S W E R S  

THREE SAMPLE solutions for MacMahon7s color-square puzzle 
were given in the addendum. Solutions for the color-cube prob- 
lems are  left for readers to discover. 

To prove that  the three-by-eight rectangle cannot be foirmed 
with the 24 color squares, to meet the imposed conditions, first 
select any four squares, with adjacent triangles of the same ctolor, 
to go in the four corners. Exactly fourteen squares, bearing the 
same color, remain; just enough for the fourteen remaining bor- 
der cells of the rectangle. At least three of them, however, will 
have the border color on opposite sides, calling for three internal 
squares bearing the same color. But there are n o  more squares 
with this color; all have been used for the border. The three-by- 
eight, therefore, is an impossible rectangle. 



C H A P T E R  S E V E N T E E N  

H. S. M. Coxeter 

MOST PROFESSIONAL mathematicians enjoy an occasional 
romp in the playground of mathematics in much the same way 
that they enjoy an occasional game of chess; i t  is a form of relax- 
ation that  they avoid taking too seriously. On the other hand, 
many creative, well-informed puzzlists have only the most ele- 
mentary knowledge of mathematics. H. S. M. Coxeter, professor 
of mathematics a t  the University of Toronto, is one of those rare 
individuals who are eminent as mathematicians and as authorities 
on the not-so-serious side of their profession. 

Harold Scott Macdonald Coxeter was born in London in 1907 
and received his mathematical training a t  Trinity College, Cam- 
bridge. On the serious side he is the author of Non-Euclidean 
Geovnetry (1942), Regular Polytopes (1948) and The  Real Pro- 
jective Plane (1955). On the lighter side he has edited and 
brought up to date W. W. Rouse Ball's classic work Mathematical 
Recreations and Essays, and has contributed dozens of articles 
on r~ecreational topics to various journals. In  1961 John Wiley & 
Sonel published his Introduction to  Geometry, a book that is the 
topic of this chapter. 

There are many ways in which Coxeter's book is remarkable. 
Above all, i t  has an extraordinary range. I t  sweeps through every 
branch of geometry, including such topics as non-Euclidean 
geometry, crystallography, groups, lattices, geodesics, vectors, 
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projective geometry, affine geometry and topology - topics not 
always found in introductory texts. The writing style is clear, 
crisp and for the most part technical. I t  calls for slow, ca.refu1 
reading but has the merit of permitting a vast quantity of mate- 
rial to be compressed between its covers. The book is touched 
throughout with the author's sense of humor, his keen eye for 
mathematical beauty and his enthusiasm for play. Most of its 
sections open with apt literary quotations, many from Lewis Car- 
roll, and close with exercises that are often new and stimulating 
puzzles. A number of sections deal entirely with problems and 
topics of high recreational interest, some of which have been dis- 
cussed, on a more elementary level, in this and the two previous 
volumes of this series: the golden ratio, regular solids, topological 
curiosities, map coloring, the packing of spheres and so on. 

Amusing bits of off-trail information dot the text. How many 
readers know, for example, that in 1957 the B. F. Goodrich Com- 
pany patented the Moebius str ip? Its patent, No. 2,784,834, covers 
a rubber belt that is attached to two wheels and is used for con- 
veying hot or abrasive substances. When the belt is given the 
familiar half-twist, it wears equally on both sides - or rath~er on 
its single side. 

And how many readers know that a t  the University of Gott- 
ingen there is a large box containing a manuscript showing how 
to construct, with compass and straightedge only, a regular poly- 
gon of 65,537 sides? A polygon with a prime number of sides can 
be constructed in the classical manner only if the number is a 
special type of prime called a Fermat prime: a prime that can be 

expressed as 2('") + 1. Only five such primes are known: 3, 5, 
17, 257 and 65,537. The poor fellow who succeeded in construct- 
ing the 65,537-gon, Coxeter tells us, spent ten years on the task. 
No one knows whether there is a prime-sided polygon larger than 
this that is in principle constructible with compass and straight- 
edge. If there is such a polygon, its actual construction would ble out 
of the question, since the number of sides would be astronomical. 

I t  might be supposed that  the lowly triangle, studied so thor- 
oughly by the ancients, would contain few new surprises. Yet 
many remarkable theorems about the triangle - theorems that 
Euclid could easily have discovered but didn't - have been found 
only in recent times. One outstanding example, discusse~d by 
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Coxeter, is Morley's theorem. I t  was first discovered about 1899 
by Frank Morley, professor of mathematics a t  Johns Hopkins 
University and father of the writer Christopher Morley. It spread 
rapidly through the mathematical world in the form of gossip, 
Coxeter writes, but no proof for i t  was published until 1914. When 
Paul and Percival Goodman, in Chapter 5 of their wonderful 
little book Cornmunitas, speak of human goods that  are  not con- 
sumed while being enjoyed, i t  is Morley's beautiful theorem that  
provides a happy illustration. 

Morley's theorem is illustrated in Figure 102. A triangle of any 
shape is drawn, and its three angles are trisected. The trisecting 
lines always meet a t  the vertices of an  equilateral triangle. It is 
the a.ppearance of that  small equilateral triangle, known as the 
Morley triangle, that  is so totally unexpected. Professor Morley 
wrote several textbooks and did important work in many fields, 
but i t  is this theorem that  has earned him his immortality. Why 
was it not discovered earlier? Coxeter thinks that  perhaps mathe- 
maticians, knowing the angle could not be trisected within the 
classical limitations, tended to shy away from theorems involving 
angle trisections. 

Another triangle theorem that  has achieved widespread noto- 
riety in this century is illustrated in Figure 103. If the internal 
bisectors of the two base angles of a triangle are  equal, i t  seems 
intuitively obvious that the triangle must be isosceles. But can 
you prove i t ?  No problem in elementary geometry is more in- 
sidiously deceptive. I ts  converse- the bisectors of the base angles 
of an  isosceles triangle are equal - goes back to Euclid and is 
easy to prove. This one looks as  if a proof would be just as  easy, 
when in fact i t  is extremely difficult. Every few months someone 

FIG.  103 
The internal bisector problem. A 
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sends me a plea for a proof of this problem. I usually rep1.y by 
citing an article by Archibald Henderson that  appeared in the 
Journal o f  t h e  El isha Mitchell Scientific Socie ty  for Deceimber 
1937. Henderson calls his paper, almost 40 pages long, "an essay 
on the internal bisector problem to end all essays on the internal 
bisector problem." He points out that  many published proofs, 
some by famous mathematicians, are faulty; then he gives ten 
valid proofs, all long and involved. It is a pleasant shock to find in 
Coxeter's book a new proof, so simple that all he need do is devote 
four lines to a hint from which the proof is easily derived. 

Now and then, when someone discovers an elegant new theo- 
rem, he is moved to record i t  in verse. An amusing modern 
instance is "The Kiss Precise," a poem by the distinguished 
chemist Frederick Soddy, who coined the word "isotope." If 
three circles of any size are placed so that each touches the other 
two, i t  is always possible to draw a fourth circle that touche;s the 
other three. Usually there are two ways to  draw a fourth circle; 
sometimes .one is a large circle enclosing the other three. In Fig- 
ure 104, for instance, the two possible fourth circles are shown as 
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/'FIG. 104 
'1 .._ Frederick Soddy's "Kiss Precise." 

----_---~' 
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broken lines. How are four mutually tangent circles related to 
each other in size? Soddy, as the result of a procedure that he 
later confessed he never really understood, chanced upon the fol- 
lowing beautifully symmetrical formula, in which a,  b, c and d are 
the reciprocals of the four radii: 

The reciprocal of a number n is simply l l n ,  and the reciprocal 
of any fraction is obtained by turning the fraction upside down. 
The ~:eciprocal of a radius is the measure of a circle's curvature. 
A coi~cave curvature, such as that of a circle enclosing the other 
three, is considered a negative curvature and is handled as a nega- 
tive number. In his poem Soddy uses the term "bend" for curva- 
ture. Coxeter quotes the second stanza of the poem as follows: 

Four circles to  the  kissing come, 
The  smaller are the benter. 
The  bend is just the inverse of 
The  distance f r o m  the centre. 
Though their intrigue left  Euclid dumb 
There's now no  need for  rule o f  thumb.  
Since zero bend's a dead straight line 
And concave bends have minus sign, 
The  s u m  of the squares of all four bends 
I s  half the square o f  their sum. 

Soddy's formula is a great timesaver for puzzlists; problems 
involving kissing circles, often found in puzzle books, are tough 
to crack without it. For example, if the three solid circles in 
Figure 104 have radii of one, two and three inches, what are the 
radii of the broken circles? This can be answered by drawing a 
large number of right triangles and doggedly applying the Py- 
thagorean theorem, but Soddy's formula gives a simple quadratic 
equation with two roots that are the reciprocals of the two radii 
soug'ht. The positive root gives the small broken circle a curvature 
of 2316 and a radius of 6/23 inches; the negative root gives the 
large broken circle a negative curvature of -116 and a six-inch 
radius. 
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Readers who care to test the formula's power on another prob- 
lem can consider this situation. A straight line is drawn on a 
plane. Two kissing spheres, one with a radius of four inches, the 
other with a radius of nine inches, stand on the line. What is the 
radius of the largest sphere that can be placed on the same line 
so that  i t  kisses the other two? Instead of Soddy's formulia one 
can use the following equivalent expression, supplied by Coxeter, 
which makes the computation much easier. Given the three re- 
ciprocals, a, b and c, the fourth reciprocal is: 

From an artist's point of view, some of the most striking pic- 
tures in Coxeter's richly illustrated volume accompany his dis- 
cussions of symmetry and the role played by group theory in the 
construction of repeated patterns such as are commonly seen in 
wallpaper, tile flooring, carpeting and so on. "A mathematician, 
like a painter or a poet, is a maker of patterns," wrote the Eng- 
lish mathematician G. H. Hardy in a famous passage quoted by 
Coxeter. "If his patterns are more permanent than theirs, it is 
because they are made with ideas." When polygons are fitted to- 
gether to cover a plane with no interstices or overlapping, the 
pattern is called a tessellation. A regular tessellation is one made 
up entirely of regular polygons, all exactly alike and meeting 
corner to corner (that is, no corner of one touches the side of 
another). There are only three such tessellations : a network of 
equilateral triangles, the checkerboard pattern of squares,, and 
the hexagonal pattern of the honeycomb, chicken wire and bath- 
room tiling. The squares and triangles can also be made to fill the 
plane without placing them corner to corner, but this cannot be 
done with the hexagons. 

"Semiregular" tessellations are those in which two or more 
kinds of regular polygons are fitted together corner to corner in 
such a way that the same polygons, in the same cyclic order, 
surround every vertex. There are precisely eight of these tessel- 
lations, made up of different combinations of triangles, squares, 
hexagons, octagons and dodecagons [see Fig. 1051. All of them 
would, and some do, make excellent linoleum patterns. All are 
unchanged by mirror reflection except the tessellation in the 
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The (tight "semiregular" tessellations. 
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lower right-hand corner, a pattern first described by Johannes 
Kepler. I t  has two forms, each a mirror image of the other. An 
enjoyable pastime is to cut a large number of cardboard polygons 
of the required sizes and shapes, paint them various colors and fit 
them into these tessellations. If the restriction about the veirtices 
is removed, the same polygons will form an infinite variety of 
mosaics. (Some striking examples of these nonregular but sym- 
metrical tessellations are reproduced in Hugo Steinhaus' Mathe- 
matical Snapshots, recently reprinted by the Oxford University 
Press.) 

All tessellations that cover the plane with a repeated pattern 
belong to a set of seventeen different symmetry groups that ex- 
haust all the fundamentally different ways in which patterns can 
be repeated endlessly in two dimensions. The elements of these 
groups are simply operations performed on one basic pattern: 
sliding it along the plane, rotating it or giving it a mirror revlersal. 
The seventeen symmetry groups are of great importance in the 
study of crystal structure; in fact, Coxeter states that it was the 
Russian crystallographer E. S. Fedorov who in 1891 first piroved 
that the number of such groups is seventeen. "The a r t  of filling 
a plane with a repeated pattern,'' writes Coxeter, "reached its 
highest development in thirteenth-century Spain, where the 
Moors used all seventeen groups in their intricate decorations of 
the Alhambra. Their preference for abstract patterns was due 
to their strict observance of the Second Commandment ['Thou 
shalt not make thee any graven image..  .'I." 

I t  is not necessary, of course, to limit the fundamental sliapes 
of such patterns to abstract forms. Coxeter goes on to discuss the 
ingenious way in which the Dutch artist Maurits C. Escher,, now 
living in Baarn, has applied many of the seventeen symrnetry 
groups to mosaics in which animal shapes are used for the funda- 
mental regions. One of Escher's amazing mosaics, reproduced in 
Coxeter's book, is the knight on horseback shown in Figure 106 ; 
another is reproduced in Figure 107. At first glance, Coxeter 
points out, the knight pattern appears to be the result of sliding 
a basic shape along horizontal and vertical axes; but on closer 
inspection one sees that the same basic shape also furnishes the 
background. Actually, the more interesting symmetry group for 
this pattern is generated by what are called glide reflections : slid- 



204 H .  S. M. Coxeter 

FIG. 106 
One of' Maurits Escher's mathematical mosaics. 

ing the shape and simultaneously giving it a mirror reversal. 
Stric1;ly speaking, this is not a tessellation because the funda- 
mental region is not a polygon. The pattern belongs to a curious 
class of mosaics in which irregular shapes, all exactly alike, lock 
together like pieces in a jigsaw puzzle to cover the plane. Abstract 
shapes of this sort are not hard to devise, but when they are 
made to resemble natural objects, they are not so easy to come by. 

Escher is a painter who enjoys playing with mathematical 
structure. There is a respectable school of aesthetics that views 
all a r t  as a form of play, and an equally respectable school of 
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mathematics that looks upon all mathematical systems as mean- 
ingless games played with symbols according to agreed-upon 
rules. Is science itself another kind of game? On this question 
Coxeter quotes the following lines from John Lighton Synge, the 
Irish mathematical physicist : 

"Can it  be that all the great scientists of the past were really 
playing a game, a game in which the rules are written not by man 

FIG.  107 
Another Escher mosaic. It appeared in color on the cover of Scientific American, 
April 196 1. 
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but by God?. . . When we play, we do not ask why we are playing 
-we just play. Play serves no moral code except that  strange 
code which, for some unknown reason, imposes itself on the play. 
. . . You will search in vain through scientific literature for hints 
of mlotivation. And ,as for the strange moral code observed by 
scientists, what could be stranger than an abstract regard for 
truth in a world which is full of concealment, deception, and 
taboos?. . . In submitting to your consideration the idea that the 
human mind is a t  its best when playing, I am myself playing, and 
that  :makes me feel that  what I am saying may have in i t  an ele- 
ment of truth." 

This passage strikes a chord that is characteristic of Coxeter's 
writings. It is one reason why his book is such a treasure trove for 
students of mathematics whose minds vibrate on similar wave- 
lengths. 

A D D E N D U M  

GOODRICH COMPANY was not the first to patent a device based on 
the lCIoebius strip. Lee De Forest, on January 16, 1923, received 
patent 1,442,682 for an endless Moebius filmstrip on which sound 
could be recorded on both sides, and on August 23, 1949, Owen D. 
Harris received patent 2,479,929 for an abrasive belt in the form 
of a Moebius band. Readers informed me of both patents ; there 
may be others. 

There is an extensive literature on Morley's triangle. Coxeter's 
proof' appears on page 23 of his book, which may be consulted 
for some earlier references. A full discussion of the triangle, with 
various other equilateral triangles that turn up (e.g., by trisect- 
ing exterior angles), is given by W. J. Dobbs in Mathematical 
GazeiSte, February 1938. The theorem is discussed in H. F. Baker, 
Introduction to Plane Geometry, 1943, pages 345-349. Since 
Coxeter's book appeared, simple proofs of the theorem have been 
published by Leon Bankoff, Mathematics Magazine, September- 
October 1962, pages 223-224, and Haim Rose, American Mathe- 
matzcal Monthly, August-September 1964, pages 771-773. 

