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N O T E  T O  T H E  1 9 9 1  E D I T I O N  

The Unexpected Hanging was the fifth book collection of the Mathe- 
matical Games column that I wrote for Scientific American, starting in 
1957. The first two collections-Hexajexagons and Other Mathemati- 
cal Diuersions, and The Second Scientific American Book of Mathe- 
matical Puzzles and Diuersions-are currently available as University 
of Chicago Press paperbacks. 

I have updated the chapters as best I can with an afterword, as well 
as added more than a hundred new references to the bibliography. 

Martin Gardner 



C H A P T E R  O N E  

The Paradox 
of the 

Unexpected Hanging 
"A NEW AND POWERFUL PARADOX has Come to light." This is 
the opening sentence of a mind-twisting article by Michael 
Scriven that appeared in the July 1951 issue of the British 
philosophical journal Mind. Scriven, who bears the title of 
"professor of the logic of science" a t  the University of In- 
diana, is a man whose opinions on such matters are not to be 
taken lightly. That the paradox is indeed powerful has been 
amply confirmed by the fact that more than twenty articles 
about it have appeared in learned journals. The authors, many 
of whom are distinguished philosophers, disagree sharply in 
their attempts to resolve the paradox. Since no consensus has 
been reached, the paradox is still very much a controversial 
topic. 

No one knows who first thought of it. According to the 
Harvard University logician W. V. Quine, who wrote one of 
the articles (and who discussed paradoxes in Scientific Amer- 
ican for April 1962), the paradox was first circulated by word 
of mouth in the early 1940's. It often took the form of a puzzle 
about a man condemned to be hanged. 

11 



12 The Unexpected Hanging 

The man was sentenced on Saturday. "The hanging will 
take place a t  noon," said the judge to the prisoner, "on one 
of the seven days of next week. But you will not know which 
day it is until you are so informed on the morning of the day 
of the hanging." 

The judge was known to be a man who always kept his 
word. The prisoner, accompanied by his lawyer, went back to 
his cell. As soon as the two men were alone the lawyer broke 
into a grin. "Don't you see?' he exclaimed. "The judge's sen- 
tence cannot possibly be carried out." 

"I don't see," said the prisoner. 
"Let me explain. They obviously can't hang you next Satur- 

day. Saturday is the last day of the week. On Friday afternoon 
you would still be alive and you would know with absolute 
certainty that the hanging would be on Saturday. You would 
know this before you were told so on Saturday morning. That 
would violate the judge's deoree." 

"True," said the prisoner. 
"Saturday, then is positively ruled out," continued the 

lawyer. "This leaves Friday as the last day they can hang 
you. But they can't hang you on Friday because by Thursday 
afternoon only two days would remain : Friday and Saturday. 
Since Saturday is not a possible day, the hanging would have 
to be on Friday. Your knowledge of that fact would violate 

Figure 1 
The prisoner eliminates all 
possible days 
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the judge's decree again. So Friday is out. This leaves Thurs- 
day as the last possible day. But Thursday is out because if 
you're alive Wednesday afternoon, you'll know that Thursday 
is to be the day." 

"I get it," said the prisoner, who was beginning to feel 
much better. "In exactly the same way I can rule out Wednes- 
day, Tuesday and Monday. That leaves only tomorrow. But 
they can't hang me tomorrow because I know i t  today !" 

In brief, the judge's decree seems to be self-refuting. There 
is nothing logically contradictory in the two statements that 
make up his decree; nevertheless, it  cannot be carried out in 
practice. That is how the paradox appeared to Donald John 
O'Connor, a philosopher a t  the University of Exeter, who was 
the first to discuss the paradox in print (Mind, July 1948). 
O'Connor's version of the paradox concerned a military com- 
mander who announced that  there would be a Class A blackout 
during the following week. He then defined a Class A black- 
out as one that the participants could not know would take 
place until after 6 P.M. on the day i t  was to occur. 

"It is easy to see," wrote O'Connor, "that it follows from 
the announcement of this definition that  the exercise cannot 
take place a t  all." That is to say, it cannot take place without 
violating the definition. Similar views were expressed by the 
authors of the next two articles (L. Jonathan Cohen in Mind 
for January 1950, and Peter Alexander in Mind for October 
1950), and even by George Gamow and Marvin Stern when 
they later included the paradox (in a man-to-be-hanged form) 
in their book Puzzle Math (New York : Viking, 1958). 

Now, if this were all there was to the paradox, one could 
agree with O'Connor that i t  is "rather frivolous." But, as 
Scriven was the first to point out, i t  is by no means frivolous, 
and for a reason that completely escaped the first three au- 
thors. To make this clear, let us return to the man in the cell. 
He is convinced, by what appears to be unimpeachable logic, 
that he cannot be hanged without contradicting the conditions 
specified in his sentence. Then on Thursday morning, to his 
great surprise, the hangman arrives. Clearly he did not expect 
him. What is more surprising, the judge's decree is now seen 
to be perfectly correct. The sentence can be carried out exact- 
ly as stated. "I think this flavour of logic refuted by the world 
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makes the paradox rather fascinating," writes Scriven. "The 
logician goes pathetically through the moti,ons that have al- 
ways worked the spell before, but somehow the monster, 
Reality, has missed the point and advances still." 

In order to grasp more clearly the very real and profound 
linguistic difficulties involved here, it would be wise to restate 
the paradox in two other equivalent forms. By doing this we 
can eliminate various irrelevant factors that are often raised 
and that cloud the issue, such as the possibility of the judge's 
changing his mind, of the prisoner's dying before the hanging 
can take place, and so on. 

The first variation of the paradox, taken from Scriven's 
article, can be called the paradox of the unexpected egg. 

Imagine that you have before you ten boxes labeled from 
1 to 10. While your back is turned, a friend conceals an egg 
in one of the boxes. You turn around. "I want you to open 
these boxes one at a time," he tells you, "in serial order. Inside 
one of them I guarantee that you will find an unexpected egg. 
By 'unexpected' I mean that you will not be able to deduce 
which box it is in before you open the box and see it." 

Assuming that your friend is absolutely trustworthy in 
all his statements, can his prediction be fulfilled? Apparently 

Figure 2 
The paradox of the unexpected egg 

@7>) 
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not. He obviously will not put the egg in box 10, because after 
you have found the first nine boxes empty you will be able to 
deduce with certainty that the egg is in the only remaining 
box. This would contradict your friend's statement. Box 10 is 
out. Now consider the situation that would arise if he were so 
foolish as to put the egg in box 9. You find the first eight boxes 
empty. Only 9 and 10 remain. The egg cannot be in box 10. 
Ergo it must be in 9. You open 9. Sure enough, there i t  is. 
Clearly i t  is an expected egg, and so your friend is again 
proved wrong. Box 9 is out. But now you have started on your 
inexorable slide into unreality. Box 8 can be ruled out by pre- 
cisely the same logical argument, and similarly boxes 7, 6, 5, 
4 , 3 , 2  and 1. Confident that all ten boxes are empty, you start  
to open them. What have we here in box 5 ?  A totally unex- 
pected egg! Your friend's prediction is fulfilled after all. 
Where did your reasoning go wrong? 

To sharpen the paradox still more, we can consider i t  in a 
third form, one that can be called the paradox of the unex- 
pected spade. Imagine that you are sitting a t  a card table 
opposite a friend who shows you that he holds in his hand the 
thirteen spades. He shuffles them, fans them with the faces 
toward him and deals a single card face down on the table. 
You are asked to name slowly the thirteen spades, starting 
with the ace and ending with the king. Each time you fail to 
name the card on the table he will say "No." When you name 
the card correctly, he will say "Yes." 

"1'11 wager a thousand dollars against a dime," he says, 
"that you will not be able to deduce the name of this card 
before I respond with 'Yes.' " 

Assuming that your friend will do his best not to lose his 
money, is i t  possible that he placed the king of spades on the 
table? Obviously not. After you have named the first twelve 
spades, only the king will remain. You will be able to deduce 
the card's identity with complete confidence. Can it be the 
queen? No, because after you have named the jack only the 
king and clueen remain. I t  cannot be the king, so i t  must be 
the queen. Again, your correct deduction would win you 
$1,000. The same reasoning rules out all the remaining cards. 
Regardless of what card i t  is, you should be able to deduce its 
name in advance. The logic seems airtight. Yet i t  is equally 



Figure 3 
T h e  paradox 
spade 

the  unexpected 

obvious, as you stare a t  the back of the card, that you have 
not the foggiest notion which spade i t  is ! 

Even if the paradox is simplified by reducing i t  to two 
days, two boxes, two cards, something highly peculiar con- 
tinues to trouble the situation. Suppose your friend holds only 
the ace and deuce of spades. I t  is true that  you will be able to 
collect your bet if the card is the deuce. Once you have named 
the ace and i t  has been eliminated you will be able to say: "I 
deduce that it's the deuce." This deduction rests, of course, 
on the truth of the statement "The card before me is eithar 
the ace or the deuce of spaces." (It is assumed by everybody, 
in all three paradoxes, that  the man will be hanged, that  there 
is an  egg in a box, that  the cards are the cards designated.) 
This is as strong a deduction as mortal man can ever make 
about a fact of nature. You have, therefore, the strongest 
possible claim to the $1,000. 

Suppose, however, your friend puts down the ace of spades. 
Cannot you deduce a t  the outset that the card is the ace? 
Surely he would not risk his $1,000 by putting down the deuce. 
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Therefore i t  m u s t  be the ace. You state your conviction that  
i t  is. He says "Yes." Can you legitimately claim to have won 
the bet? 

Curiously, you cannot, and here we touch on the heart of 
the mystery. Your previous deduction rested only on the 
premise that  the card was either the ace or the deuce. The card 
is not the ace; therefore i t  is the deuce. But now your deduc- 
tion rests on the same premise as before plus an additional one, 
namely on the assumption that  your friend spoke truly; to 
say the same thing in pragmatic terms, on the assumption that  
he will do all he can to avoid paying you $1,000. But if i t  is 
possible for you to deduce that  the card is the ace, he will 
lose his money just as surely as if he put down the deuce. Since 
he loses i t  either way, he has no rational basis for picking one 
card rather than the other. Once you realize this, your deduc- 
tion that the card is the ace takes on an extremely shaky char- 
acter. I t  is true that you would be wise to bet that i t  is the ace, 
because i t  probably is, but to win the bet you have to do more 
than that:  you have to prove that  you have deduced the card 
with iron logic. This you cannot do. 

You are, in fact, caught up in a vicious circle of contradic- 
tions. First you assume that  his prediction will be fulfilled. On 
this basis you deduce that the card on the table is the ace. But 
if i t  is the ace, his prediction is falsified. If his prediction can- 
not be trusted, you are left without a rational basis for deduc- 
ing the name of the card. And if you cannot deduce the name 
of the card, his prediction will certainly be confirmed. Now 
you are right back where you started. The whole circle begins 
again. I n  this respect the situation is analogous to the vicious 
circularity involved in a famous card paradox first proposed 
by the English mathematician P. E. B. Jourdain in 1913 (see 
F i g u r e  4) .  Since this sort of reasoning gets you no further 
than a dog gets in chasing its tail, you have no logical way of 
determining the name of the card on the table. Of course, you 
may guess correctly. Knowing your friend, you may decide 
that i t  is highly probable he put down the ace. But no self- 
respecting logician would agree that  you have "deduced" the 
card with anything close to the logical certitude involved 
when you deduced that  i t  was the deuce. 

The flimsiness of your reasoning is perhaps seen more 
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Figure 4 
P.E.B. Jourdain's card paradox 

clearly if you return to the ten boxes. At the start  you "de- 
duce" that  the egg is in box 1, but box 1 is empty. You then 
"deduce" i t  to be in box 2, but box 2 is empty also. Then you 
"deduce" box 3, and so on. (It is almost as if the egg, just 
before you look into each box in which you are  positive i t  
must be, were cleverly transported by secret trap doors to a 
box with a higher number!) Finally you find the "expected" 
egg in box 8. Can you maintain that the egg is truly "expect- 
ed" in the sense that your deduction is above reproach? Ob- 
viously you cannot, because your seven previous "deductions" 
were based on exactly the same line of reasoning, and each 
proved to be false. The plain fact is that the egg can be in any 
box, including the last one. 

Even after having opened nine empty boxes, the question 
of whether you can "deduce" that there is an  egg in the last 
box has no unambiguous answer. If you accept only the prem- 
ise that  one of the boxes contains an egg, then of course an  
egg in box 10 can be deduced. In  that case, i t  is an expected 
egg and the assertion that i t  would not be is proved false. If 
you also assume that  your friend spoke truly when he said 
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the egg would be unexpected, then nothing can be deduced, 
for the first premise leads to an expected egg in box 10 and 
the second to an  unexpected egg. Since nothing can be de- 
duced, an  egg in box 10 will be unexpected and both premises 
will be vindicated, but this vindication cannot come until the 
last box is opened and a n  egg is found there. 

We can sum up this resolution of the paradox, in its hang- 
ing form, as follows. The judge speaks truly and the con- 
demned man reasons falsely. The very first step in his chain 
of reasoning-that he cannot be hanged on the last day-is 
faulty. Even on the evening of the next-to-last day, as ex- 
plained in the previous paragraph with reference to the egg 
in the last box-he has no basis for a deduction. This is the 
main point of Quine's 1953 paper. I n  Quine's closing words, 
the condemned man should reason: "We must distinguish 
four cases : first, that  I shall be hanged tomorrow noon and I 
know it  now (but I do not) ; second, that I shall be unhanged 
tomorrow noon and know it  now (but I do not) ; third, that  
I shall be unhanged tomorrow noon and do not know it  now; 
and fourth, that  I shall be hanged tomorrow noon and do not 
know i t  now. The latter two alternatives are the open possi- 
bilities, and the last of all would fulfill the decree. Rather than 
charging the judge with self-contradiction, therefore, let me 
suspend judgment and hope for the best." 

The Scottish mathematician Thomas H. O'Beirne, in an 
article with the somewhat paradoxical title "Can the Unex- 
pected Never Happen?" (The New Scientist, May 25, 1961), 
has given what seems to  me an  excellent analysis of this para- 
dox. As O'Beirne makes clear, the key to resolving the para- 
dox lies in recognizing that  a statement about a future event 
can be known to be a true prediction by one person but not 
known to be true by another until after the event. It is easy 
to think of simple examples. Someone hands you a box and 
says: "Open i t  and you will find an  egg inside." He knows 
that  his prediction is sound, but you do not know i t  until you 
open the box. 

The same is true in the paradox. The judge, the man who 
puts the egg in the box, the friend with the thirteen spades- 
each knows that his prediction is sound. But the prediction 
cannot be used to support a chain of arguments that results 
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eventually in discrediting the prediction itself. I t  is this 
roundabout self-reference that, like the sentence on the face 
of Jourdain's card, tosses the monkey wrench into all at- 
tempts to prove the prediction unsound. 

We can reduce the paradox to its essence by taking a cue 
from Scriven. Suppose a man says to his wife: "My dear, I'm 
going to surprise you on your birthday tomorrow by giving 
you a completely unexpected gift. You have no way of guess- 
ing what it is. I t  is that gold bracelet you saw last week in 
Tiffany's window." 

What is the poor wife to make of this? She knows her hus- 
band to be truthful. He always keeps his promises. But if he 
does give her the gold bracelet, it  will not be a surprise. This 
would falsify his prediction. And if his prediction is unsound, 
what can she deduce? Perhaps he will keep his word about 
giving her the bracelet but violate his word that the gift will 
be unexpected. On the other hand, he may keep his word 
about the surprise but violate i t  about the bracelet and give 
her instead, say, a new vacuum cleaner. Because of the self- 
refuting character of her husband's statement, she has no 
rational basis for choosing between these alternatives ; there- 
fore she has no rational basis for expecting the gold bracelet. 
I t  is easy to guess what happens. On her birthday she is sur- 
prised to receive a logically unexpected bracelet. 

He knew all along that he could and would keep his word. 
She could not know this until after the event. A statement 
that yesterday appeared to be nonsense, that plunged her 
into an endless whirlpool of logical contradictions, has today 
suddenly been made perfectly true and noncontradictory by 
the appearance of the gold bracelet. Here in the starkest pos- 
sible form is the queer verbal magic that gives to all the para- 
doxes we have discussed their bewildering, head-splitting 
charm. 

A D D E N D U M  

A great many trenchant and sometimes bewildering letters 
were received from readers offering their views on how the 
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paradox of the unexpected hanging could be resolved. Several 
went on to expand their views in articles that are listed in 
the bibliography for this chapter. (Ordinarily I give only a 
few select references for each chapter, but in this case i t  
seemed that many readers would welcome as complete a list- 
ing as possible.) 

Lennart Ekbom, who teaches mathematics a t  iistermalms 
College, in Stockholm, pinned down what may be the origin 
of the paradox. In 1943 or 1944, he wrote, the Swedish Broad- 
casting Company announced that a civil-defense exercise 
would be held the following week, and to test the efficiency 
of civil-defense units, no one would be able to predict, even 
on the morning of the day of the exercise, when it would take 
place. Ekbom realized that this involved a logical paradox, 
which he discussed with some students of mathematics and 
philosophy a t  Stockholm University. In 1947 one of these 
students visited Princeton, where he heard Kurt Godel, the 
famous mathematician, mention a variant of the paradox. 
Ekbom adds that he originally believed the paradox to be 
older than the Swedish civil-defense announcement, but in 
view of Quine's statement that he first heard of the paradox 
in the early forties, perhaps this was its origin. 

The following two letters do not attempt to explain the 
paradox, but offer amusing (and confusing) sidelights. Both 
were printed in Scientific American's letters department, 
May 1963. 

SIRS : 
In Martin Gardner's article about the paradox of 

the unexpected egg he seems to have logically proved 
the impossibility of the egg being in any of the boxes, 
only to be amazed by the appearance of the egg in box 
5 .  At first glance this truly is amazing, but on thorough 
analysis it can be proved that the egg will always be 
in box 5 .  

The proof is as follows : 
Let S be the set of all statements. 
Let T be the set of all true statements. 
Every element of S (every statement) is either in 

the set T or in the set C = S - T, which is the com- 
plement of T, and not in both. 

Consider : 
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(1) Every statement within this rectangle is an 
element of C. 

(2) The egg will always be in box 5. 
J 

Statement (1) is either in T or in C and not in both. 
If (1) is in T, then it is true. But if (1) is true, it 

asserts correctly that every statement in the rectangle, 
including ( I ) ,  is in C. Thus, the assumption that (1) 
is in T implies that (1) is in C. 

Contradiction 

If (1) is in C, we must consider two cases: the case 
that statement (2) is in C and the case that (2) is in 
T. 

If (2) is in C, then both (1) and (2) ,  that is, every 
statement in the rectangle, is an element of C. This is 
exactly what (1) asserts, and so (1) is true and is in 
T. Thus the assumption that both (1) and (2) are in 
C implies that (1) is in T. 

Contradiction 

If (2) is in T (and (1) is in C),  then the assertion 
of (1) that every statement in the rectangle is in C 
is denied by the fact that (2) is in T. Therefore (1) 
is not true and is in C, which is entirely consistent. 

The only consistent case is that in which statement 
(1) is in C and statement (2) is in T. Statement (2) 
must be true. 

Therefore the egg will always be in box 5. 
So you see that the discovery of the egg in box 5 is 

not so surprising after all. 

GEORGE VARIAN 
DAVID S. BIRKES 

Stanford University 
Stanford, Calif. 

SIRS : 
Martin Gardner's paradox of the man condemned to 

be hanged was read with extreme interest. I could not 
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resist noting that had our prisoner been a faithful 
statistician he would have preferred hanging on 
Wednesday, the fourth day. For if the judge had 
picked a t  random one day out of seven, then the prob- 
ability that the prisoner would be required to wait x 
days in order to receive exactly one hanging is p (x) = 
1/7. That is, any number of waiting days between one 
and seven is equally probable. This observation is a 
simple case of the more general hypergeometric wait- 
ing-time distribution 

(X - I ) !  ( N  - x)! 
[ ( r  - k)!(,k - I)!]. [ ( N  - I - h + lc)!(h - n)! I 

P(X) =. 
N! 

(N - h) ! (h!) 

where p(x) is the probability that x independent 
trials must be performed in order to obtain k successes 
if there are h favorable events mixed randomly among 
N. In  our case we have N = 7 and (assuming one hang- 
ing is more than adequate) h = k = 1. Thus the "expect- 
ed," or mean, value of x is 1/7 (1 + 2 + . . . + 7 )  = 4 
days. However, I suppose we must always allow for 
that particularly tenacious reader who will rule out 
Wednesday on the grounds that i t  is "expected." 

MILTON R. SEILER 
Worthington, Ohio 



C H A P T E R  T W O  

0 

Knots and 
Borromean Rings 

THREE CURIOUSLY INTERLOCKED RINGS, familiar to many peo- 
ple in this country as the trade-mark of a popular brand of 
beer, are shown in Figure 5. Because they appear in the coat 
of arms of the famous Italian Renaissance family of Borro- 
meo they are sometimes called Borromean rings. Although 
the three rings cannot be separated, no two of them are 
linked. I t  is easy to see that if any one ring is taken from the 
set, the remaining two are not linked. 

In  a chapter on paper models of topological surfaces, which 
appears in the first Scientific American Book o f  Mathemnti-  
cal Pzczzles & Diversions, I mentioned that I knew of no paper 
model of a single surface, free of self-intersection, that has 
three edges linked in the manner of the Borromean rings. 
"Perhaps," I wrote, "a clever reader can succeed in construc- 
ting one." 

This challenge was first met in the fall of 1959 by David A. 
Huffman, associate professor of electrical engineering a t  the 
Massachusetts Institute of Technology. Huffman not only 

24 
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succeeded in making models of several different types of 
surface with Borromean edges; in doing so he also hit upon 
some beautifully simple methods by which one can construct 

Figure 5 
The three Borromean rings 

paper models of a surface with edges that correspond to any 
type of knot or  set of knots-interlaced, interwoven or linked 
in any manner whatever. Later he discovered that essentially 
the same methods have been known to topologists since the 
early 1930's, but because they had been dessribed only in 
German publications they had escaped the attention of every- 
one except the specialists. 

Before applying one of these methods to the Borromean 
rings, let us see how the method works with a less complex 
structure. The simplest closed curve in space is, of course, a 
curve that is not knotted. Mathematicians sometimes call i t  a 
knot with zero crossings, just as they sometimes call a 
straight line a curve with zero curvature. Diagram 1 in Fig- 
ure 6 is such a curve. The shaded area in the diagram repre- 
sents a two-sided surface whose edge corresponds to the 
curve. It is easy to cut the surface out of a sheet of paper. The 
actual shape of the cutout does not matter, because we are 
interested only in the fact that its edge is a simple closed 
curve. But there is another way to color the diagram. We can 
color the outs ide  of the curve ( d i a g r a m  2 in F i g u r e  6 )  and 
imagine that the diagram is on the surface of a sphere. Here 
the closed curve surrounds a hole in the sphere. The two mod- 
els-the first cutout and the sphere with the hole-are topo- 
logically equivalent. When put together edge to edge, they 
form the closed, two-sided surface of a sphere. 

Now let us t ry  the same method on a slightly more compli- 
cated diagram ( d i a g r a m  3 )  of the same space curve. Think of 
this curve as a piece of rope. At the crossing we indicate that 



one segment of rope passes under the other, like a highway 
underpass, by breaking the line as shown. This curve also is 
a knot of zero crossings, because it can be manipulated so that 
the crossing is eliminated. (The order of a knot is the mini- 
mum number of crossings to which the knot can be reduced 
by deformation.) As before, we shade the diagram with two 
colors, tinting i t  so that no two regions with a common bound- 
ary have the same color. This can always be done in two dif- 
ferent ways, one a reverse print of the other. 

If we color diagram 3 as shown in the illustration, the mod- 
el is merely a sheet of paper with a half twist. It is two-sided 
and topologically equivalent to each of the previous models. 
But when we color the diagram in the alternate way (diagram 
I ) ,  regarding the white spaces as holes in a sphere, we obtain 
a surface that is a Mobius strip. I t  too has an edge that is a 
knot of zero crossings (that is, not a knot), but now the sur- 
face is one-sided and topologically distinct from the preceding 
model. The closed, no-edged surface that results when the two 
models are fitted together is a cross cap, or projective plane: 
a one-sided surface that cannot be constructed without self- 
intersection. 

The same general procedure can be applied to the diagram 
of any knot or group of knots, linked together in any manner. 
Let us see how it applies to the Borromean rings. The first 
step is to map the rings as a system of underpasses, making 
sure that no more than two roads cross a t  each pass. Next, 
we color the map in the two ways possible (diagrams 1 and 2 
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in Figure 7). Each crossing represents a spot where the paper 
surface (the shaded areas) is given a half twist in the direc- 
tion indicated. The one-sided surface shown in diagram 1 is 
easily made with paper, either in the elegant symmetrical 
form shown or in topologically equivalent forms such as the 
one depicted in diagram 3. The model that results from dia- 
gram 2, with the Borromean rings outlining the holes in a 
sphere, seems a t  first glance quite different from the preced- 
ing model. Actually i t  is topologically the same. Sometimes 
the two methods of coloring lead to equivalent models, some- 
times not. 

Figure 7 
Topologically equivalent one-sided surfaces with Borromean-ring edges 

It can be proved that this double procedure can be applied 
to any desired knot or group of knots, of any order, linked 
together in any manner. Most models obtained in this way, 
however, turn out to be one-sided. Sometimes i t  is possible 
to rearrange the crossings of the diagram so as to yield a 
two-sided surface, but usually i t  is extremely difficult to  see 
how to make this sort of modification. The following method, 
also rediscovered by Huffman, guarantees a two-sided model. 

To illustrate the procedure, let us apply it to the Borro- 
mean rings. First draw the diagram, but with light pencil 
lines. Place the point of the pencil on any one of the curves 
and trace i t  around, in either direction, back to the starting 
point. At each crossing make a small arrow to indicate the 
direction in which you are traveling. Do the same with each 
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of the other two curves. The result is diagram 1 in Figure 8. 
Now go over this diagram with a heavier pencil or crayon, 

starting a t  any point and moving in the direction of the 
arrows for that curve. Each time you come to a crossing turn 
either right or left as indicated by the arrows on the intersect- 
ing strand. Continue along the other strand until you reach 
another crossing, then turn  again, and so on. It is as if you 
were driving on a highway and each time you reached an 
underpass or ovelrpass you leaped to the other road and con- 
tinued in the direction its traffic was moving. You are sure to 
return to your starting point after tracing out a simple closed 
curve. Now place the crayon a t  any other point on the dia- 
gram and repeat the procedure. Continue until you have gone 
over the entire diagram. Interestingly enough, the closed 
paths produced in this way will never intersect one another. 
In  this case the result will look like diagram 2 in Figure 8. 

Each closed curve represents an area of paper. Where two 
areas are  alongside each other, the touching points represent 
half twists (in the direction indicated on the original dia- 
gram) that  join the areas. Where one area is inside another, 
the smaller area is regarded as being above the larger, like 
two floor levels in a parking garage. The touching points rep- 
resent half twists, but now the twists must be thought of as 
twisted ramps that  join the two levels. The finished model is 
shown at  3 in Figure 8;  i t  is two-sided and its three edges 
are Borromean. I t  can be proved that any model constructed 
by this procedure will be two-sided. This means that i t  can 

Figure 8 
Steps in making a two-sided surface with Borromean-ring edges 



Figure 9 
A two-sided, Borromean-ring-edged surface 

be painted in two contrasting colors, or constructed from 
paper that is differently colored on its two sides, without hav- 
ing one color run into the other. Figure 9, supplied by Huff- 
man, shows a pleasingly symmetrical way of diagraming such 
a surface. 

The reader may enjoy building models of other knots and 
linkages. The figure-of-eight knot, for example, leads to very 
pleasing, symmetrical surfaces. The first diagram in Figure 
10 is one way in which this familiar knot can be mapped. Dia- 
grams of this sort, by the way, are used in knot theory for 
determining the algebraic expression for a given knot. Equiv- 
alent knots, in the sense that one can be deformed into the 
other, have the same algebraic formula, but not all knots with 
the same formula are equivalent. I t  is always assumed, of 
course, that the knots are tied in closed curves in three-dimen- 
sional space. Knots in ropes open a t  the ends, or in closed 
curves in four-dimensional space, can all be untied and are 
therefore equivalent to no knots a t  all. 

The figure-of-eight knot is the only knot that reduces to a 
minimum of four crossings, just as the overhand or trefoil 
knot is the only type that has a minimum of three crossings. 
Unlike the trefoil, however, the figure-of-eight knot has no 
mirror image, or rather i t  can be deformed into its mirror 
image. Such knots are called "amphicheiral," meaning that 
they "fit either hand," like a rubber glove that can be turned 
inside out. 

No knots are possible with one or two crossings. There are 
two five-crossers, five six-crossers, eight seven-crossers (see 
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Figure 10). This tabulation does not include mirror-image 
knots but does include knots that  can be deformed into two 
simpler knots side by side. Thus the square knot (knot 7 in 
the illustration) is the "product" of a trefoil and its mirror 
image; the granny (knot 8) is the "product" of two trefoils 
of the same handedness. Knots 3 and 16 have very simple 
models. You have only to give a strip five half twists and join 
the ends to make its edge form knot 3, seven half twists to 
make i t  form knot 16. 

All sixteen of these knots can be diagramed so that  their 
crossings are alternately over and under. (Only knot 7, the 
square knot, is shown in nonalternating form.) Not until the 
number of crossings reach eight is i t  possible to construct 
knots (there are three) that  cannot be diagramed in alter- 
nating form. 

Figure 10 
Knots of four crossings (I), five crossings (2, 3) ,  six crossings (4-8) and 
seven (9-1 6 )  
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The reader may wonder why knot 9, a combination of a 
trefoil and a figure-of-eight, does not have two distinct forms 
like the square knot and granny, knots 7 and 8, each of which 
combines two trefoils. The answer is that the figure-of-eight 
part of knot 9 can be transformed to its mirror image without 
altering the handedness of the trefoil part, therefore there 
is only the knot shown and its mirror image. 

A knot that cannot be deformed into simpler knots side by 
side is called a prime knot. All the knots in the illustration 
are prime except 7, 8 and 9. Knots have been carefully tabu- 
lated up through ten crossings, but no formula has yet 
emerged by which the number of different knots, given n 
crossings, can be determined. The number of prime knots 
with ten crossings is thought to be 167. Only wild guesses 
can be made as to the number of prime knots with eleven and 
twelve crossings. 

Like topology, to which i t  obviously is closely related, the 
theory of knots is riddled with unsolved, knotty problems. 
There is no general method known for deciding whether o r  
not any two given knots are equivalent, or whether they are 
interlocked, or even for telling whether a tangled space curve 
is knotted or not. To illustrate the latter difficulty, I have con- 
cocted the puzzle depicted in Figure 11. This strange-looking 
surface is one-sided and one-edged, like a Mobius strip, but 
is the edge knotted? If so, what kind of knot is i t ?  The reader 
is invited to study the picture, make a guess, then test his 
guess by the following empirical method. Construct the sur- 
face with paper and cut it along the broken line. This will 
produce one single strip that will be tied in the same type of 
knot as the edge of the original surface. Ey manipulating the 
strip carefully so as not to tear the paper you can reduce it 
to its simplest form and see if your guess is verified. The re- 
sult may surprise you. 

In  the 1860's the British physicist William Thomson (later 
Lord Kelvin) developed a theory in which atoms are vortex 
rings in an incompressible, frictionless, all-pervading ether. 
J. J. Thomson, another British physicist, later suggested that 
molecules might be the result of various knots and linkages 
of Lord Kelvin's vortex rings. This led to a flurry of interest 
in topology on the part of physicists (notably the Scottish 



Figure 11 
A one-sided, one-edged surface. Is the edge knotted? 

physicist Peter Guthrie Tait) ,  but when the vortex theory 
was discarded, the interest walled. Perhaps i t  will revive now 
that  chemists a t  the Bell Telephone Laboratories have pro- 
duced radically new compounds, called catenanes, that  con- 
sist of carbon molecules in the form of rings that  are actually 
linked. It is now theoretically possible to synthesize com- 
pounds made up of closed chains that  can be knotted and in- 
terlocked in bizarre ways. (See Edel Wasserman, "Chemical 
Topology," Scientific American, November 1962, pages 94- 
102.) Who can guess what outlandish properties a carbon 
compound might have if all its molecules were, say, figure-of- 
eight knots? Or  if its molecules were joined into triplets, each 
triplet interlocked like a set of Borromean rings? 

One might suppose that  living organisms would be free of 
knots, but such is not the case. Thomas D. Brock, a micro- 
biologist a t  Indiana University, reported in Science, Vol. 144, 
No. 1620 (May 15, 1964), pages 870-72, on his discovery of 
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a stringlike microbe that  reproduces by tying itself in a knot 
(the knot can be an  overhand, figure-of-eight, granny, or 
some other simple knot) which pulls tighter and tighter until 
the knot fuses into a bulb and free ends of the filament break 
off to form new microbes. And if the reader will check David 
Jensen's fascinating article on "The Hagfish" (Scientific 
American, February 1966, pages 82-90), he will learn about 
an  eel-like fish that cleans itself of slime and does other curi- 
ous things by tying itself into an overhand knot. 

What about humans? Do they ever tie parts of their anat- 
omy into knots? The reader is invited to fold his arms and 
give the matter some thought. 

A N S W E R S  

If the surface shown in Figure 11 is constructed with paper 
and cut as explained, the resulting endless strip will be free 
of any knot. This proves that the surface's single edge is 
similarly unknotted. The surface was designed so that  its edge 
corresponds to a pseudo knot known to conjurers as the 
Chefalo knot. It is formed by first tying a square knot, then 
looping one end twice through the knot in such a way that  
when both ends are pulled, the knot vanishes. 



C H A P T E R  T H R E E  

The Transcendental 
Number e 

T h e  conduct o f  e 
I s  abhorrent t o  me .  
H e  i s  (not  t o  enlarge o n  his disgrace) 
More t h a n  a little base. 

-A Clerihew by J. A. Lindon 

RECREATIONAL ASPECTS OF PI and the golden ratio, two fun- 
damental constants of mathematics, have been discussed in 
previous book collections of my Scientific American columns. 
The topic of this chapter is e,  a third great constant. I t  is a 
constant that is less familiar to laymen than the other two, 
but for students of higher mathematics i t  is a number of 
much greater ubiquity and significance. 

The fundamental nature of e can best be made clear by con- 
sidering ways in which a quantity can grow. Suppose you put 
one dollar in a bank that pays simple interest of 4 per cent a 
year. Each year the bank adds four cents to your dollar. At the 
end of 25 years your dollar will have grown to two dollars. If, 
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however, the bank pays compound interest, the dollar will 
grow faster because each interest payment is added to the cap- 
ital, making the next payment a trifle larger. The more often 
the interest is compounded, the faster the growth. If a dollar 
is compounded yearly, in 25 years i t  will grow to (1 + 1/25) 25 ,  

or $2.66+. If i t  is compounded every six months (the interest 
is 4 per cent a year so each payment will now be 2 per cent), 
it will grow in 25 years to (1 + 1/50)50, or $2.69+. 

Banks like to stress in their promotional literature the fre- 
quency with which they compound interest. This might lead 
one to think that if interest were compounded often enough, 
say a million times a year, in 25 years a dollar might grow into 
a sizable fortune. Far  from it. In 25 years a dollar will grow to 
(1 + l/n)", where n is the number of times interest is paid. 
As n approaches infinity, the value of this expression ap- 
proaches a limit that is a mere $2.718. . . , less than three cents 
more than what i t  would be if interest were compounded semi- 
annually. This limit of 2.718. . . is the number e .  No matter 
what interest the bank pays, in the same time that it would 
take a dollar to double in value a t  simple interest the dollar 
will reach a value of e if the interest is compounded continu- 
ously a t  every instant throughout the period. If the period is 
very long, however, even a small interest rate can grow to 
Gargantuan size. A dollar invested a t  4 per cent in the year 1 
and compounded annually would in 1960 be worth $1.041960, a 
number of dollars that runs to about thirty-five figures. 

This type of growth is unique in the following respect: a t  
every instant its rate is proportional to the size of the grow- 
ing quantity. In  other words, the rate of change at  any moment 
is always the same fraction of the quantity's value at  that 
moment. Like a snowball tumbling down a hill, the larger i t  
gets, the faster i t  expands. This is often called organic growth, 
because so many organic processes exhibit it. The present 
growth of the world's population is one dramatic example. 
Thousands of other natural phenomena-in physics, chem- 
istry, biology and the social sciences-exhibit a similar type 
of change. 

All these processes are described by formulas based on 
y = e". This function is so important that i t  is called the ex- 
ponential function to distinguish i t  from other exponential 
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functions, such as y = 2". It  is a function that is exactly the 
same as its own derivative, a fact alone sufficient to explain 
e's omnipresence in the calculus. Natural logarithms, used 
almost exclusively in mathematical analysis (in contrast to 
the 10-based logarithms of the engineer), are based on e. 

If you hold two ends of a flexible chain, allowing i t  to hang 
in a loop, the loop assumes the form of a catenary curve (see 
Figure 12). The equation for this curve, in Cartesian coordi- 
nates, contains e. The cross section of sails bellying in the 
wind is also a catenary, the horizontal wind having the same 
effect on the canvas as vertical gravity on the chain. The 
Gilbert, Marshall and Caroline islands are the tops of volcanic 
sea mounts : huge masses of basalt that rest on the floor of the 
sea. The average profile of the mounts is a catenary. The 
catenary is not a conic-section curve, although it is closely re- 
lated to the parabola. If you cut a parabola out of cardboard 
and roll i t  along a straight line, its focus traces a catenary. 

No one has more eloquently described the catenary's appear- 
ance in nature than the French entomologist Jean Henri 
Fabre. "Here we have the abracadabric number e reappear- 
ing, inscribed on a spider's thread," he writes in The Life of 
the Spider. "Let us examine, on a misty morning, the mesh- 

Figure 12 
A chain hangs in a catenary 
curve. Its graph equation is: 

a x - x  
y=- (e;  + e T )  

2 
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work that  has been constructed during the night. Owing to 
their hygrometrical nature, the sticky threads are laden with 
tiny drops, and, bending under the burden, have become so 
many catenaries, so many chaplets arranged in exquisite order 
and following the curve of a swing. If the sun pierce the mist, 
the whole lights up with iridescent fires and becon~es a re- 
splendent cluster of diamonds. The number e is in its glory." 

Like pi, e is a transcendental number: it cannot be ex- 
pressed as the root of any algebraic equation with rational 
coefficients. Just  as there is no method by which a line segment 
exactly equal to pi (relative to a unit segment) can be con- 
structed with a compass and straightedge, so there is no way 
to construct a line segment exactly equal to e without violating 
the classical restraints. 

Like pi, e can be expressed only as an endless continued 
fraction or as the limit of an  infinite series. A simple way to 
write e as a continued fraction is: 

This continued fraction was discovered by Leonhard Euler, 
the eighteenth-century Swiss mathematician, who also was 
the first to use the symbol e .  (Euler probably chose e because 
i t  was the next vowel after a, which he was using for another 
number, but he made so many discoveries about e that  i t  came 
to be known as "Euler's number.") 

If the formula (1 + l / n ) "  is expanded, one obtains the fol- 
lowing well-known infinite series that  converges on e :  

The exclamation mark is the factorial sign. (Factorial 3 is 
1 X 2 X 3, o r  6;  factorial 4 is 1 X 2 X 3 X 4, or 24; and so 



38 The Unexpected Hanging 

on.) The series converges rapidly, making it as easy as pie- 
in fact, much easier than pi-to calculate e to any desired 
number of decimals. In 1952 an electronic computer at the 
University of Illinois, under the guiding eye of D. J. Wheeler, 
carried e to 60,000 decimals, and in 1961 Daniel Shanks and 
John W. Wrench, Jr., a t  the IBM Data Center in New York, 
extended e to 100,265 decimals ! (The exclamation mark here 
is not a factorial sign.) Like pi, the decimals never end, nor 
has anyone yet detected an orderly pattern in their arrange- 
ment. 

Is there a relation between e and pi, the two most famous 
transcendentals? Yes, many simple formulas link them to- 
gether. The best known is the following formula that Euler 
based on an earlier discovery by Abraham de Moivre: 

"Elegant, concise and full of meaning," write Edward Kasner 
and James R. Newman in their book Mathematics and the  
Imagination. "We can only reproduce it and not stop to inquire 
into its implications. It  appeals equally to the mystic, the scien- 
tist, the philosopher, the mathematician." The formula unites 
five basic quantities : 1,O, pi, e and i (the square root of minus 
one). Kasner and Newman go on to tell how this formula 
struck Benjamin Peirce (a  Harvard mathematician and 
father of the philosopher Charles Sanders Peirce) with the 
force of a revelation. "Gentlemen," he said one day to his 
students after chalking the formula on the blackboard, "that 
is surely true, it is absolutely paradoxical; we cannot under- 
stand it, and we don't know what it means, but we have proved 
it, and therefore, we know it must be the truth." 

Because the factorial of a number n gives the number of 
ways that n objects can be permuted, it is not surprising to 
find e popping up in probability problems that involve permu- 
tations. The classic example is the problem of the mixed-up 
hats. Ten men check their hats. A careless hat-check girl 
scrambles the checks before she hands them out. When the 
men later call for their hats, what is the probability of at  least 
one man getting his own hat back? (The same problem is met 
in other forms. A distracted secretary puts a number of let- 



The Transcendental Number e 39 

ters at random into addressed envelopes. What is the prob- 
ability of a t  least one letter reaching the right person? All 
the sailors on a ship go on liberty, return inebriated and fall 
into bunks picked a t  random. What are the chances of at 
least one sailor sleeping in his own bunk?) 

To solve this problem we must know two quantities: the 
number of possible permutations of 10 hats and how many of 
them give each man a wrong hat. The first quantity is simply 
lo!, or 3,628,800. But who is going to list all these permu- 
tations and then check off those that contain 10 wrong hats? 
Fortunately there is a simple, albeit whimsical, method of 
finding this number. The number of "all wrong" permuta- 
tions of n objects is the integer that is the closest to n !  divided 
by e .  In this case the integer is 1,334,961. The exact probabil- 
ity, therefore, of no man getting his hat back is 1,334,961/ 
3,628,800, or .367879. . . This figure is very close to 10!/10!e. 
The 10 !'s cancel out, making the probability extremely close 
to l/e. This is the probability of all hats being wrong. Since 
it is certain that the hats are either all wrong or a t  least one 
is right, we subtract l / e  from 1 (certainty) to obtain ,6321 
. . . , the probability of a t  least one man getting his own hat 
back. I t  is almost 2/3. 

The odd thing about this problem is that beyond six or 
seven hats an increase in the number of hats has virtually no 
effect on the answer. The probability of one or more men 
getting back their hats is .6321. . . regardless of whether 
there are ten men or ten million men. The chart in Figure 13 

Figure 13 
The problem of the men and their hats 

NUMBER OF 
PERMUTATIONS PROBABILITY OF 
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shows how quickly the probability of no man getting back his 
hat approaches the limit of l/e, o r  .3678794411. . . The deci- 
mal fraction in the last column alternates endlessly between 
being a bit larger and a bit smaller. 

A pleasant way to test the accuracy of all this is by playing 
the following game of solitaire. Shuffle a deck of cards, then 
deal them face up. As you deal, recite the names of all 52 
cards in some previously determined order. (For  example, 
ace to  king of spades, followed by ace to king of hearts, dia- 
monds and clubs.) You win the game if you turn up a t  least 
one card that corresponds to the card you name as you deal it. 
What are the ehances of winning and losing? 

I t  is easy to see that  this question is identical with the ques- 
tion about the hats. Intuitively one feels that the probability 
of winning would be low-perhaps 1/2 a t  the most. Actually, 
a s  we have seen, i t  is 1 minus l/e, or almost 2/3. This means 
that  in the long run you can expect to have a lucky hit about 
two out of every three games. 

Carried to 20 decimals, e is 2.71828182845904523536. Vari- 
ous mnemonic sentences have been devised for remembering e, 
the number of letters in each word corresponding to the prop- 
er  digit. I n  the time since I published some of these sentences 
( in the chapter on number memorizing in the first Scientific 
American Book of Mathematical Puzzles & Diversions) a 
number of readers have sent in others. Maxey Brooke of 
Sweeny, Texas, suggests: "I'm forming a mnemonic to re- 
member a function in analysis." Edward Conklin of New Ha- 
ven, Connecticut, went to twenty places with: "In showing a 
painting to probably a critical or venomous lady, anger dom- 
inates. 0 take guard, or she raves and shouts!" A. R. Krall, 
Cockeysville, Maryland, took advantage of the curious repe- 
tition of 1828 with: "He repeats: I shouldn't be tippling, 
I shouldn't be toppling here !" 

There is a remarkable fraction 355/113 that  expresses pi 
accurately to six decimal places. To express e to six decimals 
a fraction must have a t  least four digits above the line and 
four below (e.g., 2721/1001). It is possible, however, to form 
integral fractions for e, with no more than three digits above 
and below the line, that give e to four decimal places. Such 
fractions are  not so easy to come by, as the reader will quickly 
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discover if he makes the search. For th'ose who enjoy digital 
problems: What fraction with no more than three digits 
above the line and three below gives the best possible ap- 
proximation to e? 

A D D E N D U M  

Many readers called my attention to problems in which e 
turns up unexpectedly as the answer or part of the answer. I 
mention only two. What value of n gives the maximum value 
to the nth root of n ?  The answer is e. (See Heinrich Dorrie, 
100 Great Problems of Elementary Mathematics [New York: 
Dover Publications 19651, page 359.) If real numbers are 
picked a t  random from the interval 0 to 1 inclusive, and this 
continues until the sum of the selected numbers exceeds 1, 
what is the expected number of numbers that have been 
chosen? Again the answer is e. (See American Mathematical 
Monthly, January 1961, page 18, problem 3.) 

Years ago, when I first encountered Euler's famous formula 
relating pi, e and the imaginary number i, I wondered if there 
was any way this remarkable equation could be graphed. I 
was unable to find a way of doing it, but L. W. H. Hull, writing 
on "Convergence on the Argand Diagram," in Mathematical 
Gazette, Vol. 43, No. 345 (October 1959), pages 205-7, shows 
how simply and elegantly i t  can be done. Hull first transforms 
the formula eir = -1 into an infinite series which is then dia- 
gramed on the complex plane as the sum of an infinite series 
of vectors. The i in each term of the series gives each vector a 
quarter turn, creating a spiral of shortelr and shorter straight- 
line segments that strangle the point -1. A picture of the 
graph is reproduced in Scientific American, September 1964, 
page 59. 

Concerning pi and e ,  a pleasant little problem that is not 
well known is to determine, without using tables or making 
actual computations, which is larger: e to the power of pi, or 
pi to the power of e?  There are many ways to go about it, one 
of which is given by Phil Huneke in The Pentagon, Fall 1963, 
page 46. 
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A N S W E R S  

What integral fraction, with no more than three digits 
above the line and three below, gives the best possible ap- 
proximation for the mathematical constant e? The answer 
is 878/323. In decimal form this is 2.71826. . . , the correct 
value for e to four decimal places. (Note to numerologists: 
Both numwator and denominator of the fraction are palin- 
dromes, and if the smaller is taken from the larger, the differ- 
ence is 555.) Removing the last digit of each number leaves 
87/32, the best approximation to e with no more than two 
digits in the numerator and two in the denominator. 

I had hoped to be able to explain the exact technique (first 
called to my attention by Jack Gilbert of White Plains, New 
York) by which such fractions can be discovered-fractions 
that give the best approximations for any irrational number 
-but the procedure is impossible to make clear without de- 
voting many pages to it. The interested reader will find the 
details in Chapter 32 of the second volume of George Chrys- 
tal's Algebra, a classic treatise reprinted in 1961 by Dover 
Publications, and in Paul D. Thomas, "Approximations to In- 
commensurable Numbers by Ratios of Positive Integers," 
Mathematics Magazine, Vol. 36, No. 5 (November 1963), 
pages 281-89. 
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Geometric Dissections 

MANY THOUSANDS OF YEARS AGO some primitive man surely 
faced, for the first time in history, a puzzling problem in geo- 
metrical dissection. Perhaps he had before him an animal 
skin that was large enough for a certain purpose but of the 
wrong shape. It had to be cut into pieces, then sewed together 
again in the right shape. How could i t  be done with the least 
amount of cutting and sewing? The solution of just such prob- 
lems provides recreational geometry with an endlessly chal- 
lenging field. 

Many simple dissections were discovered by the Greeks, but 
the first systematic treatise on the subject seems to have been 
a book by Abul Wefa, a famous tenth-century Persian astron- 
omer who lived in Baghdad. Only fragments of his book sur- 
vive, but they contain gems. Figure 14 shows how Abul Wefa 
dissected three identical squares into nine pieces that could 
be reassembled to make one single square. Two squares are 
cut along their diagonals and the four resulting triangles are 
grouped around the uncut square as shown. The dotted lines 
show how four more cuts complete the job. 

43 
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Figure 14 
Nine-piece solution to  Abul 
Wefa's problem 

I t  was not until this century, however, that geometers be- 
gan to take seriously the task of performing such dissections 
in the fewest possible number of pieces. Henry Ernest Dude- 
ney, the English puzzlist, was one of the great pioneers in 
this curious field. Figure 15 shows how he managed to solve 
Abul Wefa's three-square problem in as few as six pieces, a 
record that still stands. 

There are several reasons why modern puzzlists have found 
the dissection field so fascinating. First, there is no general 
procedure guaranteed to work on all prob!ems of this type, 

Figure 15 
Six-piece solution t o  same 
problem. Draw circle with 
center at A. BC=DE=FG. 

4 
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so one's intuition and creative insight are given the fullest 
possible play. Since no profound knowledge of geometry is 
called for, it  is a field in which amateurs can, and in fact do, 
excel the professionals. Second, in most cases it has not been 
possible to devise a proof that a minimum dissection has ac- 
tually been achieved. As a result, long-established records are 
constantly being shattered by new and simpler consbructions. 

The man who has broken more previous dissection records 
than anyone living today-he is the world's leading expert on 
such problems-is Harry Lindgren, an examiner of patents 
for the Australian government. He has studied all types of 
dissection, including plane figures with curved outlines and 
three-dimensional solid forms (so f a r  as I know, no dissector 
has yet explored the higher dimensions !), but most of his at- 
tention has been focused on the polygons. It is not hard to 
prove that any polygon can be sliced into a finite number of 
pieces that will re-form to make any other polygon of the 
same area. The trick, of course, is to reduce the number of 
required pieces to the minimum. 

The chart in Figure 16, supplied by Lindgren, shows how 
some of the records stood in 1961 with respect to seven of the 

PENTAGON 1)) 
HEXAGON car, Dissection records as they 

stood in 1961 
HEPTAGON 

OCTAGON 

DODECAGON @ 

GREfL CROSS + 
LATIN CROSS sf 

YnLTtst CROSS * 
SWAITIX*  

FIVE W1NT STAR * 
SIX POINT STAR 

EQUllATiRAL TRIANGli 
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regular polygons and six other polygons of irregular but fa- 
miliar shapes. The box where a row and column intersect 
gives the smallest number of pieces known that will form the 
two polygons indicated. Asymmetrical pieces can always be 
turned over if necessary, but a dissection is considered more 
elegant if this is not required. Five of the more striking of 
these dissections are shown in Figure 17. Four are the dis- 
coveries of Lindgren; the fifth, the dissection of a Maltese 
cross to a square, Dudeney attributes to one A. E. Hill. Lind- 
gren's dissection of a hexagon to a square differs from a bet- 
ter-known five-piece dissection published by Dudeney in 1901. 
In  cases such as this, where there is more than one way to  
obtain the minimum number of pieces, alternate dissections 
are almost always completely unalike. The dissection of a 
dodecagon to a Greek cross, published by Lindgren in T h e  
Amer ican  Mathematical Month ly  for May 1957, is one of his 

SIX-POINTED STAR T O  EQUILATERAL TRIANGLE I FIVE PIECES 1 

MAiTESE CROSS T O  SQUARE I SEVEN PIECES I 

Figure 17 
Some surprising dissections 

SWASTIKA T O  SQUARE I SIX PIECES I 
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most remarkable achievements. It will be interesting to see 
how much this chart is altered in future years as gaps are 
filled in and previous records are lowered. 

How does one go about trying to solve a dissection prob- 
lem? It is impossible to discuss this fully here, but Lindgren 
has revealed his own methods in  two articles ("Geometric 
Dissections") that  appeared in The  Australiam Mathematics 
Teacher (Vol. 7 [195l], pages 7-10 ; Vol. 9 [1953], pages 17- 
21),  and more recently in a paper entitled "Going One Bet- 
ter  in Geometric Dissections," in the British Mathematical 
Gazette for May 1961. 

One of Lindgren's methods is illustrated in Figure 18 with 
respect to a Latin cross and square. Each figure (the two 
must of course be equal in area) is first cut in some simple 
way so that  the parts can be rearranged into a parallel-sided 
figure, three or four of which joined end to end form a strip 
with parallel sides. No cutting is necessary to form such a 
strip with the square (this strip is shown with broken lines), 
and the cross requires only one cut to form the strip drawn 

-\ , 
Figure 18 
A five-piece dissection of a Latin cross to a square, obtained by Lindgren's 
strip method 

with heavy lines. Both strips should be drawn on tracing pa- 
per. One is now placed on the other and turned in various 
ways, but always with the edges of each strip passing through 
what Lindgren calls "congruent points" in the pattern of the 
other strip. The lines that  lie on the area common to both 
strips give a dissection of one figure into the other. The strips 
are tried in various positions until the best dissection is ob- 
tained. In  this case the method yields the beautiful five-piece 
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dissection shown, by which Lindgren went one better than the 
previous record of six. 

Another method of Lindgren's can be applied if i t  is pos- 
sible to make each polygon an element in a tessellation that  
fills the entire plane. By adding a small square to an octagon, 
for example, one obtains the tessellation shown with solid 
lines in Figure 19. Superposed on it is a tessellation (shown 
with broken lines) formed by combining a large square, its 

Figure 19 
A five-piece dissection of an  
octagon t o  a square, obtained 
by Lindgren's tessellation 
method 

area equal to that of the octagon, with a small square of the 
same size as before. This leads to the dissection of an octagon 
to a square in five pieces, a dissection first discovered by the 
English puzzlist James Travers and published in 1933. 

Some notion of Lindgren's virtuosity is conveyed by the 
fact that he has managed to dissect a square into nine pieces 
that form either a Latin cross or an  equilateral triangle; a 
square into nine pieces that form either a hexagon or an equi- 
lateral triangle; and a square into nine pieces that form either 
an octagon or a Greek cross. He has also discovered how to 
cut a Greek cross into twelve pieces that  form three smaller 
Greek crosses, all alike. "Going one better in this case was not 
easy," he writes with understatement, referring to a previous 
thirteen-piece record by Dudeney. Cutting a Greek cross to 
form two smaller crosses of the same size is a much easier task 
that  was accomplished by Dudeney with five pieces. Whether 
he used Lindgren's method of superposed tessellations is not 
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known. In  any case, as Lindgren points out, the Greek cross 
lends itself admirably to dissection by this method. By super- 
posing two such tessellations as shown in Figure 20-one 
tessellation formed by repetitions of the large cross, the other 
by repetitions of the small one-Dudeney's solution is im- 
mediately apparent. 

Few people can examine a dissection such as this one, Du- 
deney once wrote, "without being in some degree stirred by 
a sense of beauty. Law and order in nature are always pleas- 
ing to contemplate, but when they come under the very eye 
they seem to make a specially sbrong appeal. Even the person 
with no geometrical knowledge whatever is induced after the 
inspection of such things to exclaim, 'How very pretty!' In 
fact, I have known more than one person led on to a study of 
geometry by the fascination of cutting-out puzzles." 

I 

t 

A D D E N D U M  

- 

Since this chapter appeared in Scient i f ic  A m e r i c a n  in No- 
vember 1961, the most significant event in the history of dis- 
section theory has been the publication of Harry Lindgren's 
beautiful book Geomet r ic  D issec t ions  (Princeton, N. J. : Van 
Nostrand, 1964). It is the only comprehensive study of dis- 
sections in any language, and likely to be the classic reference 
for many decades. 

- 
Figure 20 
Tessellated Greek crosses are 
dissected into smaller Greek 
crosses 
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Figure 21 reproduces the chart shown earlier, but brought 
up to date (1968) by Lindgren and expanded to include 9- 
and 10-sided regular polygons. All these dissections may 
be found in Lindgren's book except for the thirteen-piece deca- 
gon to heptagon which is new. Almost all of the changes 
and additions to the earlier (1961) chart are due to the con- 
tinued efforts of Lindgren to improve ,on his own earlier re- 
sults. I t  is amusing to note that  when Lindgren published a 
chart similar to this in his Mathematical Gazette article 
(1961)' a printer's error gave six (instead of seven) as the 
minimum number for the Latin cross to hexagon. I corrected 
this on the chart that  accompanied my column, but Lindgren 
soon confirmed the printer's figure by finding the six-piece 
dissection that he gives on page 20 of his book. 

SQUARE 

PENTAGON 

HEXAGON 

HEPTAGON 

OCTAGON 

NINE-GON 

DECAGON 

DODECAGON 

GREEK CROSS 

LATIN CROSS 

MALTESE CROSS 

SWASTIKA 

PENTAGRAM 

HEXAGRAM 

Figure 21 
Dissection records 
as they stand today 
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Figure 22 
Bruce Gilson's dissection of six-pointed star to hexagon in  seven pieces 

Figure 22, a six-pointed star to hexagon in seven pieces, 
was first achieved in 1961 by Bruce R. Gilson, New York City, 
and independently by Lindgren, whose slightly different dis- 
section is in his book on page 20. Figure 23 shows a remark- 
able recent discovery by Lindgren, a twelve-piece dissection 
of three six-pointed stars to one large star. This lowers by one 
the thirteen-piece dissection given in his book. 

Figure 23 
Lindgren's twelve-piece dissection of three six-pointed stars (each cut as 
shown on left) to one large star 



C H A P T E R  F I V E  

Scarne on Gambling 

From the prince's baccarat and Monte Carlo's roulette a ~ d  
trente-et-quarante, to  the soldier's crown and anchor and the 
errand boy's pitch and toss, i t  i s  a history of  stakes lost, re- 
lieved by incidents o f  irrational acquisition. I t  i s  a history o f  
landslides in a n  account book. I t  i s  a pattern o f  slithering 
cards, dancing dice, spinning roulette wheels, coloured coun- 
ters and scribbled computations on  a background o f  green 
baize. I t  i s  a world parasitic on  the general economic organi- 
zation-fungoid and aimless, rather than  cancerous and de- 
structive, in i t s  character. A stronger, happier organization 
would reabsorb it or slough it o f f  altogether. 

-H. G. W E L L S ,  
The  Work ,  Weal th  and Happiness of  Mankind 

CONJURING I S  T H E  ART OF ENTERTAINING people b y  perform- 
ing feats that  seem to  violate the  laws o f  nature. T h e  de- 
ception is accomplished b y  a prodigious variety o f  subtle 
techniques, all in good f u n  because the  ultimate intent o f  t he  
performance is  t o  delight an audience. There are, however, 
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two large fields of public deception in which many of the prin- 
ciples of magic are employed for less wholesome purposes: 
the fields of gambling and psychic research. A certain false 
shuffle, for instance, can be equally useful to a card magician 
and to a card hustler. A technique for secretly obtaining in- 
formation written on a piece of paper can be equally useful 
to a magician who perfo,rms "mental magic" and to a crooked 
medium. As a mathematician might put it, the principles of 
deception in the three areas-magic, gambling and psychic 
phenomena-form three mutually intersecting sets. 

The violation of any natural law, including the mathe- 
matical laws of probability, can provide the basis for a magic 
trick. One of the most famous modern card tricks, known to 
magicians as Out of this World (i t  was invented by Paul 
Curry, a New York City amateur), appears as follows: A 
shuffled deck is dealt randomly, by a spectator, into two piles. 
When the piles are turned over, one is seen to consist en- 
tirely of red cards, the other entirely of black. The laws of 
probability have clearly been evaded and everyone is pleasant- 
ly amazed. The relation between a trick of this type and de- 
ception in the psychic and gambling areas is at once apparent. 
If a spectator accomplished such a feat by clairvoyance, the 
feat would move into the realm of extrasensory perception 
(ESP).  On the other hand, if the magician achieved the re- 
sults by sleight of hand, who would want to play poker with 
him? 

Techniques of deception in modern psychic research, which 
relies almost exclusively on experiments that seem to counter 
the laws of probability, have been dealt with at  length by 
Mark Hansel, a British psychologist, in his eye-opening book 
ESP: A Scientific Evalz~ution (New York : Scribner's 1966). 
The techniques of deception in modern gambling, again with 
a major emphasis on probability laws, receive their most 
comprehensive coverage in a 713-page book entitled Scarne's 
Complete Guide to Gambling, published in 1961 by Simon and 
Schuster. The book was well timed. A United States Senate 
subcommittee, before which Scarne was the government's 
first star witness, was at  that time conducting a nationwide 
investigation of illegal gambling that led to new control legis- 
lation. (See Time, September 1,1961, page 16.) 
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No one alive today is better qualified to write such a book 
than John Scarne. A native of Fairview, New Jersey, he de- 
veloped a passionate interest in magic-card magic in par- 
ticular-at an early age and quickly became one of the na- 
tion's most skillful card manipulators. The magic periodicals 
of twenty or thirty years ago are filled with references to 
Scarne's exploits and original magic creations. During the 
past two decades he has made an intensive study of gambling 
in all its multifarious and nefarious phases. 

In addition to knowing all that one man can know about 
gambling, and having mastered the most difficult "moves" of 
the card and dice hustlers, Scarne has also managed to acquire 
a remarkable knowledge of basic probability theory. This 
flourishing branch of modern mathematics actually had its 
origin in gambling questions. Scarne retells in his book the 
story of how Galileo became interested in probability when an 
Italian nobleman asked him : When three dice are tossed, why 
does the total 10 show more often than the total 9?  Galileo an- 
swered by making a table of the 216 equally probable ways 
that three dice can fall. Scarne also recounts the more familiar 
story of how in 1654 Blaise Pascal was asked by Antoine Che- 
valier de MCrC ( a  French courtier and writer, not a t  all the 
professional gambler he is usually made out to be) why he 
had been losing consistently when he bet even money that a 
double six would show at  least once in 24 rolls of two dice. 
Pascal was able to show that the odds were slightly against 
the gambler if he rolled 24 times, but would be slightly in his 
favor if he rolled 25 times. (For Pascal's proof, the reader is 
referred to Oystein Ore's essay on "Pascal and the Invention 
of Probability Theory" in T h e  Colorado College Studies,  No. 
3, Spring 1959.) 