The internal bisector problem, known also as the Steiner- 
Lehmus theorem, has a literature even more vast than the Morley 
triangle. The theorem was first suggested in 1840 by C. L. Lehmus 
and first proved by Jacob Steiner. For the problem's fascinating 
history, and its many solutions, see J. A. McBride, Edinburgh 
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Mathematical Notes, Vol. 33, pages 1-13, 1943, and Archibald 
Henderson, "The Lehmus-Steiner-Terquem Problem in Global 
Survey," in Scripta Mathematica, Vol. 21, pages 223-312, 1955, 
and Vol. 22, pages 81-84, 1956. A number of college geometry 
textbooks prove the theorem: L. S. Shively, An Introduction to 
Modern Geometry, page 141; David R. Davis, Modern College 
Geometry, page 61 ; Nathan Altshiller-Court, College Geom,etry, 
page 65. An extremely short proof, by G. Gilbert and D. Mac- 
Donnell, appeared in American Mathematical Monthly, Vol. 70, 
page 79,1963. 

Soddy's poem, "The Kiss Precise," is reprinted in its entirety 
in Clifton Fadiman's entertaining anthology, The Mathematical 
Magpie, Simon and Schuster, 1962, page 284. The last stanza 
generalizes the theorem to spheres. A fourth stanza, generalizing 
to hyperspheres of n dimensions, was written by Thorold Gosset 
and printed in Nature, January 9, 1937. This also will be found 
in Fadiman's book, page 285. 

The fourth semiregular tessellatidn in Fig. 105 (counting left 
to right) is the basis of a Salvador Dali painting which he calls 
"Fifty abstract pictures which as seen from two yards change 
into three Lenines masquerading as Chinese and as  seen froin six 
yards appear as the head of a royal tiger." A black-and-white 
photograph of the painting appeared in Time, December 6, 1963, 
page 90. 

Figure 108 reproduces another of Escher's remarkable mo- 
saics: a 1942 lithograph entitled "Verbum." Escher has described 
i t  as  a pictorial story of creation. "Out of the nebulous griey of 
the 'Verbum' center ('in the beginning was the Word') triangular 
figures emerge. The farther they are  removed from the center, 
the sharper becomes the contrast between light and dark, .while 
their original straight outlines become serrated and curved. Al- 
ternately, the white becomes background for the black objects 

rures and the black for the white objects. Near the edge the fij, 

have evolved into birds, fish and frogs, each species in its piroper 
element: sky, water and earth. At the same time there are  grad- 
ual transformations from bird into fish, from fish into frog and 
from frog again into bird. There is a perceptible movement in a 
clockwise direction." (The quotation is from The Graphic Work 
of M. C. Escher, published in London by the Oldbourne E'ress, 
1961.) 
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F I G .  108 
Escher's "Verburn" (lithograph, 1942). From the collection of Cornelius Van  5. 
Roosevelt, Washington, D.C. 



Melvin Calvin, in his article on "Chemical Evolution" in I'nter- 
stellar Communication, edited by A. G. W. Cameron (Benjamin, 
1963), reproduces this lithograph, which he says he first; saw 
hanging on the wall of a chemist's office in Holland. "The gradual 
merging of the figures, one to another," Calvin comments, "and 
the transformations which eventually become apparent, seem to 
me to represent the essence not only of life but of the whole uni- 
verse." 

For  more on Escher's mathematical art ,  see my Scientific 
American column for April 1966 and the references i t  cites. 

A N S W E R S  

READERS were asked to find the radius of the largest sphere that  
can be placed on a straight line (drawn on a plane) so that  i t  is 
tangent to two touching spheres, also on the line, with radii of 
four and nine inches. This can be viewed in cross section [see Fig. 
1091 as  a problem involving four mutually tangent circles, the 
straight line considered a circle of zero curvature. Frederick 
Soddy's formula for "The Kiss Precise" gives the two circles 
(drawn with dotted lines) radii of 1 and 11/25 inches and 36 
inches respectively. The larger circle is the mid-section of the 
sphere that  answem the problem. 

I 
I 

FIG. 109 
Answer to the kissing-spheres problem. 



C H A P T E R  E I G H T E E N  

Bridg-it and Other Games 

Man has never shown more ingenuity than in his games. 
- Leibniz, in a letter to  Pascal 

MATHEMATICAL games such as ticktacktoe, checkers, chess 
and 140 are  contests between two players that  (1) must end after 
a finite number of moves, (2)  have no random elements intro- 
duce~d by devices such as dice and cards, (3)  are  played in such 
a way that  both players see all the moves. If a game is of this type 
and each player plays "rationally" - that  is, according to his best 
strategy - then the outcome is predetermined. I t  will be either a 
draw or a certain win for the player who makes the first move or 
the player who makes the second move. In this chapter we shall 
first consider two simple games for which winning strategies are 
known, then a popular board game for which a winning strategy 
has just been discovered and a class of board games not yet ana- 
lyzedl. 

Many simple games in which pieces are placed on or removed 
from. a board lend themselves to what is called a symmetry strat- 
egy. A classic example is the game in which two players take 
turns placing a domino anywhere on a rectangular board. Each 
domino must be put down flat, within the border of the rectangle 
and .without moving a previously placed piece. There are  enough 
dominoes to cover the board completely when the pieces are  
packed side by side. The player who puts down the last domino 
wins. The game cannot end in a draw, so if both sides play ra- 
tionally, who is sure to win? The answer is the player who puts 
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down the first domino. His strategy is to place the first domino 
exactly a t  the center of the board [see Fig. 1101 and thereaftler to 
match his opponent's plays by playing symmetrically opposi'te as 
shown. It is obvious that whenever the second player finds an 
open spot, there will always be an open spot to pair with it. 

The same strategy applies to any type of flat piece that retains 
the same shape when it is given a rotation of 180 degrees. For 
example, the strategy will work if the pieces are Greek crosses ; it 
will not work if they have the shape, say, of the letter T. Will it 
work if cigars are used as pieces? Yes, but because of the dif- 
ference in shape between the ends the first cigar must be bal- 
anced upright on its flat end! I t  is easy to invent new games of 
this sort, in which pieces of different shapes are alternately placed 
on variously patterned boards according to prescribed rules. In 
some cases a symmetry strategy provides a win for the first or 
second player; in other cases no such strategies are possible. 

FIG.  110 
A domino board game. 
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A different type of symmetry play wins the following game. 
Any number of coins are arranged in a circle on the table, each 
coin touching two of its neighbors. Players alternately remove 
either one coin or two touching coins. The player who takes the 
last coin wins. In this case it is the player who makes the second 
move who can always win. After the player who makes the first 
move has taken away one or two coins, the remaining coins form 
a cuirved chain with two ends. If this chain contains an odd num- 
ber of coins, the player who makes the second move takes the 
center coin. If it contains an even number, he takes the two center 
coins. In both cases he leaves two separate chains of equal length. 
From this point on, whatever his opponent takes from one chain, 
he duplicates the move by taking one or two coins from the other 
chai:n. 

Both this and the preceding strategy are examples of what 
game theorists sometimes call a pairing strategy: a strategy in 
which the plays are arranged (not necessarily in symmetrical 
fashion) in pairs. The optimal strategy consists of playing one 
member of the pair whenever the opponent plays the other mem- 
ber. A striking example of a pairing strategy is provided by the 
topological game of Bridg-it, placed on the market in 1960 and 
now a popular game with children. The reader may remember 
that Bridg-it was introduced in S c i e n t i f i c  A m e r i c a n  in October 
195EI as "the game of Gale"; it was devised by David Gale, a 
matliematician a t  Brown University. 

A Bridg-it board is shown in Figure 111. If it is played on 
paper, one player uses a black pencil for drawing a straight line 
to connect any pair of adjacent black spots, horizontally or verti- 
cally but not diagonally. The other player uses a red pencil for 
similarly joining pairs of red spots. Players take turns drawing 
lines. No line can cross another. The winner is the first player to 
form a connected path joining the two opposite sides of the board 
that are his color. (The commercial Bridg-it board has raised 
spots and small colored plastic bridges that are placed between 
spots.) For many years a proof has been known that there is a 
winining strategy for the player who makes the first move, but 
not until early this year was an actual strategy discovered. 

It was Oliver Gross, a games expert in the mathematics depart- 
ment of the Rand Corporation, who cracked the game. When I 
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A finished game of Bridg-it. Red has won. 

learned of his discovery, I wrote immediately for details, expect- 
ing to receive a long, involved analysis that might prove too .tech- 
nical for this department. To my astonishment the explanation 
consisted of nothing more than the diagram reproduced in Figure 
112 and the following two sentences: Make the first play as indi- 
cated by the black line a t  lower left in the diagram. Thereafter 
whenever your opponent's play crosses the end of a dotted line, 
play by crossing the other end of the same line. This ingenious 
pairing strategy guarantees a win for the first player, though 
not necessarily in the fewest moves. Gross describes his strategy 
as "democratic" in the sense that "it plays stupidly against a 
stupid opponent, shrewdly against a shrewd one, but wins re- 
gardless." This is not the only pairing strategy that  Gross dis- 
covered, but he picked this one because of its regularity andl the 
ease with which i t  can be extended to a Bridg-it board of any 
size. 

Note that  in the diagram no plays are indicated along the edges 
of the board. Such plays are allowed by the rules of Bridg-it; (in 
fact, plays of this type are shown on the cover of the box), but 
there is no point in making such a move, because i t  can contribute 
nothing to winning the game. If in the course of playing the .win- 
ning strategy your opponent throws away a play by making an 



F I G .  112 
Oliver Gross's pairing strategy for winning at Bridg-it. 

edge move, you can counter with an edge move of your own. Or, 
if you prefer, you can play anywhere on the board. If a t  some 
point later in the game this random move is demanded by the 
strategy, you simply play somewhere else. Having an extra play 
on t'he board is sometimes an asset, never a liability. Of course, 
now that a winning strategy for the first player is known, Bridg-it 
ceas~es to be of interest except to players who have not yet heard 
the news. 

Many board games with relatively simple rules have defied all 
attempts a t  mathematical analysis. An example is provided by 
the family of games that  derives from halma, a game widely 
played in England late in the 19th century. "The normal English 
way," wrote George Bernard Shaw in 1898, is "to sit in separate 
families in separate rooms in separate houses, each person silently 
occupied with a book, a paper, or a game of halma. . . ." (This 
quotation is given in T h e  Nezo Complete Hoyle, by Albert H .  
Morehead, Richard L. Frey and Geoffrey Mott-Smith.) 

Tlhe original halma (the name is a Greek word for "leap") was 
played on a checkerboard with sixteen squares to a side, but the 
basic mode of play was soon extended to other boards of varying 
size and shape. The game known today as Chinese checkers is one 
of the many later varieties of halma. I shall explain here only a 
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simplified version, which can be played on the familiar eight-by- 
eight checkerboard and which leads to an entertaining solitaire 
puzzle that is still unsolved, 

The game begins with the checkers in the standard starting 
position for a checker game. Moves are the same as in checkers, 
with these exceptions : 

1. No jumped pieces are removed. 
2. A checker may jump men of either color. 
3. Backward moves and jumps are permitted. 
A chain of unbroken jumps may be made over men of both 

colors, but one is not allowed to combine jumps with a nonjump 
move. The object of the game for each player is to occup,y his 
opponent's starting position. The first to do so is the winner. A 
player also wins if the game reaches a situation in which his op- 
ponent is unable to  move. 

Some notion of how difficult i t  is to analyze games of the halma 
type can be had by working on the following puzzle. Arrange 
twelve checkers in the usual starting positions on the black 
squares of the first three rows of a checkerboard. The rest of the 
board is empty. In how few halma plays can you transport these 
men to the three rows on the opposite side of the board? A "play" 
is defined as either a diagonal checker move, forward or back, to 
a neighboring black square ; or a jump over one or more men. An 
unbroken jump may include forward and backward leaps and is 
counted as a single play. As in halma, i t  is not compulsory to ,jump 
when jumps are available, and a series of unbroken jumps may 
be terminated wherever desired, even though more jumps are 
possible. 

For convenience in recording a solution, number the 'black 
squares, left to right and top to bottom, from 1 to 32. 

A D D E N D U M  

AFTER THE twenty-move solution of the checker problem was 
published, several readers sent proofs that a t  least eighteen moves 
were required. One reader, Vern Poythress, Fresno, California, 
sent a twenty-move-minimum proof; unfortunately, too long and 
involved to give here. 

As I pointed out in The 2nd Scientific American Book of Math- 
ematical Puzzles & Diversions, Bridg-it is identical with a switch- 
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ing game called Bird Cage that  was invented by Claude E. 
Shannon. The Shannon game is described in one of Arthur Clarke's 
short stories, "The Pacifist," reprinted in Clifton Fadiman's 
anthology, Mathematical Magpie (Simon and Schuster, 1962), 
pages 37-47; and in Marvin Minsky, "Steps Toward Artificial 
Intell.igence," Proceedings o f  the  Inst i tu te  of Radio Engineers,  
Vol. 49, 1961, page 23. In  addition to Bridg-it, manufactured by 
Hassenfeld Brothers, there is now a more complicated version of 
the game, using chess-knight-move connections, on the market 
under the name of Twixt, put out by 3M Brand Bookshelf Games. 

Independently of Gross's work, a winning strategy for Bridg-it 
was (discovered by Alfred Lehman, of the U.S. Army's Mathe- 
matical Research Center, University of Wisconsin. Lehman found 
a general strategy for a wide class of Shannon switching games, 
of wliich Bird Cage (or Bridg-it) is one species. Lehman wrote 
me that  he first worked out his system in March 1959, and al- 
though i t  was mentioned in a Signal Corps report and in an  out- 
line sent to Shannon, i t  was not then published. In April 1961 he 
spoke about i t  a t  a meeting of the American Mathematical As- 
socixtion, a summary of his paper appearing in the association's 
June notices. A full, formal presentation, "A Solution of the 
Shannon Switching Game," was published in the Journal of  the 
Society of I n d u s t r i a l  a n d  Appl ied  Mathemat ics ,  Vol. 12 ,  De- 
cember 1964, pages 687-725. Lehman's strategy comes close to 
providing a winning strategy for Hex, a well-known topology 
game similar to Bridg-it, but Hex slipped through the analysis 
and remains unsolved. 

In  1961 Giinter Wenzel wrote a Bridg-it-playing program for 
the IBM 1401 computer, basing i t  on the Gross strategy. His de- 
scription of the program was issued as  a photocopied typescript 
by the IBM Systems Research Institute, New York City, and in 
1963 was published in Germany in the March issue of Biirotechnik 
und rlutomation. 

A N S W E R S  

THE PROBLEM of moving twelve checkers from one side of the 
board to the other, using halma moves, brought a heavy response 
from readers. More than 30 readers solved the problem in 23 
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moves, 49 solved i t  in 22 moves, 31 in 21 moves and 14 in 20 
moves. The fourteen winners, in the order their letters are clated, 
are :  Edward J. Sheldon, Lexington, Massachusetts; Henry Lau- 
fer, New York City ; Donald Vanderpool, Towanda, Pennsylvania ; 
Corrado Bohm and Wolf Gross, Rome, Italy; Otis Shuart, Syra- 
cuse, New York; Thomas Storer, Melrose, Florida ; Forrest Vorks, 
Seattle, Washington; Georgianna March, Madison, Wisconsin; 
James Burrows, Stanford, California ; G. W. Logemann, New York 
City; John Stout, New York City ; Robert Schmidt, State College, 
Pennsylvania ; G. L. Lupfer, Solon, Ohio ; and J. R. Bird, Toronto, 
Canada. 

No proof that  twenty is the minimum was received, altk~ough 
many readers indicated a simple way to prove that  a t  least sixteen 
moves a re  required. At  the start,  eight checkers are  on odd rows 
1 and 3, four checkers on even row 2. At the finish, eight check- 
ers are  on even rows 6 and 8, four checkers on odd row 7. Clearly 
four checkers must change their parity from odd to even. This 
can be done only if each of the four makes a t  least one jump move 
and one slide move, thereby bringing the total of required moves 
to sixteen. 