Scarne tells an amusing story about how a New York City 
gambler called "Fat the Butch" once lost $49,000 by repeated- 
ly bettingat even odds that he could roll a double six in 21 rolls. 
Since there are 36 combinations with two dice, and since a 
double six can be made in only one way, Fat the Butch rea- 
soned (as did many gamblers in Pascal's time) that in the 
long run he could expect to roll a six in 18 rolls as often as he 
would fail to roll a six. Since it seemed an even bet in 18 rolls, 
how could he lose in 21 ? 
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Scarne's book contains a complex analysis of blackjack, the 
only casino game in which, a t  certain times, the odds actually 
favor the player. Scarne gives the details of a sound method 
by which one can beat the house percentage if one is willing 
to spend time mastering the game's mathematics, becoming 
familiar with casino practices and, above all, learning to 
"case the deck" (remember every card dealt or exposed). Do 
you know why i t  is advantageous for a blackjack dealer to  be 
left-handed? The asymmetrical position of the indices on the 
cards makes i t  easier for a left-hander to take an  undetectable 
peek at the top card before he deals it. Another section of the 
book gives the full and hitherto unpublished history of the fa- 
mous "rhythm method" by which slot machines in the United 
States were successfully bilked in the late 1940's of millions 
of dollars before the manufacturers understood what was 
happening and added a "variator" to the machines. 

The book contains masterly analyses of the mathematics of 
bingo, poker, gin rummy, the numbers game, craps, horse rac- 
ing and many other popular forms of gambling. An entire 
chapter is devoted to the match game, a guessing game that 
for many years was a favorite pastime a t  Bleeck's, more for- 
mally known as Artists and Writers Restaurant, in New York 
City. Even carnival games, including the latest swindle, a 
marble roll-down called Razzle Dazzle, are covered. Is there 
anyone who hasn't a t  some time thrown baseballs a t  those 
pyramids of six pint-size wooden milk bottles? The "gaff" 
couldn't be simpler. Three bottles are heavy; three are  light. 
With the heavy bottles on top, one ball will topple all of them 
off the small table on which they stand. With the heavies on 
the bottom, a big-league pitcher couldn't do it. Carnival peo- 
ple call this a "two-way store," meaning that  i t  can be set up 
for the player to win or lose. 

One of the book's best chapters is on roulette, certainly the 
most glamorous of all casino games. "A great part  of rou- 
lette's fascination," Scarne writes in a bit of purple prose, 
"lies in the beauty and color of the game. The surface of the 
handsome mahogany table is covered with a blazing green 
cloth which bears the bright gold, red and black of the layout. 
The chromium separators between the numbered pockets on 
the wheel's rim glitter and dance in the bright light as the 
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wheel spins. The varied colors of the wheel checks stacked be- 
fore the croupier and scattered on the layout's betting spaces, 
the evening clothes of the women, the formal dress of the 
men, the courteous croupiers-all add to  the enticing picture." 

So enticing, indeed, that  thousands of players, with limited 
knowledge of probability, each year develop into what Scarne 
terms "roulette degenerates." Many of them squander their 
time and fortunes on worthless systems by which they expect 
to break the bank and retire for life. As almost everyone 
knows, a roulette wheel has on its rim the numbers from 1 to 
36, plus a zero and double zero (European and South Amer- 
ican wheels have only the zero). These numbers are not ar- 
ranged randomly but are cleverly patterned to provide a max- 
imum balance among high-low, even-odd and red-black. The 
house pays off a winning number at 35 to 1, which would 
make roulette a n  even-up game if i t  were not for the extra 0 
and 00. These two numbers give the house a percentage on all 
bets (except one) of 5 and 5/19 per cent, or about 26 cents on 
every $5 bet. The one exception is the five-number line bet, in 
which the chips are  placed on the end of the line that  separates 
1, 2 and 3 from the 0 and 00 spaces on the layout board (see  
Figure 24) ; in other words, a bet that  one of these five num- 
bers will show. Here the bank pays off a t  640-1 odds that  give 
i t  a percentage of 7 and 17/19 per cent, or  about 39 cents on 
a $5 bet. Obviously this is a bad bet and one to be avoided. 

The fact that every possible bet on the layout is in the 
bank's favor underlies a very simple proof that  no roulette 
system is worth, as Scarne puts it, the price of yesterday's 
newspaper. "When you make a bet a t  less than the correct 
odds," he writes, "which you always do in any organized gam- 
bling operation, you are paying the operator a percentage 
charge for the privilege of making the bet. Your chance of 
winning has what mathematicians call a 'minus expectation.' 
When you use a system you make a series of bets, each of 
which has a minus expectation. There is no way of adding mi- 
nuses to get a plus. . . ." For those who understand, this is as 
ironclad and unanswerable as the impossibility proofs of the 
trisection of the angle, squaring the circle and the duplication 
of the cube. 

The most popular of all systems, says Scarne, is known as 



Figure 24 
Roulette wheel and a layout 
with chip on a five-place line 
bet. (Black is shown shaded, 
red is shown white.) 
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the d7Alembert system. I t  consists of betting the red or black 
color (or any other even-money bet), then following with a 
larger bet after each loss and a smaller bet after each win. 
The assumption is that if the little ivory ball drops several 
times into red, it will somehow remember this fact and tend 
to avoid red on the next spin. Mathematicians know this as 
the "gambler's fallacy," and of course it gives the player no 
advantage whatever. 

The martingale system, in which bets are doubled until one 
wins, might work (in a sense) if the house did not have a 
limit on the size of bets. (The limit is usually the total reached 
by doubling the minimum required bet about seven times.) I t  
is true that the player of the martingale has a high chance of 
winning a picayune amount (on even-money bets, $1 for every 
chain of doubling that begins with $1 and ends before the lim- 
it is reached), but this is balanced by the probability of losing 
a whopping amount. If you start  with, say, a $180 bankroll 
and the bank has a maxinium betting limit of $180 on the col- 
ors, the odds are greatly in your favor that  you will start  off 
a winner with the martingale. But if you continue to play it, 
you can expect to hit (sooner than you would expect) a seven- 
or eight-number losing streak that will wipe out your capital. 
I t  is as if you faced a thousand boxes, each containing a dollar 
bill except for one box holding a bomb that will explode when 
you open the box. You are allowed to open boxes a t  random 
and keep everything you find inside. The chances are very 
good that if you open ten boxes you will become richer by ten 
dollars. But is it a wise bet? Against the high probability of 
winning a dollar each time you must weigh the low prob- 
ability of blowing yourself up. Most people would consider the 
situation (which has a grim analogy today with many deci- 
sions of foreign policy) one of "minus expectation." 

There is a reverse version of the martingale, known in the 
United States as the parlay system (Europeans call i t  the 
paroli), in which you continue to bet a dollar after each pre- 
viously lost bet and double your wager after each winning bet. 
Instead of making small wins a t  the risk of a big loss, you 
sacrifice small losses for the possibility of that one ecstatic 
moment when a lucky run of wins will pyramid your stake 
into a fortune of some previously specified amount. Here 
again, the system has a minus expectation even without the 



Scarne on Gambling 59 

house limit, but the limit makes i t  even worse. If you started 
your parlay with a dollar, your doubling procedure would be 
permitted to go only as fa r  as the seventh win of $128. 

Another popular system, called the cancellation system, has 
lost fortunes for many a "mark" (sucker) who thought he 
had something sure-fire. Even-money bets are made (say on 
red or black), with the amount increased after each loss ac- 
cording to the following procedure. First you write down a 
column of figures in serial order, say from 1 to 10. Your first 
bet is the total of the top and bottom figures, in this case 11. 
If you win, cross out the 1 and 10 and bet the new top and 
bottom figures, 2 and 9, which also total 11. If you lose, write 
the loss (11) a t  the bottom of the row and bet the total of the 
new top and bottom figures, 1 and 11. This procedure con- 
tinues with two numbers crossed off a t  each win and one num- 
ber added a t  each loss. Since the losses are about equal to the 
wins on even-money bets, you are almost sure to cross off all 
the numbers. When this occurs, you will be 55 chips ahead ! 

"On paper it looks good," comments Scarne, but alas, i t  is 
merely one of the many worthless variations on the martin- 
gale. The player keeps risking larger and larger losses to win 
piddling amounts. But in this case the bets are smaller so it 
takes longer to be stopped by the house limit. Meanwhile the 
house's 5 and 5/19 per cent is taking its toll, and the croupier 
is getting increasingly annoyed at  having to handle so many 
small bets. 

One of Scarne's best gambling stories (the book is filled 
with them) is about an elderly drunk in a Houston casino who 
complained of having lost a ten-dollar "mental bet" on Num- 
ber 26. He had placed no chips on the table, but since he had 
made the bet in his mind, he insisted on paying the croupier 
ten dollars before he disappeared into the bar. Back he wob- 
bled later, watched the ball drop, then shouted excitedly: 
"That's me! I won!" The drunk kicked up such a commotion, 
demanding payment for his mind bet, that the manager had 
to be summoned. The manager ruled that since the croupier 
had accepted ten dollars on a lost mental bet, he had to pay 
off on the winning one. The drunk, suddenly sober, walked off 
with $350. "Don't try this," Scarne adds. "Everybody in the 
casino business knows about it." 

The latest roulette system to make a big splash is one that  
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appeared in 1959 in Bohemia, a Cuban monthly magazine. 
For many months i t  was widely played throughout South 
America. The system is based on the fact that the third col- 
umn of the layout (see Figure 24) has eight red numbers and 
only four black-a fact that the inventor of the system con- 
siders to be a fatal flaw in the layout. 

Here is Scarne's description of how the system operates: 
"You make two bets on each spin of the wheel. Bet one $1 

chip on the color Black, which pays even money. And bet one 
$1 chip on the third column, which contains 8 red numbers, 
3, 9, 12, 18, 21, 27, 30 and 36, and the black numbers 6,15,24 
and 33. This bet pays odds of 2 to 1. 

"There are 36 numbers plus the 0 and 00 on the layout. 
Suppose you make 38 two-chip bets for a total of $76. In the 
long run this should happen : 

"1. The zero or double zero will appear 2 times in 38, and 
you lose 2 chips each time-a loss of 4 chips. 

"2. Red will appear 18 times out of 38. Each time one of 
the 10 red numbers listed in the first and second column ap- 
pears you lose 2 chips-a loss of 20 chips on those 10 numbers. 
But when the 8 red numbers in the third column appear you 
win 2 chips on each for a total win of 16 chips. This gives you 
z, net loss on Red of 4 chips. 

"3. Black will also appear 18 out of 38 times. Each time 
one of the 14 (black) numbers in the first and second column 
appears, you lose 1 chip-a total loss of 14 chips. But since 
you also bet on the color Black, you win 14 times for a gain 
of 14 chips. This loss and gain cancel out and you break even 
14 times. But when the 4 black numbers in the third column 
(6,  15, 24 and 33) appear, you win 3 chips each time (2  chips 
on the number and 1 chip on the color) for a profit of 12 chips 
on Black. 

"Having lost 4 chips on the zero and double zero, and 4 
chips on Red, and having won 12 chips on Black, you come 
out ahead with a final profit of 4 chips. Divide your total bet 
of $76 into your profit of $4 and you will find that you have 
not only overcome the house advantage on the zero and double 
zero of 5 and 5/19 per cent but have actually supplanted i t  
with an advantage in your favor of 5 and 5/19 per cent." 

The reader will find i t  a stimulating exercise in elementary 



Figure 25 
Find the Christmas message 

probability analysis to see if he can spot the fallacy in the 
system. 

In keeping with our occasional practice of giving a cryptic 
Christmas greeting, the reader is invited to study the device 
shown in Figure 25. The problem is to slide the four vertical 
strips of letters up and down until two words conveying the 
message appear simultaneously, one in each of the two hori- 
zontal windows. The puzzle was devised by Leigh Mercer of 
London. 
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A D D E N D U M  

Since Scarne published his Complete Guide to Gambling, 
Edward 0. Thorp, a mathematician a t  New Mexico State 
University, brought out Eent the Dealer (New York: Blais- 
dell, 1962), a book in which a winning blackjack strategy is 
explained in fascinating detail. The book also contains an 
eye-opening account of Thorp's experiences in playing his 
system in the casinos of Reno and Las Vegas. As one would 
have expected, the casinos have since altered their rules to 
plug some of the holes Thorp exploited. (See The NPW York 
Times, April 3, 1964, first page of second section.) 

Thorp's Chapter 7, on cheating, should be read by every 
innocent layman who believes the widespread myth that 
dealers in the major clubs of Nevada never cheat. Because 
the house has a good percentage in honest play, so the myth 
goes, and because cheating would only frighten away cus- 
tomers if i t  became known, the Nevada houses are  the most 
honest in the world. The facts are that cheating constantly 
occurs in even the best casinos. The most ,common type is 
cheating against the house on the part of a dishonest dealer 
who later splits the take with a confederate. To make his 
record look honest for the day, he cuts down wins to other 
customers. Since the house is always suspicious of this type 
of skullduggery, a dealer will sometimes prevent a large loss 
to the house just so he won't be suspected of throwing money 
to a confederate. A skillful dealer also takes great pride in 
his craft and will cheat just to keep in practice and for the 
fun of it. Finally, as Thorp's chapter on cheating makes 
clear, many houses instruct their dealers to cheat whenever 
the stakes get high. Nevada does have an inspection squad, 
but i t  is small and inefficient. Even so, Nevada houses are 
often caught cheating, although the news seldom leaks out. 
The New York Times, April 12, 1964, reported the closing 
of a top casino on the Las Vegas Strip after a random check 
on its dice turned up a set of five "percentage dice," cubes 
with edges rounded in such a way as to increase the odds 
against the roller. The same casino had fired a blackjack 
dealer the previous year after a state undercover agent found 
him cheating. On October 17, 1967, The New York Times 
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reported the closing of a major Nevada casino after the state 
caught a dice dealer switching honest dice (by means of a 
double apron) for "mis-spot dice" that had certain numbers 
missing. I t  was the second big casino to be closed for similar 
reasons within a month. In 1961, when I reviewed Scarne's 
book in my column in Scientific American, two Vegas clubs 
were closed because of cheating. 

An interesting paradox concerning the roulette layout was 
called to my attention by Thomas H. O'Beirne, of Glasgow, 
who in turn was told about i t  by the Polish mathematician 
Hugo Steinhaus. Since there are the same number of red 
numbers as black, of high numbers as low, and odd numbers 
as even, the chances of winning any single bet of this type 
are obviously equal. The house gets a percentage because of 
the 0 and 00, but otherwise the ball is just as likely to fall 
odd, or high, as i t  is to fall red. If you make a permissible 
pair-bet, say odd-black or even-red, your chances on each bet 
will be the same regardless of what pair you choose. There 
is no way to make a triple-bet, such as low-red-odd, but sup- 
pose such a bet could be made. Instead of paying off inde- 
pendently on each part of the bet, the bank pays only if the ball 
lands on a number that  is low, red and odd. Otherwise you 
lose. Would your chance of winning be the same if you were 
to bet on, say, low-red-even? Surprisingly, i t  would not. This 
is easily seen by a careful inspection of the layout. There are 
five low, red, even numbers but only four low, red, odd 
numbers. Of the eight possible triplets, half have winning 
probabilities of 4/38, half have winning probabilities of 5/38. 

A N S W E R S  

Readers were asked to spot the fallacy in a roulette system 
that swept the casinos of South America. Here is the answer 
as given in Scarne's Complete Guide to Gambling. 

"The joker is in the statement that  'when the 8 red num- 
bers in the third column appear, you win 2 chips on each 
for a total win of 16 chips.' This is incomplete. When those 
8 numbers win and pay off 16 chips, you also lose 8 chips on  
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Black, making the net payoff only 8 chips. Since you lost 20 
chips on the red numbers in the first and second columns, 
your net loss on Red is not 4 chips, as stated, but 12 chips. 
Having lost 12 chips on Red, won 12 chips on Black, and 
lost 4 chips on the zero and double zero, you end up losing 4 
chips. And that washes that system out completely. The house 
still has its favorable edge of 5 and 5/19 per cent, as usual, 
and the casino operator is the guy who is going to get rich 
-not you." 

And here is how one reader, John Stout of New York City, 
put i t :  

T h e  fallacy, it m u s t  be said, 
Lies in those third-column w i n s  o n  red,  
Since each of these gains but one chip, 
A black-win wager's lost per trip.  
I f  in to  this  one cares t o  delve, 
H e  sees the  ne t  red loss as  twelve.  
Four dollars i s  the  total loss. 
T h e  house still gets i t s  five per cent,  
T h e  "zero" debits m a k e  their  dent ,  
And m a t h  i s  still the  gambler's boss. 

Those four paper strips can be adjusted to spell DOLLS 
WHEEL, but this fails to qualify as a Christmas greeting. 
The correct answer is JOLLY CHEER. 



C H A P T E R  S I X  

The Church 

of the 

Fourth Dimension 

"Could I but r-otate my arm out o f  the limits set to it," one 
o f  the Utopians had said to  him, " I  could thrust it into a 
thousand dimensions." 

-H. G. WELLS, Men Like Gods 

ALEXANDER POPE ONCE DESCRIBED LONDON as a "dear, droll, 
distracting town." Who would disagree? Even with respect 
to recreational mathematics, I have yet to make an  imagin- 
ary visit to London without coming on something quite extra- 
ordinary. Last fall, for instance, I was reading the London 
Times in my hotel room a few blocks from Piccadilly Circus 
when a small advertisement caught my eye: 

WEARY OF THE WORLD OF THREE DIMENSIONS? COME WORSHIP 
WITH US SUNDAY AT THE CHURCH O F  THE FOURTH DIMENSION. 

SERVICES PROMPTLY AT 11 A.M., IN PLATO'S GROTTO. REVEREND 
ARTHUR SLADE, MINISTER. 

An address was given. I tore out the advertisement, and on 
the following Sunday morning rode the Underground to a 



66 The Unexpected Hanging 

station within walking distance of the church. There was a 
damp chill in the air and a light mist was drifting in from 
the sea. I turned the last corner, completely unprepared for 
the strange edifice that loomed ahead of me. Four enormous 
cubes were stacked in one column, with four cantilevered 
cubes jutting in four directions from the exposed faces of the 
third cube from the ground. I recognized the structure a t  
once as an unfolded hypercube. Just as the six square faces 
of a cube can be cut along seven lines and unfolded to make 
a two-dimensional Latin cross (a  popular floor plan for me- 
dieval churches), so the eight cubical hyperfaces of a four- 
dimensional cube can be cut along seventeen squares and 
"unfolded" to form a three-dimensional Latin cross. 

A smiling young woman standing inside the portal directed 
me to a stairway. It spiraled down into a basement auditori- 
um that I can only describe as a motion-picture theater com- 
bined with a limestone cavern. The front wall was a solid 
expanse of white. Formations of translucent pink stalactites 
glowed brightly on the ceiling, flooding the grotto with a 
rosy light. Huge stalagmites surrounded the room a t  the sides 
and back. Electronic organ music, like the score of a science- 
fiction film, surged into the room from all directions. I 
touched one of the stalagmites. I t  vibrated beneath my fin- 
gers like the cold key of a stone xylophone. 

The strange music continued for ten minutes or more after 
I had taken a seat, then slowly softened as the overhead light 
begail to dim. At the same time I became aware of a source 
of bluish light a t  the rear of the grotto. I t  grew more intense, 
casting sharp shadows of the heads of the congregation on 
the lower part of the white wall ahead. I turned around and 
saw an almost blinding point of light that  appeared to come 
from an  enormous distance. 

The music faded into silence as the grotto became com- 
pletely dark except for the brilliantly illuminated front wall. 
The shadow of the minister rose before us. After announc- 
ing the text as Ephesians, Chapter 3, verses 17 and 18, he 
began to read in low, resonant tones that seemed to come 
directly from the shadow's head: ". . . that ye, being rooted 
and grounded in love, may be able to comprehend with all 
saints what is the breadth, and length, and depth, and 
height. . . ." 
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It was too dark for note-taking, but the following para- 
graphs summarize accurately, I think, the burden of Slade's 
remarkable sermon. 

Our cosmos-the world we see, hear, feel-is the three- 
dimensional "surface" of a vast, four-dimensional sea. The 
ability to visualize, to comprehend intuitively, this "wholly 
other" world of higher space is given in each century only to 
a few chosen seers. For the rest of us, we must approach 
hyperspace indirectly, by way of analogy. Imagine a Flatland, 
a shadow world of two dimensions like the shadows on the 
wall of Plato's famous cave (Republic, Chapter 7 ) .  But shad- 
ows do not have material substance, so i t  is best to think of 
Flatland as possessing an infinitesimal thickness equal to the 
diameter of one of its fundamental particles. Imagine these 
particles floating on the smooth surface of a liquid. They 
dance in obedience to two-dimensional laws. The inhabitants 
of Flatland, who are made up of these particles, cannot con- 
ceive of a third direction perpendicular to the two they know. 

We, however, who live in three-space can see every par- 
ticle of Flatland. We see inside its houses, inside the bodies 
of every Flatlander. We can touch every particle of their 
world without passing our finger through their space. If we 
lift a Flatlander out of a locked room, i t  seems to him a 
miracle. 

In  an analogous way, Slade continued, our world of three- 
space floats on the quiet surface of a gigantic hyperocean; 
perhaps, as Einstein once suggested, on an immense hyper- 
sphere. The four-dimensional thickness of our world is ap- 
proximately the diameter of a fundamental particle. The laws 
of our world are the "surface tensions" of the hypersea. The 
surface of this sea is uniform, otherwise our laws would not 
be uniform. A slight curvature of the sea's surface accounts 
for the slight, constant curvature of our space-time. Time 
exists also in hyperspace. If time is regarded as our fourth 
coordinate, then the hyperworld is a world of five dimensions. 
Electromagnetic waves are vibrations on the surface of the 
hypersea. Only in this way, Slade emphasized, can science 
escape the paradox of an empty space capable of transmit- 
ting energy. 

What lies outside the sea's surface? The wholly other world 
of God! No longer is theology embarrassed by the contradic- 
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tion between God's immanence and transcendence. Hyper- 
space touches every point of three-space. God is closer to us 
than our breathing. He can see every portion of our world, 
touch every particle without moving a finger through our 
space. Yet the Kingdom of God is completely "outside" of 
three-space, in a direction in which we cannot even point. 

The cosmos was created billions of years ago when God 
poured (Slade paused to say that  he spoke metaphorically) 
on the surface of the hypersea an enormous quantity of 
hyperparticles with asymmetric three-dimensional cross sec- 
tions. Some of these particles fell into three-space in right- 
handed form to become neutrons, the others in left-handed 
form to become antineutrons. Pairs of opposite parity an- 
nihilated each other in a great primeval explosion, but a 
slight preponderance of hyperparticles happened to fall a s  
neutrons and this excess remained. Most of these neutrons 
split into protons and electrons to form hydrogen. So began 
the evolution of our "one-sided" material world. The explo- 
sion caused a spreading of particles. To maintain this ex- 
panding universe in a reasonably steady state, God renews 
its matter a t  intervals by dipping his fingers into his supply 
of hyperparticles and flicking them toward the sea. Those 
which fall as antineutrons are annihilated, those which fall 
as neutrons remain. Whenever an  antiparticle is created in 
the laboratory, we witness an actual "turning over" of an 
asymmetric particle in the same way that one can reverse 
in three-space an  asymmetric two-dimensional pattern of 
cardboard. Thus the production of antiparticles provides a n  
empirical proof of the reality of four-space. 

Slade brought his sermon to a close by reading from the 
recently discovered Gnostic Gospel of Thomas : "If those who 
lead you say to you: Behold the kingdom is in heaven, then 
the birds will precede you. If they say to you that i t  is in the 
sea, then the fish will precede you. But the kingdom is within 
you and i t  is outside of you." 

Again the unearthly organ music. The blue light vanished, 
plunging the cavern into total blackness. Slowly the pink stal- 
actites overhead began to glow, and I blinked my eyes, daz- 
zled to find myself back in three-space. 

Slade, a tall man with iron-gray hair and a small dark 
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mustache, was standing a t  the grotto's entrance to greet the 
members of his congregation. As we shook hands I intro- 
duced myself and mentioned this department. "Of course!" 
he exclaimed. "I have some of your books. Are you in a hur- 
ry?  If you wait a bit, we'll have a chance to chat." 

After the last handshake Slade led me to a second spiral 
stairway of opposite handedness from the one on which I 
had descended earlier. I t  carried us to the pastor's study in 
the top cube of the church. Elaborate models, three-space 
projections of various types of hyperstructures, were on dis- 
play around the room. On one wall hung a large reproduction 
of Salvador Dali's painting "Corpus Hypercubus." In  the 
picture, above a flat surface of checkered squares, floats a 
three-dimensional cross of eight cubes; an unfolded hyper- 
cube identical in structure with the church in which I was 
standing. 

"Tell me, Slade," I said, after we were seated, "is this 
doctrine of yours new or are you continuing a long tradi- 
tion?" 

"It's by no means new," he replied, "though I can claim to 
have established the first church in which hyperfaith serves 
as the cornerstone. Plato, of course, had no conception of a 
geometrical fourth dimension, though his cave analogy clear- 
ly implies it. In fact, every form of Platonic dualism that 
divides existence into the natural and supernatural is clearly 
a nonmathematical way of speaking about higher space. 
Henry More, the seventeenth-century Cambridge Platonist, 
was the first to regard the spiritual world as having four 
spatial dimensions. Then along came Immanuel Kant, with 
his recognition of our space and time as subjective lenses, 
so to speak, through which we view only a thin slice of tran- 
scendent reality. After that  i t  is easy to see how the concept 
of higher space provided a much needed link between mod- 
ern science and traditional religions." 

"YOU say 'religions,' " I put in. "Does that mean your 
church is not Christian?" 

"Only in the sense that we find essential truth in all the 
great world faiths. I should add that in recent decades the 
Continental Protestant theologians have finally discovered 
four-space. When Karl Barth talks about the 'vertical' or 
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'perpendicular' dimension, he clearly means it in a four- 
dimensional sense. And of course in the theology of Karl 
Heim there is a full, explicit recognition of the role of higher 
space.'' 

"Yes," I said. "I recently read an interesting book called 
Physicist and Christian, by William G. Pollard [executive 
director of the Oak Ridge Institute of Nuclear Studies and 
an Episcopal clergyman]. He draws heavily on Heim's con- 
cept of hyperspace." 

Slade scribbled the book's title on a note pad. "I must look 
i t  up. I wonder if Pollard realizes that a number of late- 
nineteenth-century Protestants wrote books about the fourth 
dimension. A. T. Schofield's Another World, for example [it 
appeared in 18881, and Arthur Willink's The World of  the 
Unseen [subtitled "An Essay on the Relation of Higher 
Space to Things Eternal" ; published in 18931. Of course mod- 
ern occultists and spiritualists have had a field day with the 
notion. Peter D. Ouspensky, for instance, has a lot to say 
about i t  in his books, although most of his opinions derive 
from the speculations of Charles Howard Hinton, an Amer- 
ican mathematician. Whately Carington, the English para- 
psychologist, wrote an unusual book in 1920-he published i t  
under the by-line of W. Whately Smith-on A Theory o f  the 
Mechanism of Survival." 

"Survival after death ?" 
Slade nodded. "I can't go along with Carington's belief in 

such things as table tipping being accomplished by an in- 
visible four-dimensional lever, or clairvoyance as perception 
from a point in higher space, but I regard his basic hypo- 
thesis as sound. Our bodies are simply three-dimensional 
cross sections of our higher four-dimensional selves. Obvi- 
ously a man is subject to all the laws of this world, but a t  the 
same time his experiences are permanently recorded-stored 
as information, so to speak-in the four-space portion of his 
higher self. When his three-space body ceases to function, 
the permanent record remains until i t  can be attached to a 
new body for a new cycle of life in some other three-space 
continuum." 

"I like that," I said. "It explains the complete dependence 
of mind on body in this world, a t  the same time permitting 
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an unbroken continuity between this life and the next. Isn't 
this close to what William James struggled to say in his little 
book on immortality?" 

"Precisely. James, unfortunately, was no mathematician, so 
he had to express his meaning in nongeometrical metaphors." 

"What about the so-called demonstrations of the fourth 
dimension by certain mediums," I asked. "Wasn't there a 
professor of astrophysics in Leipzig who wrote a book about 
them?" 

I thought I detected an embarrassed note in Slade's laugh. 
"Yes, that was poor Johann Karl Friedrich Zollner. His book 
Transcendental Physics was translated into English in 1881, 
but even the English copies are now quite rare. Zollner did 
some good work in spectrum analysis, but he was supremely 
ignorant of conjuring methods. As a consequence he was 
badly taken in, I'm afraid, by Henry Slade, the American 
medium." 

"Slade?" I said with surprise. 
"Yes, I'm ashamed to say we're related. He was my great- 

uncle. When he died, he left a dozen fat  notebooks in which 
he had recorded his methods. Those notebooks were acquired 
by the English side of my family and handed down to me." 

"This excites me greatly," I said. "Can you demonstrate 
any of the tricks?" 

The request seemed to please him. Conjuring, he explained, 
was one of his hobbies, and he thought that the mathematical 
angles of several of Henry's tricks would be of interest to my 
readers. 

From a drawer in his desk Slade took a strip of leather, 
cut as shown at  the left in Figure 26, to make three parallel 

Figure 26 
Slade's leather strip-braided 
in  hyperspace? 
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strips. He handed me a ball-point pen with the request that  I 
mark the leather in some way to prevent later substitution. 
I initialed a corner as shown. We sat on opposite sides of a 
small table. Slade held the leather under the table for a few 
moments, then brought i t  into view again. It was braided 
exactly as shown a t  the right in the illustration! Such braid- 
ing would be easy to accomplish if one could move the strips 
through hyperspace. In  three-space i t  seemed impossible. 

Slade's second trick was even more astonishing. He had 
me examine a rubber band of the wide, flat type shown a t  the 
left in Figure 27. This was placed in a matchbox, and the box 

Figure 27 
Slade's rubber band-knotted in hyperspace? 

was securely sealed a t  both ends with cellophane tape. Slade 
started to place i t  under the table, then remembered he had 
forgotten to have me mark the box for later identification. 
I drew a heavy X on the upper surface. 

"If you like," he said, "you yourself may hold the box un- 
der the table." 

I did as directed. Slade reached down, taking the box by 
its other end. There was a sound of movement and I could 
feel that the box seemed to be vibrating slightly. 

Slade released his grip. "Please open the box." 
First I inspected the box carefully. The tape was still in 

place. My mark was on the cover. I slit the tape with my 
thumbnail and pushed open the drawer. The elastic band- 
mirabile dictu-was tied in a simple knot as shown a t  the 
right in Figure 27. 

"Even if you managed somehow to open the box and switch 
bands," I said, "how the devil could you get a rubber band 
like this?" 

Slade chuckled. "My great-uncle was a clever rascal." 
I was unable to persuade Slade to tell me how either trick 
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was done. The reader is invited to think about them before 
he reads this chapter's answer section. 

We talked of many other things. When I finally left the 
Church of the Fourth Dimension, a heavy fog was swirling 
through the wet streets of London. I was back in Plato's cave. 
The shadowy forms of moving cars, their headlights forming 
flat elliptical blobs of light, made me think of some familiar 
lines from the RubaiyBt of a great Persian mathematician: 

W e  are no other t h a n  a moving rozu 
Of magic shadow-shapes tha t  come and go 
Round w i t h  the  sun-illz~mined lantern held 
I n  midnight  b y  the  Master of the  Show.  

A D D E N D U M  

Although I spoke in the first paragraph of this chapter of 
an  "imaginary visit" to London, when the chapter first ap- 
peared in Scientific American several readers wrote to ask for 
the address of Slade's church. The Reverend Slade is purely 
fictional, but Henry Slade the medium was one of the most 
colorful and successful mountebanks in the history of Amer- 
ican spiritualism. I have written briefly about him and given 
the major references in a chapter on the fourth dimension 
in my book T h e  Ambidextrous Universe (New York: Basic 
Books, 1964 ; London : Allen Lane, 1967). 

A N S W E R S  

Slade's method of braiding the leather strip is familiar to 
Boy Scouts in England and to all those who make a hobby 
of leathercraft. .Many readers wrote to tell me of books in 
which this type of braiding is described: George Russell 
Shaw, Knots ,  Use fu l  and 0r.izamental (page 86) ; Constan- 
tine A. Belash, Braiding and Knot t ing (page 94) ; Clifford 
Pyle, Leather C r a f t  as  a Hobby (page 82) ; Clifford W. Ash- 
ley, T h e  Ashley Book o f  Knots  (page 486) ; and others. For 
a full mathematical analysis, see J. A. H. Shepperd, "Braids 
Which Can Be Plaited with Their Threads Tied Together a t  
Each End," Proceedings o f  the  Royal Society,  A, Vol. 265 
( 1962), pages 229-44. 
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Figure 28 
Slade's first trick 

There are several ways to go about making the braid. Fig- 
ure 28 was drawn by reader George T. Rab of Dayton, Ohio. 
By repeating this procedure one can extend the braid to any 
multiple of six crossings. Another procedure is simply to 
form the six-cross plat in the upper half of the strip by braid- 
ing in the usual manner. This creates a mirror image of the 
plat in the lower half. The lower plat is easily removed by 
one hand while the upper plat is held firmly by the other 
hand. Both procedures can be adapted to leather strips with 
more than three strands. If stiff leather is used, it can be 
made pliable by soaking it in warm water. 

Slade's trick of producing a knot in a flat rubber band calls 
first for the preparation of a knotted band. Obtain a rubber 
ring of circular cross section and carefully carve a portion 
of i t  flat as shown in Figure 29. Make three half twists in the 
flat section (middle drawing), then continue carving the rest 
of the ring to make a flat band with three half twists (bottom 
drawing). Me1 Stover of Winnipeg, Canada, suggests that 
this can best be done by stretching the ring around a wooden 
block, freezing the ring, then flattening i t  with a home grind- 

Figure 29 
Slade's second trick 
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ing tool. When the final band is cut in half all the way 
around, i t  forms a band twice as large and tied in a single 
knot. 

A duplicate band of the same size, but unknotted, must 
also be obtained. The knotted band is placed in a matchbox 
and the ends of the box are sealed with tape. It is now neces- 
sary to substitute this matchbox for the one containing the 
unknotted band. I suspect that Slade did this when he started 
to put the box under the table, then "remembered" that  I had 
not yet initialed it. The prepared box could have been stuck 
to the underside of the table with magician's wax. I t  would 
require only a moment to press the unprepared box against 
another dab of wax, then take the prepared one. In  this way 
the switch occurred before I marked the box. The vibrations 
I felt when Slade and I held the box under the table were 
probably produced by one of Slade's fingers pressing firmly 
against the box and sliding across it. 

Fitch Cheney, mathematician and magician, wrote to tell 
about a second and simpler way to create a knotted elastic 
band. Obtain a hollou~ rubber torus-they are often sold as 
teething rings for babies-and cut as shown by the dotted 
line in Figure 30. The result is a wide endless band tied in a 
single knot. The band can be trimmed, of course, to nar- 
rower width. 

It was Stover, by the way, who first suggested to me the 
problem of tying a knot in an elastic band. He had been 
shown such a knotted band by magician Winston Freer. 
Freer said he knew three ways of doing it. 

Figure 30 
A second way t o  produce a 
knotted rubber band 



C H A P T E R  S E V E N  

Eight Problems 

1. A  Digit-Placing Problem 

THIS PERPLEXING DIGITAL PROBLEM, inventor unknown, was 
passed on to me by L. Vosburgh Lyons of New York City. 
The digits from 1 to 8 are to be placed in the eight circles 
shown in Figure 31, with this proviso: no two digits directly 

Figure 31 
A perplexing digital problem 

adjacent to each other in serial order may go in circles that 
are directly connected by a line. For example, if 5 is placed 
in the top circle, neither 4 nor 6 may be placed in any of the 
three circles that form a horizontal row beneath it, because 
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each of these circles is joined directly to the top circle by a 
straight line. 

There is only one solution (not counting a rotation or mir- 
ror reflection as being different), but if you t ry  to find i t  
without a logical procedure, the task will be difficult. 

2. The Lady or the Tiger? 

FRANK STOCKTON'S famous short story "The Lady or the 
Tiger?" tells of a semi-barbaric king who enjoyed admin- 
istering a curious kind of justice. The king sat  on a high 
throne a t  one side of his public arena. On the opposite side 
were twin doors. The prisoner on trial could open either 
door, guided only by "impartial and incorruptible chance." 
Behind one door was a hungry tiger; behind the other, a de- 
sirable young lady. If the tiger sprang through the door, the 
man's fate was considered a just punishment for his crime. 
If the lady stepped forth, the man's innocence was rewarded 
by a marriage ceremony performed on the spot. 

The king, having discovered his daughter's romance with a 
certain courtier, has placed the unfortunate young man on 
trial. The princess knows which door conceals the tiger. She 
also knows that behind the other door is the fairest lady of 
the court, whom she has observed making eyes a t  her lover. 
The courtier knows the princess knows. She makes a "slight, 
quick movement" of her hand to the right. He opens the door 
on the right. The tale closes with the tantalizing question: 
"Which came out of the opened door-the lady or the tiger?" 

After extensive research on this incident, I am able to 
make the first full report on what happened next. The two 
doors were side by side and hinged to open toward each 
other. After opening the door on the right the courtier 
quickly pulled open the other door and barricaded himself 
inside the triangle formed by the doors and the wall. The 
tiger emerged through one door, entered the other and ate 
the lady. 

The king was a bit nonplused, but, being a good sport, he 
allowed the courtier a second trial. Not wishing to give the 
wily young man another 50-50 chance, he had the arena re- 
constructed so that instead of one pair of doors there were 
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now three pairs. Behind one pair he placed two hungry 
tigers. Behind the second pair he placed a tiger and a lady. 
Behind the third pair he placed two ladies who were identical 
twins and who were dressed exactly alike. 

The cruel scheme was as fo!lows. The courtier must first 
choose a pair of doors. Then he must select one of the two 
and a key would be tossed to him for opening it. If the tiger 
emerged, that  was that. If the lady, the door would immedi- 
ately be slammed shut. The lady and her unknown partner 
(either her twin sister or a tiger) would then be secretly re- 
arranged in the same two rooms, one to a room, according 
to a flip of a special gold coin with a lady on one side and a 
tiger on the other. The courtier would be given a second 
choice between the same two doors, without knowing whether 
the arrangement was different or the same as before. If he 
chose a tiger, that was that again; if a lady, the door would 
be slammed shut, the coin-flipping procedure repeated to de- 
termine who went in which room, and the courtier given a 
third and final choice of one of the same two doors. If suc- 
cessful in his last choice, he would marry the lady and his 
ordeal would be over. 

The day of the trial arrived and all went according to plan. 
Twice the courtier selected a lady. He tried his best to de- 
termine if the second lady was the same as the first but was 
unable to decide. Beads of perspiration glistened on his fore- 
head. The face of the princess-she was ignorant this time 
of who went where-was as pale as white marble. 

Exactly what probability did the courtier have of finding 
a lady on his third guess? 

3. A Tennis Match 

MIRANDA beat Rosemary in a set of tennis, winning six 
games to Rosemary's three. Five games were won by the 
player who did not serve. Who served first? 

4. The Colored Bowling Pins 

A WEALTHY MAN had two bowling lanes in his basement. 
In  one lane ten dark-colored pins were used; in the other, 
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ten light-colored pins. The man had a mathematical turn of 
mind, and the following problem occurred to him one eve- 
ning as he was practicing his delivery: 

Is  i t  possible to mix pins of both colors, then select ten 
pins that  can be placed in the usual triangular formation in 
such a way that  no three pins of the same color will mark 
the vertices of an equilateral triangle? 

If i t  is possible, show how to do it. Otherwise prove that  
i t  cannot be done. A set of checkers will provide convenient 
pieces for working on the problem. 

5. The Problem of the Six Matches 

PROFESSOR LUCIUS S. WILSUN is a brilliant, though some- 
what eccentric, topologist. His name had formerly been Wil- 
son. As a graduate student he had noted that when his full 
name, Lucius Sims Wilson, was printed in capital letters, all 
the letters were topologically equivalent except for the 0. 
This so annoyed him that  he had his name legally changed. 

When I met him for lunch recently, I found him forming 
patterns on the tablecloth with six paper matches. "A new 
topological puzzle?" I asked hopefully. 

"In a way," he replied. "I'm trying to find out how many 
topologically distinct patterns I can make with six matches 
by placing them flat on the table, without crossing one match 
over another, and joining them only a t  the ends." 

"That shouldn't be difficult," I said. 
"Well, it's trickier than you might think. I've just worked 

out all the patterns for smaller numbers of matches." He 
handed me an envelope on the back of which he had jotted 
down a rough version of the chart in Figure 32. 

"Didn't you overlook a five-match pattern?" I said. "Con- 
sider that  third figure-the square with the tail. Suppose 
you put the tail inside the square. If the matches are con- 
fined to the plane, obviously one pattern can't be deformed 
into the other." 

Wilsun shook his head. "That's a common misconception 
about topological equivalence. It's true that if one figure can 
be changed to another by pulling and stretching, without 
breaking or tearing, the two must be topologically identical 
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6 

Figure 32 
A chart of the topologically distinct patterns that can be made with one t o  
six matches 

,MATCHES 

-as we topologists like to say, homeomorphic. But not the 
other way around. If two figures are homeomorphic, i t  is not 
always possible to deform one into the other." 

"I beg your pardon," I said. 
"Don't topologize. Two figures are homeomorphic if, as you 

move continuously from point to point along one figure, 
you can make a corresponding movement from point to point 
-the points of the two figures must be in one-to-one cor- 
respondence, of course-along the other figure. For example, 
a piece of rope joined a t  the ends is homeomorphic with a 
piece of rope that is knotted before the ends are joined, 
although you obviously cannot deform one to the other. Two 
spheres that touch externally are homeomorphic with two 
spheres of different size, the smaller inside the other and 
touching a t  one point." 

hbMBER OF TOWLOGICALLY DIFFERENT FIGURES 
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I must have looked puzzled, because he quickly added: 
"Look, here's a simple way to make it clear to your readers. 
Those match figures are on the plane, but think of them as 
elastic bands. You can pick them up, manipulate them any 
way you wish, turn them over if you please, put them back 
down again. If one figure can be changed to another this way, 
they are topologically the same." 

"I see," I said. "If you think of a figure as embedded in a 
higher space, then i t  is possible to deform one figure into 
any other figure that is topologically equivalent to it." 

"Precisely. Imagine the endless rope or the two spheres in 
a four-dimensional space. The knot can be tied or untied 
while the ends remain joined. The small sphere can be moved 
in or out of the larger one." 

With this understanding of topological equivalence, the 
reader is asked to determine the exact number of topological- 
ly different figures that can be formed on the plane with six 
matches. Remember, the matches themselves are rigid and 
all the same size. They must not be bent or stretched, they 
must not overlap and they may touch only a t  their ends. But 
once a figure is formed i t  must be thought of as an elastic 
structure that can be picked up, deformed in three-space, 
then returned to the plane. The figures are not graphs in 
which vertices, where two matches join, keep their identity. 
Thus a triangle is equivalent to a square or a pentagon; a 
chain of two matches is equivalent to a chain of any length; 
the capital letters E, F, T and Y are all equivalent; R is the 
same as its mirro,r image; and so on. 

6. Two Chess Problems: 
Minimum and Maximum Attacks 

MANY BEAUTIFUL CHESS PROBLEMS do not involve positions 
of competitive play; they use the pieces and board only for 
posing a challenging mathematical task. Here are  two classic 
task problems that  surely belong together: 

1. The minimum-attack problem: Place the eight pieces of 
one color (king, queen, two bishops, two knights, two rooks) 
on the board so that  the smallest possible number of squares 
are under attack. A piece does not attack the square on 
which i t  rests, but of course i t  may attack squares occupied 
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by other pieces. In Figure 33, twenty-two squares (gray) 
are under attack, but this number can be reduced consider- 
ably. I t  is not necessary that the two bishops be placed on 
opposite colors. 

2. The maximum-attack problem: Place the same eight 
pieces on the board so that the l a ~ g e s t  possible number of 
squares are under attack. Again, a piece does not attack its 
own square, but it may attack other occupied squares. The 
two bishops need not be on opposite colors. In Figure 34, fifty- 
five squares (gray) are under attack. This is fa r  from the 
maximum. 

There is a proof for  the maximum number when the 
bishops are on squares of the same color. No one has yet 
proved the maximum when the bishops are on different 
colors. The minimum is believed to be the same regardless of 
whether the bishops are on the same or  opposite colors, but 
both cases are unsupported by proof. So many chess experts 
have worked on these problems that  i t  is not likely any of the 
conjectured answers will be modified. Should any reader beat 
the records, i t  will be big news in chess-problem circles. 

7. How Far Did the Smiths Travel? 

AT TEN O'CLOCK ONE MORNING Mr. Smith and his wife left 
their house in Connecticut to drive to the home of Mrs. 
Smith's parents in Pennsylvania. They planned to stop once 

Figure 33 
The minimum-attack problem 

Figure 34 
The maximum-attack problem 
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along the way for lunch a t  Patricia Murphy's Candlelight 
Restaurant in Westchester. 

The prospective visit with his in-laws, combined with busi- 
ness worries, put Mr. Smith in a sullen, uncommunicative 
mood. I t  was not until eleven o'clock that Mrs. Smith ven- 
tured to ask: "How f a r  have we gone, dear?" 

Mr. Smith glanced at  the mileage meter. "Half as f a r  as 
the distance from here to Patricia Murphy's," he snapped. 

They arrived a t  the restaurant a t  noon, enjoyed a leisurely 
lunch, then continued on their way. Not until five o'clock, 
when they were 200 miles from the place where Mrs. Smith 
had asked her first question, did she ask a second one. "How 
much farther do we have to go, dear?" 

"Half as far," he grunted, "as the distance from here to 
Patricia Murphy's." 

They arrived a t  their destination a t  seven that evening. 
Because of traffic conditions Mr. Smith had driven a t  widely 
varying speeds. Nevertheless, it  is quite simple to determine 
(and this is the problem) exactly how f a r  the Smiths trav- 
eled from one house to the other. 

8. Predicting a Finger Count 

ON LAST NEW YEAR'S DAY a mathematician was puzzled by 
the strange way in which his small daughter began to count 
on the fingers of her left hand. She started by calling the 
thumb 1, the first finger 2, middle finger 3, ring finger 4, 
little finger 5, then she reversed direction, calling the ring 
finger 6, middle finger 7, first finger 8, thumb 9, then back 
to the first finger for 10, middle finger for 11, and so on. She 
continued to count back and forth in this peculiar manner 
until she reached a count of 20 on her ring finger. 

"What in the world are you doing?" her father asked. 
The girl stamped her foot. "Now you've made me forget 

where I was. I'll have to start all over again. I'm counting 
up to 1962 to see what finger I'll end on." 

The mathematician closed his eyes while he made a simple 
mental calculation. "You'll end on your -," he said. 

When the girl finished her count and found that her father 
was right, she was so impressed by the predictive power of 
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mathematics that she decided to work twice as hard on her 
arithmetic lessons. How did the father arrive a t  his predic- 
tion and what finger did he predict? 

A N S W E R S  

1. If the numbers from 1 to 8 are  placed in the circles as 
shown in Figure 35, no number will be connected by a line 
to a number immediately above or below it  in serial order. 

Figure 35 
Solution to Problem 1 

The solution (including its upside-down and mirror-image 
forms) is unique. 

L. Vosburgh Lyons solved i t  as follows. In  the series 1, 2, 
3, 4, 5, 6, 7, 8 each digit has two neighboring numbers except 
1 and 8. I n  the diagram, circle C is connected to every circle 
except H. Therefore if C contains any number in the set 
2, 3, 4, 5, 6, 7, only circle H will remain to accommodate 
both neighbors of whatever number goes in C. This is im- 
possible, so C must contain 1 o r  8. The same argument ap- 
plies to circle F. Because of the pattern's symmetry, i t  does 
not matter whether 1 goes in C or  F, so let us place i t  in C. 
Circle H is the only ci,rcle available for 2. Similarly, with 8 
in circle F, only circle A is available for 7. The remaining 
four numbers are now easily placed. 

Thomas H. O'Beirne, Glasgow, and Herb Koplowitz, El- 
mont, New York, each solved the problem by drawing a new 
diagram in which the old network of lines is replaced by 
lines connecting all circles that were not connected before. 
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The original problem now takes the form of placing the 
digits in the circles so that a connected path can be traced 
from 1 to 8, taking the digits in order. It is easy to see, by 
inspection of the new diagram, that  only four ways of 
placing the digits are  possible, and they correspond to the 
rotations and reflections of the unique solution. 

Fred Gruenberger of the Rand Corporation, Santa Monica, 
wrote to say that  he had encountered this problem about a 
year earlier "through a friend a t  the Walt Disney Studios, 
where i t  had already consumed a fair amount of Mr. Disney's 
staff time." Gruenberger had used i t  as the basis of a West 
Coast television show, "How a Digital Computer Works," to 
illustrate the difference between the way a human mathema- 
tician approaches such a problem and the brute-force ap- 
proach of a digital computer that finds the solution by run- 
ning through all possible permutations of the digits, in this 
case 40,320 different arrangements. 

2. The problem of the lady or the tiger is merely a dressed- 
up version of a famous ball-and-urn problem analyzed by 
the great French mathematician Pierre Simon de Laplace 
(see James R. Newman's T h e  World of Mathematics [New 
York: Simon and Schuster, 19561, Vol. 2, page 1332). The 
answer is that  the young man on his third choice of a door 
has a probability of 9/10 that he will choose the lady. The 
pair of doors concealing two tigers is eliminated by his first 
choice of a lady, which leaves 10 equally probable possibilities 
for the entire series of three ehoices. 

If the doors conceal two ladies: 
Lady 1 - Lady 1 - Lady 1 
Lady 1 - Lady 1 - Lady 2 
Lady 1 - Lady 2 - Lady 1 
Lady 1 - Lady 2 - Lady 2 
Lady 2 - Lady 1 - Lady 1 
Lady 2 - Lady 1 - Lady 2 
Lady 2 - Lady 2 - Lady 1 
Lady 2 - Lady 2 - Lady 2 
If the doors conceal a lady and a tiger: 
Lady 3 - Lady 3 - Lady 3 
Lady 3 - Lady 3 - Tiger 
Of the 10 possibilities in the problem's "sample space," 
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only one ends with a fatal final choice. The probability of 
the man's survival is therefore 9/10. 

3. The solution I gave in Scientific Ame~ican was so long 
and awkward that many readers provided shorter and better 
ones. W. B. Hogan and Paul Carnahan each found simple 
algebraic solutions, Peter M. Addis and Martin T. Pett each 
made use of a simple diagram, and Thomas B. Gray, Jr., 
solved the problem by an ingenious use of the binary system. 
The shortest solution came from Goran Ohlin, an economist 
a t  Columbia University, who expressed it as follows: 

"Whoever served first, served five games, and the other 
player served four. Suppose the first server won x of the 
games she served and y of the other four games. The total 
number of games lost by the player who served them is 
then 5 - x + y. This equals 5 [we were told that the non- 
server won five games], therefore x = y, and the first player 
won a total of 2x games. Because only Miranda won an even 
number of games, she must have been the first server." 

4. I t  is not possible to mix bowling pins of two different 
colors and set up a triangular formation of ten pins in such a 
way that no three pins of the same color mark the corners 
of an equilateral triangle. There are many ways to prove this. 
The following is typical : 

Assume that the two colors are red and black and that the 
5 pin (see  Figure 3 6 )  is red. Pins 4, 9, 3 form an equilateral 
triangle, so a t  least one of these pins must be red. I t  does not 
matter which we make red, because of the figure's symmetry, 
so let us make it the 3 pin. Pins 2 and 6 must therefore be 
black. Pins 2, 6, 8 form a triangle, forcing us to make 8 a 
red pin. This in turn makes the 4 and 9 pins black. Pin 10 
cannot be black, for this would form a black triangle with 
6 and 9, nor can i t  be red, because this would form a red 
triangle with 3 and 8. Therefore pin 5, with which we start- 

0 impossibility proof for 
Problem 4 



ed, cannot be red. Of course, the same argument will show 
that  i t  cannot be black. 

5. Nineteen topologically distinct networks can be made 
with six matches, placing them on a plane so that no matches 
overlap and the matches touch only a t  their ends. The nine- 
teen networks are  shown in Figure 37. If the restriction to 
a plane is dropped and three-space networks permitted, only 
one additional figure is possible: the skeleton of a tetra- 
hedron. 

Readers William G. Hoover and Victoria N. Hoover, Dur- 
ham, North Carolina, Ronald Read, University of London, 
and Henry Eckhardt, Fair  Oaks, California, extended the 
problem to seven matches and found thirty-nine topological- 
ly distinct patterns. 

6. Figure 38 shows how eight chess pieces of one color can 
be placed on the board so that only sixteen squares are under 
attack. The queen and bishop in the corner can be switched 
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to provide a 16-square minimum with bishops of the same 
color. This is believed to be the minimum regardless of 
whether the bishops are the same color or different colors. 
The position also solves two other minimum problems for 
the eight pieces: a minimum number of moves (ten), and a 
minimum number of pieces (three) that  can move. 

Figure 39 shows one way to place the eight pieces so that  
all 64 squares are under attack, obviously the maximum. 
With bishops of opposite color, 63 is believed to be the max- 
imum. There are  scores of distinct solutions, one of which 
is shown in Figure 40. The exact number of different solu- 
tions is not known. 

The maximum-attack problem with bishops of opposite 
color was first proposed by J. Kling in 1849 with the added 
proviso that  the king occupy the single unattacked square. 
Readers may enjoy searching for such a solution, as well as 
for a pattern (unusually difficult) in which the unattacked 
square is a t  the corner of the board. Two readers, C. C. Ver- 
beek, The Hague, and Roger Maddux, Arcadia, California, 
sent identical solutions of the second problem, with the un- 
attacked corner square occupied by a rook. I t  has been shown 
that  the unattacked square may be a t  any spot on the board. 

7. To find the mileage covered by the Smiths on their trip 
from Connecticut to Pennsylvania, the various times of day 
that  are given are irrelevant, since Smith drove a t  varying 
speeds. At  two points along the way Mrs. Smith asked a 
question. Smith's answers indicate that  the distance from the 

Figure 38 Figure 39 Figure 40 
Solution to  minimum-attack Solution to  maximum-attack Solution to maximum-attack 
problem problem with bishops on problem with bishops on 

same color different colors 
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first point to Patricia Murphy's Candlelight Restaurant is 
two thirds of the distance from the start  of the tr ip to the 
restaurant, and the distance from the restaurant to the sec- 
ond point is two thirds of the distance from the restaurant 
to the end of the trip. I t  is obvious, therefore, that  the dis- 
tance from point to point (which we are told is 200 miles) is 
two thirds of the total distance. This makes the total distance 
300 miles. Figure 41 should make i t  all clear. 

Figure 41 
200 MILES -> Chart for Problem 7 

QUESTION 1 RESTAURANT QUESTION 2 

8. When the mathematician's little girl counted to 1,962 
on her fingers, counting back and forth in the manner de- 
scribed, the count ended on her index finger. The fingers are 
counted in repetitions of a cycle of eight counts as shown in 
Figure 42. It is a simple matter to apply the concept of nu- 
merical congruence, modulo 8, in order to calculate where the 
count will fall for any given number. We have only to divide 
the number by 8, note the remainder, then check to see which 
finger is so labeled. The number 1,962 divided by 8 has a 
remainder of 2, so the count falls on the index finger. 

In  mentally dividing 1,962 by 8 the mathematician re- 
called the rule that  any number is evenly divisible by 8 if its 
last three digits are  evenly divisible by 8, so he had only to 
divide 962 by 8 to determine the remainder. 

Figure 42 
How fingers are labeled for 
Problem 8 



C H A P T E R  E I G H T  

A Matchbox 
Game- Learning 

Machine 

I knew little of  chess, but as only a few pieces we?% on  the 
board, it was  obvious that  the g m e  was  near i t s  close. . . . 
[Moxon's] face was ghastly white ,  and his eyes glittered like 
diamonds. Of his antagonist I had only a back view,  but  that  
was sufficient; I should not have cared to  see his face. 

THE QUOTATION is from Ambrose Bierce's classic robot story, 
"ZCIIoxon's Master" (reprinted in Groff Conklin's excellent 
science-fiction anthology, Thinking Machines).  The inventor 
Moxon has constructed a chess-playing robot. Moxon wins a 
game. The robot strangles him. 

Bierce's story reflects a growing fear. Will computers 
someday get out of hand and develop a will of their own? 
Let it not be thought that this question is asked today only 
by those who do not understand computers. Before his death 
Norbert Wiener anticipated with increasing apprehension 
the day when complex government decisions would be turned 
over to sophisticated game-theory machines. Before we know 
it, Wiener warned, the machines may shove us over the brink 
into a suicidal war. 
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The greatest threat of unpredictable behavior comes from 
the learning machines : computers that improve with experi- 
ence. Such machines do not do what they have been told to 
do but what they have learned to do. They quickly reach a 
point a t  which the programmer no longer knows what kinds 
of circuits his machine contains. Inside most of these compu- 
ters are randomizing devices. If the device is based on the 
random decay of atoms in a sample radioactive material, the 
machine's behavior is not (most physicists believe) pre- 
dictable even in principle. 

Much of the current research on learning machines has to 
do with computers that steadily improve their ability to play 
games. Some of the work is secret-war is a game. The first 
significant machine of this type was an IBM 704 computer 
programed by Arthur L. Samuel of the IBM research depart- 
ment a t  Poughkeepsie, New York. In 1959 Samuel set up the 
computer so that it not only played a fair game of checkers 
but also was capable of looking over its past games and 
modifying its strategy in the light of this experience. At first 
Samuel found it easy to beat his machine. Instead of strang- 
ling him, the machine improved rapidly, soon reaching the 
point at  which it could clobber its inventor in every game. 
So fa,r as I know no similar program has yet been designed 
for chess, although there have been several ingenious pro- 
grams for nonlearning chess machines. 

A few years ago the Russian chess grandmaster Mikhail 
Botvinnik was quoted as saying that the day would come 
when a computer would play master chess. "This is of course 
nonsense," wrote the American chess expert Edward Lasker 
in an a'rticle on chess machines in the Fall 1961 issue of a 
magazine called T h e  American Chess Quarterly. But it was 
Lasker who was talking nonsense. A chess computer has 
three enormous advantages over a human opponent: (1) it 
never makes a careless mistake; (2) it can analyze moves 
ahead a t  a speed much faster than a human player can; 
(3) it can improve its skill without limit. There is every 
reason to expect that a chess-learning machine, after play- 
ing thousands of games with experts, will someday develop 
the skill of a master. I t  is even possible to program a chess 
machine to play continuously and furiously against itself. 
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Its speed would enable i t  to acquire in a short time an ex- 
perience f a r  beyond that of any human player. 

It is not necessary for the reader who would like to experi- 
ment with game-learning machines to buy an electronic com- 
puter. It is only necessary to obtain a supply of empty match- 
boxes and colored beads. This method of building a simple 
learning machine is the happy invention of Donald Michie, a 
biologist a t  the University of Edinburgh. Writing on "Trial 
and Error" in Penguin Science Survey 1961, Vol. 2, Michie 
describes a ticktacktoe learning machine called MENACE 
(Matchbox Educable Naughts And Crosses Engine) that  he 
constructed with three hundred matchboxes. 

MENACE is delightfully simple in operation. On each box 
is pasted a drawing of a possible ticktacktoe position. The 
machine always makes the first move, so only patterns that  
confront the machine on odd moves are required. Inside each 
box are small glass beads of various colors, each color indi- 
cating a possible machine play. A V-shaped cardboard fence 
is glued to the bottom of each box, so that  when one shakes 
the box and tilts it, the beads roll into the V. Chance deter- 
mines the color of the bead that  rolls into the V's corner. 
First-move boxes contain four beads of each color, third- 
move boxes contain three beads of each color, fifth-move 
boxes have two beads of each color, seventh-move boxes have 
single beads of each color. 

The robot's move is determined by shaking and tilting a 
box, opening the drawer and noting the color of the "apical" 
bead (the bead in the V's apex). Boxes involved in a game 
are left open until the game ends. If the machine wins, i t  is 
rewarded by adding three beads of the apical color to each 
open box. If the game is a draw, the reward is one bead per 
box. If the machine loses, i t  is punished by extracting the 
apical bead from each open box. This system of reward and 
punishment closely parallels the way in which animals and 
even humans are taught and disciplined. I t  is obvious that  
the more games MENACE plays, the more i t  will tend to 
adopt winning lines of play and shun losing lines. This makes 
i t  a legitimate learning machine, although of an  extremely 
simple sort. It does not make (as does Samuel's checker ma- 
chine) any self-analysis of past plays that causes i t  to devise 
new strategies. 
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Michie's first tournament with MENACE consisted of 220 
games over a two-day period. At first the machine was easily 
trounced. After seventeen games the machine had abandoned 
all openings except the corner opening. After the twentieth 
game it  was drawing consistently, so Michie began trying 
unsound variations in the hope of trapping it  in a defeat. 
This paid off until the machine learned to cope with all such 
variations. When Michie withdrew from the contest after 
losing eight out of ten games, MENACE had become a mas- 
ter player. 

Since few readers are likely to attempt building a learning 
machine that requires three hundred matchboxes, I have de- 
signed hexapawn, a much simpler game that requires only 
twenty-four boxes. The game is easily analyzed-indeed, i t  
is trivial-but the reader is urged not to analyze it. I t  is 
much more fun to build the machine, then learn to play the 
game while the machine is also learning. 

Hexapawn is played on a 3 x 3 board, with three chess 
pawns on each side as shown in Figure 43. Dimes and pen- 
nies can be used instead of actual chess pieces. Only two 
types of move are allowed: (1) A pawn may advance 
straight forward one square to an empty square; (2)  a pawn 
may capture an enemy pawn by moving one square diagonal- 
ly, left or right, to a square occupied by the enemy. The cap- 
tured piece is removed from the board. These are the same 
as pawn moves in chess, except that no double move, en 
passant capture or promotion of pawns is permitted. 

The game is won in any of three ways: 
1. By advancing a pawn to the third row. 
2. By capturing all enemy pieces. 
3. By achieving a position in which the enemy cannot 

move. 

Figure 43 
The game of hexapawn 
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Players alternate moves, moving one piece a t  a time. A 
draw clearly is impossible, but it is not immediately ap- 
parent whether the first or second player has the advantage. 

To construct HER (Hexapawn Educable Robot) you need 
twenty-four empty matchboxes and a supply of colored 
beads. Small candies that come in different colors-jujubes 
for example-or colored popping corn also work nicely. Each 
matchbox bears one of the diagrams in Figure 44. The robot 
always makes the second move. Patterns marked "2" repre- 
sent the two positions open to HER on the second move. You 
have a choice between a center or an end opening, but only 
the left end is considered because an opening on the right 
would obviously lead to identical (although mirror-reflected) 
lines of play. Patterns marked "4" show the eleven positions 
that can confront HER on the fourth (its second) move. 
Patterns marked "6" are the eleven positions that can face 
HER on the sixth (its last) move. ( I  have included mirror- 
image patterns in these positions to make the working 
easier; otherwise nineteen boxes would suffice.) 

Inside each box place a single bead to match the color of 
each arrow on the pattern. The robot is now ready for play. 
Every legal move is represented by an arrow; the robot can 
therefore make all possible moves and only legal moves. The 
robot has no strategy. In fact, it is an idiot. 