I t  is hard to conceive that  the checkers could be transported in 
fewer than twenty moves, although I must confess that  wlhen I 
presented the problem I found it equally hard to conceive that  i t  
could be solved in as  few as twenty moves. Assuming that  the black 
squares are numbered 1 to 32, left to right and top to bottom, with 
a red square in the board's upper left corner, Sheldon's twenty- 
move solution (the first answer to be received) is as follows: 
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This solution is symmetrical. Figure 113 shows the position of 
the checkers after the tenth move. If the board is now inverted 
and the first ten moves are repeated in reverse order, the transfer 
is completed. So fa r  as I know, this is the first published solution 
in twenty moves. I t  is f a r  from unique. Other symmetrical twenty- 
move solutions were received, along with one wildly asymmetrical 
one from Mrs. March, the only woman reader to achieve the mini- 
mum. 

F I G .  113 
Position of checkers after ten moves. 
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Nine More Problems 

1 .  C O L L A T I N G  THE C O I N S  

ARRANGE THREE pennies and two dimes in a row, alternating the 
coins as shown in Figure 114. The problem is to change their 
positions to those shown a t  the bottom of the illustration in the 
shortest possible number of moves. 

A move consists of placing the tips of the first and secortd fin- 
gers on any two touching coins, one o f  zohich m u s t  be n ,oe?zny 
a n d  t h e  o ther  n d i m e ,  then sliding the pair to another spot along 
the imaginary line shown in the illustration. The two coins in the 
pair must touch a t  all times. The coin a t  left in the pair must re- 
main a t  left ;  the coin a t  right must remain a t  right. Gaps in the 
chain are  allowed a t  the end of any move except the final one. 
After the last move the coins need not be a t  the same spot on the 
imaginary line that  they occupied a t  the start.  

FIG. 114 
The pennies and dimes puzzle. 
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If i t  were permissible to shift two coins of the same kind, the 
puzzle could be solved easily in three moves: slide 1, 2 to left, fill 
the gap with 4, 5, then move 5, 3 from right to left end. But with 
the proviso that  each shifted pair must include a dime and penny 
i t  is a baffling and pretty problem. H. S. Percival, of Garden City, 
New 'York, was the first to call i t  to my attention. 

2 .  T I M E  THE T O A S T  

EVEN THE SIMPLEST of household tasks can present complicated 
problems in operational research. Consider the preparation of 
three slices of hot buttered toast. The toaster is the old-fashioned 
type, with hinged doors on its two sides. It holds two pieces of 
bread a t  once but toasts each of them on one side only. To toast 
both sides i t  is necessary to open the doors and reverse the slices. 

It takes three seconds to put a slice of bread into the toaster, 
three seconds to take i t  out and three seconds to reverse a slice 
without removing it. Both hands are  required for each of these 
operations, which means that  i t  is not possible to put in, take out 
or turn two slices simultaneously. Nor is i t  possible to butter a 
slice while another slice is being put into the toaster, turned, or 
taken out. The toasting time for one side of a piece of bread is 
thirty seconds. It takes twelve seconds to butter a slice. 

Each slice is buttered on one side only. No side may be buttered 
until it has been toasted. A slice toasted and buttered on one side 
may be returned to the toaster for toasting on its other side. The 
toaster is warmed up a t  the start.  In how short a time can three 
slices of bread be toasted on both sides and buttered? 

3 .  T W O  P E N T O M I N O  POSERS 

FOR IjENTOMINO BUFFS, here are  two recently discovered prob- 
lems, the first one easy and the second difficult. 

A. At  the left of Figure 115 the twelve pentominoes are ar -  
ranged to form a six-by-ten rectangle. Divide the rectangle, along 
the black lines only, into two parts that  can be fitted together 
again to make the three-holed pattern a t  the right of the illus- 
tration. 

B. Arrange the twelve pentominoes to form a six-by-ten 
rectangle but in such a way that  each pentomino touches the 
border of the rectangle. Of several thousand fundamentally dif- 
ferent ways of making the six-by-ten rectangle (rotations and 
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reflections a re  not considered different), only two a re  known to 
meet the condition of this problem. Asymmetrical pieces may be 
turned over and placed with either side against the table. 

4 .  A  F I X E D - P O I N T  T H E O R E M  

ONE MORNING, exactly a t  sunrise, a Buddhist monk began to climb 
a tall mountain. The narrow path, no more than a foot or two 
wide, spiraled around the mountain to a glittering temple a t  the 
summit. 

The monk ascended the path a t  varying rates of speed, stopping 
many times along the way to rest and to eat  the dried f ru i t  he 
carried with him. He reached the temple shortly before sunset. 
After  several days of fasting and meditation he began his journey 
back along the same path, s tar t ing a t  sunrise and again walking 
a t  variable speeds with many pauses along the way. His average 
speed descending was, of course, greater than his average climb- 
ing speed. 

Prove tha t  there is a spot along the path tha t  the monk will 
occupy on both tr ips a t  precisely the same time of day. 

5 .  A  P A I R  O F  D I G I T  P U Z Z L E S  

THE FOLLOWING two problems seem to call for  a digital conlputer 
so tha t  hundreds of combinations of digits can be tested in a 
reasonable length of time. But if approached properly and with 
the aid of a clever dodge or  two, both problems can be solved 
with very little pencil and paper work. I t  is by such short cuts 
tha t  a skillful programmer often can save his company valuable 
computer time and in some cases even eliminate a need for  the 
computer. 

A. The Sqzrare Root of Wonderful was the name of a recent 
play on Broadway. If each letter in WONDERFUL stands for  a 
different digit (zero excluded) and if OODDF, using the same 
code, represents the square root, then what is the square root of 
wonderful ? 
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Can features of both 
squares be combined? 9 7 2  

B. 'There a re  many ways in which the nine digits (not  count- 
ing zero) can be arranged in square formation to represent a 
sum. In the example shown a t  left in Figure 116, 318 plus 654 
equals 972. There are  also many ways to place the digits on a 
square matr ix so that ,  taken in serial order, they form a rookwise 
connected chain. An example is a t  r ight  in the illustration. You 
can s ta r t  a t  1, then, moving like a chess rook, one square per 
move, you can advance to 2, 3, 4 and so on to 9. 

The problem is to combine both features in the same square. In 
other words, place the digits on a three-by-three matr ix so tha t  
they form a rookwise connected chain, from 1 to 9, and also in 
such :L way tha t  the bottom row is the sum of the first two rows. 
The answer is unique. 

6 .  H O W  D I D  K A N T  SET H I S  C L O C K ?  

IT IS SAID tha t  Immanuel Kant  n7as a bachelor of such regular 
habits tha t  the good people of Koiligsberg would adjust  their 
clocks when they saw him stroll past certain landmarks. 

One evening Kant  was dismayed to discover that  his clock had 
run down. Evidently his manservant, who had taken the day off, 
had forgotten to wind it. The great  philosopher did not reset the 
hands because his watch was being repaired and he had no way 
of knowing the correct time. He walked to the home of his friend 
Schmidt, a merchant who lived a mile or so away, glancing a t  the 
clock in Schmidt's hallway a s  he entered the house. 

After visiting Schmidt for  several hours Kant  left and walked 
home along the route by which he came. As always, he walked 
with a slow, steady gait tha t  had not varied in twenty years. He 
had no notion of how long this return t r ip  took. (Schmidt had 
recently moved into the area and Kant had not yet timed himself 
on this walk.) Nevertheless, when Kant  entered his house, he 
immediately set his clock correctly. 

How did Kant know the correct t ime? 
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7 .  P L A Y I N G  T W E N T Y  Q U E S T I O N S  W H E N  
P R O B A B I L I T Y  V A L U E S  ARE K N O W N  

IN THE well-known game Twenty Questions one person thinks of 
a n  object, such a s  the Liberty Bell in Philadelphia or  Lawrence 
Welk's left little toe, and another person tries to guess the object 
by asking no more than twenty questions, each answerable by 
yes o r  no. The best questions are  usually those tha t  divide the set 
of possible objects into two subsets a s  nearly equal in number a s  
possible. Thus if a person has chosen a s  his "object" a number 
f rom 1 through 9, i t  can be guessed by this  procedure in no more 
than four questions -possibly less. In twenty questions one can 
guess any number f rom 1 through 2") (or 1,048,576). 

Suppose that  each of the possible objects can be given a differ- 
ent value to  represent the probability that  i t  has been chosen. Fo r  
example, assume tha t  a deck of cards consists of one ace of 
spades, two deuces of spades, three threes, and on up to nine 
nines, making 45 spade cards in all. The deck is shuffled; some- 
one draws a card. You are  to guess i t  by asking yes-no questions. 
How can you minimize the number of questions tha t  you will 
probably have to a sk?  

8 .  D O N ' T  M A T E  I N  O N E  

KARL FABEL, a German chess problemist, is responsible for  the 
outrageous problem depicted in Figure 117. I t  appeared recently 

F I G .  117 
White to move and not checkmate. 
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in Me1 Stover's delightful column of offbeat chess puzzles in 
Canaclicm Chess Chat magazine. 

You are  asked to  find a move for white that  will 72ot result in 
an  immediate checkmate of the black king. 

FIG. 118 
Three types of polyhedrons. 

9 .  F I N D  THE H E X A H E D R O N S  

A POILYHEDRON is a solid bounded by plane polygons known as 
the faces of the solid. The simplest polyhedron is the tetra- 
hedron, consisting of four faces, each a triangle [Fig. 118, t o p ] .  
A tetrahedron can have an endless variety of shapes, but if we 
regard its network of edges as a topological invariant ( that  is, 
we may alter the length of any edge and the angles a t  which edges 
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meet but we must preserve the structure of the network), then 
there is only one basic type of tetrahedron. I t  is not possible, in 
other words, for  a tetrahedron to have sides that  are  anything 
but triangles. 

The five-sided polyhedron has two basic varieties [Fig. 118, 
middle und b o t t o ~ ~ l .  One is represented by the Great Pyramid of 
Egypt (four triangles on a quadrilateral base). The other is 
represented by a tetrahedron with one corner sliced off; three of 
its faces are quadrilaterals, two are triangles. 

John McClellan, an artist in Woodstock, New York, asks this 
question: How many basic varieties of convex hexahedrons, or 
six-sided solids, are there altogether? (A solid is convex if each of 
its sides can be placed flat against a table top.) The cube is, of 
course, the most familiar example. 

If you search for hexahedrons by chopping corners from sim- 
pler solids, you must be careful to avoid duplication. For example, 
the Great Pyramid, with its apex sliced off, has a skeleton that  is  
topologically equivalent to that  of the cube. Be careful also to 
avoid models that  cannot exist without warped faces. 

A N S W E R S  

1. The dime and penny puzzle can be solved in four moves as  
follows. Coins are  numbered from left to right. 

1. Move 3, 4 to the right of 5 but separated from 5 by a 
gap equal to the width of two coins. 

2. Move 1 , 2  to the right of 3, 4, with coins 4 and 1 touching. 
3. Move 4, 1 to the gap between 5 and 3. 
4. Move 5 , 4  to the gap between 3 and 2. 

2. Three slices of bread - A, B, C - can be toasted and but- 
tered on the old-fashioned toaster in two minutes. Figure 119 
shows the way to do it. 

After this solution appeared, I was staggered to hear from five 
readers that  the time could be cut to 111 seconds. What I[ had 
overlooked was the possibility of partially toasting one side of a 
slice, removing it, then returning i t  later to complete the toasting. 
Solutions of this type arrived from Richard A. Brouse, a pro- 
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10 
PUT IN A 

n 
Z PUT IN B 
0 
0 
L U  
10 

30 - 

TURN A 

TAKE OUT B 

40 - PUT I N  C 

BUTTER B 
50 - 

FIG.  ;I19 
Solution to the toaster puzzle. 

TAKE OUT A 

PUT IN B 

TURN C 

BUTTER A 

TAKE OUT B 

TAKE OUT C 

BUTTER C 

gram.ing systems analyst with IBM, San Jose, California; R. J. 
Davis, Jr., of General Precision Inc., Little Falls, New Jersey; 
John F. O'Dowd, Quebec; Mitchell P. Marcus, Binghamton, New 
York; and Howard Robbins, Vestal, New York. 
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Davis' procedure is as follows: 

Seconds 
1-3 
3-6 
6-1 8 
18-2 1 
21-23 
23-36 
36-39 
39-42 
42-54 
54-57 
57-60 
60-72 
72-75 
75-78 
78-90 
90-93 
93-96 

Operation 
Put in slice A. 
Put  in B. 
A completes 15 seconds of toasting on one side. 
Remove A. 
Put in C. 
B completes toasting on one side. 
Remove B. 
Put in A, turned. 
Butter B. 
Remove C. 
Put  in B. 
Butter C. 
Remove A. 
Put in C. 
Butter A. 
Remove B. 
Put in A, turned to complete the toasting on its 
partially toasted side. 
A completes its toasting. 
Remove C. 

All slices are now toasted and buttered, but slice A is still in 
the toaster. Even if A must be removed to complete the entire 
operation, the time is only 114 seconds. 

Robbins pointed out that near the end, while A is finishing its 
toasting, one can use the time efficiently by eating slice B. 

3. Figure 120 shows how the six-by-ten rectangle, formed with 
the twelve pentominoes, can be cut into two parts and the parts 

F I G .  120  
A six-by-ten rectangle made up of pentominoes is refitted into a seven-by-nine 
one with three holes. 
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refitted to make the seven-by-nine rectangle with three interior 
holes. Figure 121 shows the only two possible patterns for the 
six-by-ten rectangle in which all twelve pieces touch the border. 
The second of these patterns is also remarkable in that  it can be 
divided (like the rectangle in the preceding pentomino problem) 
into two congruent halves. 

F I G .  121 
All the pentominoes in these six-by-ten rectangles touch the border of the 
rectangle. 

4. A man goes up a mountain one day, down it another day. Is  
there a spot along the path that  he occupies a t  the same time of 
day on both trips? This problem was called to my attention by 
psychologist Ray Hyman, of the University of Oregon, who in 
turn found it in a monograph entitled "On Problem-Solving," by 
the German Gestalt psychologist Karl Duncker. Duncker writes 
of being unable to solve i t  and of observing with satisfaction that 
others to whom he put the problem had the same difficulty. There 
are  several ways to go about it, he continues, "but probably none 
is . . . more drastically evident than the following. Let ascent and 
descent be divided between tzuo persons on the same day. They 
must meet. Ergo. . . .With this, from an unclear dim condition 
not easily surveyable, the situation has suddenly been brought 
into full daylight." 

5. A. If OODDF is the square root of WONDERFUL, what 
number does it represent? 0 cannot be greater than 2 because this 
would give a square of ten digits. I t  cannot be 1 because there is 
no way that  a number, beginning with 11, can have a square in 
which the second digit is 1. Therefore 0 must be 2. 

WONDERFUL must be between the squares of 22,000 and 
23,000. The square of 22 is 484; the square of 23 is 529. Since 
the second digit of WONDERFUL is 2, we conclude that WO = 52. 

What values for the letters of 22DDF will make the square 
equal 52NDERFUL? The square of 229 is 52,441 ; the square of 
228 is 51,984. Therefore OODD is either 2,299 or 2,288. 
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We now use a dodge based on the concept of digital root. The 
sum of the nine digits in WONDERFUL (we were told zero is 
excluded) is 45, which in turn sums to 9, its digital root. Its 
square root must have a digital root that, when squared, gives 
a number with a digital root of nine. The only digital roots rneet- 
ing this requirement are  3, 6, 9, therefore OODDF must have 
a digital root of 3, 6 or 9. 

F cannot be 1, 5 or 6, because any of those digits would put an 
F a t  the end of WONDERFUL. The only possible completions of 
2299F and 2288F that  meet the digital root requirement are  
22,998, 22,884 and 22,887. 

The square of 22,887 is 523,814,769, the only one that  fits the 
code word WONDERFUL. 

B. The timesaving insight in this problem is the realization 
that  if the nine digits are placed on a three-by-three mxtrix to 
form a rookwise connected chain from 1 to 9, the odd digits must 
occupy the central and four corner cells. This is easily seen by 
coloring the nine cells like a checkerboard, the center cell black. 
Since there is one more black cell than white, the path must be- 
gin and end on black cells, and all even digits will fall on white 
cells. 