The teaching procedure is as follows. Make your first move. 
Pick up the matchbox that shows the position on the board. 
Shake the matchbox, close your eyes, open the drawer, re- 
move one bead. Close the drawer, put down the box, place 
the bead on top of the box. Open your eyes, note the color 
of the bead, find the matching arrow and move accordingly. 
Now it  is your turn to move again. Continue this procedure 
until the game ends. If the robot wins, replace all the beads 
and play again. If i t  loses, punish it by confiscating only the 
bead that represents its last move. Replace the other beads 
and play again. If you should find an empty box (this rarely 
happens), i t  means the machine has no move that is not fatal 
and it resigns. In this case confiscate the bead of the preced- 
ing move. 

Keep a record of wins and losses so you can chart the first 
fifty games. Figure 45 shows the results of a typical fifty- 



Figure 44 
Labels for HER matchboxes. (The four different kinds of arrows represent 
four different colors.) 
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Figure 45 
Learning curve for HER'S first 
fifty games (downslant shows 
loss, upslant a win) 

game tournament. After thirty-six games (including eleven 
defeats for the robot) i t  has learned to play a perfect game. 
The system of punishment is designed to minimize the time 
required to learn a perfect game, but the time varies with 
the skill of the machine's opponent. The better the opponent, 
the faster the machine learns. 

The robot can be designed in other ways. For example, if 
the intent is to maximize the number of games that the ma- 
chine wins in a tournament of, say, twenty-five games, it may 
be best to reward (as well as punish) by adding a bead of 
the proper color to each box when the machine wins. Bad 
moves would not be eliminated so rapidly, but i t  would be 
less inclined to make the bad moves. An interesting project 
would be to construct a second robot, HIM (Hexapawn In- 
structable Matchboxes), designed with a different system of 
reward and punishment but equally incompetent a t  the start  
of a tournament. Both machines would have to be enlarged 
so they could make either first or second moves. A tourna- 
ment could then be played between HIM and HER, alternat- 
ing the first move, to see which machine would win the most 
games out of fifty. 

Similar robots are easily built for other games. Stuart C. 
Hight, director of research studies a t  the Bell Telephone 
Laboratories in Whippany, New Jersey, recently built a 
matchbox learning machine called NIMBLE (Nim Box Logic 
Engine) for playing Nim with three piles of three counters 
each. The robot plays either first or second and is rewarded 
or punished after each game. NIMBLE required only eight- 
een matchboxes and played almost perfectly after thirty 
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games. For an analysis of the game of Nim, see Chapter 15 
of my Scientific American Book of Mathematical Puzzles & 
Diversions. 

By reducing the size of the board the complexity of many 
familiar games can be minimized until they are within the 
scope of a matchbox robot. The game of go, for example, can 
be played on the intersections of a 2 x 2 checkerboard. The 
smallest nontrivial board for checkers is shown in Figure 
46. I t  should not be difficult to build a matchbox machine 
that would learn to play it. Readers disinclined to do this 
may enjoy analyzing the game. Does either side have a sure 
win or will two perfect players draw? 

When chess is reduced to the smallest board on which all 
legal moves are still possible, as shown in Figure 46, the 
complexity is still fa r  beyond the capacity of a matchbox 
machine. In fact, I have found it  impossible to determine 
which player, if either, has the advantage. Minichess is rec- 
ommended for computer experts who wish to program a 
simplified chess-learning machine and for all chess players 
who like to sneak in a quick game during a coffee break. 

Figure 46 
Matchbox machines can be built for minicheckers [left] but not for mini- 
chess [right] 

A D D E N D U M  

Many readers who experimented with matchbox learning 
machines were kind enough to write to me about them. 
L. R. Tanner, a t  Westminster College, Salt Lake City, Utah, 
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made good use of HER as a concession a t  a college carnival. 
The machine was designed to learn by rewards only, so that 
customers would always have a chance (though a decreasing 
one) of winning, and prizes to winners were increased in 
value as HER became more proficient. 

Several readers built two matchbox machines to be pitted 
against each other. John Chambers, Toronto, called his pair 
THEM (Two-way Hexapawn Educable Machines). Kenneth 
W. Wiszowaty, science teacher a t  Phillip Rogers Elementary 
School, Chicago, sent me a report by his seventh-grade pupil, 
Andrea Weiland, on her two machines which played against 
each other until one of them learned to win every time. John 
House, Waterville, Ohio, called his second machine RAT 
(Relentless Auto-learning Tyrant), and reported that after 
eighteen games RAT conceded that HER would win all sub- 
sequent games. 

Peter J. Sandiford, director of operations research for 
Trans-Canada Air Lines, Montreal, called his machines Mark 
I and Mark 11. As expected, i t  took eighteen games for 
Mark I to learn how to win every time and Mark I1 to learn 
how to fight the longest delaying action. Sandiford then 
devised a devilish plan. He arranged for two students, a boy 
and a girl from a local high school mathematics club, who 
knew nothing about the game, to play hexapawn against each 
other after reading a handout describing the rules. "Each 
contestant was alone in a room," writes Sandiford, "and 
indicated his moves to a referee. Unknown to the players the 
referees reported to a third room containing the jellybean 
computers and scorekeepers. The players thought they were 
playing each other by remote control, so to speak, whereas 
they were in fact playing independently against the comput- 
ers. They played alternately black and white in successive 
games. With much confusion and muffled hilarity we in the 
middle tried to operate the computers, keep the games in 
phase, and keep the score." 

The students were asked to make running comments on 
their own moves and those of their opponent. Some sample 
remarks : 

"It's the safest thing to do without being captured; it's 
almost sure to win." 
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"He took me, but I took him too. If he does what I expect, 
he'll take my pawn, but in the next move I'll block him." 

"Am I stupid !" 
"Good move! I think I'm beat." 
"I don't think he's really thinking. By now he shouldn't 

make any more careless mistakes." 
"Good game. She's getting wise to my action now." 
"Now that he's thinking, there's more competition." 
"Very surprising move . . . couldn't he see I'd win if he 

moved forward?" 
"My opponent played well. I guess I just got the knack of 

i t  first." 
When the students were later brought face to face with 

the machines they had been playing, they could hardly be- 
lieve, writes Sandiford, that they had not been competing 
against a real person. 

Richard L. Sites, a t  M.I.T., wrote a FORTRAN program 
for an IBM 1620 so that it would learn to play Octapawn, a 
4 x 4 version of hexapawn that begins with four white 
pawns on the first row and four black pawns on the fourth 
row. He reports that the first player has a sure win with a 
corner opening. At the time of his writing, his program had 
not yet explored center openings. 

Judy Gomberg, Maplewood, New Jersey, after playing 
against a matchbox machine that she built, reported that she 
learned hexapawn faster than her machine because "every 
time i t  lost I took out a candy and ate it." 

Robert A. Ellis, a t  the computing laboratory, Ballistics 
Research Laboratories, Aberdeen Proving Ground, Masy- 
land, told me about a program he wrote for a digital com- 
puter which applied the matchbox-learning technique to a 
ticktacktoe-learning machine. The machine first plays a 
stupid game, choosing moves a t  random, and is easily 
trounced by human opponents. Then the machine is allowed 
to play two thousand games against itself (which i t  does in 
two or three minutes), learning as i t  goes. After that, the 
machine plays an excellent strategy against human op- 
ponents. 

My defense of Botvinnik's remark that  computers will 
some day play master chess brought a number of irate letters 
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from chess players. One grandmaster assured me that  Bot- 
vinnik was speaking with tongue in cheek. The interested 
reader can judge for himself by reading a translation of 
Botvinnik's speech (which originally appeared in Komsornol- 
skaya Pravdn, January 3, 1961) in The Best in Chess, edited 
by I. A. Horowitz and Jack Straley Battell (New York: 
Dutton, 1965), pages 63-69. "The time will come," Botvin- 
nik concludes, "when mechanical chessplayers will be award- 
ed the title of International Grandmaster . . . and it will be 
necessary to promote two world championships, one for hu- 
mans, one fo,r robots. The latter tournament, naturally, will 
not be between machines, but between their makers and pro- 
gram operators." 

An excellent science-fiction story about just such a tourna- 
ment, Fritz Leiber's "The 64-Square Madhouse," appeared 
in If, May 1962, and has since been reprinted in Leiber's 
A Pail of Air (New York: Ballantine, 1964). Lord Dunsany, 
by the way, has twice gjven memorable descriptions of chess 
games played against computers. In his short story "The 
Three Sailors' Gambit" (in The Last Book of Wonder) the 
machine is a magic crystal. In his novel The Last Revolu- 
tion ( a  1951 novel about the computer revolution that has 
never, unaccountably, been published in the United States) 
it is a learning computer. The description of the narrator's 
first game with the computer, in the second chapter, is surely 
one of the funniest accounts of a chess game ever written. 

The hostile reaction of master chess players to the sugges- 
tion that computers will some day play master chess is easy 
to understand; it has been well analyzed by Paul Arrner in 
a Rand report (p-2114-2, June 1962) on Attitudes Toward 
Intelligent Machines. The reaction of chess players is par- 
ticularly amusing. One can make out a good case against 
computers writing top-quality music or poetry, or painting 
great art, but chess is not essentially different from ticktack- 
toe except in its enormous complexity, and learning to play 
it well is precisely the sort of thing computers can be ex- 
pected to do best. 

Master checker-playing machines will undoubtedly come 
first. Checkers is now so thoroughly explored that games be- 
tween champions almost always end in draws, and in order 
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to add interest to such games, the first three moves are now 
chosen by chance. Richard Bellman, writing "On the Appli- 
cation of Dynamic Programming to the Determination of Op- 
timal Play in Chess and Checkers," Proceedings of the Na- 
tional Academy of Sciences, Vol. 53 (February 1965), pages 
244-47, says that "it seems safe to predict that within ten 
years checkers will be a completely decidable game." 

Chess is, of course, of a different order of complexity. 
One suspects it will be a long time before one can (so goes 
an old joke in modern dress) play the first move of a chess 
game against a computer and have the computer print, after 
a period of furious calculation, "I resign." In 1958 some 
responsible mathematicians predicted that within ten years 
computers would be playing master chess, but this proved to 
be wildly overoptimistic. Tigran Petrosian, when he became 
world chess champion, was quoted in The New York Times 
(May 24, 1963) as expressing doubts that  computers would 
play master chess within the next fifteen or twenty years. 

Hexapawn can be extended simply by making the board 
wider but keeping i t  three rows deep. John R. B,rown, in his 
paper "Extendapawn-An Inductive Analysis," Mathematics 
Magazine, Vol. 38, November 1965, pages 286-99, gives a 
complete analysis of this game. If n is the number of col- 
umns, the game is a win for the first player if the final digit 
of n is 1, 4, 5, 7 or 8. Otherwise the second player has the 
win. 

A N S W E R S  

The checker game on the 4 x 4 board is a draw if both 
sides play as well as possible. As shown in Figure 47, Black 
has a choice of three openings: (1) C5, (2) C6, (3)  D6. 

The first opening results in an immediate loss of the game 
when White replies A3. The second opening leads to a draw 
regardless of how White replies. The third opening is Black's 
strongest. I t  leads to a win if White replies A3 or B3. But 
White can reply B4 and draw. 

With respect to the 3 x 3 simplified go game, also men- 
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tioned as suitable for a matchbox learning machine, I am 
assured by Jay Eliasberg, vice-president of the American 
Go Association, that the first player has a sure win if he 
plays on the center point of the board and rationally there- 
after. 

Figure 47 
Checker game is drawn if 
played rationally 

The 4 x 4 checker game is trivial, but when the board is 
enlarged to 5 x 5 the result is both challenging and surpris- 
ing. Robert L. Caswell, a chemist with the United States 
Department of Agriculture, wrote to me about this mini- 
game, which he said had earlier been proposed to him. The 
game begins with three white checkers on the first row, three 
black checkers on the fifth row. All standard rules obtain, 
with black moving first. One might guess the game to be 
drawn if played rationally, but the absence of "double cor- 
ners" where kings can move back and forth makes this un- 
likely. Caswell discovered that  not only does one side have 
a sure win but, if the loser plays well, the final win is spec- 
tacular. Rather than spoil the fun, I leave i t  to the reader to 
analyze the game and decide which player can always win. 



C H A P T E R  N I N E  

Spirals 

T h e  spiral i s  a spir i tml ixed circle. I n  the  spiral f o r m ,  the  
circle, uncoiled, unwound ,  has ceased t o  be vicious; it has 
been set free.  I thought  this u p  w h e n  I w a s  a schoolboy, and 
I also discovered tha t  Hegel's triadic series expressed merely  
the  essential spirality of all th ings  in their relation t o  t ime.  
T w i r l  follows twir l ,  and every synthesis i s  the  thesis of the  
n e x t  series. . . . A colored spiral in a small ball o f  glass, th is  
is how I see m y  o w n  l i fe .  

-VLADIMIR NABOKOV, Speak Memory  

Two FARM CHILDREN have improvised a seesaw by placing a 
plank over a log. As they go up and down, what sort of curve 
is traced by every point along the plank? On a moving car- 
rousel the operator walks at a constant speed along a radius 
of the floor. What type of curve does he trace on the ground 
beneath the carrousel? Three dogs stand in an open field a t  
the corners of an equilateral triangle. On command each dog 
runs directly toward the dog on its right. Turning to follow 
one another as they move, all three run with the same con- 
stant speed until they meet a t  the triangle's center. What 
sort of paths do they take? 
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The answer to each question is a different type of spiral. I 
shall describe the three curves in turn and in doing so t ry  
to spiral around as many recreational sidelights as space 
allows. 

The curves traced by all points along the plank of the 
seesaw are known as involutes of the circle. The involute of 
any curve is obtained by attaching a thread to the curve, 
pulling i t  taut, then "winding" i t  along the curve. Any fixed 
point on the taut  thread traces the curve's involute. Thus a 
goat tied to a cylindrical post will, if i t  circles the post so that  
the rope winds tightly around it, be pulled into a spiral path 
that  is the involute of a circle. 

A neat way to draw such a spiral is depicted in Figure 48. 
Cut a circle of any desired size from thick cardboard and 
cement it to the center of a sheet of paper. Cement a slightly 
larger circle of cardboard on top, with a slot on the rim to 
hold the knotted end of a piece of string. Wind the string 
around the smaller circle. The point of a pencil, in a loop at 
the free end of the cord, will unwind the string and trace 
the involute. The distance between adjacerlt coils remains 
constant and is equal to the smaller circle's circumference 
when measured along a line that  is tangent to one side of the 
circle. The circle is said to be the evolute of the spiral. 

drawing 
circle 

the 
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The man on the carrousel traces (with respect to the 
ground) a curve known as the spiral of Archimedes. (Archi- 
medes was the first to study i t ;  his treatise On Spirals is 
concerned mainly with this curve.) If you place a cardboard 
disk on a phonograph turntable, you can draw on it a spiral 
of Archimedes by moving a crayon a t  a constant speed in a 
straight line from the center of the disk outward. The groove 
in a phonograph record is the most familiar example of such 
a spiral. In  polar coordinates i t  is described by saying that 
a t  every point the radius vector (distance from the disk's 
center) is in the same ratio to the vector angle (angular dis- 
tance from a fixed radius). Spirals have very simple equa- 
tions in polar coordinates but very complicated equations in 
Cartesian coordinates. 

A much more accurate Archimedean spiral can be obtained 
by pinning a strip of cardboard, cut as shown in Figure 49, 

Figure 49 
Device for drawing v Archimedes 

a spiral of 

to a pair of cardboard circles like those used for drawing 
the involute. As the strip is revolved, the pencil point will be 
pulled outward along one edge of the strip. I t  is easy to see 
that the pencil must move along the edge with a speed that 
is always proportional to the speed a t  which the cardboard 
strip is revolving. 

After the first turn the resulting spiral is virtually indis- 
tinguishable from the involute of a circle, although the two 
curves are never exactly alike. The distance between adja- 
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cent coils of the Archimedean spiral is constant, but now the 
distance must be measured along radii instead of along lines 
tangent to one side of a circle. The most commonly observed 
spirals are of the Archimedean or circle-involute types: 
tightly wound springs, edges of rolled-up rugs and sheets of 
paper, decorative spirals on jewelry, and so on. Such curves 
are seldom mathematically precise, and one would be hard 
put to determine whether a given example is in fact closer to 
a circle involute or a spiral of Archimedes. 

Once an accurate Archimedean spiral has been drawn, it 
can be used for compass-and-straightedge divisions of any 
angle into any number of equal parts, including three. To 
trisect an angle, place the angle so that its vertex coincides 
with the spiral's pole (origin) and its arms intersect the 
spiral (see Figure 5 0 ) .  With the point of the compass at P, 
draw arc AB. The line segment AC is trisected by the usual 

Figure 50 
Trisecting an angle with a spiral of Archimedes 

method. Through the two points between A and C thus estab- 
lished, arcs of circles are drawn to mark points D and E on 
the spiral. Lines from the vertex to D and E complete the 
trisection. Readers may enjoy proving that this construction 
is accurate. 

The mechanical device pictured in Figure 51 is often used 
in machines for transforming the uniform circular motion of 
a wheel into a uniform back-and-forth motion. (Many sewing 
machines, for example, use such a device for moving the 
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Figure 51 
Archirnedean spirals change rotary to linear motion 

thread back and forth when the bobbins are wound.) The 
sides of the heart are mirror-image arcs of a spiral of Archi- 
medes. 

The dogs that chase one another to the center of the equi- 
lateral triangle follow the lines of a logarithmic, or equiangu- 
lar, spiral. One way to define this spiral is to say that it cuts 
every radius vector a t  the same angle. If mathematical points 
are substituted for dogs, each point traces a path of finite 
length (i t  is two thirds the side of the triangle), but only 
after making an infinite number of revolutions around the 
pole! Logarithmic spirals also mark the paths of any number 
of dogs greater than two, provided that they start a t  the cor- 
ners of a regular polygon. If there are only two dogs, their 
paths are, of course, straight lines; if there are an infinite 
number, they keep trotting around a circle. This is a crude 
way of pointing out that the limits of the equiangular spiral, 
as its angle to the radius vector varies from 0 to 90 degrees, 
are the straight line and the circle. 

On the earth's su,rface the counterpart of the logarithmic 
spiral is the loxodrome (or rhumb line) : a path that cuts the 
earth's meridians a t  any constant angle except a right angle. 
Thus if you were flying northeast and always kept the plane 
heading in exactly the same direction as indicated by the 
compass, you would follow a loxodrome that would spiral you 
to the North Pole. Like the dogs' paths, your path to the Pole 
would be finite in length but (if you were a point) you would 
have to circle the Pole an infinite number of times before 
you got there. A stereographic projection of your path on a 
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plane tangent to the Pole would be a perfect logarithmic 
spiral. 

The logarithmic spiral is the most common type of spiral 
to be found in nature. I t  can be seen in the coil of the nau- 
tilus shell and snail shells, in the arrangement of the seeds 
of many plants, such as the sunflower and daisy, the scales 
of the pine cone, and so on. Epeira, a common variety of 
spider, spins a web in which a strand coils around the center 
in a logarithmic spiral. Jean Henri Fabre, in his book The 
Life of the Spider, devotes an appendix to a discussion of 
the mathematical properties of the equiangular spiral and its 
many beautiful appearances in nature. There is an extensive 
literature, some of it eccentric, on this spiral's botanical and 
zoological manifestations and its close relation to the golden 
ratio and the Fibonacci number series. The basic reference 
here is a 479-page, richly illustrated book entitled The Curves 
of Life, by Theodore Andrea Cook. I t  was published in 1914 
by Henry Holt and has long been out of print. 

A device for ruling a logarithmic spiral is easily cut from 
a piece of cardboard (see Figure 5 2 ) .  Angle a may be any 
size you please between 0 and 180 degrees. By keeping one 
edge of the strip on the spiral's pole and ruling short line 
segments along the oblique straightedge as this straightedge 
is moved toward or away from the pole, you produce a series 

Figure 52 
How to draw a 

\ spiral 

logarithmic 
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of chords of the spiral in much the same manner that Epeira 
spins its web. The device ensures that all these chords cut 
the radius vector a t  the same angle. The smaller you make 
the oblique straightedge, of course, the more accurate the 
spiral is. Such a device can also be used for testing a spiral 
to see if i t  is logarithmic. 

What happens if angle a is a right angle? The spiral de- 
generates into a circle. If the angle is 74 degrees 39 minutes 
(the exact value is a trifle more than this), the resulting 
spiral will be its own involute. The involutes of all logarith- 
mic spirals are also logarithmic spirals, but only in this case 
are the two spirals exactly alike. 

The equiangular spiral was first discovered by Ren6 
Descartes. Jakob Bernoulli, the seventeenth-century Swiss 
mathematician, was so entranced by the spiral's property of 
reappearing after various transformations (e.g., changing it 
to its involute) that he asked to have it engraved on his 
tombstone with the words "Eaclem mutata resurgo" 
("Though changed I shall arise the same"). His request was 
badly carried out. The Latin phrase was omitted, and the 
best spiral the poor stonecutter could achieve was a crude 
version of either an Archimedean spiral or an involute of a 
circle. I t  can be seen today on the mathematician's grave- 
stone in Basel, and it  is obviously not a logarithmic spiral, 
because the width between coils shows no progressive in- 
crease as it grows larger. 

In terms of sheer size, the logarithmic spiral's most im- 
pressive appearance is in the arms of many of the spiral 
galaxies. Just why i t  turns up here is a mystery that is bound 
up with the mystery of the srms themselves. They are known 
to be glowing lanes of stars and gas that somehow are 
whirled into spiral shape by the galaxy's rotation. The entire 
galaxy is a cluster of billions of stars and spins like a mon- 
strous Fourth of July pinwheel. The faint white glow of the 
Milky Way results from our looking edgewise through two 
gigantic spiral arms of our own galaxy. Observations show 
that these arms are rotating much faster near the center of 
the galaxy than at  the edge. This ought to wind up the arms 
quickly and eventually eliminate them, but the fact that most 
galaxies have retained a spiral structure suggests that the 
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arms are not winding up at  all. One theory has it that as one 
side of an arm takes on luminous gas, the other side evap- 
orates it, keeping the arm in the same shape with respect to 
the galaxy (see Jan  H. Oort, "The Evolution of Galaxies," 
Scientific American, September 1956).  

Like their space-curve cousin the helix, all spiral shapes 
are asymmetric. This means that on a plane every spiral can 
be drawn in two forms that are identical in all respects ex- 
cept that one is a mirror reflection of the other. When a 
spiral can be viewed from either side, as is the case with 
spider webs and (if we could travel fa r  enough out in space) 
galaxies, then its "handedness" depends on the point of view. 
But if there is no way to turn a spiral over or to move around 
in order to see it from the other side, every spiral is either 
clockwise or counterclockwise. 

The adjective "clockwise" is ambiguous, of course, unless 
you specify whether the spiral is traced outward from the 
center or inward toward the center. There is an amusing 
pencil-and-paper stunt based on this ambiguity. Ask someone 
to draw a spiral on the left side of a sheet, starting a t  the 
center and moving the pencil outward. Cover the spiral with 
your hand and ask him to draw a mirror-image of that spiral 
on the right of the sheet, starting with a large loop and 
spiraling in to the center. Most people will reverse the rotary 
motion of their hand, but of course this simply produces an- 
other spiral of the same handedness. 

If you draw a tightly coiled spiral on a cardboard disk, 
using a thick black line, and rotate it on a phonograph turn- 
table, a familiar illusion results. The coils appear either to 
expand or contract depending on the spiral's handedness. An 
even more astonishing psychological illusion can be demon- 
strated with two such disks, bearing spirals of opposite hand- 
edness. Put the "expanding" spiral on the turntable and stare 
directly down a t  its pole for several minutes while it revolves. 
Now quickly shift your gaze to someone's face. For a moment 
the face will appear to shrink suddenly. The other spiral has 
the opposite effect : the face you look a t  will appear to explode 
outward. Everyone has experienced a similar illusion when 
riding on a train. After looking for a long time out the 
window of a moving train, if the train stops, the scenery mo- 
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mentarily seems to move in the opposite direction. There 
have been attempts to explain this in terms of eye move- 
ments and the tiring of eye muscles, but the spiral illusion 
rules out such an explanation. It  suggests that the illusion 
arises in the brain's interpretation of signals from the eyes. 

The asymmetry of the spiral makes i t  a convenient figure 
for dramatizing a curious problem of communication. Imag- 
ine that Project Ozma has established radio-wave contact 
with a Planet X somewhere in our galaxy. Over the decades, 
by the use of ingenious pulsed codes, we learn to converse 
fluently with intelligent humanoids on Planet X. It  has a 
culture almost as advanced as ours but because of high, dense 
clouds like the clouds of Venus surrounding it, its inhabitants 
know nothing about astronomy. They have never seen the 
stars. After Planet X has been sent a detailed description of 
a number of major galaxies, the following message is re- 
ceived on earth: 

"You say spiral nebula NGC 5194, viewed from earth, has 
two spiral arms that coil outward in a clockwise direction. 
Please clarify meaning of 'clockwise.' " 

In other words, scientists on Planet X want to be sure that 
when they record a diagram of nebula NGC 5194, based on 
information supplied by scientists on earth, they draw it cor- 
rectly and not in mirror-image form. 

How can we communicate to Planet X which way the ne- 
bula coils? It is no help to say that as an arm whirls out- 
ward above the center of the galaxy it moves from left to 
right, because we have no way of being certain that Planet 
X understands "left" and "right" in the same way we do. If 
we could communicate an unambiguous definition of "left," 
the problem would of course be solved. 

To give the problem more precisely: How can we com- 
municate the meaning of "left" by a language transmitted as 
a pulsed code? We may say anything we please, request the 
performance of any type of experiment, with one proviso : 
There is to be no asymmetric object or structure that we and 
they can observe in common. 

Without this proviso there is no problem. For example, if 
we sent to Planet X a rocket missile carrying a picture of a 
man labeled "top," "bottom," "left," "right," the picture 
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would immediately convey our meaning of "left." Or, we 
might transmit a radio beam that had been given a helical 
twist by circular polarization. If the inhabitants of Planet X 
built antennas that could determine whether the polarization 
was clockwise or counterclockwise, a common understanding 
of "left" could easily be established. Such methods, however, 
violate the proviso that there must be no common observa- 
tion of a particular asymmetric object or structure. 

A N S W E R S  

It is easy to see why the trisection of an angle, by means 
of an Archimedean spiral, works. The arcs of the circles 
mark, along the spiral, three equal distances along the radius 
vector; that is, equal distances away from P, the vertex of 
the angle to be trisected. As the spiral travels those distances 
outward, i t  also travels equal distances in a counterclockwise 
direction, creating three equal vectorial angles. The same 
method obviously can be used for dividing pn angle into any 
number of smaller angles in any desired ratio to each other. 
Simply divide line segment AC into segments with the de- 
sired ratios. The construction will then divide angle CPB 
into those same ratios. 

How can the meaning of our word "clockwise" be com- 
municated by a pulsed code to humanoids on Planet X ?  I t  is 
assumed that Planet X is somewhere in our galaxy but cov- 
ered by dense clouds that  prevent its inhabitants from see- 
ing the stars. I t  is also assumed that by ingenious codes 
scientists on earth and on Planet X have learned to talk 
fluently with each other. The problem is how to communicate 
the meaning of "left" and "right." 

The startling answer is that  until December 1956 there 
was no way to communicate an unambiguous definition of 
"left" and "right." According to what physicists call the "law 
of parity," all asymmetric physical processes are reversible; 
that  is, they can take place in either of their two mirror- 
image forms. Certain crystals, such as quartz and cinnabar, 
have the property of twisting a plane of polarized light in one 
direction only, but such crystals exist in both left and right 
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forms. The same is true of the asymmetric stereoisomers, 
which also twist planes of polarized light. Organic com- 
pounds found in living forms may possess one type of hand- 
edness only, but this is an accident of the earth's evolution. 
There is no more reason for such compounds on another 
planet having the same handedness as those on earth as there 
would be reason to expect the humanoids on Planet X to 
have hearts on their left sides. 

Electrical and magnetic experiments are of no help. I t  is 
true that they show asymmetries (e.g., the "right-hand rule" 
for orienting a magnetic field surrounding a current), but i t  
is only convention that decides which pole of a magnet is 
called "north." If we could communicate to Planet X what 
we mean by a "North Pole," the problem could be solved; un- 
fortunately there is no way to do this without first having 
a common understanding of l e f t  and right. We could easily 
transmit pictures to Planet X by means of pulsed codes, but 
without agreement on left and right we could never be sure 
that their equipment was not reproducing the pictures in a 
form that  was the reverse of ours. 

It was in December 1956 that the first experiment violat- 
ing the law of parity was performed (see Philip Morrison, 
"The Overthrow of Parity," Scientific Ame~ican,  April 
1957). Certain "weak interactions" of particle physics were 
found to show a preference for one type of handedness re- 
gardless of the North Pole-South Pole convention. Sending 
the details of such an  experiment is the only way known a t  
present by which we could communicate to Planet X an un- 
ambiguous operational definition of left and right, clockwise 
and counterclockwise, the North and the South Magnetic 
Pole, or any other distinction involving handedness. 

It should be added that  if Planet X were in another galaxy, 
the problem would remain unsolved. The other galaxy might 
be made of antimatter (matter made of particles with re- 
versed electrical charges). In  such a galaxy the handedness 
of the weak interactions would probably be reversed. If we 
did not know the type of matter in the other galaxy (and 
light from i t  provides no clue), parity-violating experiments 
would be valueless in communicating the meaning of left and 
right. 



CHAPTER T E N  

Rot at ions 
and Reflections 

A GEOMETRIC FIGURE is said to be symmetrical if i t  remains 
unchanged after a "symmetry operation" has been per- 
formed on it. The larger the number of such operations, the 
richer the symmetry. For example, the capital letter A is un- 
changed when reflected in a mirror placed vertically be- 
side it. It is said to have vertical symmetry. The capital B 
lacks this symmetry but has horizontal symmetry: i t  is un- 
changed in a mirror held horizontally above or below it. S is 
neither horizontally nor vertically symmetrical but remains 
the same if rotated 180 degrees (twofold symmetry). All 
three of these symmetries are possessed by H, I ,  0 and X. X 
is richer in symmetry than H or I because, if its arms cross 
a t  right angles, i t  is also unchanged by quarter-turns (four- 
fold symmetry). 0, in circular form, is the richest letter of 
all. It is unchanged by any type of rotation or reflection. 

Because the earth is a sphere toward the center of which 
all objects are  drawn by gravity, living forms have found i t  
efficient to evolve shapes that  possess strong vertical sym- 
metry combined with an obvious lack of horizontal or ro- 
tational symmetry. I n  making objects for his use man has 
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followed a similar pattern. Look around and you will be 
struck by the number of things you see that are essentially 
unchanged in a vertical mirror : chairs, tables, lamps, dishes, 
automobiles, airplanes, office buildings-the list is endless. I t  
is this prevalence of vertical symmetry that makes it so diffi- 
cult to tell when a photograph has been reversed, unless the 
scene is familiar or contains such obvious clues as reversed 
printing or cars driving on the wrong side of the road. On 
the other hand, an upside-down photograph of almost any- 
thing is instantly recognizable as inverted. 

The same is true of works of graphic art. They lose little, 
if anything, by reflection, but unless they are completely non- 
representational no careless museum director is likely to 
hang one upside down. Of course, abstract paintings are 
often inverted by accident. The New York Times Magazine 
(October 5, 1958) inadvertently both reversed and inverted a 
picture of an abstraction by Piet Mondrian, but 'only readers 
who knew the painting could possibly have noticed it. In 
1961, at the New York Museum of Modern Art, Matisse's 
painting, Le Bateau, hung upside down for forty-seven days 
before anyone noticed the error. 