There are  24 different ways in which the four even digits can 
be arranged on the white cells. Eight of these, in which 2 is oppo- 
site 4, can be eliminated immediately because they do not permit 
a complete path of digits in serial order. The remaining sixteen 
patterns can be quickly checked, keeping in mind that  the sum 
of the two upper digits on the left must be less than 10 and the 
sum of the two upper digits on the right must be more than 10. 
The second assertion holds because the two upper digits in the 
middle are even and odd, yet their sum is an  even digit. This 
could happen only if 1 is carried over from the sum of the right 
column. The only way to form the path so that  the bottom row 
of the square is the sum of the first and second rows is shown in 
Figure 122. 

FIG. 122 
Solution to the chain-of-digits 

problem. 
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W'hen this solution appeared in Scientific Amer ican ,  Harmon 
H. Goldstone, New York City, and Scott B. Kilner, Corona, Cali- 
fornia, wrote to explain a faster method they had used. There are 
only three basically different rook paths (ignoring rotations and 
reflections) on the field: the one shown in the solution, a spiral 
path from corner to center, and an "S" path from corner to 
diagonally opposite corner. On each path the digits can run in 
order in either direction, making six different patterns. By con- 
sidering each in its various rotations and reflections, one quickly 
arrives a t  the unique answer. 

Note that  if the solution is mirror inverted (by a mirror held 
above i t ) ,  i t  forms a square, its digits still in rookwise serial 
order, such that  the middle rowr subtracted from the top row gives 
the bottom row. 

Charles W. Trigg, in a detailed analysis of solutions to ABC + 
DEF' = GHK (in Recreational Mathemat ics  Magcixine, No. 7, 
February 1962, pages 35-36), gives the only three solutions, in 
addition to the one shown here, on which the digits 1 through 9 
are in serial order along a qzieenzc.ise connected path. 

6. Immanuel Kant calculated the exact time of his arrival home 
as  follows. He had wound his clock before leaving, so a glance a t  
its face told him the amount of time that  had elapsed during his 
absence. From this he subtracted the length of time spent with 
Schmidt (having checked Schmidt's hallway clock when he ar- 
rived and again when he left).  This gave him the total time spent 
in walking. Since he returned along the same route, a t  the same 
speed, he halved the total walking time to obtain the length of 
time i t  took him to walk home. This added to the time of his de- 
parture from Schmidt's house gave him the time of his arrival 
home. 

Winston Jones, of Johannesburg, South Africa, wrote to sug- 
gest another solution. Mr. Schmidt, in addition to being Kant's 
friend, was also his watchmaker. So while Kant sat and chatted 
with him, he repaired Kant's watch. 

7.  The first step is to list in order the probability values for the 
nine cards: 1/45, 2/45, 3/45. . . . The two lowest values are  com- 
bined to form a new element: 1 /45  plus 2/45 equals 3/45. In  other 
words, the probability that  the chosen card is either an  ace or 
deuce is 3/45. There are  now eight elements: the ace-deuce set, 



Nine More Problemrs 231 

the three, the four, and so on up to nine. Again the two lowest 
probabilities are  combined: the ace-deuce value of 3/45 and the 
3/45 probability that the card is a three. This new element, con- 
sisting of aces, deuces and threes, has a probability value of 6/45. 
This is greater than the values for either the fours or fives, so 
when the two lowest values are  combined again, we must pair the 
fours and fives to obtain an  element with the value of 9/45. This 
procedure of pairing the lowest elements is continued until only 
one element remains. I t  will have the probability value of 45/45, 
or 1. The chart in Figure 123 shows how the elements are  com- 
bined. The strategy for minimizing the number of questions is to 
take these pairings in reverse order. Thus the first question could 
be: Is  the card in the set of fours, fives and nines? If not, you 
know it  is in the other set so you ask next : Is  i t  a seven or eight? 
And so on until the card is guessed. 

F I G .  123 
Strategy for minimizing the number of yes-no questions in guessing one of a 
number of objects with probability values. 
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Note that  if the card should be an  ace or deuce i t  will take five 
questions to pinpoint it. A binary strategy, of simply dividing the 
elements as  nearly as  possible into halves for each question, will 
ensure that  no more than four questions need be asked, and you 
might even guess the card in three. Nevertheless, the previously 
described procedure will give a slightly lower expected minimum 
number of questions in the long run ; in fact, the lowest possible. 
In  this case, the minimum number is three. 

The minimum is computed as  follows : Five questions are need- 
ed if the card is an  ace. Five are  also needed if the card is a deuce, 
but there are two deuces, making ten questions in all. Similarly, 
the three threes call for three times four, or twelve, questions. The 
total number of questions for all 45 cards is 135, or an average of 
three questions per card. 

This strategy was first discovered by David A. Huffman, an 
electrical engineer a t  M.I.T., while he was a graduate student 
there. I t  is explained in his paper "A Method for the Construc- 
tion of Minimum-Redundancy Codes," Proceedings o f  t h e  Ins t i -  
t u t e  o f  Radio  Eng ineers ,  Vol. 40, pages 1098-1101, September 
1952. I t  was later rediscovered by Seth Zimmerman, who de- 
scribed i t  in his article on "An Optimal Search Procedure," 
A m e r i c a n  Mathemat ical  Month ly ,  Vol. 66, pages 690-693, October 
1959. A good nontechnical exposition of the procedure will be 
found in John R. Pierce, S y m b o l s ,  S ignals  and No i se  (Harper & 
Brothers, 1961), beginning on page 94. 

8. In the chess problem white can avoid checkmating black 
only by moving his rook four squares to the west. This checks the 
black king, but black is now free to capture the checking bishop 
with his rook. 

When this problem appeared in Scienti f ic Amer ican ,  dozens of 
readers complained that  the position shown is not a possible one 
because there are  two white bishops on the same color squares. 
They forgot that  a pawn on the last row can be exchanged for 
any piece, not just the queen. Either of the two missing white 
pawns could have been promoted to a second bishop. 

There have been many games by masters in which pau7ns were 
promoted to knights. Promotions to bishops are admittedly rare, 
yet one can imagine situations in which it would be desirable. 
For  instance, to avoid stalemating the opponent. Or white may 
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see that  he can use either a new queen or a new bishop in a subtle 
checkmate. If he calls for a queen, it will be taken by a black rook, 
in turn captured by a white knight. But if white calls for a 
bishop, black (not seeing the mate) may be reluctant to trade a rook 
for a bishop and so lets the bishop remain. 

9. The seven varieties of convex hexahedrons, with topological- 
ly distinct skeletons, are shown in Fig. 124. I know of no simple 
way to prove that  there are no others. An informal proof is 
given by John McClellan in his article on "The Hexahedra Prob- 
lem," Recreational Mathemat ics  Magazine,  No. 4,  August 1961, 
pages 34-40. 

F I G .  124 
The seven varieties of convex hexahedrons. 



C H A P T E R  T W E N T Y  

The Calculus of Finite Differences 

THE, CALCULUS of finite differences, a branch of mathematics 
that is not too well known but is a t  times highly useful, occupies a 
halfway house on the road from algebra to calculus. W. W. Sawyer, 
a mathematician a t  Wesleyan University, likes to introduce i t  to 
students by performing the following mathematical mind-reading 
trick. 

Instead of asking someone to "think of a number" you ask him 
to "think of a formula." To make the trick easy, it should be a 
quadratic formula (a  formula containing no powers of x greater 
than x'). Suppose he thinks of 5x" 3x - 7. While your back is 
turned so that  you cannot see his calculations, ask him to substi- 
tute 0, 1 and 2 for x, then tell you the three values that  result for  
the entire expression. The values he gives you are  -7, 1, 19. 
After a bit of scribbling (with practice you can do it in your 
head) you tell him the original formula! 

The method is simple. Jot down in a row the values given to 
you. In a row beneath write the differences between adjacent 
pairs of numbers, always subtracting the number on the left 
from its neighbor on the right. In a third row put the difference 
between the numbers above it. The chart will look like this : 
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The coefficient of x\ in the thought-of formula, is always half 
the bottom number of the chart. The coefficient of x is obtained 
by taking half the bottom number from the first number of the 
middle row. And the constant in the formula is simply the first 
number of the top row. 

What you have done is something analogous to integration in 
calculus. If y is the value of the formula, then the formula ex- 
presses a function of y with respect to x. When x is given values 
in a simple arithmetic progression (0, 1, 2 . . . ) ,  then y assumes 
a series of values ( - 7, 1, 19 . . . ) . The calculus of finite tliffer- 
ences is the study of such series. In this case, by applying a simple 
technique to three terms of a series, you were able to deduce the 
quadratic function that generated the three terms. 

The calculus of finite differences had its origin in Methodus 
Incremento~um, a treatise published by the English mathema- 
tician Brook Taylor (who discovered the "Taylor theorem" of 
calculus) between 1715 and 1717. The first important work in 
English on the subject (after it had been developed by Leonhard 
Euler and others) was published in 1860 by George Boole, of 
symbolic-logic fame. Nineteenth-century algebra textbooks often 
included, a smattering of the calculus, then it dropped out of 
favor except for its continued use by actuaries in checking an- 
nuity tables and its occasional use by scientists for finding formu- 
las and interpolating values. Today, as a valuable tool in statistics 
and the social sciences, i t  is back in fashion once more. 

For the student of recreational mathematics there are  elemen- 
tary procedures in the calculus of finite differences that  can be 
enormously useful. Let us see how such a procedure can be ap- 
plied to the old problem of slicing a pancake. What is the maxi- 
mum number of pieces into which a pancake can be cut by n 
straight cuts, each of which crosses each of the others? The 
number is clearly a function of n. If the function is not too com- 
plex, the method of differences may help us to find i t  by empirical 
techniques. 

No cut a t  all leaves one piece, one cut produces two pieces, two 
cuts yield four pieces, and so on. I t  is not difficult to find bj7 trial 
and error that the series begins: 1, 2, 4, 7, 11 . . . [see Fig. 1251. 
Make a chart as before, forming rows, each representing the 
differences of adjacent terms in the row above: 
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Number of cuts 0 1 2 3 4  

Number of pieces 1  2 4 7 11 
First  differences 1 2 3  4 
Second differences 1 1  1  

If the original series is generated by a linear function, the 
numbers in the row of first differences will be all alike. If the 
function is a quadratic, identical numbers appear in the row of 
second differences. A cubic formula (no powers higher than xs) 
will have identical numbers in the row of third differences, and 
so on. In other words, the number of rows of differences is the 
order of the formula. If the chart required ten rows of differences 
before the numbers in a row became the same, you would know 
that  the generating function contained powers as high as  x10. 

Here there are only two rows, so the function must be a quad- 
ratic. Because i t  is a quadratic, we can obtain i t  quickly by the 
simple method used in the mind-reading trick. 

0 CUTS 
1 PIECE 

1 CUT 
2 PIECES 

2 CUTS 
4 PIECES 

3 CUTS 
7 PIECES 

4 CUTS 
1 1 PIECES 
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The pancake-cutting problem has a double interpretation. We 
can view i t  as an  abstract problem in pure geometry (an ideal 
circle cut by ideal straight lines) or as a problem in applied 
geometry (a real pancake cut by a real knife). Physics is riddled 
with situations of this sort that  can be viewed in both ways, and 
that involve formulas obtainable from empirical results by the 
calculus of finite differences. A famous example of a quadratic 
formula is the formula for the maximum number of electrons that  
can occupy each "shell" of an atom. Going outward from the 
nucleus, the series runs:  0, 2, 8, 18, 32, 50. . . . The first row of 
differences is: 2, 6, 10, 14, 18. . . . The second row: 4, 4, 4, 4. . . . 
Applying the key to the mind-reading trick, we obtain the simple 
formula 2n2 for the maximum number of electrons in the nth 
shell. 

What do we do if the function is of a higher order? We can 
make use of a remarkable formula discovered by Isaac Newton. 
I t  applies in all cases, regardless of the number of tiers in the chart. 

Newton's formula assumes that  the series begins with the value 
of the function when n is 0. We call this number a. The first num- 
ber of the first row of differences is b, the first number of the next 
row is c, and so on. The formula for the nth number of the series is : 

The formula is used only up to the point a t  which all further. 
additions would be zero. For  example, if applied to the pancake- 
cutting chart, the values of 1, 1, 1 are  substituted for a, b, c in the 
formula. (The rest of the formula is ignored because all lower 
rows of the chart consist of zeros ; d, e ,  f . . . therefore have values 
of zero, consequently the entire portion of the formula containing 
these terms adds up to zero.) In this way we obtain the quadratic 

function in2 + i n  + 1. 
Does this mean that  we have now found the formula for the 

maximum number of pieces produced by n slices of a pancake? 
Unfortunately the most that  can be said a t  this point is  "Prob- 
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ably." Why the uncertainty? Because for any finite series of 
numbers there is an  infinity of functions that will generate them. 
(This is the same as  saying that  for any finite number of points 
on a graph, an infinity of curves can be drawn through those 
points.) Consider the series 0, 1, 2, 3. . . . What is the next term? 
A good guess is 4. In fact, if we apply the technique just ex- 
plained, the row of first differences will be l 's,  and Newton's 
formula will tell us that  the nth term of the series is simply n. 
But the formula 

also generates a series that  begins 0, 1, 2, 3. . . . In this case the 
series continues, not 4, 5, 6 . .  . but 5 ,  10, 21.. . . 

There is a striking analogy here with the way laws are discov- 
ered in science. In fact, the method of differences can often be 
applied to physical phenomena for the purpose of guessing a 
natural law. Suppose, for example, that  a physicist is investigat- 
ing for the first time the way in which bodies fall. He observes 
that after one second a stone drops 16 feet, after two seconds 64 
feet, and so on. He charts his observations like this: 

Actual measurements would not, of course, be exact, but the 
numbers in the last row would not vary much from 32, so the 
physicist assumes that the next row of differences consists of 
zeros. Applying Newton's formula, he concludes that the total 
distance a stone falls in rl seconds is 16n'. But there is nothing 
certain about this law. I t  represents no more than the simplest 
function that  accounts for a finite series of observations ; the low- 
est order of curve that  can be drawn through a finite series of 
points on a graph. True, the law is confirmed to a greater degree 
as more observations are made, but there is never certainty that 
more observations will not require modification of the law. 

With respect to pancake-cutting, even though a pure mathe- 
matical structure is being investigated rather than the behavior 
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of nature, the situation is surprisingly similar. For all we now 
know, a fifth slice may not produce the sixteen pieces predicted by 
the formula. A single failure of this sort will explode the formula, 
whereas no finite number of successes, however large, can posi- 
tively establish it. "Nature," as George Polya has put it, "may 
answer Yes or No, but it whispers one answer and thunders the 
other. I ts  Yes is provisional, its No is definitive." Polya is speak- 
ing of the world, not abstract mathematical structure, but it is 
curious that his point applies equally well to the guessing of 
functions by the method of differences. Mathematicians do a great 
deal of guessing, along lines that  are often similar to methods of 
induction in science, and Polya has written a fascinating work, 
Mathematics a d  Plausible Reasoning, about how they do it. 

Some trial-and-error testing, with pencil and paper, shows that  
five cuts of a pancake do in fact produce a maximum of sixteen 
pieces. This successful prediction by the formula adds to the 
probability that  the formula is correct. But until it is rigorously 
p?*oved (in this case i t  is not hard to do) it stands only as a good 
bet. Why the simplest formula is so often the best bet, both in 
mathematical and scientific guessing, is one of the lively contro- 
versial questions in contemporary philosophy of science. For one 
thing, no one is sure just what is meant by "simplest formula." 

Here are a few problems that  are  closely related to pancake- 
cutting and that  are all approachable by way of the calculus of 
finite differences. First  you find the best guess for a formula, then 
you t ry  to prove the formula by deductive methods. What is the 
maximum number of pieces that  can be produced by 11 simul- 
taneous straight cuts of a flat figure shaped like a crescent moon? 
How many pieces of cheesecake can be produced by n simulta- 
neous plane cuts of a cylindrical cake? Into how many parts can 
the plane be divided by intersecting circles of the same size? Of 
different sizes? By intersecting ellipses of different sizes? Into 
how many regions can space be divided by intersecting spheres? 

Recreational problems involving permutations and combina- 
tions often contain low-order formulas that  can be correctly 
guessed by the method of finite differences and later (one hopes) 
proved. With an unlimited supply of toothpicks of rz different 
colors, how many different triangles can be formed on a flat sur- 
face, using three toothpicks for the three sides of each triangle? 
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(Reflections are considered different, but not rotations.) How 
many different squares? How many different tetrahedrons can 
be produced by coloring each face a solid color and using n differ- 
ent colors? (Two tetrahedrons are the same if they can be turned 
and placed side by side so that  corresponding sides match in 
color.) How many cubes with n colors? 

Of course, if a series is generated by a function other than a 
polynomial involving powers of the variable, then other tech- 
niques in the method of differences are called for. For example, 
the exponential function 2" produces the series 1, 2, 4, 8, 16. . . . 
The row of first differences is also 1, 2, 4, 8, 16 . . . , so the pro- 
cedure explained earlier will get us nowhere. Sometimes a seem- 
ingly simple situation will involve a series that  evades all efforts 
to find a general formula. An annoying example is the necklace 
problem posed in one of Henry Ernest Dudeney's puzzle books. A 
circular necklace contains n beads. Each bead is black or white. 
How many different necklaces can be made with n beads? Start- 
ing with no beads, the series is 0, 2, 3, 4, 6, 8, 13, 18, 30.. . . 
(Figure 126 shows the eighteen different varieties of necklace 
when n = 7.) I suspect that  two formulas are interlocked here, 
one for odd n, one for even, but whether the method of differences 

F I G .  126 
Eighteen different seven-beaded necklaces can be formed wi th  beads of two  
colors. 
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will produce the formulas, I do not know. "A general solution. . . 
is difficult, if not impossible," writes Dudeney. The problem is 
equivalent to the following one in information theory: What is 
the number of different binary code words of a given length, 
ruling out as identical all those words that  have the same cyclic 
order of digits, taking them either right to left or left to r ight? 

A much easier problem on which readers may enjoy testing 
their skill was sent to me by Charles B. Schorpp and Dennis T. 
O'Brien, of the Novitiate of St. Isaac Jogues in Wernersville, 
Pennsylvania : What is the maximum number of triangles that 
can be made with n straight lines? Figure 127 shows how ten 
triangles can be formed with five lines. How many can be made 
with six lines and what is the general formula? The formula can 
first be found by the method of differences; then, with the proper 
insight, i t  is easy to show that  the formula is correct. 

Five 
FIG. 127 

lines make ten triangles. 

A D D E N D U M  

IN APPLYING Newton's formula to empirically obtained data, one 
sometimes comes up against an  anomaly for the zero case. For 
instance, The Scientific American Book of Mathematical Pz~xxles 
& Diversions, page 149, gives the formula for the maximum num- 
ber of pieces that  can be produced by n simultaneous plane cuts 
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through a doughnut. The formula is a cubic, 

that  can be obtained by applying Newton's formula to results 
obtained empirically, but i t  does not seem to apply to the zero 
case. When a doughnut is not cut a t  all, clearly there is one piece, 
whereas the formula says there should be no pieces. To make the 
formula applicable, we must define "piece" as  part  of a doughnut 
produced by cutting. Where there is ambiguity about the zero 
case, one must extrapolate backward in the chart of differences 
and assume for the zero case a value that  produces the desired 
first number in the last row of differences. 

To prove that  the formula given for the maximum number of 
regions into which a pancake (circle) can be divided by n straight 
cuts, consider first the fact that  each nth line crosses n -1  lines. 
The n- 1 lines divide the plane into n regions. When the nth line 
crosses these n regions, i t  cuts each region into two parts, there- 
fore every nth line adds n regions to the total. At the beginning 
there is one piece. The first cut adds one more piece, the second 
cut adds two more pieces, the third cut adds three more, and so 
on up to the n th  cut which adds n pieces. Therefore the total num- 
ber of regions is 1 + 1 + 2 + 3 + . . . + n. The sum of 1 + 2 + 

1 3 + . . . + n is p ( n - 1 ) .  To this we must add 1 to obtain the 
final formula. 

The bead problem was given by Dudeney as  problem 275 in his 
Puzzles and Curious Problems. John Riordan mentions the prob- 
lem on page 162, problem 37, of his Introdz~ction to Conzbinatorial 
Anal?jsis (Wiley, 1958), indicating the solution without giving 
actual formulas. (He had earlier discussed the problem in "The 
Combinatorial Significance of a Theorem of Polya," Jozc~nal of the 
Society for  Industrial and Applied Mathemcitics, Vol. 5, No. 4, 
December 1957, pages 232-234.) The problem was later treated 
in considerable detail, with some surprising applications to music 
theory and switching theory, by Edgar N. Gilbert and John Rior- 
dan, in "Symmetry Types of Periodic Sequences," Illinois Journal 
of Mathematics, Vol. 5, No. 4, December 1961, pages 657-665. 
The authors give the following table for the number of different 
types of necklaces, with beads of two colors, for  necklaces of one 
through twenty beads : 
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Number of 
Bends 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13  
14 
15 
16 
17 
18 
19 
20 

Number of 
Necklaces 

2 
3 
4 
6 
8 

13 
18 
3 0 
4 6 
78 

126 
224 
380 
687 

1,224 
2,250 
4,112 
7,685 

14,310 
27,012 

The formulas for the necklace problem do not mean, by the 
way, that  Dudeney was necessarily wrong in saying that  a solu- 
tion was not possible, since he may have meant only that  it was 
not possible to find a polynomial expression for the number of 
necklaces as a function of n so that  the number could be calculated 
directly from the formula without requiring a tabulation of prime 
factors. Because the formulas include Euler's phi function, the 
number of necklaces has to be calculated recursively. Dudeney's 
language is not precise, but it is possible that  he would not have 
considered recursive formulas a "solution." At any rate, the cal- 
culus of finite differences is not in any way applicable to the 
problem, and only the recursive formulas are  known. 

Several dozen readers (too many for a listing of names) sent 
correct solutions to the problem before Golomb's formulas were 
printed, some of them deriving i t  from Riordan, others working 
it out entirely for themselves. Many pointed out that  when the 
number of beads is a prime (other than 2 ) '  the formula for the 
number of different necklaces becomes very simple: 
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The following letter from John F. Gummere, headmaster of 
William Penn Charter School, Philadelphia, appeared in the let- 
ters department of Scientific A m e r i c a n  in October 1961 : 

S i r s  : 
I read zc~ith grea t  i n t e re s t  your  art iele o n  t h e  calculus o f  

finite d i f f e rences .  I t  occurs  t o  m e  t h a t  one  o f  t h e  m o s t  i n t e r -  
es t ing  appl icat ions  of Nezuton's  f o r m u l a  i s  one  I discovered 
for myse l f  long be fore  I had reached t h e  calculus. T h i s  i s  
s i m p l y  app ly ing  t h e  m e t h o d  of finite d i f ferences  t o  series o f  
pozcers. I n  e x p e r i m e n t i n g  zci th figures, I not iced  t h a t  i f  you 
w r o t e  a ser ies  of squares  s u c h  a s  4 ,  9 ,  1 6 ,  25, 3 6 ,  49 a n d  sub-  
t rac ted  t h e m  f r o m  each  o ther  a s  you  w e n t  a long,  you  got  a 
series t h a t  you  coz~ld si?nilarly sub t rac t  once a g a i n  a n d  come 
u p  w i t h  a finite d i f f e rence .  

S o  t h e n  I t r ied  cubes  and  f o u r t h  powers  a n d  evolved a 
formzila t o  t h e  ef fect  t h a t  if n i s  t h e  power ,  you  m z ~ s t  sub t rac t  
n tiqnes, and  your  cons tan t  d i f f e r e n c e  toill be,factorial n. I 
asked  m y  f a t h e ~  abou t  t h i s  ( h e  w a s  f o r  m a n y  years  d irec tor  
of t h e  S trazcbr idge  Memor ia l  O b s e r v a t o r y  a t  H a v e r f o r d  
College a n d  t eacher  of m a t h e m a t i c s ) .  In good Q u a k e r  lan- 
guage  h e  sa id:  " W h y ,  J o h n ,  t h e e  h a s  d iscovered  t h e  calculus 
o f  finite di f ferences."  

A N S W E R S  

How MANY different triangles can be formed with n straight 
lines? I t  takes a t  least three lines to make one triangle, four lines 
will make four triangles, five lines will make ten triangles. Apply- 
ing the calculus of finite differences, one draws up the table in 
Figure 128. 

The three rows of differences indicate a cubic function. Using 
Newton's formula, the function is found to be: in  ( n  - 1 )  ( n  - 
2 ) .  This will generate the series 0 ,  0 ,  0, 1, 4,  10 . . . and therefore 
has a good chance of being the formula for the maximum num- 



NUMBER OF LINES 0 1 2 3 4 5 
- - -  

NUMBER OF TRIANGLES 0 0 0 1 4 10 
FIRST DIFFERENCES 0 0 1 3 6 F I G .  128  

SECOND DIFFERENCES 0 1 2 3 The answer to the triangle 

THIRD DIFFERENCES 1 1  1 
problem. 

ber of triangles that  can be made with n lines. But i t  is still just a 
guess, based on a small number of pencil and paper tests. I t  can 
be verified by the following reasoning. 

The lines must be drawn so that  no two are  parallel and no 
more than two intersect a t  the same point. Each line is then sure 
to intersect every other line, and every set of three lines must 
form one triangle. I t  is not possible for the same three lines to 
form more than one triangle, so the number of triangles formed 
in this way is the maximum. The problem is equivalent, there- 
fore, to the question: In how many different ways can 12 lines be 
taken three a t  a time? Elementary combinatorial theory supplies 
the answer: the same as the formula obtained empirically. 

Solomon W. Golomb, a mathematician mentioned earlier in the 
chapter on polyominoes, was kind enough t o  send me his solution 
to the necklace problem. The problem was to find a formula for 
the number of different necklaces that can be formed with n 
beads, assuming that  each bead can be one of two colors and not 
counting rotations and reflections of a necklace as  being differ- 
ent. The formula proves to be fa r  beyond the power of the simple 
method of differences. 

Let the divisors of n (including 1 and n )  be represented by d l ,  
d 2 ,  d,  . . . For  each divisor we find what is called Euler's phi func- 
tion for that  divisor, symbolized cD ( d )  . This function is the num- 
ber of positive integers, not greater than d, that  have no common 
divisor with d. I t  is assumed that  1 is such an integer, but not d. 
Thus cD(8) is 4, because 8  has the following four integers that  
are prime to i t :  1, 3, 5, 7. By convention, @ ( I )  is taken to be 1. 
Euler's phi functions for 2, 3, 4, 5, 6, 7 are  1, 2, 2, 4, 2, 6, in the 
same order. Let a stand for the number of different colors each 
bead can be. For necklaces with an odd number of beads the for- 
mula for the number of different necklaces with n beads is the one 
given a t  the top of Figure 129. When n is even, the formula is the 
one a t  the bottom of the illustration. 
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Equations for the solution of the necklace problem. 

The single dots are  symbols for multiplication. Golomb ex- 
pressed these formulas in a more compressed, technical form, but 
I think the above forms will be clearer to most readers. They are 
more general than the formulas asked for, because they apply to 
beads that  may have any specified number of colors. 

The formulas answering the other questions in the chapter are : 
1. Regions of a crescent moon produced by n straight cuts: 

n2 + 3n 

2 
+ 1 

2. Pieces of cheesecake produced by n plane cuts: 
n3 + 5n 

6 
+ 1 

3. Regions of the plane produced by n intersecting circles: 
n 2 - n + 2  

4. Regions of the plane produced by n intersecting ellipses: 
2n' - 2n + 2 

5. Regions of space produced by n intersecting spheres: 
n (n2 - 3n + 8 )  

3 
6. Triangles formed by toothpicks of n colors: 

n3 + 2n 

3 
7. Squares formed with toothpicks of n colors: 

n4 + n2 + 2n 

4 
8. Tetrahedrons formed with sides of n colors: 

n4 + 11n2 

12 
9. Cubes formed with sides of n colors: 

n6 + 3n4 + l2n3 + 8n2 

24 



Postscript 

1. The Binary System 

PAUL SWINFORD, a semi-professional magician in Cincinnati, devised 
a deck of playing cards called the Cyberdeck that has holes and. slots 
along the top and bottom edges of the cards. A variety of bewildering 
tricks can be performed with this deck, as explained by Swinford 
in his booklet The Cyberdeck (1986). Both cards and booklet are 
distributed through magic supply stores. 

2. Group Theory and Braids 

AFTER THIS COLUMN appeared in Scientific American I learned from 
Rosaline Tucker, in England, that the network game arose in Japan 
in the mid-nineteenth century, where it has become a traditional way 
of drawing lots. It is called "Amida" because the network resembles 
the halo of rays that surround the head in pictures and statues of 
Arnida-butsu, the most important Buddha of the Jodo sect. See Ms. 
Tucker's article, cited in the bibliography. 

4. The Games and Puzzles of Lewis Carroll 

DONALD E. KNUTH, a Stanford University computer scientist, de- 
vised a word ladders program in which all common English words of 
five letters (proper names excluded) are linked in a mammoth nondi- 
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rective graph. Each word is joined to every word that differs from it 
by one step in a chain. One can enter any two five-letter words into 
the program and in a split second it will display the shortest ladder, 
if a ladder exists, that joins the two words. It found the following 
shorter ladder than the one given on page 57: Rouge, route, routs, 
roots, soots, shots, shoes, shoer, sheer, cheer, cheek. 

Knuth's graph has 5,757 points (words) connected by 14,135 lines. 
Most word pairs can be joined by ladders. SomeKnuth  calls them 
"aloof' words because aloof is one of the words-have no neighbors. 
There are 671 aloof words, such as earth, ocean, below, sugar, laugh, 
first, third, ninth. Two words, bares and cores, are connected to 25 
other words -none to a higher number. There are 103 pairs with no 
neighbors except each other, such as odiumlopium and monadlgonad. 
Knuth's 1992 Christmas card changed sword to peace using only 
words in the Bible's Revised Standard Edition. 

Knuth describes his program in the first chapter of The Stanford 
GraphBase (Addison Wesley, 1993). He will cover it more fully in 
the forthcoming three-volume work on combinatorics in his classic 
Art of Computer Programming series. For hints on how to solve dou- 
blet problems without a computer, see his article "WORD, WARD, 
WARE, DARE, DAME, GAME," in Games (July-August, 1978). 

The mathematician and writer of science fiction, Rudy Rucker, 
has likened doublets to a formal system. The first word is the given 
"axiom." The steps obey "transformation rules" and the final word 
is the "theorem." One seeks to "prove" the theorem by the shortest 
set of transformations. 

Many papers on doublets have appeared in the journal Word Ways, 
a quarterly devoted to linguistic amusements. An article in the Febru- 
ary 1979 issue explored chains that reverse a word, such as tram to 
mart, flog to golf, loops to spool, and so on. The author wonders if 
an example can be found using six-letter words. 

Is there a closed chain, I wonder, that changes spring to summer 
to autumn to winter, then back to spring? If so, what is the shortest 
solution? 

A. K. Dewdney, in a Computer Recreations column in Scientific 
American (August 1987), calls the graph connecting all words of n- 

letters a "word web." He shows how all 2-letter words are easily 
joined by such a web, and asks if anyone can construct a complete 
web for 3-letter words. 
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6. Board Games 

TO MY SURPRISE, in 1976 the American toy company Gabriel intro- 
duced a game called Othello that became the year's best-selling board 
game. I was surprised because Othello is simply Reversi except for a 
trivial difference in rules. Reversi permits either of the two possible 
starting positions on the four center squares. Othello prohibits the 
position shown in Figure 28, allowing only the pattern with the same 
colors diagonally opposite. 

Time reported (November 22,1976, page 97) that Othello had been 
"invented" in 1971 by a Japanese drug company salesman named 
Goro Hasegawa. By 1975 four million sets had been sold in Japan. 
Gabriel bought rights to the game without knowing they were buying 
a product long in the public domain. (My column on Reversi had been 
published in 1960.) Gabriel's three identical advertisements in The 
New York Times Magazine (October 31,1976) called it a "new board 
game." Of course only the name was new. "Othello" had been chosen, 
so said Time, because the game's frequent reversals were similar to 
the sudden plot changes in Shakespeare's play of the same name. 

Time (December 27, 1976) ran two letters from readers pointing 
out the identity of Othello and Reversi. Mrs. Elizabeth Carter likened 
the Japanese claim to Soviet claims of having invented the light bulb. 
She added that in the early twenties she had played the game with 
her aunt, using the pasteboard tops then on glass milk bottles. 