So accustomed are we to vertical symmetry, so unaccus- 
tomed to seeing things upside down, that i t  is extremely 
difficult to imagine what most scenes, pictures or objects 
would look like inverted. Landscape artists have been known 
to check the colors of a scene by the undignified technique of 
bending over and viewing the landscape through their legs. 
Its upside-down contours are so unfamiliar that colors can 
be seen uncontaminated, so to speak, by association with 
familiar shapes. Thoreau liked to view scenes this way and 
refers to such a view of a pond in Chapter 9 of Walden. 
Many philosophers and writers have found symbolic mean- 
ing in this vision of a topsy-turvy landscape; it was one of 
the favorite themes of G. K. Chesterton. His best mystery 
stories (in my opinion) concern the poet-artist Gabriel Gale 
(in The Poet and the Lunatics), who periodically stands on 
his hands so that he can "see the landscape as i t  really is: 
with the stars like flowers, and the clouds like hills, and all 
men hanging on the mercy of God." 

The mind's inability to imagine things upside down is es- 
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sential to the surprise produced by those ingenious pictures 
that turn into something entirely different when rotated 180 
degrees. Nineteenth-century political cartoonists were fond of 
this device. When a reader inverted a drawing of a famous 
public figure, he would see a pig or jackass or something 
equally insulting. The device is less popular today, although 
Life for September 18, 1950, reproduced a remarkable Ital- 
ian poster on which the face of Garibaldi became the face of 
Stalin when viewed upside down. Children's magazines some- 
times reproduce such upside-down pictures, and now and 
then they are used as advertising gimmicks. The back cover 
of Life for November 23, 1953, depicted an Indian brave in- 
specting a stalk of corn. Thousands of readers probably 
failed to notice that  when this picture was inverted i t  became 
the face of a man, his mouth watering a t  the sight of an open 
can of corn. 

I know of only four books that  are collections of upside- 
down drawings. Peter Newell, a popular illustrator of chil- 
dren's books who died in 1924, published two books of color 
plates of scenes that  undergo amusing transformations when 
inverted: Topsys & Turvys (1893) and Topsys and Turvys 
Number 2 (1894). In 1946 a London publisher issued a col- 
lection of fifteen astonishing upside-down faces drawn by 
Rex Whistler, an English muralist who died in 1944. The 
book has the richly symmetrical title of jOHO! (I ts  title page 
is reproduced in Figure 53.) 

Figure 53 
Invertible faces on the tit le 
page of Whistler's invertible 
book 
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The technique of upside-down drawing was carried to un- 
believable heights in 1903 and 1904 by a cartoonist named 
Gustave Verbeek. Each week he drew a six-panel color comic 
for the Sunday "funny paper" of the N e w  Y o r k  Herald. One 
took the panels in order, reading the captions beneath each 
picture; then one turned the page upside down and continued 
the story, reading a new set of captions and taking the same 
six panels in reverse order! ( S e e  Figure  54 . )  Verbeek man- 
aged to achieve continuity by means of two chief characters 

Figure 54 
A typical upside-down cartoon by Gustave Verbeek 

called Little Lady Lovekins and Old Man Muffaroo. Each be- 
came the other when inverted. How Verbeek managed to 
work all this out week after week without going mad passeth 
all understanding. A collection of twenty-five of his comics 
was published by G. W. Dillingham in 1905 under the title of 
T h e  Upside-Downs of Lit t le Lady Lovekins  and Old M a n  
Muffaroo.  The book is extremely rare. 

The 90-degree rotation is less frequently used in ar t  play, 
perhaps because i t  is easier for the mind to anticipate re- 
sults. If done artfully, however, it can be effective. An exam- 
ple is a landscape by the seventeenth-century Swiss painter 
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Matthaus Merian that becomes a man's profile when the picture 
is given a quarter-turn countei-clochvise. The rabbit-duck in 
Figure 53 is the best-kno~vn example of a quarter-turn picture. 
Psychologists have long used it for various sorts of testing. A few 
years ago Han~ard philosopher Morton Tl'hite reproduced a rab- 
bit-duck drawing in a magazine article to symbolize the fact that 
tuo historians can surley the same set of historical facts but see 
them in two essentially different ways. 

Our lifelong conditioning in the way we see things is re- 
sponsible for a variety of startling upside-down optical illusions. 
All astronomers know the necessity of viewing photographs of 
the moon's surface so that sunlight appears to illuminate the 
craters from above rather than below. We are so unaccustoined 
to seeing things illuminated from below that when such a photo- 
graph of the inoon is inverted, the craters instantly appear to be 
circular mesas rising above the surface. One of the most amus- 
ing illusions of this same general type is sho~vn in Figure 56. The 
missing slice of pie is found by turning the picture upside down. 
Here again the explanation surely lies in the fact that we almost 
ahvays see plates and pies from above and almost never from 
below. 

Figure 55 Figure 56 
A quarter-turn clockwise Where is the missing 
makes the duck into a rabbit slice? 

Upside-down faces could not be designed, of course, if it were 
not for the fact that our eyes are not too far from midway 
bet~veen the top of the head and the chin. School children often 
amuse themselves by turning a history book upside down and 
penciling a nose and mouth on the forehead of some famous 
person. 

Tl'hen this is done on an actual face, using eyebrow pencil 
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and lipstick, the effect becomes even more grotesque. It was a 
popular party pastime of the late nineteenth century. The 
following account is from an old book entitled What Shall We 
Do Tonight? 

The severed head always causes a sensation and 
should not be suddenly exposed to the nervous. . . . A 
large table, covered with a cloth sufficiently long to 
reach to the floor all around and completely hide all 
beneath, is placed in the center of the room. . . . A boy 
with soft silky hair, rather long, being selected to rep- 
resent the head, must lie upon his back under the table 
entirely concealed, excepting that portion of his face 
above the bridge of his nose. The rest is under the 
tablecloth. 

His hair must now be carefully combed down, to 
represent whiskers, and a face must be painted . . . 
upon the cheeks and forehead; the false eyebrows, nose 
and mouth, with mustache, must be strongly marked 
with black water color, or India ink, and the real eye- 
brows covered with a little powder or flour. The face 
should also be powdered to a deathlike pallor. . . . 

The horror of this illusion may be intensified by hav- 
ing a subdued light in the room in which the exhibition 
has been arranged. This conceals in a great degree any 
slight defects in the "making-up" of the head. . . . 

Needless to add, the horror is heightened when the "head" 
suddenly opens its eyes, blinks, stares from side to side, 
wrinkles its cheeks (forehead). 

The physicist Robert W. Wood (author of How to Tell the 
Birds from the Flowers) invented a funny variation of the 
severed head. The face is viewed upside down as before, but 
now it  is the forehead, eyes and nose that are covered, leav- 
ing only the mouth and chin exposed. Eyes and nose are 
drawn on the chin to produce a weird little pinheaded crea- 
ture with a huge, flexible mouth. The stunt is a favorite of 
Paul Winchell, the television ventriloquist. He wears a small 
dummy's body on his head to make a figure that he calls 
Ozwald, while television camera techniques invert the screen 
to bring Ozwald right side up. In  1961 an  Ozwald kit was 
marketed for children, complete with the dummy's body and 
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a special mirror with which to view one's own face upside 
down. 

It is possible to print or even write in longhand certain 
words in such a way that they possess twofold symmetry. 
The Zoological Society of San Diego, for instance, publishes a 
magazine called ZOONOOZ, the name of which is the same 
upside down. The longest sentence of this type that I have 
come across is said to be a sign by a swimming pool designed 
to read the same when viewed by athletes practicing hand- 
stands: NOW NO SWIMS ON MON. ( S e e  Figure 57.) 

- 
- - 

- 
- --. - 

Figure 57 
An invertible sign [sketch 

"'>\(' - -ls 

reproduced by courtesy of the 
'I' 

artist, John McClellan] 

I t  is easy to form numbers that  are the same upside down. 
As many have noticed, 1961 is such a number. I t  was the first 
year with twofold symmetry since 1881, the last until 6009, 
and the twenty-third since the year 1. Altogether there are 
thirty-eight such years between A.D. 1 and A.D. 10000 (accord- 
ing to a calculation made by John Pomeroy), with the long- 
est interval between 1961 and 6009. J. F. Bowers, writing in 
the Mathematical Gazette for December 1961, explains his 
clever method of calculating that by A.D. 1000000 exactly 
198 invertible years will have passed. The January 1961 is- 
sue of Mad featured an upside-down cover with the year's 
numerals in the center and a line predicting that the year 
would be a mad one. 
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Some numbers, for example 7734 (when the 4 is written 
so that  i t  is open a t  the top), become words when inverted; 
others can be written to become words when reflected. With 
these quaint possibilities in mind, the reader may enjoy tack- 
ling the following easy problems : 

1. Oliver Lee, age forty-four, who lives a t  312 Main Street, 
asked the city to give his car a license plate bearing the num- 
ber 337-31770. Why? 

2. Prove the sum in Figure 58 to be correct. 

3414 
34 0 Figures* 

7 Y  8 1 3 IS the sum correct? 

3. Circle six digits in the group below that will add up to 
exactly 21. 

3 3 3 
5 5 5 
9 9 9  

4. A basket contains more than half a dozen eggs. Each 
egg is either white or brown. Let x be the number of white 
eggs, y the number of brown. The sum of x and y, turned up- 
side down, is the product of x and y. How many eggs are in 
the basket? 

A N S W E R S  

1. The number 337-31770 upside down spells "Ollie Lee." 
2. Hold the sum to a mirror. 
3. Turn the picture upside down, circle three 6's and three 

1's to make a total of 21. 
4. The basket has nine white eggs and nine brown eggs. 

When the sum, 18, is inverted, it becomes 81, the product. 
Had i t  not been specified that the basket contained more than 
six eggs, three white and three brown would have been an- 
other answer. 



C H A P T E R  E L E V E N  

Peg Solit air e 

"THE GAME CALLED SOLITAIRE pleases me much," the great 
German mathematician Gottfried von Leibniz wrote in a let- 
ter in  1716. "I take i t  in reverse order. That is to say, in- 
stead of making a figure according to the rules of the game, 
which is to jump to an  empty place and remove the piece over 
which one has jumped, I thought i t  better to reconstruct 
what had been demolished by filling an empty hole over which 
one has leaped. In this way one may set oneself the task of 
forming a given figure if that is possible, as it certainly is 
if i t  can be destroyed. But why all this? you ask. I reply: to 
perfect the a r t  of invention. For we must have the means 
of constructing everything which is found by the exercise of 
reason." 

Leibniz's last two sentences are a bit obscure. Perhaps they 
mean that i t  is worthwhile to analyze everything that has a 
logical or mathematical structure. 

Worthwhile or not, no other puzzle game played on a board 
with counters has enjoyed such a long, uninterrupted run of 
popularity as solitaire. Its origin is unknown, although its in- 
vention is sometimes attributed to a prisoner in the Bastille. 
That it was widely played in France during the Iate nine- 
teenth century is evident from the many French books and 
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articles that were then written about the game. I t  is likely 
that almost every reader of this column has a t  one time or 
another racked his brain over the puzzle. At present several 
versions of solitaire are on sale in this country under various 
trade names, some with pegs that are moved from hole to 
hole and some with marbles that rest in circular depressions. 
The marble versions are easier to manipulate. One can also 
play by placing pennies, beans, small poker chips or any other 
type of counter on the board depicted in Figure 59. 

This board, which has thirty-three cells, is the most popu- 
lar form of solitaire in England, the United States and the 
U.S.S.R. In France the boa'rd has four additional cells at  the 
positions indicated by the four dots. Both forms of the 
board are found throughout the rest of Western Europe, but 
the French form has been the least popular, probably be- 
cause it is not possible to reduce the full board, with center 
vacant, to a single peg. The cells are labeled in traditional 
fashion, the first digit of each number giving the position of 
the column from left to right, the second digit giving the po- 
sition of the row from bottom to top. 

The basic problem-usually the only problem supplied by 
manufacturers of the puzzle-begins with counters placed on 
all cells except the center one. The object is to make a series 
of jumps that will remove every counter but one. For an 
elegant solution this last counter should be left on the cen- 
tral cell. A "jump" consists of moving a counter over any 
adjacent counter to land on the next empty cell. The jumped 
coupter is taken off the board. This is the same as a jump in 
checkers except that each jump must be straight to the left 

Figure 59 
The solitaire board 



124 The Unexpected Hanging 

or right, or straight up or down. No diagonal jumps are al- 
lowed. 

Each move must be a jump. If a point is reached at which 
no jumps are possible, the game ends in a stalemate. A single 
piece may continue in a chain of connected jumps as long as 
jumps are available, but it need not do so. A chain of jumps 
is counted as a single "move." To solve the puzzle, thirty-one 
jumps, obviously, must be made, but if some are in chains, 
the number of moves can be fewer. 

No one knows how many different ways there are to solve 
the puzzle leaving the last counter in the center. Scores of 
solutions have been published. Before discussing some of 
them, however, readers unfamiliar with solitaire are urged 
to try the six simpler figures shown in Figure 60. In each 
case the last counter must be left on the center cell. For 
example, the Latin cross is easily solved in five moves: 
45-25, 43-45, 55-35, 25-45, 46-44. 

After mastering these traditional problems the reader may 
want to try the three puzzles shown in Figure 61. In each of 
these one must begin with a full board, except for a vacant 
center cell, and play until the figure shown remains on the 
board. The first puzzle is easy; the other two are not. Note 
that the pinwheel is a stalemated position. It  is possible to 
reach a stalemate in as few as six moves. Can you discover 
how ? 

Advanced students of solitaire have gone to fantastic 
lengths in setting themselves unusual tasks. For example, in 
his book The Game of Solitaire (1920) Ernest Bergholt in- 
troduces into his brilliant problems a variety of curious re- 
strictions. (All the problems start with a full board, although 
the vacant cell need not be in the center.) His "ball on the 
watch" is a single counter-preferably a different color from 
the others-that must not be moved until the end of the 
game; then it captures one or more pieces to become the sole 
survivor. His "dead ball" is a counter that remains untouched 
throughout and is the last to be taken. A "sweep" is a long 
chain of jumps that closes a game. Bergholt gives many 
examples of games ending in eight-ball sweeps. I t  is possible, 
he maintains, to begin with the vacancy a t  a corner cell, say 
37, and end with a nine-ball sweep. 

What is the smallest number of moves required to reduce 
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LATIN CROSS 
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GREEK CROSS 

FIREPLACE PYRAMID 
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LANP INCLINED SQUARE 

Figure 60 
Tradit ional problems in which the last counter 
is t o  be left in the  center 

WALL SOUARE 

Figure 61 
Play t o  leave these 
patterns on the  board 



a full board of thirty-two pieces to a single piece? It had long
been thought that sixteen moves was minimal, but in 1963 Harry
O. Davis, of Portland, Oregon, found fifteen-move solutions
when the initial vacancy is cell 55 or 52 and the cells that corre-
spond to those two when the board is rotated and reflected. Here
is Davis’s solution with the vacancy at 55 and the last counter also
on 55: 57-55, 54-56, 52-54, 73-53, 43-63, 37-57-55-53, 35-55, 15-
35, 23-43-45-25, 13-15-35, 31-33, 36-56-54-52-32, 75-73-53, 65-
63-43-23-25-45, 51-31-33-35-55. If the vacancy is at 52, the other
fifteen-move solution discovered by Davis ends with the counter
at 55.

Davis found sixteen-move solutions when the initial vacancy is
54 or 57 and all symmetrically corresponding cells and seven-
teen-move solutions on all other cells (the center, 46, 47, and
symmetrically corresponding cells).

There are twenty-one distinct combinations of initial and ter-
minal cells (not counting rotations and reflections, of course).
The following chart lists the minimum-move solutions that have
been found by Davis:
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Vacancy Terminal cell Number of moves
13 13 16
13 43 16
13 46 17
13 73 16
14 14 18
14 41 17
14 44 18
14 74 18
23 23 16
23 53 15
23 56 16
24 24 19
24 51 17
24 54 17
33 33 15
33 63 16
34 31 16
34 34 16
34 64 17
44 14 17
44 44 18
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As the chart shows, if the game opens with a vacant cen- 
ter cell (44) and ends with a counter on the same cell, eigh- 
teen moves are required. Henry Ernest Dudeney, in his 
Amusements in Mathematics (Problem No. 227), gives a 
nineteen-move solution and adds: "I do not think the number 
of moves can be reduced." But Bergholt gives in his book the 
following eighteen-move solution : 46-44, 65-45, 57-55, 54-56, 
52-54, 73-53, 43-63, 75-73-53, 35-55, 15-35, 23-43-63-65-45-25, 
37-57-55-53, 31-33, 34-32, 51-31-33, 13-15-35, 36-34-32-52-54- 
34, 24-44. (Dudeney's solution first appeared in The Stland 
Magazine, April 1908. Bergholt first published his sho~ter  
solution in The Queen, May 11, 1912.) 

"I will venture to assert," writes Bergholt, "that this rec- 
ord will never be beaten." (That eighteen is indeed minimal 
has recently been proved by J. D. Beasley, a t  Cambridge 
University.) Note that if the chain of jumps in Bergholt's 
next-to-last move is not interrupted, a seventeen-move solu- 
tion is achieved, ending on cell 14, with the counter original- 
ly placed on cell 36 serving as a ball on the watch that closes 
the game with a six-ball sweep. 

Other solutions of the classic center-to-center problem, al- 
though failing to achieve the minimum in moves, often have 
a remarkable symmetry. Consider the following examples. 

"The Fireplace" (discovered by James Dow, of Boston) : 
42-44, 23-43, 35-33, 43-23, 63-43, 55-53, 43-63, 51-53, 14-34- 
54-52, 31-51-53, 74-54-52, 13-33, 73-53, 32-34, 52-54, 15-35, 
75-55. The counters now form the fireplace shown in Figure 
60 and the game is completed according to the solution of 
that problem. This shortens by three moves a similar fire- 
place solution by Josephine G. Richardson, also of Boston, 
that is given in Puzzle Craft, a booklet edited by Lynn Rohr- 
bough and published in 1930 by the Co-operative Recreation 
Service of Delaware, Ohio. The next two solutions are from 
Rohrbough's booklet. 

"The Six-Jump Chain": 46-44, 65-45, 57-55, 37-57, 54-56, 
57-55, 52-54, 73-53, 75-73, 43-63, 73-53, 23-43, 31-33, 51-31, 
34-32, 31-33, 36-34, 15-35, 13-15, 45-25, 15-35. The pattern 
now has vertical symmetry. A six-jump chain (43-63-65-45- 
25-23-43) reduces the pattern to a T figure, easily solved 
with 44-64, 42-44, 34-54, 64-44. 

"The Jabberwocky": 46-44, 65-45, 57-55, 45-65, 25-45, 44- 
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46, 47-45, 37-35, 45-25. The pattern is vertically symmetrical. 
The next sixteen moves are mi,rror-image pairs that  can be 
made simultaneously by the right and left hands, as follows: 

Left hand 
15-35 
34-36 
14-34 
33-35 
36-34 
31-33 
34-32 
13-33 

Right hand 
75-55 
54-56 
74-54 
53-55 
56-54 
51-53 
54-52 
73-53 

The solution concludes: 43-63, 33-31-51-53, 63-43, 42-44. 
The mathematical theory behind solitaire is only partly 

known. In fact, one of the major unsolved problems of recre- 
ational mathematics is finding a way to analyze a given soli- 
taire position to determine whether or not it is possible to 
reduce it to another given position. A man who has made 
considerable progress in this direction is Mannis Charosh, 
a teacher of mathematics a t  New Utrecht High School in 
Brooklyn, New York. In The Mathematics Student Journal 
for March 1962, he proves a variety of unusual theorems that 
combine to provide an extremely useful technique for estab- 
lishing the impossibility of certain solitaire problems. Cha- 
rosh's analysis simplifies and extends an earlier analysis by 
M. H. Hermary, to be found in the first volume of Re'c~da- 
tions Mathe'matiques, edited by the French mathematician 
Edouard Lucas. 

Charosh's method consists of applying a series of trans- 
formations to any starting position to see if it  can be changed 
to the desired end position. If it can, the two positions are 
said to be "equivalent." If two positions are not equivalent, 
it  is impossible to change one to the other by jumping pegs 
(or, alternatively, by working backward as Leibniz suggest- 
ed).  If two positions are equivalent, the problem may or may 
not be solvable by the rules of solitaire. In other words, the 
method gives to any solitaire problem, on any type of board, 
a necessary but not a sufficient condition of possibility. 

Charosh's transformations involve any set of three adja- 



Peg Solitaire 129 

cent cells that are in a straight horizontal or vertical line. 
Where there are counters on these three cells, remove them; 
where there are vacancies, put counters. Thus if all three 
cells are filled, all three counters can be removed. If all three 
are vacant, all three can be filled. If there are two counters, 
the two can be removed and a single counter can be placed 
on the previously empty cell. If there is only one counter, it  
can be removed and counters can be placed on the two pre- 
viously empty cells. 

Let us apply this method to the classic problem that begins 
with a vacancy in the center. I t  can be seen a t  once that sets 
of three counters in a row can be removed until only two 
counters remain on, say, cells 45 and 43. Since these are the 
ends of the triplet 43, 44,45, we can remove the two counters 
and substitute a counter on 44. We have thereby shown that 
the full board, with an  empty cell a t  44, is equivalent to an 
empty board with a single counter on 44; therefore the 
problem is not impossible. (We already know, of course, that 
i t  can be solved.) In similar fashion it is easy to see that if 
the game begins with a vacancy anywhere on the board, the 
position can be transformed by Charosh's method to a single 
counter on the same cell. Again, this can always be done in 
actual play. 

Is it possible to begin with a center vacancy and end with 
the last counter on 45? No, i t  is not. There is no way that 
Charosh's method can be used to transform the board to a 
lone counter on 45. To prove this we do not have to start 
with a full board. We can begin with the single counter on 
44 (which we know to be a possible ending) and determine 
how this position can be transformed to other positions with 
a lone counter. Thus: The counter on 44 can be removed and 
counters placed on 54 and 64 (because 44, 54, 64 form a 
triplet). The counters on 54 and 64 can in turn be taken 
away and replaced by a counter on 74. So a lone counter on 
44 is "equivalent" to a lone counter on 74. We can put it this 
way: A single counter is equivalent to a single counter on 
any cell that can be reached by jumping over two cells in a 
straight line in any orthogonal direction. I t  is easy to see 
that 44 is equivalent only to cells 14, 47, 74, 41. These are 
the only cells on which i t  is possible to end a game that be- 
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gins with a vacancy in the center. Practice bears this out. 
Any final jump that puts a counter in the center can be made 
in the opposite direction to put a counter in an equivalent 
cell. All five cells, therefore, can be reached in actual play- 
but no others. 

Application of Charosh's method will reduce any position 
either to a single counter, two counters diagonally adjacent 
or no counters. The last cannot, of course, be reached in ac- 
tual play; instead the game must end on a position equivalent 
to no pieces, such as three adjacent counters in a row, or two 
in a row with two spaces between them. It is not hard to 
show that any position is equivalent (transformable by 
Charosh's method) to its "inverse"-that is, to the same po- 
sition with vacancies replaced by counters and counters by 
vacancies. For example, if counters are removed from two 
diagonally adjacent cells, say 37 and 46, the position is equiv- 
alent to an empty board with counters on those same two 
cells. Because there is no way to transform those two coun- 
ters to a single counter, we know that it is not possible to 
start with vacancies a t  37 and 46 and reduce the board to a 
single counter. 

For anyone wishing to devise a new solitaire problem, 
Charosh's system can save endless hours of time spent in 
seeking solutions for impossible problems. Of course, once a 
problem is shown to be not impossible, the task of finding a 
solution remains. Sometimes a solution exists, sometimes it 
does not. In  seeking a solution, Leibniz's method of working 
backward has one enormous advantage: using numbered 
counters and taking them in order makes it unnecessary to 
keep a record of each attempt. If the attempt succeeds, the 
numbers make i t  easy to reconstruct the sequence of the play. 

In 1960 Noble D. Carlson, an engineer in Willoughby, 
Ohio, raised an interesting question: What is the smallest 
square solitaire board on which i t  is possible to start with a 
full board, except for a vacancy a t  one corner, and reduce 
the position to a single counter? Charosh's technique quickly 
shows that this is impossible on all squares except those with 
sides that are multiples of three. The 3 x 3 square, however, 
proves to be unsolvable. This leaves the 6 x 6 as the most 
likely candidate. (See Figure 62.) The solution, if there is 



Figure 62 
The 6 X 6 problem 

one, will end on the corner cell left open at the start  or on 
one of the three cells "equivalent" to it. (Let the vacancy 
be a t  cell 1, in the upper left-hand corner, and number the 
cells left to right. The three equivalent cells are 4, 19 and 22.) 

Can i t  be done? Yes. Carlson himself found a twenty-nine- 
move solution ending on cell 22. What is wanted now is a 
solution beginning with a vacancy a t  1 and ending a t  1. 

A D D E N D U M  

Readers called my attention to many early discussions of 
solitaire theory in which possibility tests, all more or less 
the same, are given. I have listed the more important refer- 
ences in the bibliography, including a recent report by J. D. 
Beasley of results obtained by a group of mathematicians 
(J. H. Conway, R. L. Hutchings and J. M. Boardman) a t  
Cambridge University. Since Beasley's paper appeared, he 
and Conway have extended the theory even further, but their 
extensions have not yet been published. Sheldon B. Akers, 
Jr., a mathematician a t  the General Electronics Laboratory, 
Syracuse, New York, sent me his own procedure, equivalent 
to Charosh's method, by which a single number is assigned 
to any given solitaire position in such a way that "equiva- 
lent" positions have the same number. 

Gary D. Gordon, a physicist a t  the RCA Astro-Electronics 
Products Division in Princeton, New Jersey, told me of a 
remarkable discovery that he had made some fifteen years 
earlier. The solution to every solitaire problem, on any board, 
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that starts with only one vacant cell and ends with the last 
counter on that  same cell, is reversible. That is, the jumps 
can be taken in reverse order to provide a new solution for 
the same problem. This should not be confused with Leibniz's 
method of working backward by starting with an empty 
board. The beginning position remains the same; only the 
order of jumps is reversed. Thus, in the sixteen-move solu- 
tion provided by John Harris of Santa Barbara, California, 
for the 6 x 6 square, the reversed solution begins with 13-1, 
continues with 25-13, 27-25, and so on, taking in reverse order 
the jumps in the final eight-ball sweep. The result is a differ- 
ent solution with thirty-one moves. Davis points out that on 
full boards there are reverse solutions even if the initial and 
terminal cells are not the same. If a solution is found start- 
ing with cell a and ending on cell b, a reversal of the moves 
automatically provides a solution starting with b and ending 
on a. 

Problems isomorphic with peg-solitaire problems are some- 
times given as checker-jumping problems on a standard 
checkerboard. One of the oldest and best known of such puz- 
zles begins with 24 checkers on the 24 black squares that 
are  in the border, two cells wide, around the four sides of 
the board. Is  i t  possible to reduce these checkers to one by 
jumping? Harry Langman discusses this problem in Scripta 
Mathernatica, September 1954, pages 206-8, and in his book 
Play Mathematics (New York : Hafner, 1962) , pages 203-6. 
An earlier discussion appeared in Games Digest, October 
1938, and the problem goes back a t  least to 1900. I t  is easy 
to set up the isomorphic problem on a peg-solitaire field and 
test for possibility as explained by B. M. Stewart in his 1941 
magazine article cited in the bibliography. It fails to pass. 
If, however, either of the two corner checkers is removed, 
there are many solutions. 

Conway has informed me that the standard solitaire game, 
with center-hole vacancy, can be played to an  unsolvable 
position in as few as four moves: jump into center, over 
center, into center, over center, the first and last moves 
being in the same direction. This is the shortest way to do i t  
and is unique for four moves. In  five moves one can reach 
two different unsolvable positions. 

Bergholt, in his book on solitaire, asserted that i t  is pos- 
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sible to start with a corner vacancy on the standard board 
and conclude with a nine-ball sweep. He gave no solution. 
As fa r  as I know, a solution to this difficult problem was first 
rediscovered by Harry 0. Davis who gives an elegant eight- 
een-move solution in his 1967 article, cited in my list of 
references. Davis also shows in this article that no solution 
to the standard game, regardless of what cell is vacant a t  
the start, can contain a chain longer than nine moves. 

Davis, who has been mentioned many times in this chapter, 
first became interested in peg solitaire when he read about 
i t  in my column in 1962. Since then he has made enough 
fresh discoveries-extending possibility tests, developing 
techniques for obtaining minimum-move solutions and prov- 
ing them minimal, creating and solving new problems, and 
even extending solitaire to three dimensions (which he calls 
"so1idaire")-to make a sizable book. So far  he has published 
only the one article listed. In recent years he has been col- 
laborating with Wade E. Philpott, Lima, Ohio, who has done 
important work on the theory of peg solitaire both in its 
traditional orthogonal form and also on isometric (triangu- 
lar) fields. (On isometric peg solitaire see my Scientific 
American columns for February and May, 1966.) 

A N S W E R S  

For the first five problems, readers found shorter solu- 
tions than the ones I gave in Scientific American. I have here 
substituted minimal solutions, giving the names of those 
who sen.t such solutions. 

Greek cross in six moves: 54-74, 34-54, 42-44-64, 46-44, 
74-54-34, 24-44. (R. L. Potyok, H. 0. Davis.) 

Fireplace in eight moves : 45-25, 37-35, 34-36, 57-37-35, 
25-45, 46-44-64, 56-54, 64-44. (W. Leo Johnson, H. 0. Davis, 
R. L. Potyok.) 

Pyramid in eight moves: 54-74, 45-65, 44-42, 34-32-52-54, 
13-33, 73-75-55-53, 63-43-23-25-45, 46-44. (H. 0. Davis.) 

Lamp in ten moves: 36-34, 56-54, 51-53-33-35-55, 65-45, 
41-43, 31-33-53-55-35, 47-45, 44-46, 25-45, 46-44. (Hugh W. 
Thompson, H. 0. Davis.) 
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Inclined square in eight moves: 55-75, 35-55, 42-44, 63-43- 
45-65, 33-35-37-57-55-53-51-31-33-13-15-35, 75-55, 74-54-56- 
36-34, 24-44. (H. 0. Davis.) Note the remarkable chain of 
eleven jumps. 

Wall: 46-44, 43-45, 41-43, 64-44-42, 24-44, 45-43-41. 
This solves the problem. By continuing to play it is easy to 
reduce the figure to four pieces on the corners of the central 
3 by 3 square. 

Square: 46-44, 25-45, 37-35, 34-36, 57-37-35, 45-25, 43-45, 
64-44, 56-54, 44-64, 23-43, 31-33, 43-23, 63-43, 51-53, 43-63, 
41-43. The finish is apparent: 15-35, 14-34, 13-33 on the left, 
and the corresponding moves on the right, 75-55, 74-54, 73- 
53. The puzzle is now solved. Four more jumps will leave 
counters on the corners (36, 65, 52, 23) of an inclined square 
-an unusually difficult pattern to achieve if one does not 
know earlier positions. 

Pinwheel: 42-44, 23-43, 44-42, 24-44, 36-34, 44-24, 46-44, 
65-45, 44-46, 64-44, 52-54, 44-64. The position now has four- 
fold symmetry. It  is completed: 31-33, 51-31, 15-35, 13-15, 
57-55, 37-57, 73-53, 75-73. The final figure is a stalemate. 

The shortest stalemate, starting with a full board and a va- 
cant center cell, is reached in these six moves: 46-44, 43-45, 
41-43, 24-44, 54-34, 74-54. The next-shortest stalemate is a 
ten-move game. 