I was interviewed about all this by Joe Kennedy, of the Roanoke 
Times and World News (Sunday, October 25, 1977). The article was 
headed "Othello Unmasked as New Name for Old English Game." I 
told Kennedy I had spoken on the phone with the head of Gabriel. He 
said he didn't mind learning that Othello was an old game because 
he had paid for the copyrighted new name, and for Japanese "pre- 
testing" of the product. 

Annual Othello tournaments were and are still being held around 
the world. Here and there computer programs have been written 
that defeat all but top experts. Fidelity Electronics introduced Re- 
versi Challenger, a Reversi-playing machine priced at $156. (See its 
advertisement in Games (November 1983).) 

Jonathan Cerf, a son of the noted Random House editor and writer 
Bennett Cerf, was assigned by Games magazine to write an article 
about Othello. In researching the piece he participated in an early 
Othello contest, and became so intrigued that he began an intensive 
study of the game. This led to his becoming a U. S. Othello champion, 
and in 1980 he was the first and still the only non-Japanese to win 
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the world tournament. To date, Cerf and two Frenchmen have been 
world champions; all the others have been Japanese. Cerf is now 
retired from active play. 

In 1979 Cerf was a founder and first editor of Othello Quarterly, 
the first and best of many Othello periodicals now published in Eng- 
land and many European nations. Othello Quarterly has been edited 
since 1986 by Clarence Hewlett, and is published by the United 
States Othello Players Association, 920 Northgate Avenue, Waynes- 
boro, Virginia 22980. 

Byte (July 1980) reported on the first Othello contest between 
humans and computers, held at  Northwestern University. It was 
won by Hiroshi Inoue, then world champion from Japan. The second- 
place winner was a program written by Dan and Kathe Spraclen, best 
known for their chess program Sargon. 

Othello boards and pieces are now sold in almost every techno- 
logically advanced nation. World tournaments are still held every 
year, each time in a different country. As I write (1993) the world 
champion is the Frenchman Marc Tastet. The U. S. champion is An- 
ders Kierulf, a Norwegian now living in California. The 1993 world 
tournament, to be held in England, is scheduled for November. 

In 1987 I received a fascinating letter from Peter Michaelsen, of 
Denmark. (I was unable to thank him because there was no address 
on the letter.) Reversi, he told me, has had dozens of names in Den- 
mark, such as Tourne, Klak, and Omslay. There is some evidence, 
he said, that the game may have originated in China before the two 
rival Englishmen claimed to have invented it. The Chinese version 
is called Fan Mien, which means to turn or reverse. 

I gave two shortest possible Reversi games, both opening with the 
pattern forbidden by Othello rules. Michaelsen reported that David 
Haigh, in England, had proved that there were two more games 
of the same length based on this opening. If the Othello opening is 
used, there are 57 ways the first player can win on his seventh move. 
These were discovered in 1975 by Manubu Maruo, and confirmed by 
computer. 

7. Packing Spheres 

ALTHOUGH GREAT PROGRESS has been made on finding dense pack- 
i n g ~  for spheres in dimensions higher than 3, there is still no ac- 
cepted proof that the .74+ density (pi divided by the square root of 
18) is the best, although almost all geometers assume it is. Douglas 
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Muder, of the Mitre Corporation, Bedford, Massachusetts, proved 
that 3-space packing cannot exceed ,77836. 

In 4-space it is known that the "kissing number" for equal spheres 
is either 24 or 25. It  is 24 if a recent proof holds up. In 1991 Wu- 
Yi Hsiang, at  the University of California, Berkeley, announced a 
proof of the .74 close packing-a proof that required 200 pages. Other 
mathematicians found it so full of holes that Hsiang revised and 
condensed it to 98 pages. According to a report in Science (Volume 
159, February 12, 1993) mathematicians are divided over whether 
the revised proof is valid. 

Stanislaw Ulam told me in 1972 that he suspected the sphere was 
the worst case of dense packing of identical convex solids, but that 
this would be difficult to prove. 

For data on the best known sphere packings in spaces 4 through 
13, see Chapter 3 of my Mathematical Circus. 

8. The Transcendental Number Pi 

If inside a circle a line 
Hits the center and goes spine to spine, 
And the line's length is d, 
The circumference will be 
d times 3.14159. 

-Anonymous 

In 1989 Yasumasa Kanada, at  the University of Tokyo, broke the 
one billion barrier by calculating pi to 1,073,740,000 decimal places. 
This held the record until 1991 when two Russian immigrant com- 
puter scientists at Columbia University, David and Gregory Chud- 
novsky, calculated pi to 2,260,821,336 decimal places. 

The brothers used a very rapid algorithm based on the discovery 
by Ramanujan that e to the power of pi times the square root of 
163 is incredibly close to an integer. (See Chapter 10 of my Time 
Travel and Other Mathematical Bewilderments.) Only integers are 
used. Each pass through the procedure adds fourteen more digits 
without having to start the entire computation over. Thus anyone 
with a desk computer can easily extend the string another fourteen 
digits as often as time permits. 

Kanada said he did his calculating of pi because "it is there." David 
Chudnovsky said he and his brother just wanted "to see more of the 
tail of the dragon." 
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An entertaining portrait of the two Russian brothers appeared in 
The New Yorker (March 2, 1992) titled "The Mountains of Pi," by 
Richard Preston. The Chudnovskys used a supercomputer they built 
in their apartment from mail-order parts. So far, no patterns in pi 
have turned up. Said David, "We need a trillion digits." 

For a collection of curiosities and coincidences involving pi see 
"Slicing Pi into Millions," in Gardner's Whys and Wherefores. 

Lewis Carroll planned to write a book titled Plain Facts for Circle 
Squarers, but never got around to it. In the Introduction to his New 
Theory of Parallels he makes a comment which can be appreciated by 
all mathematicians who have ever been pestered by angle-trisecting 
and circle-squaring cranks: 

The first of these two misguided visionaries filled me with a 
great ambition to do a feat I have never heard of as accom- 
plished by man, namely to convince a circle squarer of his error! 
The value my friend selected for .rr was 3.2: the enormous error 
tempted me with the idea that it could be easily demonstrated 
to be an error. More than a score of letters were interchanged 
before I became sadly convinced that I had no chance. 

9. Victor Eigen: Mathemagician 

ANDY LIU AT THE University of Alberta, Canada, sent a neat proof 
of the theorem about the closed, self-intersecting curve. It begins 
by treating the curve as a map and two-coloring it. The proof by 
Rademacher and Toeplitz was crisply summarized by W. C. Water- 
house in The American Mathematical Monthly (February 1961, page 
179) as follows: 

We want to show that between successive passages through a 
given double point an even number of double points are passed 
through. Call the part of the curve traced (itself a closed curve) 
B ,  and the rest of the curve (also a closed curve) C. All double 
points of B are certainly passed through twice, and we need 
consider only the intersections of B and C .  But C can be re- 
placed by a regular curve without changing its intersections 
with B ,  and then the Jordan Curve Theorem shows that there 
are an even number of intersections of B with C .  

As the editor commented, the theorem plays an important role in 
knot theory. 
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Many other versions of my nine-card parity trick have appeared 
in magic periodicals since I first explained it, or sold in conjuring 
shops with special equipment. In 1990 David Copperfield presented 
a clever version on one of his television spectaculars. An account of 
his handling can be found in Sidney Kolpas's article, "David Cop- 
perfield's Oriental Express Trick," in The Mathematics Teacher (Oc- 
tober 1991, pages 568-70). I have brief accounts of other versions 
in Martin Gardner Presents (Richard Kaufman and Alan Greenberg, 
1993, pages 149-53), a book sold in magic shops. 

10. The Four-Color Map Theorem 

IN 1976 WOLFGANG HAKEN and Kenneth Appel, at  the University 
of Illinois, announced their computer-aided proof of the four-color 
theorem. It required more than a thousand hours of computer time, 
and a printout of such horrendous size that it took years for other 
mathematicians to validate it. There is still hope someone may find 
a simple, easily followed proof, but so far no one has done so. 

11. Mr. Appollinax Visits the United States 

MY VANISHING TILE paradox was made in China and marketed here 
in the early 1990s by Playtime Toys, Louisville, Kentucky, under the 
title Puzzle Mania. No credit is given for its source. 

12. Nine Problems 

MANY DIFFERENT train-switching puzzles can be found in the puzzle 
books by Sam Loyd, Ernest Dudeney, and others. Two recent articles 
deal with this type of puzzle: A. K. Dewdney's Computer Recreations 
column in Scientific American (June 1987), and "Reversing Trains, 
A Turn of the Century Sorting Problem," by Nancy Amato, et al., 
Journal of Algorithms, Vol. 10, 1989, pages 413-428. 

13. Polyominoes and Fault-Free Rectangles 

THE LITERATURE ON polyominoes has grown so huge since I first 
wrote about these tantalizing shapes in 1959 that it is impossible to 
list the hundreds of papers. Solomon Golomb's book, currently be- 
ing revised for Princeton University Press, will include an extensive 
bibliography. See also the references cited in George Martin's book. 
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The question I left open of whether the jagged square (Figure 69) 
can have a monomino on the border, third spot from a corner, has 
been settled. The Journal of Recreational Mathematics (Vol. 24, No. 
1, 1992, page 70) reported that a computer program by A. van de 
Wetering, in the Netherlands, found all solutions. It produced the 
ten published in the same journal (Vol. 23, No. 2, 1991, page 146), 
none of which had the monomino in the specified position. 

Little work has been reported on generalizations to three dimen- 
sions of fault-free problems. In The American Mathematical Monthly 
(Vol. 77, JuneIJuly 1970, page 656) Jan Mycielski worded Problem 
5774 as follows: 

A cube 20 x 20 x 20, is built out of bricks of the form 2 x 2 x 1. 
The faces of the bricks are parallel to the faces of the cube but 
they need not all lie flat. Prove that the cube can be pierced by 
a straight line perpendicular to one of the faces which does not 
pierce any of the bricks. 

A proof was given in Vol. 78, AugustISeptember, 1971, page 801. 
For new results on fault-free rectangles, see the papers cited in the 
bibliography. 

14. Euler's Spoilers 

DOES A FINITE PROJECTIVE plane of order 10 exist? The proof of im- 
possibility was given in 1988 by Clement W. H. Lam and his asso- 
ciates at Concordia University, Montreal, Canada. Because order-10 
Latin squares have 111 rows and 111 columns, searching for nine 
mutually orthogonal ones required several thousand hours of com- 
puter time spread over a three-year period. The program proved that 
at most there are eight mutually orthogonal Latin squares of order 
10. 

Lam's proof, like the proof of the four-color theorem, is based on 
a computer printout too enormous to be checked line by line by live 
mathematicians. This raises the question of whether it really is a 
"proof," or just empirical evidence that is deemed valid with a high 
degree of probability. After the 1988 announcement, Lam and his 
colleagues found two errors, both of which they managed to patch. 
Are there more? If so, are they patchable? No more errors have been 
found and the proof seems secure. So far, not even three mutually 
orthogonal Latin squares have been discovered. 

I asked if all Graeco-Latin squares of order 10 contain an order-3 
square. As many readers showed, the answer is no. 
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Is there an order-10 Graeco-Latin square with both diagonals also 
"magic"-that is, with the Graeco-Latin property? The answer is yes. 
A beautiful example was found in 1974 by Me1 Most, of New York 
City: 

16. The 24 Color Squares and the 30 Color Cubes 

THE COUNT I REPORTED of 12,261 patterns for the 4 x 6 rectangle 
made with the 24 color squares appears to have missed more than 
a thousand. At any rate, Hilario Fernandez Long, of Buenos Aires, 
in 1977, counted 13,328 patterns. John Harris, of Santa Barbara, 
California, wrote a fast program which verified this count. Harris 
also obtained a count of 1,482 solutions for a pair of 3 x 4 rectangles. 
Wade Philpott, of Lima, Ohio, modified Harris's program to obtain 
128 solutions for a triplet of 2 x 4 rectangles. 

A later column on MacMahon's 24 color triangles is reprinted 
in my Mathematical Magic Show. A column on the 30 cubes, with 
startling new discoveries by John Conway, is in my Fractal Music, 
Hypercards, and More. 

Harry Nelson, former editor of The Journal of Recreational Math- 
ematics, invented in 1972 an excellent board game using the 24 
squares. The board is a 5 x 5 matrix of 25 cells, each the size of 
a tile. Game manufacturers can contact Nelson at 4259 Emory Way, 
Livermore, California 94550. 

17. H. S. M. Coxeter 

MANY PAPERS ON Morley's elegant theorem have appeared since I 
listed a few in this chapter's addendum. Some are given in the bib- 
liography. 
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In April 1966 I devoted an entire column to Escher-it was 
reprinted in Mathematical Circus. Since then, interest in Escher has 
produced a flood of books and articles. Of special interest is Doris 
Schattschneider's M. C. Escher: Visions of Symmetry (W. H .  Free- 
man, 1990). When I wrote my column, I bought from Escher one of 
his originals to frame and hang. Had I anticipated the rapid growth 
of his fame, I could have bought many more. They would have been 
the best investments of my life! 

19. Nine More Problems 

THE EMINENT MATHEMATICIAN Stanislaw Ulam, in his biography 
Adventures of a Mathematician (Scribner's, 1976, page 281), sug- 
gested adding the following rule to the twenty-question game. The 
person who answers is permitted one lie. What is the minimum num- 
ber of questions required to determine a number between 1 and one 
million? What if he lies twice? 

The general case is far from solved. If there are no lies, the answer 
is of course 20. If just one lie, 25 questions suffice. This was proved 
by Andrzej Pelc, in "Solution of Ulam's Problem on Searching with 
a Lie," in Journal of Combinatorial Theory (Series A), Vol. 44, pages 
129-40, January 1987. The author also gives an algorithm for finding 
the minimum number of needed questions for identifying any num- 
ber between 1 and n. A different proof of the 25 minimum is given 
by Ivan Niven in "Coding Theory Applied to a Problem of Ulam," 
Mathematics Magazine, Vol. 61, pages 275-81, December 1988. 

When two lies are allowed, the answer of 29 questions was estab- 
lished by Jurek Czyzowicz, Andrzec Pelc, and Daniel Mundici in the 
Journal of Combinatorial Theory (Series A), Vol. 49, pages 384-88, 
November 1988. In the same journal (Vol. 52, pages 62-76, Septem- 
ber 1989), the same authors solved the more general case of two 
lies and any number between 1 and 2". Wojciech Guziki, ibid., Vol. 
54, pages 1-19, 1990, completely disposed of the two-lie case for any 
number between 1 and n. 

How about three lies? This has been answered only for numbers 
between 1 and one million. The solution is given by Alberto Negro 
and Matteo Sereno, in the same journal, Vol. 59, 1992. It is 33 ques- 
tions, and that's no lie. 

The four-lie case remains unsolved even for numbers in the 1 to 
one million range. Of course if one is allowed to lie every time, there 
is no way to guess the number. Ulam's problem is closely related to 
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error-correcting coding theory. Ian Stewart summarized the latest 
results in " How to Play Twenty Questions with a Liar," in New 
Scientist (October 17, 1992), and Barry Cipra did the same in "All 
Theorems Great and Small," SIAM News (July 1992, page 28). 

Puzzles involving alternating coins that are to be collated by shift- 
ing them in pairs have many variations and generalizations. Here 
are some references: 

"Coin Strings," by Jan M. Gombert, in Mathematics Magazine, 
November-December 1969, pages 244-47. 

"An Interlacing Transformation Problem," by Yeong-Wen Hwang, 
in The American Mathematical Monthly, Vol. 67, December 1960, 
pages 974-76. 

"Some New Results on a Shuffling Problem," by James Achugbue 
and Francis Shin, in The Journal of Recreational Mathematics, Vol. 
12, No. 2, 1979-80, pages 126-29. 

There are 34 topologically distinct convex heptahedra, 257 octahe- 
dra, and 2,606 9-hedra. The three nonconvex (concave or re-entrant) 
hexahedra are shown below. There are 26 nonconvex heptahedra, 
and 277 nonconvex octahedra. See the following papers by P. J. Fed- 
erico: "Enumeration of Polyhedra: The Number of 9-hedra," Jour- 
nal of Combinatorial Theory, Vol. 7, September 1969, pages 155-61; 
"Polyhedra with 4 to 8 Faces," Geometria Dedicata, Vol. 3, 1975, 
pages 469-81; and "The Number of Polyhedra," Philips Research 
Reports, Vol. 30, 1975, pages 220-31. 

A formula for calculating the number of topologically distinct con- 
vex polyhedra, given the number of faces, remains unfound. 

Paul R. Burnett called my attention to the Old Testament verse, 
Zechariah 3:9. In a modern translation by J. M. Powis Smith it reads: 

The three concave hexahedra 
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"For behold the stone I have set before Joshua; upon a single stone 
with seven facets I will engrave its inscription." 

An outline of a formal proof that there are just seven distinct 
convex hexahedra is given in "Euler's Formula for Polyhedra and 
Related Topics," by Donald Crowe, in Excursions into Mathematics, 
by Anatole Beck, Michael Bleicher, and Donald Crowe (Worth, 1969, 
pages 29-30). 

20. The Calculus of Finite Differences 

DONALD KNUTH CALLED my attention to the earliest known solution 
of Dudeney's bead problem. Percy A. MacMahon, whom we met in 
Chapter 16, solved the problem as early as 1892. This and the prob- 
lem are discussed in Section 4.9 of Concrete Mathematics (19941, by 
Ronald Graham, Donald Knuth, and Oren Patashnik. 



Bibliography 

1. The Binary System 

"The Logical Abacus." W. Stanley Jevons in The Principles of Science, Chap- 
ter 6, pages 10P105. London: Macmillan, 1874. Reprinted as a Dover 
paperback, 1958. 

"Two." Constance Reid in From Zero to Infinity, Chapter 2. Fourth edition, 
Mathematical Association of America, 1992. 

"Some Binary Games." R. S. Scorer, P. M. Grundy and C. A. B. Smith in 
Mathematical Gazette, Vol. 28, pages 96-103, 1944. 

"How to Count on Your Fingers." Frederik Pohl in Digits and Dastards. 
Ballantine, 1966. 

"Card Sorting and the Binary System." John Milholland in Mathematics 
Teacher, Vol. 52, pages 312-314, 1951. 

"A Punch-card Adding Machine Your Pupils Can Build." Larew M. Collister 
in Mathematics Teacher, Vol. 52, pages 471-473, October 1959. 

"Marginal Punch Cards Help in Logical System Design." R. W. Stoffel, in 
Control Engineering, pages 89-91, April 1963. 

The Cyberdeck. Paul Swinford. Haines House of Cards, Cincinnati, Ohio, 
1986, 36 pages. 

2. Group Theory and Braids 

"Theory of Braids." Emil Artin in Annals of Mathematics, Second Series, 
Vol. 48, No. 1, pages 101-126, January 1947. 

"Braids and Permutations." Emil Artin in Annals of Mathematics, Second 
Series, Vol. 48, pages 643-649, 1947. 

"The Theory of Braids." Emil Artin in The American Scientist, Vol. 38, No. 
1, pages 112-119, January 1950; reprinted in Mathematics Teacher, Vol. 
52, No. 5, pages 328-333, May 1959. A nontechnical discussion of results 
contained in the two previous papers. 

"On a String Problem of Dirac." M. H. A. Newman in The Journal of the 
London Mathematical Society, Vol. 17, Part 3, No. 67, pages 173-177, 
July 1942. 

"Amida." Rosaline Tucker, in Mathematical Gazette, Vol. 61, pages 213-215, 
October 1977. 



260 Bibliography 

"A Random Ladder Game: Permutations, Eigenvalues, and Convergence of 
Markov Chains." Lester H. Lange and James W. Miller, in The College 
Mathematics Journal, Vol. 23, pages 373-85, November 1992. 

On Group Theory: 
The Theory of Groups. Marshall Hall, Jr. Macmillan, 1959. 
Groups. Georges Papy. St. Martin's Press, 1964. 
The Theory of Groups: An Introduction. Joseph J. Rotman. Allyn and Bacon, 

1965. 
"Group Theory for School Mathematics." Richard A. Dean in Mathematics 

Teacher, Vol. 55, No. 2, pages 98-105, February 1962. 

4. The Games and Puules of Lewis Carroll 

The Lewis Carroll Picture Book. Edited by Stuart Dodgson Collingwood. 
Unwin, 1899. Reprinted as a Dover paperback, 1961, under the title Di- 
versions and Digressions of Lewis Carroll. 

Symbolic Logic and the Game of Logic. Lewis Carroll. Dover, 1958. 
Pillow Problems and a Tangled Tale. Lewis Carroll. Dover, 1958. 
"Lewis Carroll and a Geometrical Puzzle." Warren Weaver in The American 

Mathematical Monthly, Vol. 45, pages 234-36, April 1938. 
"The Mathematical Manuscripts of Lewis Carroll." Warren Weaver in the 

Proceedings of the American Philosophical Society, Vol. 98, pages 377- 
381, October 15, 1954. 

"Lewis Carroll: Mathematician." Warren Weaver in Scientific American, 
pages 116-128, April 1956. 

"Mathematics Through a Looking Glass." Margaret F. Willerding in Scripta 
Mathematica, Vol. 25, No. 3, pages 209-219, November 1960. 

The Annotated Alice. Martin Gardner. Clarkson Potter, 1960. Reprinted in 
paper covers by Forum Books, 1963, and Penguin, 1965. 

The Annotated Snark. Martin Gardner. Simon and Schuster, 1962. 
The Magic ofLewis Carroll. John Fisher (ed.). Simon and Schuster, 1973. 
Lewis Carroll's Symbolic Logic. William W. Bartley, 111. Clarkson Potter, 

1977. 
Lewis Carroll's Games and Puzzles. Edward Wakeling (ed.). Dover, 1992. 
"A World-ChampionshipLevel Othello Program." Paul S. Rosenbloom, in 

Artificial Intelligence, Vol. 19, pages 279-320, 1982. 
OthellolReversi. Francois Pingaud (a French champion). Monaco: Editions 

du Rocher, 1983. 
Othello Brief and Basic. Ted Landau. Othello Players Association, no date. 

5. Paper Cutting 

Paper Capers. Gerald M. Loe. Chicago: Ireland Magic Co., 1955. 
A Miscellany of Puzzles. Stephen Barr. Crowell, 1965. The book contains a 

number of new puzzles involving paper cutting and folding. 
Equivalent and Equidecomposable Figures. V. G. Boltyanskii. D. C. Heath, 

1963. A paperback booklet translated from a 1956 Russian edition. 



Bibliography 261 

Geometric Dissections. Harry Lindfren. Van Nostrand, 1964. The definitive 
work on the subject. 

Recreational Problems in  Geometric Dissections and How to Solve Them. A 
much revised and enlarged edition of the previous entry. Edited by Greg 
Frederickson. Dover, 1972. 

6. Board Games 

A History of Board Games other than Chess. Harold James Ruthven Murray. 
Oxford Press, 1952. 

Board and Table Games, Vol. 2. R. C. Bell. Oxford Press, 1969. 

On Rithmomachy: 
"Rithmomachia, the Great Medieval Number Game." David Eugene Smith 

and Clara C. Eaton in Number Games and Number Rhymes, pages 29-38. 
New York: Teachers College, Columbia University, 1914. Reprinted from 
The American Mathematical Monthly, April 1911. 

"BoissiBre's Pythagorean Game." John F. C. Richards in Scripta Mathemat- 
ica, Vol. 12, No. 3, pages 177-217, September 1946. 

"Ye Olde Gayme of Rithmomachy." Charles Leete in Case Institute's Engi- 
neering and Science Review, pages 18-20, January 1960. 

On Oriental Chess: 
Korean Games, with Notes on the Corresponding Games of China and Japan. 

Stewart Culin. University of Pennsylvania, 1895. Reprinted in 1958 by 
Charles E. Tuttle under the title Games of the Orient. 

A Manual of Chinese Chess. Charles F. Wilkes. San Francisco: Yamato Press, 
1952. 

Japanese Chess, the Game of Shogi. E. Ohara. Bridgeway (Tuttle) Press, 
1958. 

On Fairy Chess: 
Chess Eccentricities. Major George Hope Verney. London: Longmans, Green 

and Co., 1885. The best reference in English. 
"Fairy Chess." Maurice Kraitchik in Mathematical Recreations, pages 276- 

79. Dover, 1953. 
"Variations on Chess." V.R. Parton in The New Scientist (an English weekly), 

page 607, May 27, 1965. 
Les Jeux d'Echecs Non Orthodoxes. Joseph Boyer. Published by the author, 

Paris, 1951. 
Nouveaux Jeux d'Echecs Non Orthodoxes. Joseph Boyer. Published by the 

author, Paris, 1954. 
Les Jeux de Dames Non Orthodoxes. Joseph Boyer. Published by the author, 

Paris, 1956. 

On Reversi: 
"Reverses." Anonymous, in the British periodical The Saturday Review, Au- 

gust 21, 1886. Reprinted in The Othello Quarterly, pages 3 4 ,  Fall 1982. 
A Handbook of Reversi. Jacques & Son, 1888. A booklet of rules, authorized 

by Lewis Waterman, and sold with the game. 



262 Bibliography 

The Handbook of Reversi. F. H .  Ayres, 1889. A booklet of rules by the rival 
inventor John W. Mollett, issued by a rival manufacturer to sell with 
their version of the game. 

Reversi and Go Bang. "Berkeley" (W. H. Peel). New York: F. A. Stokes Co., 
1890. A 72-page book, authorized by Waterman. The best reference on 
the game. 

Reversi. Alice Howard Cady. New York: American Sports Publishing Co., 
1896. A 44-page paperback, chiefly a simplified rewrite of the previous 
book. 

"Reversi." "Professor Hoffmann" (Angelo Lewis) in The Book of Table 
Games, pages 611-623. London: George Routledge and Sons, 1894. 

"Othello." Ed Wright, in Creative Computing, pages 14042, November1 De- 
cember 1977. A computer program. 

"Programming Strategies in the Game of Reversi." P. B. Meyers, in Byte, 
page 66, November 1979. 

"Simulating Human Decision Making on a Personal Computer." Peter W. 
Frey, in Byte, pages 56-72, July 1980. 

7. Packing Spheres 

"In the twinkling of an Eye." Edwin B. Matzke in the Bulletin of the Torrey 
Botanical Club, Vol. 77, No. 3, pages 222-227, May 1950. 

"Close Packing and Froth." H. S. M. Coxeter in The Illinois Journal of 
Mathematics, Vol. 2, No. 48, pages 746-758, 1958. The article has a bib- 
liography of 30 earlier references. 

"The Packing of Equal Spheres." C. A. Rogers in Proceedings of the London 
Mathematical Society, Vol. 8, pages 609-620, 1958. 

"Covering Space with Equal Spheres." H. S. M. Coxeter in Mathematika, 
Vol. 6, pages 147-157, 1959. 

"Close Packing of Equal Spheres." H. S. M. Coxeter in Introduction to Ge- 
ometry, pages 405411. Wiley, 1961. 

"Simple Regular Sphere Packing in Three Dimensions." Ian Smalley in 
Mathematics Magazine, pages 295300, November 1963. 

"The Closest Packing of Equal Spheres in a Larger Sphere." Nelson M. 
Blachman, in The American Mathematical Monthly, Vol. 70, pages 526- 
29, May 1963. 

Regular Figures. L. Fejes Toth. Macmillan, 1964. See pages 288-307. 
"Spheres and Hyperspheres." Martin Gardner, in Mathematical Circus, 

Chapter 3. Knopf, 1979. Revised edition, Mathematical Association of 
America, 1992. See its bibliography of thirteen references. 

"Kepler's Spheres and Rubik's Cube." James Propp, in Mathematics Maga- 
zine, Vol. 61, pages 231-39, October 1988. 

8. The Transcendental Number Pi 

Famous Problems of Elementary Geometry. Felix Klein. Ginn and Co., 1897. 
Reprinted 1930 by Stechert, and currently available as a Dover paperback. 



Bibliography 263 

"The History and Transcendence of Pi." David Eugene Smith in Monographs 
on Topics of Modern Mathematics, edited by J. W. A. Young. Longmans, 
Green, 1911; Dover paperback, 1955. 

Squaring the Circle: A History of the Problem. E. W. Hobson. Cambridge, 
1913; Chelsea, 1953. 

"Squaring the Circle." Heinrich Tietze in Famous Problems of Mathemat- 
ics, Chapter 5. Graylock Press, 1965 (translated from the 1959 revised 
German edition). 

"The Long, Long Trail of Pi." Philip J. Davis in The Lore of Large Numbers, 
Chapter 17. Mathematical Association of America New Mathematical Li- 
brary, 1961. 

"The Number Pi." H. von Baravalle in Mathematics Teacher, Vol. 45, pages 
340-348, May 1952. 

"Circumetrics." Norman T. Gridgeman in The Scientific Monthly, Vol. 77, 
No. 1, pages 31-35, July 1953. 

A History of Pi. Petr Beckman. Golem Press, 1970. 
"Is Pi Normal?" Stan Wagon, in The Mathematical Zntelligencer, Vol. 7, 

pages ??-67, 1985. 
"The Ubiquitous Pi." Dario Castellanos, in Mathematics Magazine, Vol. 61, 

pages 67-98, April 1988; continued in the following issue, Vol. 61, pages 
148-63, May 1988. 

"Slicing Pi into Millions." Martin Gardner, in Gardner's Whys and Where- 
fores, Chapter 9. University of Chicago Press, 1989. 

On Computing the Decimals of Pi: 
Contributions to Mathematics, comprising chiefly the rectification of the circle 

to 607places of decimals. William Shanks. London, 1853. 
"Statistical Treatment of the Values of First 2,000 Decimals Digits of e and 

.rr Calculated on the ENIAC." N. C. Metropolis, G. Reitwiesner and J. von 
Neumann in Mathematical Tables and other Aids to Computation, Vol. 
4, pages 109-111, 1950. 

"The Evolution of Extended Decimal Approximations to Pi." J. W. Wrench, 
Jr., in The Mathematics Teacher, pages 644-649, December 1960. 

"Calculation of Pi to 100,000 Decimals." Daniel Shanks and John W. Wrench, 
Jr., in Mathematics of Computation, Vol. 16, No. 77, pages 76-99, January 
1962. Tables giving the first 100,000 decimals of pi are included. 

"An Algorithm for the Calculation of Pi." George Miel, in The American 
Mathematical Monthly, Vol. 86, pages 694-97, October 1974. 

"Ramanujan and Pi." J .  M. Borwein and P. B. Borwein, in Scientific Amer- 
ican, pages 66-73, February 1988. 

"Ramanujan, Modular Equations and Approximations to Pi, or How to Com- 
pute One Billion Digits of Pi." J .  M. Borwein and P. B. Borwein, in The 
American Mathematical Monthly, Vol. 96, pages 201-19, 1989. 

"Recent Calculations of Pi: The Gauss-Salamin Algorithm." Nick Lord, in 
The Mathematical Gazette, Vol. 76, pages 231-42, July 1992. 

On Hobbes vs. Wallis: 
"Hobbes' Quarrels with Dr. Wallis, the Mathematician." Isaac Disraeli in 

Quarrels of Authors. London, 1814. 



264 Bibliography 

Hobbes. George Croom Robertson. London: William Blackwood, 1936. See 
pages 167-185. 

The Mathematical Works of John Wallis. Joseph F. Scott. London: Taylor 
and Francis, 1938. 

9. Victor Eigen: Mathemagician 

Mathematics, Magic and Mystery. Martin Gardner. Dover, 1956. 
Mathematical Magic. William Simon. Scribner's, 1964. 
"On Closed Self-intersecting Curves." Hans Rademacher and Otto Toeplitz 

in The Enjoyment of Mathematics, Chapter 10. Princeton University 
Press, 1957. 

10. The Four-Color Map Theorem 

The Four Color Problem. Philip Franklin. Scripta Mathematica Library, No. 
5, 1941. 

What Is Mathematics? Richard Courant and Herbert Robbins. Oxford Uni- 
versity Press, 1941. See "The Four Color Problem," pages 246-248; "The 
Five Color Theorem," pages 264-267. 