Robin Merson, who works on satellite orbit determinations 
a t  the Royal Aircraft Establishment in Farnborough, Eng- 
land, sent a simple proof that a t  least sixteen moves (a  chain 
of jumps counts as one move) are necessary in solving the 
problem on the 6 x 6 square. The first move is 3-1, or its 
symmetrical equivalent. This places a counter on each corner 
cell. I t  is impossible for a corner piece to be jumped, there- 
fore each corner piece must move (including the counter a t  
1, which must move out to allow a final jump into the cor- 
ner). These four moves, added to the first, bring the total to 
five. Consider now the side pieces on the borders between 
corners. Two such pieces, side by side, cannot be jumped; 
therefore for every such pair at least one counter must move. 
On the left and right sides, and on the bottom, at  least two 
pieces must move to break up contiguous pairs. On the top 
edge (assuming a 3-1 first move) one piece will suffice. This 



Figure 63 

Eight-ball-sweep solution Nine-ball-sweep solution 

adds seven moves, carrying the total to twelve. Consider next 
the sixteen interior cells. A block of four (e.g., 8, 9, 14, 15) 
cannot be jumped until a t  least one man has moved. I t  is 
easy to see that  a minimum of four interior pieces must be 
moved to break up all interior four-cell blocks. This brings 
the total of required moves to sixteen. Merson's shortest 
solution was eighteen. He wondered if the gap could be nar- 
rowed. 

To my amazement, one reader, John Harris of Santa Bar- 
bara, California, came through with the ultimate-an elegant 
sixteen-move solution: 13-1, 9-7, 21-9, 33-21, 25-13-15-27, 31- 
33-21-19, 29-27, 16-28, 24-22, 18-16, 6-18, 36-24-12, 3-15-17, 
35-33-21-23, 4-16-18-6-4, 1-3-5-17-29-27-25-13-1. Note that the 
final move is an "eight-ball sweep." The top illustration of 
Figure 63 shows the pattern just before this final move. In 
1964 H. 0. Davis found sixteen-move solutions with the ini- 
tial vacancy a t  any cell of the 6 x 6 square. 

The longest possible final chain is nine jumps. This was 
achieved by Donald Vanderpool of Towanda, Pennsylvania, 
a t  the close of an eighteen-move solution: 13-1, 9-7, 1-13, 
21-9, 3-15, 19-21-9, 31-19, 13-25, 5-3-15, 16-4, 28-16, 30-28, 
18-30, 6-18, 36-24-12-10, 33-21-9-11, 35-33-31-19, 17-15-13- 
25-27-29-17-5-3-1. f i e  position before the final sweep is 
shown a t  the right of Figure 63. 

Vanderpool also investigated rectangular boards with a 
vacant corner cell. He proved that every such board, includ- 
ing square boards, with one dimension of three cells or a 
multiple of three, has a solution except for the following 
boards : 

1. One dimension of one cell (except for the 3 x 1). 
2. One dimension of two cells. 
3. The 3 x 3 square. 
4. The 3 x 5 rectangle. 
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Flat lands 

SATIRE often takes the form of fantasy in which human cus- 
toms and institutions are caricatured by a race of nonhuman 
creatures or a society or world with its own peculiar stand- 
ards or physical laws. Twice there have been notable at- 
tempts to base such satire on a society of two-dimensional 
creatures moving about on a plane. Neither attempt can be 
called a literary masterpiece, but from a mathematical point 
of view both are curious and entertaining. 

Flatland (first published in 1884 and now, happily, avail- 
able as a Dover paperback) is the earlier and better known 
of the two. I t  was written by Edwin Abbott Abbott, a Lon- 
don clergyman and school headmaster who wrote many 
scholarly books. The title page of the first edition bears the 
pseudonym of A. Square. The book's narrator is a square 
in the literal sense. He possesses a single eye at  one of his 
four corners. (How he managed, without feet, to move over 
the surface of Flatland and how he managed, without arms, 
to write his book are left unexplained.) 

Abbott's Flatland is a surface something like a map, over 
which the Flatlanders glide. They have luminous edges and 
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an infinitesimal height along the vertical coordinate, or third 
dimension, but they are completely unaware of their height 
and have no power to visualize it. Society is rigidly stratified. 
At the lowest level are the women : simple straight lines with 
an eye a t  one end, like a needle. There is a visible glow from 
a woman's eye, but none from her other end, so that she can 
make herself invisible simply by turning her back. If a male 
Flatlander inadvertently collides with a lady's sharp posteri- 
or, the encounter can be fatal. To avoid such mishaps, women 
are required by law to keep themselves visible a t  all times 
by a perpetual wobbling of their rear end. Among ladies 
married to men of high rank this is a "rhythmical" and 
"well-modulated undulation." Lower-class females try to imi- 
tate it but seldom achieve anything better than "a mere 
monotonous swing, like the ticking of a pendulum." 

Soldiers and workmen of Flatland are isosceles triangles 
with extremely short bases and sharp points. Equilateral 
triangles constitute the middle class. Professional men are 
squares and pentagons. The upper classes start as hexagons, 
and the number of their sides increases with their rank on 
the social ladder until their figures are indistinguishable 
from circles. The circles, who top the hierarchy, are the ad- 
ministrators and priests of Flatland. 

In a dream the square narrator visits Lineland, a one- 
dimensional world, where he fails to convince the king of 
the reality of two-dimensional space. In turn the square re- 
ceives a visitor from Spaceland-a sphere who initiates him 
into the mysteries of three-space by lifting him above Flat- 
land so that he can look down into the interior of his pentag- 
onal house. When he returns to Flatland, the square tries to 
preach the gospel of three-space, but he is thought mad; he 
is arrested for his views and is in prison as the tale ends. 

The sphere had entered Flatland by moving slowly through 
the plane until his cross section reached a plane figure of 
maximum area. I t  is easy to see that this section is a circle 
with a radius equal to the radius of the sphere. Suppose that 
instead of a sphere a cube had entered Flatland. What is the 
maximum area of a plane cross section that a cube of unit 
side could attain? The cube can, of course, tip his body at any 
angle as he crosses the plane. 



Figure 64 
One-eyed Flatlanders, in order of social rank 
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A much more ambitious work of two-dimensional fiction 
than Abbott's-indeed, a full-blown 181-page novel-was 
Charles Howard Hinton's An Episode of Flatland, published 
in London in 1907. Hinton was the son of James Hinton, a 
prominent London ear surgeon who was a friend of George 
Eliot's and the author of The Mystery of Pain and other 
widely read books. Young Charles studied mathematics a t  
Oxford, married Mary Boole (one of the five daughters of 
George Boole, the logician) and settled in the United States. 
He taught mathematics a t  Princeton University and a t  the 
University of Minnesota. When he died, in 1907, he was an 
examiner in the United States Patent Office. 

A long obituary in the New York Sun (May 5, 1907, page 
8) was written by Gelett Burgess of purple-cow fame. Bur- 
gess recalls an occasion when his friend Hinton was attend- 
ing a football game and a stranger tried to snatch a chrysan- 
themum from his lapel. Hinton picked up the man, tossed him 
over a nearby fence. In 1897 Hinton was in the news with 
his invention of an automatic baseball pitcher. (For  details, 
see Harper's Weekly, Vol. 41, March 20, 1897, pages 301-2.) 
I t  shot balls with charges of gunpowder and could be ad- 
justed to produce a pitch of any desired speed or curve. The 
Princeton team practiced with it for a while, but after a few 
accidents the batters were afraid to face it. 
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Hinton was best known as the author of books and articles 
on the fourth dimension. He developed a method of building 
models of four-space structures (in three-space cross sec- 
tions), using hundreds of small cubes, labeled and colored 
in a manner detailed in his two most important books, The 
Fourth Dimension and A New Era of Thought. By working 
with these cubes for many years, Hinton maintained, he ac- 
tually learned to think in four dimensions. He taught the 
method to his sister-in-law Alicia Boole when she was eight- 
een. Although the girl had no formal schooling in mathe- 
matics, she soon developed a remarkable grasp of four-space 
geometry and later made significant discoveries in the field. 
(See H. S. M. Coxeter, R e g u l a ~  Polytopes [New York: Mac- 
millan, 19481, pages 258-59, for the story of her unusual 
career.) The wife of Hinton's son Sebastian is Carmelita 
Chase Hinton, founder and retired head of the Putney School 
in Vermont. 

In constructing his Flatland, which he called Astria, Hin- 
ton took a more ingenious approach than Abbott. Instead of 
allowing his creatures to wander a t  will over the surface of 
a plane, he stood them upright, so to speak, on the rim of an 
enormous circle. If you place coins of various sizes on a table 
and slide them about, you will find i t  easy to imagine a flat 
sun around which flat circular planets orbit. Gravity behaves 
as it does in our space, except that on the plane its force 
naturally varies inversely with the distance instead of with 
the square of the distance. 

The planet Astria is depicted in Figure 65. The direction 
(indicated by the arrow) in which it rotates is called east, 

Figure 65 
Charles Hinton's 1 ' two-dimensional planet, Astria 
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F i g ~ r e  66 
Home life among the Astrians 

the opposite direction west. There are no north and south, 
only up and down. The Astrians' bodies have a complex 
structure, but to avoid going into anatomical details Hinton 
represents them schematically as right triangles in the man- 
ner shown in Figure 66. Like Abbott's Flatlanders, the 
A ~ t r i a n s  have only one eye. (Apparently neither writer con- 
sidered the possibility of introducing two-dimensional vision 
involving a pair of eyes each with a one-dimensional retina.) 
Unlike the Flatlanders, they have arms and legs. To pass 
each other, two Astrians must of course go under or over 
each other, as would two acrobats on a tightrope. All male 
Astrians are born facing east, all females facing west. They 
keep this orientation until they die because there obviously 
is no way for an Astrian to "turn over" to become his mirror 
image. To see behind him an Astrian must bend backward, 
stand on his head or use a mirror. The mirror method is the 
most convenient; for this reason Astrian houses and build- 
ings are  well supplied with mirrors. To kiss his son a father 
must hold the boy upside down. 

The inhabited region of Astria was originally divided 
between the civilized Unaeans in the east and the barbarian 
Scythians in the west. The Scythians had one great advan- 
tage in warfare: their male warriors could strike the Unae- 
ans from behind, whereas the Unaeans could retaliate only 
by the awkward method of hitting backward. As a result the 
Scythians drove the Unaeans eastward until they were 
squeezed into a narrow territory bordering the White Sea. 
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The Unaeans were saved from extinction by the rise of 
science. Their astronomers, observing eclipses and other 
phenomena, became convinced of the roundness of their 
planet. A study of tides in the White Sea enabled them to 
deduce the existence of an antipodal continent. A select band 
of Unaeans sailed over the White Sea and crossed the new 
continent in a 100-year march during which each tree along 
the route had to be climbed over or cut down. Sons and 
daughters who survived the ordeal then built new ships to 
cross the Black Sea. The Scythians, taken by surprise, were 
quickly overwhelmed because now it  was the Unaean men 
who could attack from the rear!  World government was 
established; an  era of peace had begun. All this is back- 
ground history to set the stage for the novel. 

I will spare the reader the details of the book's melodra- 
matic two-dimensional plot. I t  is in the tradition of early 
socialist fantasies, attacking plutocracy in the name of an 
altruistically planned society. There is a rather flat love affair 
involving Laura Cartright, beautiful daughter of the rich, 
powerful Secretary of State, and Harold Wall, her handsome 
( in  a plane sort of way) proletarian suitor. Central to the 
plot is an ominous note of doom: The close approach of 
Ardaea, another planet, is expected to change Astria's orbit 
to an  ellipse so eccentric that  the climate will become alter- 
nately too hot and too cold to support life. The government 
begins a vast shelter program, excavating deep subterranean 
chambers and stocking them with provisions for the sur- 
vival of the upper class. 

The dreaded fate is averted by the mathematical theories 
of Laura's uncle, Hugh Miller, an eccentric old bachelor who 
lives on Lone Mountain. Miller ( a  thinly disguised Hinton) 
is the only man on the planet who believes in a third dimen- 
sion. He has convinced himself that  all objects have a slight 
thickness along a third coordinate; that they slide about over 
the smooth surface of what he calls the "alongside being." 
By working with models he has been able to awaken in him- 
self a sense of three-space forms. He has come to understand 
that  he is actually a three-space man directing a corporeal 
two-space body. 

"Existence itself stretches illimitable, profound, on both 
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sides of that  alongside being," Miller says in an  eloquent 
address to the leaders of Astria. "Realize this . . . and never 
again will you gaze into the blue arch of the sky without 
an added sense of mystery. However f a r  in those never- 
ending depths you cast your vision, i t  does but glide along- 
side an existence stretching profound in a direction you know 
not of. 

"And knowing this, something of the old sense of the 
wonder of the heavens comes to us, for no longer do con- 
stellations fill all space with an  endless repetition of same- 
ness, but there is the possibility of a sudden and wonderful 
apprehension of beings, such as those of old time dreamed 
of, could we but . . . know that which lies each side of all the 
visible." 

If there were some mechanical means of touching or latch- 
ing on to the surface of the "alongside being," i t  would be 
possible to alter Astria's course in such a way that i t  might 
escape the influence of the approaching planet. There is no 
such method. But since the true self is three-dimensional, i t  
may possess such power. The old man proposes a mass effort 
a t  what is today called psychokinesis, or  PK-the power of 
thought to influence the motion of objects. The plan is carried 
out successfully. A concerted PK effort on the part  of every- 
body alters Astria's orbit just enough to avert catastrophe. 
Science, armed with the new knowledge of three-space, begins 
a great leap forward. 

It is amusing to speculate on two-dimensional physics and 
the kinds of simple mechanical devices that would be feasible 
in a flat world. Hinton points out elsewhere (in an  essay on 
"A Plane World") that  houses on Astria cannot simultane- 
ously have more than one opening. When the front door is 
open, the windows and back door must be closed to keep the 
house from collapsing. 

A tube or pipe of any kind is impossible: how could its 
sides be joined without obstructing the passageway? Ropes 
cannot be knotted. (I t  has been rigorously proved that  closed 
lines knot only in three-space, the surface of a sphere knots 
only in four-space, the surface of a hypersphere only in five- 
space, and so on.) Hooks, levers, couplings, tongs and pendu- 
lums can be used, as can wedges and inclined planes. Wheels 
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with axles are out of the question. A crude gear transmis- 
sion might be made possible by partially encasing each wheel 
in a curved rim. Methods can be worked out for rowing 
ships; airplanes would have to fly like birds by flapping 
wings. Flatfish should have little difficulty paddling through 
the water with properly shaped fins. Liquor could be kept in 
bottles and poured into glasses but no doubt would taste flat. 
Heavy objects can be transported by rolling them along on 
circles much as a three-space object can be rolled over cylin- 
ders. 

This Astrian method of moving objects introduces a de- 
lightfully bewildering problem sent to me recently by Allan 
B. Calhamer, a reader in Billerica, Massachusetts. Figure 67 
shows a loaded Astrian flatcar, 30 feet long, that is being 
moved along a straight track by means of three circles. The 

FLATCAR Figure 67 
How many circles will roll over the flatworm? 

FLATWORM 
N 

I I I I  I  I I  I ! !  I 

-30 FEET =I: 55 FEET 2 

circles are a t  all times exactly 10 feet apart from center to 
center. As soon as the position shown is reached, the rear 
circle is picked up by an Astrian a t  the rear and tossed to a 
companion in front, who places it a t  the spot shown by the 
broken line. The flatcar is pushed forward over the three 
circles, which roll along the track, until the wheels are once 
again in the position shown. The back circle is tossed to the 
front as before and the procedure is repeated as often as 
necessary. 

The flatcar is being moved off the page to the right. Ex- 
actly 55 feet in front of the point a t  which the dotted circle 
touches the track is a flatworm. Assuming that the worm 
does not move, how many circles will roll over i t?  

The reader is urged to try to solve the problem first in 
his head. Next, check your answer with pencil and paper; 
finally, compare it with the answer a t  the close of this chap- 
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ter. For those who would like to do a bit more homework, 
generalize for n equally spaced wheels. Surprisingly, i t  is not 
necessary to know the size of the wheels. 

A D D E N D U M  

In describing Flatland I said that no tunnels were l~ossible, 
but this is not strictly true. Gregory Robert, North St. Paul, 
Minnesota, wrote to say that the roof of a Flatland tunnel 
could be supported by a series of doors, each hinged a t  the 
top. A Flatlander could walk through such a tunnel, opening 
one door a t  a time while the roof remained supported by the 
other doors. There would have to be a mechanism to prevent 
all doors from being opened a t  once. 

"The Fourth Dimension: An Efficiency Picture," Chapter 
12 of Fletcher Durell's Mathematical Aclve~ztu~cs (Boston : 
Bruce Humphries, 1938) contains some amusing specula- 
tions about inhabitants of Thinland, a region similar to Hin- 
ton's Flatland. Binocular vision is achieved by two eyes, one 
on the forehead, one on the chin. A long neck permits a Thin- 
lander to tilt his head backward and upside down to see be- 
hind him. When male and female Thinlanders have to pass 
each other, the rule is that the man lies down to let the 
woman walk over him. 

In addition to these mechanical difficulties of life on the 
plane, mention should also be made of the problem of de- 
signing a brain in view of the topological limitations of 
planar networks. An animal brain as we know it  demands a 
fantastically complex three-space network of nerve filaments 
impossible to achieve on the plane without self-intersection. 
The difficulty is not, however, as formidable as it seems, for 
one can imagine self-intersecting networks along which elec- 
trical impulses travel across intersections without, so to 
speak, turning corners. 

For information on Boole's wife and five daughters, and 
their remarkable descendants, the reader is referred to Nor- 
man Gridgeman's article "In Praise of Boole," in The New 
Scientist, No. 420, December 3, 1964, pages 655-57. Boole's 
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wife, Mary, in the sixty years after her husband's death, 
"continually wrote about and preached boolery in a dozen 
fields," writes Gridgeman, "including theology and ethics. 
She became almost obsessed with the mystique of algebraic 
symbolism and the roles of zero and unity. As late as 1909 
she put out a book entitled The Philosophy and Fun of Alge-  
bra in which she urged 'those u7ho wish . . . to get into right 
relations with the Unknown' to create their own algebras on 
boolean principles." 

Howard Everest Hinton, a grandson of Charles Hinton 
and Mary, the oldest daughter of Boole, is a well-known 
British entomologist. The story of two of Charles's other 
grandchildren, William Hinton and his sister Joan, a physi- 
cist, is told in Time, August 9, 1954, page 21. Both became 
enthusiastic supporters of Red China. The son of Boole's 
second daughter, Margaret, is Geoffrey Taylor, a Cambridge 
mathematician. The story of Alicia, the third daughter, has 
already been briefly told. The fourth daughter, Lucy, became 
a professor of chemistry a t  the Royal Free Hospital, London. 
Ethel Lillian, the youngest daughter, married Wilfrid Voy- 
nich, a refugee Polish scientist. In  her youth she wrote The 
Gadfly, a bitterly anti-Catholic novel about political revolu- 
tion in Italy. I t  became one of the all-time best sellers in 
Russia and, more recently, in China,. After the First World 
War the Voyniches moved from London to Manhattan, where 
Ethel died in 1960 a t  the age of ninety-six. "Modern Rus- 
sians are constantly amazed," writes Gridgeman, "that so 
few Westerners have heard of E. L. Voynich, the great En- 
glish novelist." 

A N S W E R S  

The problem of slicing a cube to obtain a plane section of 
maximum area is answered as shown in Figure 68. The 
shaded section is a rectangle with an  area of 62, or 1.41+. 
(The problem was posed by C. Stanley Ogilvy and answered 
by Alan R. Hyde in American Mathematical Monthly, Vol. 
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63 [1956], p. 578.) I t  is possible to slice a cube so that the 
section is a regular hexagon, but the area is only 1.29 +. 

Figure 68 
Answer to cube problem 

The answer to the flatcar problem is that only one circle 
will roll over the flatworm. When there are n equally spaced 
circles and n is even, the number of circles that roll over a 
flatworm placed anywhere on the track (except at spots 
where a circle goes directly on the worm) is 4 2 .  When n is 
odd, the situation is more complex. The track ahead of the 
front circle must be divided into segments that are each equal 
in length to the spacing between two adjacent circles. A 
worm on any alternate segment, beginning with the segment 
immediately ahead of the front circle, will be run over by 
n/2 + 1/2 circles. A worm on any of the other alternate seg- 
ments will be run over by n/2 - 1/2 circles. Again, one as- 
sumes that the worm is not at  a spot where a circle is placed 
directly on top of i t ;  or, as the mathematician would say, 
one ignores "boundary conditions." 

Readers who solved the problem will have observed that 
the flatcar moves twice as fast relative to the ground as a 
wheel rolling beneath it, so that for every distance x trav- 
eled by a wheel, the flatcar goes a distance of 2x. The same 
mechanical principle is involved in the operation of elevator 
doors; one of the half-doors slides twice as fast and twice as 
fa r  as the other. 



C H A P T E R  T H I R T E E N  

Chicago 
Magic Convention 

EVERY SUMMER, usually in July, several thousand members 
of the imaginary Brotherhood of American Magicians de- 
scend on a Middle Western hotel for their annual convention. 
This year i t  was the Sherman Hotel, a t  the northwest corner 
of Chicago's Loop. For three days and nights the hotel lobby 
was a phantasmagoria of riffling cards, clicking coins, cut 
and restored ropes, fluttering doves, vanishing bird cages 
and even one or  two levitated ladies. 

I attended the conclave partly because magic is my princi- 
pal hobby, partly in search of offbeat material for my Scien- 
tific American column. Many professional mathematicians 
are amateur conjurers and many conjurers have a lively in- 
terest in mathematics. The result is mathernagic, surely the 
most colorful of all the branches of recreational mathematics. 

On the mezzanine floor about twenty magic dealers had set 
up booths for the purpose of hawking their wares. I paused 
in front of the booth where the Great Jasper (a Chicago 
magic dealer who performs under that name) was demon- 
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strating a large-size version of what magicians call "tumble 
rings." Thirty steel rings are linked together in the curious 
manner shown in Figure 69. To operate the tumble rings, 
first hold the top ring of the chain in the left hand. Directly 
below the top ring is a pair of rings. With the right thumb 
and index finger take the back of the ring on the right exact- 
ly as shown in the illustration. When the ring held in the 
left hand is released, i t  appears to tumble from ring to ring 
all the way down the chain, finally linking itself to the bot- 
tom ring. 

To repeat the effect, hold what 
is now the top ring in the right 
hand. With the left thumb and 
index finger hold the front of the 
ring on the left of the pair that 
links through the top ring. When 
the top ring held in the right 
hand is released, i t  tumbles down 
the chain as before. 

"Do you suppose any of my 
readers could make a set of these 
rings?" I asked. 

"Why not?" s a i d  J a s p e r .  
"Five-and-dime stores sell steel The tumble rings 

key rings. With thirty key rings 
and a strong thumbnail you can 
make a set of tumble rings in 
about twenty minutes. But don't 
tell any of the other dealers I 
said so." 

Jasper was right. Key rings 
of the familiar coiled type make 
excellent tumble rings. To save 
your thumbnail, use a nail file 
to pry open the ends of the coils. 
A twist of the blade will keep a ring open until another ring 
can be slipped into the gap. The least confusing procedure is 
to start  with the top ring, hanging i t  on a projection, then 
work down ring by ring, following the illustration. The rings 
tumble smoothly, with a pleasant clicking rhythm, unless you 
have made a mistake in the linkage. 
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While Jasper and I were chatting, Fitch Cheney, a mathe- 
matician a t  the University of Hartford, came over and joined 
us. "If you're interested in linkage effects," he said to me, 
"I've invented a new one that your readers might like.'' 

From his pocket Cheney pulled a long piece of soft rope. 
Jasper and I each took an end, then with the index finger 
of our free hands we bent the rope into the shape shown a t  a 
in Figure 70. Cheney tied a silk handkerchief tightly around 
the rope by making a single knot as shown a t  b. Both ends 

Figure 70 
Steps in performing Fitch Cheney's rope-and-handkerchief trick 
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of the handkerchief were then tucked down through a loop, 
as indicated by the arrows, and the ends were tied twice 
below the rope to make a secure square knot [c]. 

"Please release the loops you are holding with your index 
fingers," Cheney said, "and remove all the slack from the 
rope by pulling i t  straight." We did so, with the result shown 
a t  d. Cheney rotated the knotted silk 180 degrees to bring 
the square knot to the top. 

"It's a strange thing," he said. "Although that handker- 
chief has been knotted tightly around the rope, the rope is 
now outside the closed curve formed by the cloth." He took 
hold of the knotted handkerchief, lifted i t  up and off the rope 
as shown a t  e !  The effect is self-working if you follow the 
illustrations carefully. 

The hotel's cocktail lounge before the dinner hour was 
noisy with prestidigitators. At the bar I ran into my old 
friend "Bet a Nickel" Nick, a blackjack dealer from Las 
Vegas who likes to keep up with the latest in card magic. 
The nickname derives from his habit of perpetually making 
five-cent bets on peculiar propositions. Everybody knows his 
bets have "catches" to them, but who cares about a nickel? 
I t  was worth five cents just to find out what he was up to. 

"Any new bar bets, Nick?" I asked. "Particularly bets 
with probability angles?" 

Nick slapped a dime on the counter beside his glass of beer. 
"If I hold this dime several inches above the top of the bar 
and drop it, chances are one-half it falls heads, one-half i t  
falls tails, right ?" 

"Right," I said. 
"Betcha a nickel," said Nick, "it lands on its edge and stays 

there." 
"O.K.," I said. 
Nick dunked the dime in his beer, placed i t  against the side 

of his glass and let i t  go. I t  slid down the straight side, 
landed on its edge and stayed on its edge, held to the glass 
by the beer's adhesion. I handed Nick a nickel. Everybody 
laughed. 

Nick tore a paper match out of a folder, marked one side 
of the match with a pencil. "If I drop this match, chances 
are  fifty-fifty it falls marked side up, right?" I nodded. "Bet- 
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cha a nickel," he went on, "that i t  falls on its edge, like the 
dime." 

"It's a bet," I said. 
Nick dropped the match. But before doing so, he bent i t  

into the shape of a V. Of course i t  fell on its edge and I lost 
another nickel. 

Someone in the crowd took a small plastic top from his 
pocket. "Have you seen these 'tippy tops' that the dealers are 
selling? I'll bet you a nickel that if you spin it, i t  will turn 
upside down and spin on the t ip of its pin." 

"No bet," said Nick. "I bought a tippy top myself. But 1'11 
tell you what I'll do. You spin the top clockwise. $'ll bet you 
a nickel you can't tell me now in what direction i t  will be 
spinning after i t  flips over." 

The man with the top pursed his lips and mumbled: "Let's 
see. It goes clockwise. When i t  turns over, i t  will have to 
keep spinning the same way. Obviously i t  can't stop spinning 
and start  again in the other direction. But if the ends of its 
axis are reversed, the spin will be reversed when you look 
down on the top. In  other words, after the top flips over it 
should be spinning counterclockwise." 

He gave the top a vigorous clockwise spin. In a moment i t  
turned upside down. To everybody's vast astonishment it was 
still spinning clockwise when one looked down on it. (See 
Figure 71 .) If the reader will buy a tippy top (they are  sold 
in many dime stores and toy shops), he will discover that this 
is indeed what happens. As a particle physicist might say, 
the top actually alters i ts  parity as i t  turns over. It becomes 
its own antitop o r  mirror image ! 

After the banquet and evening show, conventioners clus- 
tered in various hotel rooms to gossip, swap secrets and talk 
magic. I finally located the room in which the mathemagi- 
cians were in session. A friend from Winnipeg, Me1 Stover, 

Figure 71 
A clockwise spun "tippy top" 
[left] is still spinning clockwise 
after it turns upside down 
[right] 
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was explaining how the binary system could be applied to a 
familiar method of revealing a chosen card. 

In  many card tricks the selected card is disclosed when the 
spectator is handed a small packet of cards and asked to shift 
the top card to the bottom of the packet, deal the next card 
to the table, shift the next card to the bottom, deal the next 
to the table, and so on, until only one card remains. I t  proves 
to be the selected card. At what position in the packet must 
this card originally be placed so that  i t  will become the last 
card? The position will vary, of course, with the number of 
cards in the packet. I t  can be determined by experiment, but 
for large packets experimenting is tedious. Fortunately, 
Stover explained, the binary system provides a simple an- 
swer. 

This is how it  is done. Express the number of cards in the 
binary system, shift the first digit to the end of the number, 
and the resulting binary number will indicate the position 
that  the chosen card should be in from the top of the original 
packet. For example, suppose an entire deck of 52 cards is 
used. The binary expression for 52 is 110100. We move the 
first digit to the end: 101001. This new number is 41, there- 
fore the chosen card must be the 41st card from the top of 
the deck. 

What size packets can be used if we want the top card of 
the packet to be the card that remains? The binary number 
for the position of the top card is 1, so we must use packets 
with binary numbers of 10, 100, 1000, 10000 . . . (in decimal 
notation packets of 2, 4, 8, 16 . . . cards). If we want the 
bot tom card of the packet to be the remaining card, then the 
binary numbers of the packets must be 11, 111, 1111, 11111 
. . . (or 3, 7, 15, 31 . . . cards). 

Is  i t  possible for the second card from the top of a packet 
to be the remaining card? No. In  fact, no card a t  an even  
position from the top can ever be the remaining card. The 
position of the chosen card, expressed as a binary number, 
must end in 1 (because after the first digit, which must be 1, 
is moved to the end it forms a number ending in 1 ) .  All bin- 
ary numbers ending in 1 are odd numbers. 

Victor Eigen, whose tricks were discussed in N e w  Mathe- 
matical Diversions f r o m  Scientific American (New York: 
Simon and Schuster, 1966), took the floor to demonstrate a 
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remarkable new card trick that involves the coding of in- 
formation. "I want to explain in advance exactly what I 
intend to do," he said. "Anyone may shuffle his own deck of 
cards and from it  select any five cards. From those five he 
must choose one. I am allowed to arrange the remaining four 
cards in any order I please. These four cards, squared into 
a packet and all face down, are  to be taken to my hotel room 
by whoever selected the card. My wife is in the room, waiting 
to assist in the trick. The person carrying the packet will 
knock three times on the door, then push the packet of four 
cards, held face down, under the door. No words will be 
spoken by either person. My wife will examine the packet 
and name the selected card." 

I asked permission to do the selecting. The procedure was 
carried out exactly as Eigen had directed. I took five cards 
from my own deck and selected from them the six of spades. 
Eigen did not touch the cards. He wanted to rule out the 
possibility that  he might mark them in some way and so pro- 
vide additional information. Moreover, most cards have backs 
that  vary in minute details when turned upside down. By 
taking advantage of these "one-way backs" (as magicians 
call them) i t  would be possible to arrange the cards in a pat- 
tern-some turned one way, some the other-that would 
convey a large amount of information. If the cards had been 
placed in a container of some sort, say an envelope, still more 
information could be coded. For example, the cards could be 
put in the envelope either face up or face down, the envelope 
could be sealed or  left unsealed, and so on. Even the choice 
of a container or no container could convey information. Had 
Eigen been given the privilege of picking someone to take 
the cards to his wife, this choice also could be used as part  
of the code. He could select a person with dark or light hair, 
married or unmarried, last initial from A to M or M to 2, 
and so on. Of course his wife would have to observe in some 
way who delivered the cards. It was to rule out all these 
possibilities that  Eigen had described the procedure in ad- 
vance and had been careful not to touch the cards in any 
way. 

After I had arranged the four cards in an order specified 
by Eigen, I asked for his room number and was about to 
leave when Me1 Stover spoke up. "Hold on a minute," he said. 
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"How do we know that Eigen isn't sending information by 
the time he picks to send you to his room? By conversation 
he delays your leaving until the time is within a certan 
interval that  is part  of the code." 