"The Problem of Contiguous Regions, the Thread Problem, and the Color 
Problem." David Hilbert and S. Cohn-Vossen in Geometry and the Zmag- 
ination, pages 333-340. Chelsea, 1952 (translated from the German edi- 
tion of 1932). 

"The Four-Color Problem." Hans Rademacher and Otto Toeplitz in The En- 
joyment of Mathematics, pages 73-82. Princeton University Press, 1957. 

Introduction to Geometry. H .  S. M. Coxeter. Wiley, 1961. See pages 385-395. 
Intuitive Concepts in Elementary Topology. Bradford Henry Arnold. Pren- 

tice-Hall, 1962. See "The Four Color Problem," pages 43-55; "The Seven 
Color Theorem on a Torus," pages 85-87. 

"Map Coloring." Sherman K. Stein in Mathematics: The Man-made Uni- 
verse, pages 175-199. W. H. Freeman, 1963. 

"Map Coloring." Ibystein 0re  in Graphs and Their Uses. Mathematical As- 
sociation of America New Mathematical Library #lo, 1963. See pages 
109-116. Revised edition with revisions by Robin Wilson, New Mathe- 
matical Library #34, 1990. 

Induction in Geometry. L. I .  Golovina and I. M. Yaglom. D. C. Heath, 1963. 
See pages 2244. 

Famous Problems of Mathematics. Heinrich Tietze. Graylock Press, 1965 
(translated from the German edition of 1959). See "On Neighboring Do- 
mains," pages 84-89; "The Four Color Problem," pages 226-242. 

"Map-Coloring Problems." H. S. M. Coxeter in Scripta Mathematica, Vol. 
23, Nos. 1 4 ,  pages 11-25, 1957. 

"Coloring Maps." Mathematics StafT of the University of Chicago in Math- 
ematics Teacher, pages 546-550, December 1957. 

"The Four-Color Map Problem, 1840-1890." H. S. M. Coxeter in Mathemat- 
ics Teacher, pages 283-289, April 1959. 



Bibliography 265 

"The Island of Five Colors." Martin Gardner in Future Tense, edited by 
Kendell Foster Crossen. Greenberg, 1952; reprinted in Fantasia Mathe- 
matica, edited by Clifton Fadiman. Simon and Schuster, 1958. 

The Four-Color Problem. @stein Ore. Academic Press, 1967. 
"Thirteen Colorful Variations on Guthrie's Four-Color Conjecture." Thomas 

Saaty, in The American Mathematical Monthly, Vol. 79, pages 243,  Jan- 
uary 1972. 

"The Four-Color Theorem for Small Maps." Walter Stromquist, in The Jour- 
nal of Combinatorial Theory (B), Vol 19, pages 256-68, 1975. 

"The Solution of the Four-Color Map Problem." Kenneth Appel and Wolf- 
gang Haken, in Scientific American, pages 108-21, October 1977. 

"A Digest of the Four Color Theorem." Frank Bernhart, in The Journal of 
Graph Theory, Vol. 1, pages 207-26, 1977. 

The Four-Color Problem: Assaults and Conjectures. Thomas Saaty and Paul 
Kainen. McGraw-Hill, 1977. 

"Every Planar Map is Four Colorable." Kenneth Appel and Wolfgang Haken, 
in The Illinois Journal of Mathematics, Vol. 21, pages 429-567, 1977. 

"The Four Color Problem." Kenneth Appel and Wolfgang Haken, in Math- 
ematics Today, L. A. Steen (ed.), Springer-Verlag, 1978, pages 153-80. 

"The Coloring of Unusual Maps." Martin Gardner, in Scientific American, 
pages 14-22, February 1980. 

Map Coloring, Polyhedra, and the Four-Color Problem. David Barnette. The 
Mathematical Association of America, 1984. 

"The Other Map Coloring Theorem." Saul Stahl, in Mathematics Magazine, 
Vol. 58, pages 131-45, May 1985. Map coloring on the torus and Moebius 
band. 

"The Four Color Proof Suffices." Kenneth Appel and Wolfgang Haken, in 
The Mathematical Intelligencer, Vol. 8, pages 10-20, 1986. 

"The State of the Three Color Problem." Richard Steinberg, in Annals of 
Discrete Mathematics, Vol. 55, pages 211-48, 1993. 

13. Polyominoes and Fault-Free Rectangles 

"Polyorninoes." Martin Gardner in The Scientific American Book of Mathe- 
matical Puzzles & Diversions, Chapter 13. Simon and Schuster, 1959. 

Polyominoes. Solomon W. Golomb. Scribner's, 1965. A bibliography in the 
back of the book covers all important earlier references in books and 
magazines. 

"Regular Fault-free Rectangles." M. D. Atkinson and W. F. Lunnon, in the 
Mathematical Gazette, Vol. 64, pages 99-106, June 1980. 

"Fault-free Tilings of Rectangles." Ronald L. Graham, in The Mathematical 
Gardner, David Klarner (ed.). Prindle, Weber, and Schmidt, 1981, pages 
120-26. 

Polyominoes: A Guide to Puzzles and Problems in Tiling. George E. Martin. 
The Mathematical Association of America, 1991. Fault-free rectangles are 
considered on pages 17-21. 



266 Bibliography 

14. Euler's Spoilers 

"Le probleme de 36 officiers." G. Tany in Comptes Rendu de 1'Association 
Fran~aise pour 1'Avancement de Science Naturel, Vol. 1, pages 122-123, 
1900; Vol. 2, pages 170-203, 1901. 

"On the Falsity of Euler's Conjecture about the Non-Existence of Two Or- 
thogonal Latin Squares of Order 4t + 2." R. C. Bose and S. S. Shrikhande 
in Proceedings of the National Academy of Sciences, Vol. 45, No. 5, pages 
734-737, May 1959. 

"Orthogonal Latin Squares." E. T. Parker in Proceedings of the National 
Academy of Sciences, Vol. 45, No. 6, pages 859-862, June 1959. 

"Major Mathematical Conjecture Propounded 177 Years Ago Is Disproved." 
John A. Osmundsen in New York Times, page 1, April 26, 1959. 

"On the Construction of Sets of Mutually Orthogonal Latin Squares and 
the Falsity of a Conjecture of Euler." R. C. Bose and S. S. Shrikhande in 
Transactions of the American Mathematical Society, Vol. 95, pages 191- 
209, 1960. 

"Further Results on the Construction of Mutually Orthogonal Latin Squares 
and the Falsity of Euler's Conjecture." R. C. Bose, S. S. Shrikhande, and 
E. T. Parker in Canadian Journal of Mathematics, Vol. 12, pages 189- 
203, 1960. 

"Computer Study of Orthogonal Latin Squares of Order Ten." E. T. Parker 
in Computers and Automation, pages 1-3, August 1962. 

"Orthogonal Tables." Sherman K. Stein in Mathematics: the Man-made Uni- 
verse, Chapter 12. W. H. Freeman, 1963. 

"Orthogonal Latin Squares." Herbert John Ryser in Combinatorial Mathe- 
matics, Chapter 7. Mathematical Association of America, 1963. 

"The Number of Latin Squares of Order 8." M. B. Wells, in Journal of 
Combinatorial Theory, Vol. 3, pages 98-99, 1967. 

"Latin Squares Under Restriction and a Jumboization," Norman T. Gridge- 
man, in Journal of Recreational Mathematics, Vol. 5, No. 3, pages 198- 
202, 1972. 

"Magic Squares Embedded in a Latin Square." Norman T. Gridgeman, in 
Journal of Recreational Mathematics, Vol. 5, No. 4, page 25, 1972. 

"How Many Latin Squares Are There?" Ronald Alter, in The American 
Mathematical Monthly, Vol. 82, pages 632-34, June 1975. 

"The Number of 9 x 9 Latin Squares." S. E. Bammel and J. Rothstein, in 
Journal of Discrete Mathematics, Vol. 11, pages 93-95, 1975. 

On Finite Projective Planes: 
"Finite Arithmetic and Geometries." W. W. Sawyer in Prelude to Mathemat- 

ics, Chapter 13. Penguin, 1955. 
"Finite Planes and Latin Squares." Truman Botts in Mathematics Teacher, 

pages 300-306, May 1961. 
"Finite Planes for the High School." A. A. Albert in Mathematics Teacher, 

pages 165-169, March 1962. 
"The General Projective Plane and Finite Projective Planes." Harold L. Dor- 
wart in The Geometry of Incidence, Section IV. Prentice-Hall, 1966. 



Bibliography 267 

On the Use of Graeco-Latin Squares in Experimental Design: 
Analysis and Design of Experiments. H .  B. Mann. Dover, 1949. 
The Design of Experiments. R. A. Fisher. Hafner, 1951. 
Experimental Design and Its Statistical Basis. David John Finney. Univer- 

sity of Chicago Press, 1955. 
Planning of Experiments. D. R. Cox. John Wiley & Sons, 1958. 
Latin Squares and Their Applications. J. DBnes and A. D. Keedwell. English 

Universities Press, 1974. 

Non-existence of Order-10 Projective Plane: 
"A Computer Search Solves an Old Math Problem." Barry Cipra, in Science, 

Vol. 242, pages 1507-08, December 16, 1988. 
"The Non-existence of Finite Projective Planes of Order 10." C. W. H. Lam, 

et al., in Canadian Journal of Mathematics, Vol. 41, pages 1117-23,1989. 
"The Search for a Finite Projective Plane of Order 10." C. W. H. Lam, in 

The American Mathematical Monthly, Vol. 98, pages 305-18, April 1991. 
Includes a bibliography of 36 references. 

15. The Ellipse 

"The Simplest Curves and Surfaces." David Hilbert and S. Cohn-Vossen in 
Geometry and the Imagination, pages 1-24. Chelsea, 1956. 

A Book of Curves. E .  H .  Lockwood. Cambridge University Press, 1961. 
"Something New Behind the 8-Ball." Ronald Bergman in Recreational Math- 

ematics Magazine, No. 14, pages 17-19, January-February 1964. On El- 
liptipool. 

Mathematics in Action. Stan Wagon. W. H. Freeman, 1991. Contains a chap- 
ter on billiard paths in elliptical tables. 

16. The 24 Color Squares and the 30 Color Cubes 

New Mathematical Pastimes. Percy Alexander MacMahon. Cambridge Uni- 
versity Press, 1921. 

Das Spiel de 30 Bunten Wiirfel. Ferdinand Winter. Leipzig, 1934. A 128-page 
paperback devoted to the 30 color cubes. 

Mathematical Recreations. Maurice Kraitchik. Dover, 1953. See page 312 for 
a game using 30 squares that exhaust arrangements of four out of five 
colors, and page 313 for problems involving sixteen squares that exhaust 
arrangements of two colors out of eight. 

"Colour-cube Problem." W. R. Rouse Ball in Mathematical Recreations and 
Essays. Revised edition. Macmillan, 1960. See pages 112-114. 

"Coloured Blocks" and "Constructions from Coloured Blocks." Aniela Ehren- 
feucht in The Cube Made Interesting, pages 46-66. Pergamon Press, 1964. 
The book is translated from the Polish 1960 edition. 

"Stacking Colored Cubes." Paul B. Johnson in The American Mathematical 
Monthly, Vol. 63, No. 6, pages 392-395, June-July 1956. 

"Cubes." L. Vosburgh Lyons in Ibidem, No. 12, pages 8-9, December 1957. 



268 Bibliography 

"Colored Polyhedra: A Permutation Problem." Clarence R. Perisho in Math- 
ematics Teacher, Vol. 53, No. 4, pages 253-255, April 1960. 

"Colored Triangles and Cubes." Martin Gardner. Chapter 16 of Mathemat- 
ical Magic Show. Mathematical Association of America, 1989. 

"The 30 Color Cubes." Martin Gardner. Chapter 6 of Fractal Music, Hyper- 
cards, and More. W. H. Freeman, 1992. 

17. H. S. M. Coxeter 

Morley's Theorem: 
"Morley Polygons." Francis P. Callihan, in The American Mathematical 

Monthly, Vol. 84, pages 325-37, May 1977. 
Crux Mathematicorum, Vol. 3, pages 272-296,1977. Proofs of Morley's theo- 

rem are provided, including Morley's original (and difficult proof. A bib- 
liography cites 148 references! Fourteen additional references are given 
in Vol. 4, 1978, page 132. 

"Morley's Theorem and a Converse." D. J. Kloven, in The American Math- 
ematical Monthly, Vol. 85, pages 10046, February 1978. 

"The Morley Trisector Theorem." Cletus Oakley and Justin Baker, in The 
American Mathematical Monthly, Vol. 85, pages 73743, November 1978. 
The bibliography has 93 references. 

18. Bridg-it and Other Games 

On Bridg-it: 
The 2nd Scientific American Book of Mathematical Puzzles & Diversions. 

Martin Gardner. Simon and Schuster, 1961. See pages 84-87. 
"A Solution of the Shannon Switching Game." Alfred Lehman in the Journal 

of the Society of Industrial and Applied Mathematics, Vol. 12, No. 4, pages 
687-725, December 1964. 

On Halma: 
The Book of Table Games. "Professor Hoffmann" (Angelo Lewis). George 

Routledge and Sons, 1894. See pages 604-4507. 
A History of Board Games. H. J. R. Murray. Oxford University Press, 1952. 

See pages 51-52. 

20. The Calculus of Finite Differences 

The Calculus of Finite Differences. Charles Jordan. Chelsea, 1947. 
Numerical Calculus. William Edmunds Milne. Princeton University Press, 

1949. 
The Calculus of Finite Differences. L. M. Milne-Thomson. Macmillan, 1951. 
An Introduction to the Calculus of Finite Differences and Difference Equa- 

tions. Kenneth S. Miller. Henry Holt, 1960. 
"P6lya's Theorem and its Progeny." R. C. Read, in Mathematics Magazine, 

Vol. 60, pages 275-82, December 1987. Eighteen references are listed. 



Mathematical Games 

Martin Gxdner ublished his first book in 1935. Since then he has charmed, 
puzzled, an ! delighted countless readers He is best known for the 

"Mathematical Games" column that he edited for Scientific American 
for twenty-five years and from which much of the material in this 

book was drawn. 
He has published more than forty books including a novel. The Flight of 

Peter Fromm, and his Whys of a Philoso hical Scrivenex He has received 
many honors, among them an honorary if octorate fiom ~ucknell University 

ilnd prizes for his science and mathematical writing from the American 
Institute of Physics and the American Mathematical Society He is an 

honorary member of the Mathematical Association of America. Also by 
Martin Gardner and available from the Mathematical Association of 

America are Riddles of the Sphinx and Other Mathematical Puzzle Wes, 
Mathematical C-vd, ~athematicd Magic Show and ~athematicd Circus. 
"In Gardner's writing, numbers break out of their gray procession toward infinity 

and take on personalities: the measured march of the square numbers: 
the primes in their unfathomable progression: the irrationals always a decimal 

away from being captured: the ima 'naries occupying the non-existent 
gaps between the reals. Out of num '% ers and their near relatives, letters. 
~ardner conjures problems that are both profound and silly: exquisite 

truths and outrageous absurdities; paradoxes: anagrams, palindromes and 
party tricks:' -Newsweek 

"Gardner is the clown prince of science. . . . His Mathematical Games column 
in Scientific American is one of the few brid es over C. P. Snow's famous 

'gulf of mutual incomprehension' that lies % etween the technical and 
literary cultures." - Time 

"Martin Gardner leaves open uestions open, conveys the thrill of the chase, and 
deals flawlessly with hard an 8 simple ideas alike:' -Martin Hollis, New Scientist 

ISBN 0-88385-517-8 


	HOME
	CONTENTS
	INTRODUCTION
	The Binary System
	Group Theory and Braids
	Eight Problems
	The Games and Puzzles of Lewis Carroll
	Paper Cutting
	Board Games
	Packing Spheres
	The Transcendental Number Pi
	Victor Eigen: Mathemagician
	The Four-Color Map Theorem
	Mr. Apollinax Visits New York
	Nine Problems
	Polyominoes and Fault-Free Rectangles
	Euler's Spoilers: The Discovery of an Order-10 Graeco-Latin Square
	The Ellipse
	The 24 Color Squares and the 30 Color Cubes
	H.S.M. Coxeter
	Bridg-it and Other Games
	Nine More Problems
	The Calculus of Finite Differences
	Postscript
	Bibliography