Eigen shook his head. "No time intervals are involved. If 
you like, wait awhile and let Gardner go whenever he 
wishes." 

We delayed about fifteen minutes, watclzing with awe 
while Ed Marlo, a Chicago card expert, showed how a flaw- 
less series of eight far0 shuffles would bring a full pack back 
to its original order. A faro shuffle-in England i t  is called 
a weave shuffle-is a perfect riffle shuffle in which single 
cards alternate from left and right halves, each half con- 
taining twenty-six cards. If the first card to fall is from the 
former bottom half, i t  is called an  out-shuffle. If the first card 
is from the former top half, i t  is an  in-shuffle. Eight out- 
shuffles or fifty-two in-shuffles will restore the deck's original 
order. Only the most skillful card hustlers and magicians 
can execute such shuffles rapidly and without error. In  recent 
years many articles analyzing the far0 shuffle in the binary 
system have been published in both magic and mathematical 
journals. Ed Marlo has published two books about the shuf- 
fle and the brilliant mathematical card tricks that can be 
based on it. 

After Marlo's demonstration I carried my packet of four 
cards to Eigen's room, knocked three times, pushed the face- 
down packet under the door. I heard footsteps. The packet 
was pulled out of sight. A moment later Mrs. Eigen's voice 
said: "Your card is the six of spades." 

Exactly how did Eigen convey this information to her? 

A D D E N D U M  

I have been unable to learn the origin of the tumble rings 
or even the approximate time they were invented. They are 
mentioned in R. M. Abraham's Winter Nights Entertain- 
ments, a British book published in 1932, but are undoubtedly 
much older. The chain is sometimes made with rings of two 
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colors so that if you drop, say, a red ring, you see what ap- 
pears to be a red ring tumble down and hang a t  the bottom. 
If the magician starts with a separate red ring palmed in 
one hand, a green ring in the other, he can apparently cause 
a ring of each color to tumble, and each time appear to catch 
and remove the ring as i t  falls off the lower end. 

E. A. Brecht, Chapel Hill, North Carolina, found a good 
procedure for forming the chain. He starts with a 1-2-1-1 
chain of simply linked rings. The bottom ring is then linked 
in the proper manner with the single ring above it to make 
a 1-2-2 chain. A 2-ring chain is added to make a 1-2-2-1-1 
chain, then the bottom ring is again linked to the one above 
i t  in the proper manner. Another 2-ring chain is added, and 
this procedure repeated as often as desired. 

For explanations of the tippy top, see C. M. Braams, "The 
Symmetrical Spherical Top," Nature, Vol. 170, No. 4314 
(July 5, 1952) ; C. M. Braams, "The Tippe Top," American 
Journal of Physics, Vol. 22 (1954), page 568; and John B. 
Hart, "Angular Momentum and Tippe Top," American Jour- 
nal of Physics, Vol. 27, No. 3 (March 1959), page 189. 

The binary method that I gave for determining the posi- 
tion of a card in a packet of n cards (so that i t  will be the 
last card when one follows the procedure of alternately deal- 
ing a card to the table and placing a card under the packet) 
was published by Nathan Mendelsohn in American Mathe- 
matical Monthly, August-September, 1950. An equivalent 
way of calculating the position had long before been known 
to magicians: simply take from n the highest power of 2 
that  is less than n, and double the result. This gives the card's 
position if the first card is dealt to the table. If the first card 
is placed beneath the packet, 1 is added to the result. (If TL 

is itself a power of 2, the card's position is on top of the 
packet if the first card goes beneath, on the bottom of the 
packet if the first card is dealt.) 

The earliest published trick I know of that exploits this 
formula is Bob Hummer's "The Great Discovery," a printed 
sheet of instructions published by Kanter's Magic Shop, 
Philadelphia, in 1939. Since then, dozens of ingenious card 
tricks using the principle have been published, with new 
ones still appearing in the literature. John Scarne, the card 
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and gambling expert, in 1950 published a pamphlet called 
Scarne's Quartette, explaining four tricks using the princi- 
ple. (They later appeared in Bruce Elliott's The Best in 
Magic [New York: Harper, 19561, pages 116-20.) Here, 
from one of Scarne's four tricks, is a simple handling that  
shows how the principle can be cleverly concealed. 

Someone shuffles a deck and hands i t  to you. Fan the deck, 
faces toward you, and state that you will determine in ad- 
vance a card that  will be selected. Note the top card of the 
deck and write its name on a slip of paper that you put aside 
without letting anyone see what you have written. Assume 
that the card is the two of hearts. 

The deck is held face down in your left hand. Ask a spec- 
tator to give you any number from 1 to 52, but preferably 
above 10 to make the trick more interesting. Suppose he says 
23. Mentally subtract the highest power of 2 you can, in this 
case, 16, to get 7. Twice 7 is 14. Your task now is to get the 
top card, the two of hearts, to the fourteenth position in a 
packet of 23 cards. This is done as follows. Count the cards 
singly by taking them from the toy of the deck with your 
right thumb. This reverses the order of the cards. After 
counting 14, pause and say (as though you had forgotten), 
"What number did you give me?" When he tells you i t  was 
23, nod, say "Oh, yes-twenty-three," and continue count- 
ing. Now, however, you take the cards from the deck by 
pushing them to the right with your left thumb and sliding 
each card under the packet in your right hand. Thus when 
you have counted 23 cards, the two of hearts has subtly been 
placed in the fourteenth position. Your pause and question 
breaks the counting into two parts, and no one is likely to 
notice that  the two counting procedures are not the same. 
Hand the packet of 23 cards to the spectator with the request 
that he deal the first card to the table, the next one to the 
bottom of the pile in hand, the next to the table, and so on 
until a single card remains. I t  will, of course, be the card you 
predicted. 

Sam Schwartz, a Manhattan attorney, published this pres- 
entation in 1962. I give i t  in slightly simplified form. Take 
from the deck a packet of 4, 8, 16, or 32 cards; for example, 
let us use 16. Turn your back and ask a spectator to remove 
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a small packet of cards ( i t  must be less than 16) from the 
deck and hold them in his hand without letting you know 
how many he took. Let n be the number he holds. Fan your 
packet of 16 cards, faces toward spectator, and ask him to 
remember the nth card from the top-without, of course, 
letting you know the value of n or the name of the card. 
Square up the cards you are holding and have him place his 
packet of cards on top. This automatically places the chosen 
card in the 2nth position in a packet of 16 + n cards, there- 
fore when the cards are dealt one to the table, then one to 
the bottom of the pile in hand, and so on, the selected card 
will be the one that remains. Instead of handing the packet 
immediately to the spectator, however, Schwartz puts i t  be- 
hind his back and says he will adjust the cards to put the 
chosen card in the desired position. Actually, he does nothing 
whatever behind his back. This is done, he writes, only "to 
conceal the fact that the trick is self-working." 

Ronald Wohl, a chemist a t  Rutgers University who under 
the pseudonym of "Ravelli" has published many original 
mathematical tricks of great subtlety, has given me permis- 
sion to describe the following unpublished trick, which has an 
effect similar to the preceding one and which he worked out 
independently a t  about the same time that Schwartz worked 
out his trick. After a packet of 2" cards, say 32, has been 
shuffled by a spectator, he is asked to think of any number 
from 1 to 15 and put that number of cards into his pocket 
while the magician's back is turned. The performer takes 
the remaining cards and deals them face down into a pile, 
showing the face of each card as i t  is dealt. The spectator 
notes in his mind the card corresponding to his thought-of 
number. After all the cards are dealt (the dealing of course 
reverses their order) the packet is handed to a second spec- 
tator, who is given instructions for doing the "under-down" 
deal (first card under, next to the table, and so on) until one 
card-the chosen one-remains. 

A different handling of essentially this same trick has 
been suggested by George Heubeck, a New York City card 
expert. A packet of 2" cards is shuffled by a spectator, who 
deals i t  into two side-by-side piles, stopping whenever he 
wishes, provided that each pile has the same number of cards. 
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He is given a choice of either of the two piles or the packet 
in his hands. If he chooses a table pile, he notes its top card, 
then drops on that pile the cards in his hands. The enlarged 
pile is picked up and the chosen card disclosed by an under- 
down deal. If he chooses the packet in his hands he looks a t  
the bottom card of that packet, drops i t  on either pile, picks 
up the cards, and finds the chosen card by a down-under deal. 

The problem of determining the card's position in such 
tricks is a special case of a more general problem known to 
recreational mathematicians as the Josephus problem. I t  has 
been the basis of many old puzzles. A group of men stand in 
a circle. All but one are to be executed. The executioner starts 
counting round and round the circle, executing every nth 
man, until only one man remains. The last man is given his 
freedom. Where should a man stand in order to escape exe- 
cution? When n = 2, we have the card situation. For a his- 
tory of the Josephus problem and some of its ramifications, 
see W. W. Rouse Ball, Mathematical Recreations and Essays, 
revised edition (New York: Macmillan, 1960), pages 32-36. 

The earliest reference I have on the five-card problem is 
Wallace Lee, Math Miracles (1950), Chapter 14, which ex- 
plains a trick of Fitch Cheney's similar to the one I described. 
The difference is that  in Cheney's version the magician is 
allowed to decide which of the five cards is to be the selected 
one. The problem of coding the fifth card when it is chosen 
by the spectator was first given, I believe, by "Rusduck" in 
the third issue (June 1957) of his obscure little magazine, 
The Cardiste. Issues 4 and 5 (September 1957 and February 
1958) give two imperfect methods of doing the trick. (There 
are, of course, no "perfect" methods.) Further suggestions 
are supplied by Tom Ransom in the Canadian magic maga- 
zine Ibidem, No. 24 (December 1961), page 31, and many 
other methods have since appeared in other magic magazines. 

A N S W E R S  

Since none of the four cards can be the selected card, it is 
necessary only to code the name of one of 48 cards. The 
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magician and assistant have agreed on an order for all 52 
cards, so that each card can be assigned a number, from 1 
to 52, in the agreed-on hierarchy. The four cards that carry 
the code will then represent four numbers that can be desig- 
nated A, B, C, D in order of rank. These four cards can be 
arranged in 24 different ways, exactly one half of 48. The 
48 cards (one of which must be coded) are thought of as 
ordered according to the ranks of their assigned numbers, 
then divided in half, half consisting of the 24 lower cards, 
the other half consisting of the 24 higher cards. Suppose the 
chosen card is the seventeenth card in the "low" group. The 
number 17 can be communicated by the ordering of the four 
cards, but one additional signal is needed to indicate whether 
it is the seventeenth card in the "low" or the "high" group. 

The problem that remains, then, is how to communicate 
this final yes-no signal. I t  cannot be communicated by the 
ordering of the four cards. The problem was stated in such 
a way as to rule out various other methods that suggest 
themselves, such as marks on the cards, the choice of the 
person who takes the cards to the assistant, the use of a con- 
tainer for the cards, the procedure to be followed, the time 
at which the cards are taken to the assistant and so forth. 

One subtle loophole was not ruled out: the hotel room in 
which Mrs. Eigen waited. The Eigens had taken two rooms, 
adjoining and connecting. Victor Eigen did not give the num- 
ber of his hotel room until after the card had been selected. 
He arranged the four cards to code a position from 1 to 24, 
then transmitted the final clue-whether the high or the low 
group was involved-by choosing one of his two rooms. Mrs. 
Eigen simply went to the door at  which she heard knocking. 
This information, combined with the four-card code, was 
sufficient to pinpoint the selected card. 

One reader in Manhattan, Robert S. Erskine, Jr., summed 
the situation up neatly with the following quatrain: 

Two doors, two wives, or other plan, sir, 
Our friend must have, though necromancer, 
The cards alone, to girl or man sur- 

render only half the answer. 



C H A P T E R  F O U R T E E N  

Tests of Divisibility 

A DOLLAR BILL that  I have just taken from my wallet bears 
the serial number 61671142. A schoolboy could say a t  once 
that  this number is exactly divisible by 2 but not by 5. Is it 
divisible-from now on the word will be used to mean divisi- 
ble without a remainder-by 3 ?  By 4?  By 11? Few people, 
including many mathematicians, know all the simple rules by 
which large numbers can be tested quickly for divisibility 
by numbers 1 through 12. The rules were widely known 
during the Renaissance, before the invention of decimals, 
because of their usefulness in reducing large-number frac- 
tions to lowest terms. Even today they are handy rules for 
anyone to know. For a devotee of digital puzzles the follow- 
ing rules are indispensable. 

To test for 2 :  A number is divisible by 2 if and only if the 
last digit is even. 

To test for 3 :  Sum the digits. If the result is more than 
one digit, sum again and continue until one digit remains. 
This final digit is called the digital root of the number. If i t  is 
a multiple of 3, the number is divisible by 3. If i t  is not a 
multiple of 3, its excess over 0, 3 or 6 is the same as the re- 

160 



Tests of Divisibility 161 

mainder when the original number is similarly divided. Ex- 
ample: The serial number of the bill has a digital root of 1. 
Therefore when the number is divided by 3, the remainder 
will be 1. 

To test for 4: A number is evenly divisible by 4 if and 
only if the number formed by its last two digits is divisible 
by 4. (This is easy to understand when you reflect on the fact 
that 100 and all its multiples are evenly divisible by 4.) The 
dollar bill's serial number ends in 42. Because 42 has a re- 
mainder of 2 when divided by 4, the serial number, when 
divided by 4, will have a remainder of 2. 

To test for 5 : A number is divisible by 5 if and only if i t  
ends in 0 or 5. Otherwise the last digit's excess over 0 or 5 
equals the remainder. 

To test for 6: Test for divisibility by 2 and 3, the factors 
of 6. A number is divisible by 6 if and only if i t  is an even 
number with a digital root divisible by 3. 

To test for 8: A number is divisible by 8 if and only if the 
number formed by its last three digits is divisible by 8. (This 
follows from the fact that  all multiples of 1,000 are  divisible 
by 8.) Otherwise the remainder is the same as the remainder 
when the original number is divided by 8. (This rule holds 
for all powers of 2. A number is divisible by 2" if and only 
if the last n digits form a number divisible by 2".) 

To test for 9 :  A number is divisible by 9 if and only if i t  
has a digital root of 9. If not, the digital root equals the re- 
mainder. The serial number of the bill has a digital root of 1, 
therefore i t  has a remainder of 1 when divided by 9. 

To test for 10: A number is divisible by 10 if and only if 
i t  ends in 0. Otherwise the final digit equals the remainder. 

To test for 11: Take the digits in a right to left order, al- 
ternately subtracting and adding. Only if the final result is 
divisible by 11 will the original number be divisible by 11. ( I t  
is assumed that  0 is divisible by 11.) Applied to the number 
on the bill, 2 - 4 + 1 - 1 + 7 - 6 + 1 - 6 = -6. The final 
figure is not a multiple of 11, therefore neither is the orig- 
inal number. To determine the remainder, consider the final 
figure. If i t  is less than 11, and positive, i t  is the remainder. 
If it is negative, add 11 to find the remainder. If the final fig- 
ure is more than 11, reduce i t  to a number less than 11 by 
dividing by 11 and putting down the excess. If the excess is 
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positive, i t  is the remainder you seek; if i t  is negative, add 11. 
( In  the example, -6 + 11 = 5. This tells you that  the bill's 
number, divided by 11, has a remainder of 5.) 

To test for 12: Test for 3 and 4, factors of 12. The num- 
ber must meet both tests to be divisible by 12. 

The reader has surely noticed a singular omission from 
the foregoing rules. How does one test for 7, the divine num- 
ber of medieval numerology? I t  is the only digit for which no 
one has yet found a simple rule. This disorderly behavior on 
the part  of 7 has long fascinated students of number theory. 
Dozens of curious 7 tests have been devised, all seemingly 
unrelated to one another; all, unfortunately, are almost as 
time-consuming as the orthodox division procedure. 

One of the oldest of such tests is to take the digits of a 
number in reverse order, right to left, multiplying them suc- 
cessively by the digits, 1, 3, 2, 6, 4, 5, repeating with this 
sequence of multipliers as long as necessary. The products 
are  added. The original number is divisible by 7 if and only if 
this sum is a multiple of 7. If the sum is not a multiple, its 
excess over a multiple of 7 equals the remainder when the 
original number is divided by 7. This is how the method is 
applied to the number on the bill: 

Ninety-nine divided by 7 has an  excess of 1. This is the re- 
mainder when the bill's number is divided by 7. The test can 
be speeded up by "casting out 7's" from the products: writ- 
ing 5 instead of 12, 0 instead of 28 and so on. The sum will 
then be 22 instead of 99. The test is really nothing more than 
a method of casting multiples of 7 out of the original num- 
ber. It derives from the fact ,that successive powers of 10 are  
congruent (modulo 7)  to digits in the repeating series 1, 3, 2, 
6, 4, 5 ;  1, 3, 2, 6, 4, 5 . . . (Numbers are  congruent modulo 7 
if they have the same remainder when divided by 7. )  Instead 
of 6, 4, 5 one can substitute the congruent (modulo 7) multi- 
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pliers -1, -3, -2. The interested reader will find i t  all clearly 
explained in the chapter on number congruence in W h a t  
I s  Mathematics? by Richard Courant and Herbert Robbins 
(1941). Once the basic idea is understood i t  is easy to invent 
similar tests for  any number whatever, as Blaise Pascal ex- 
plained back in 1654. For example, to test for 13 we have 
only to note that  the powers of 10 are congruent (modulo 
13) to the repeating series 1, -3, -4, -1, 3, 4 . . . This series 
is applied to a number in the same manner as the series in 
the test for 7. 

What series of multipliers results when we apply this 
method to divisibility by 3, 9 and l l ?  The powers of 10 are 
congruent (modulo 3 and modulo 9)  to the series 1 , 1 , 1 , 1 .  . . , 
so we arrive a t  once a t  the previously stated rules for 3 and 
9. The powers of 10 are congruent (modulo 11) to the series 
- 1, + 1, -1, +l . . . , which leads to the previously stated rule 
for 11. The reader may enjoy finding the multiplier series 
for the other divisors to see how each series links up with 
its corresponding rule, or in the cases of 6 and 12, leads to 
other rules. 

A bizarre 7 test, attributed to D. S. Spence, appeared in 
1956 in The  Mathematical Gazette (October, page 215). (The 
method goes back to 1861 ; see L. E. Dickson, History of  The  
Theory o f  Numbers,  Vol. 1, page 339, where i t  is credited to 
A. Zbikovski of Russia.) Remove the last digit, double it, 
subtract i t  from the truncated original number and continue 
doing this until one digit remains. The original number is 
divisible by 7 if and only if the final digit is 0 or 7. This 
procedure is applied to our serial number in this manner: 
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The final digit is not divisible by 7, therefore neither is the 
original number. A defect of the system is that i t  gives no 
simple clue to the remainder. 

The 7 test that  seems to me the most efficient, especially 
when applied to very large numbers, is one developed by L. 
Vosburgh Lyons, a New York neuropsychiatrist. I t  is dis- 
closed here for the first time in Figure 72, where the steps 
are  applied to an arbitrary thirteen-digit number. The meth- 
od is extremely rapid when applied to a six-digit number; 
one has only to build a triangle of three digits, then two, 
and then a final digit that provides the remainder. 

Working with this method, Lyons has discovered many re- 
markable six-digit-number feats of the "lightning calculator" 
type. Here is one that  appeared in Ibidem, No. 5, April 1956. 

3 9 - 1 FROM RIGHT TO LEFT MARK OFF THE 
DIGITS IN PARS 

2 0 1 3 / 6 1 3 / 4 1 4 c 2 UNDER EACH WIR PUT DOWN ITS 
: --------------.---------- EXCESS OVER A MULTIPLE OF 7 
i 1 ------------ 2 -30 3 6 

3 7 12 t-- 3 GATHER THE EXCESSES BY GROUPS 
OF THREE AND ADD EACH COLUMN 
SEPARATELY. 

3 0 5 +--- 4 REDUCE THE THREE SUMS BY PUT- 
TING DOWN THE EXCESS OF EACH 
OVER A MULTIPLE OF 7.  

2 1 5 - 5 RECORD THE EXCESS OF 30 ON THE 

1 LEFT, THE EXCESS OF 05 ON THE 
RIGHT. 

3 t-- 6 SUBTRACT LEFT DIGIT FROM RIGHT 
DIGIT, ( I F  RIGHT DIGIT IS SMALLER. 

Figure 72 
The Lyons test for 7 

ADD 7 BEFORE SUBTRACTING.)THIS 
FINALDIGIT IS THE REMAINDER WHEN 
ORIGINAL NUMBER IS DIVIDED BY 7.  
THUSORIGINAL NUMBER IS DIVISIBLE 
BY 7 IF AND ONLY IF THIS FINAL DIGIT 
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Ask someone to chalk on a blackboard any six-digit number 
that is not divisible by 7. Suppose he writes 431576. You pro- 
pose to alter quickly each digit in turn, forming six new num- 
bers, each a multiple of 7. 

To do this, first write the number six times in a square 
array (as shown a t  the left in Figure 73), leaving a blank 

Figure 73 
A calculation stunt involving divisibility by 7 

space for the last digit in the first row, the next to the last 
digit in the second row and so on. (The spaces are labeled 
A to F only to help the explanation; when the trick is per- 
formed, the six spaces are left blank.) Having already tested 
the number to make sure it is not divisible by 7, you have de- 
termined that is has an excess of 5. Obviously 1 must be 
placed in space A instead of the original 6 to make the top 
number a multiple of 7. 

The remaining five blanks can now be filled in rapidly. 
In row 2, consider the number B6. Above it is 71, which has 
an excess of 1, when divided by 7. You must therefore place 
a digit in space B so that the number B6 will also have an ex- 
cess of 1. This is done by placing a 3 in space B. ( In your 
mind, simply subtract 1 from 6 to get 5, then ask yourself 
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what two-digit multiple of 7 ends in 5. The answer can only 
be 35.) The number C7 is handled in the same way. Above 
i t  is 53, which has an excess of 4, so to give C7 a similar 
excess you put 6 in space C. Continue in similar fashion with 
the remaining rows. The final result is shown at  the right in 
the illustration. Each row is now divisible by 7. To a mathe- 
matician familiar with the difficulties of testing divisibility by 
7, the feat is quite astonishing. The trick is easy to do, of 
course, if the numbers sought are to be divisible by 9. 

A knowledge of divisibility rules often furnishes short cuts 
in solving number problems that otherwise would be enor- 
mously difficult. For instance, if nine playing cards, with 
values from ace to nine are arranged a t  random to form a 
nine-digit number, what is the probability that it will be 
divisible by 9 ?  Since the sum of the digits from 1 to 9 is 45, 
which has a digital root of 9, you know a t  once that the prob- 
ability is 1 (certainty). Four cards, from ace to four, are 
randomly arranged. What is the probability that this four- 
digit number is divisible by 3?  Bearing in mind the rule for 
3, you know immediately that the probability is 0 (impos- 
sible). 

A pleasant parlor trick begins by handing someone nine 
playing cards with values from ace to nine. While your back 
is turned, ask someone to arrange the ace, two, three and 
four in any order they please to make a four-digit number. 
Without turning around, you can tell them that the number 
is not divisible by 3. Now ask them to add the five and re- 
arrange the cards to make a five-digit number. You assure 
them, back still turned, that the new number is divisible by 3. 

Before looking a t  the answers the reader may enjoy test- 
ing his skill on the following digital puzzles, all intimately 
related to this chapter's topic. 

1. A person older than nine and younger than a hundred 
is asked to write his age three times to make a six-digit num- 
ber (e.g., 484848). Prove that the number must be divisible 
by 7. 

2. Seven different playing cards, with values from ace to 
seven, are shaken in a hat, then taken out singly and placed 
in a row. What is the probability that this seven-digit num- 
ber is divisible by ll? 
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3. Find the smallest number that has a remainder of 1 
when divided by 2, a remainder of 2 when divided by 3, a 
remainder ,of 3 when divided by 4, a remainder of 4 when 
divided by 5, a remainder of 5 when divided by 6, a remain- 
der of 6 when divided by 7, a remainder of 7 when divided by 
8, a remainder of 8 when divided by 9 and a remainder of 9 
when divided by 10. 

4. A child has a t  his disposal n small wooden cubes, all the 
same size. With them he tries to build the largest cube he 
can, but discovers that he is short by exactly one row of small 
cubes that would have formed an edge of the large cube. 
Prove that  n is divisible by 6. 

5. What is the remainder when 3, raised to the power of 
123,456,789, is divided by 7 ?  

6. Find four different digits, excluding 0, which cannot be 
arranged to make a four-digit number divisible by 7. 

The problems are easier than one might think a t  first, once 
they are approached properly, except for the last one, which 
seems to yield only to brute hammer-and-tongs methods. But 
any reader who solves all six will find that he has had a stim- 
ulating workout in elementary number theory. 

A D D E N D U M  

My column on divisibility tests prompted a flood of letters. 
Many readers sent explanations of why the Zbikovski meth- 
od works, how i t  can be applied to divisibility by other 
primes than 7, and procedures by which the remainder can be 
determined. Explanations of Lyons's method also came in, 
most of them too technical for me to understand. 

Scores of readers provided other methods of testing for 7. 
I give here only the procedure mentioned by the largest num- 
ber of correspondents. It is old and well known, deriving 
from the pleasant fact that  1,001 (the number, incidentally, 
of stories in the original Arabian Nights) is the product of 
the three consecutive primes: 7, 11 and 13. The number to  
be tested is partitioned into three-digit sections, starting a t  
the right. For example, 61671142 is split into 61/671/142. 
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Alternately add and subtract these sections, starting a t  the 
right: 142 - 671 + 61 = -148. The result has the same re- 
mainder when divided by 7, 11 or 13 as does the original 
number. 

Readers interested in learning other divisibility tests for 
7 and other numbers will find the first reference in the bib- 
liography a handy check list of the older literature. I have 
added a list of recent articles that are readily accessible. 

A N S W E R S  

1. To prove that a number of the form ABABAB must be 
evenly divisible by 7, we have only to note that such a num- 
ber is the product of AB and 10101. Because 10101 is a mul- 
tiple of 7, the number ABABAB must be also. 

2. When the digits 1 to 7 are randomly arranged to form 
a number, the probability that the number is divisible by 11 
is 4/35. To be divisible by 11 the digits must be arranged so 
that the difference between the sum of one set of alternate 
digits and the sum of the other set of alternate digits is either 
0 or a multiple of 11. The sum of all seven digits is 28. I t  
is easy to  find that 28 can be partitioned in only two ways 
that meet the 11 test: 14114 and 2513. The 2513 partition 
is ruled out because no sum of three different digits can be 
as low as 3. Therefore only the 14114 partition need be con- 
sidered. There are 35 different combinations of three digits 
that can fall into the B positions in the number ABABABA. 
Of the 35, only four (167, 257, 347, 356) sum to 14. There- 
fore the probablity that the number will be divisible by 11 
is 4/35. 

3. The smallest number that has a remainder of one less 
than the divisor, when divided by each integer from 2 to 10 
inclusive, is 2519. I t  is amusing to note that "Professor Hoff- 
mann," in his book Puzzles Old and New (1893) calls this a 
"difficult problem" and devotes more than two pages to solv- 
ing i t  by a complicated application of divisibility rules. Hoff- 
mann failed to note that each division falls just one short of 



Tests of Divisibility 169 

being exact, so we need only to find the lowest common mul- 
tiple of 2, 3, 4, 5, 6, 7, 8, 9, 10, which is 2520, then subtract 
1 to get the answer. 

4. The problem of the cube with the missing edge of small- 
e r  cubes is equivalent to showing that a number of the form 
n3 - n (where n is any integer) must always be evenly divisi- 
ble by 6. The following is perhaps the simplest proof: 

n3 - n = n (n2 - 1 )  = n ( n -  1 )  ( n  + 1). 

The expression to the right of the second equal sign reveals 
that  the number (n3 - n )  is the product of three cmsecutive 
integers. In  any set of three consecutive integers, i t  is easy 
to see that  one integer must be divisible exactly by 3 and 
that a t  least one integer must be even. (These two properties 
may, to be sure, unite in the same integer, e.g., 17, 18, 19.) 
Since 2 and 3 are factors of the product of the three consecu- 
tive integers, the product must be divisible by 2 x 3, or  6. 

5. The remainder, when 3 to the power of 123456789 is 
divided by 7, is 6. The short cut here is that successive pow- 
ers of 3, when divided by 7, have remainders that repeat 
endlessly the six-digit cycle 3, 2, 6, 4, 5, 1. Divide 123456789 
by 6 to obtain a remainder of 3, then note the third digit 
in the cycle. It is 6, the answer to the problem. 

Any number raised to successive powers and divided by 7 
has remainders that repeat a cyclic pattern, and the pattern 
is the same for all numbers that are equivalent modulo 7. 
Any power of a number that  is 1 (mod 7) has a remainder 
of 1 when divided by 7. Powers of numbers that are 2 (mod 
7) have the remainder cycle: 2,  4, 1. The cycle for powers 
of numbers that  are 3 (mod 7) is given above; for 4 i t  is 
4, 2, 1 ;  f o r 5  i t  is 5, 4, 6, 2, 3, 1 ;  for 6 it is 6, 1 ;  and for 7 
i t  is, of course, 0. 

What is the remainder when 123456789 is raised to the 
power of 123456789 and divided by 7 ?  Since 123456789 is 1 
(mod 7 ) ,  we know a t  once that the remainder is 1. 

6. The problem asked for a set of four different digits, 
excluding 0, that could not be arranged to make a four-digit 
number divisible by 7. Of the 126 different combinations of 
four digits, only three work: 1238, 1389 and 2469. 
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Nine Problems 

1. The Seven File Cards 

A SHEET of legal-sized paper, 8% by 12y2 inches, has an area 
of 106% square inches. Seven file cards of the three-by-five- 
inch size have a combined area of 105 square inches. Obvi- 
ously i t  is not possible to cover the large sheet completely 
with the seven cards, but what is the largest area that can 
be covered? The cards must be placed flat, and they may not 
be folded or cut in any way. They may overlap the edges of 
the sheet, however, and it is not necessary for their sides to 
be parallel with the sides of the sheet. Figure 74 shows how 
the seven cards can be arranged to cover an area of 98% 
square inches. This is not the maximum. 

Everyone in the family, young and old, will enjoy work- 
ing on this puzzle. If the required materials are not handy, 
a sheet of cardboard can be cut to the 8y2-by-12?L2-inch size, 
and the seven three-by-five rectangles can be cut from paper. 
I t  is a good plan to rule the large sheet into half-inch squares 
so that the area left exposed can be computed quickly. 
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Figure 74 
How much of the paper can be covered with seven file cards? 

The problem was first posed by Jack Halliburton in Recre- 
ational Mathemat ics  Magazine,  December 1961. 

2. A Blue-Empty Graph 

SIX HOLLYWOOD STARS form a social group that has very 
special characteristics. Every two stars in the group either 
mutually love each other or mutually hate each other. There 
is no set of three individuals who mutually love one another. 
Prove that there is a t  least one set of three individuals who 
mutually hate each other. The problem leads into a fascinat- 
ing new field of graph theory, "blue-empty chromatic 
graphs," the nature of which will be explained when the an- 
swer is given. 

3. Two Games in a Row 

A CERTAIN MATHEMATICIAN, his wife and their teen-age son 
all play a fair game of chess. One day when the son asked his 
father for ten dollars for a Saturday-night date, his father 
puffed his pipe a moment and replied: 

"Let's do i t  this way. Today is Wednesday. You will play 
a game of chess tonight, another tomorrow and a third on 
Friday. Your mother and I will alternate as opponents. If 
you win two games in a row, you get the money." 
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"Whom do I play first, you or  Mom?" 
"You may have your choice," said the mathematician, his 

eyes twinkling. 
The son knew that his father played a stronger game than 

his mother. To maximize his chance of winning two games 
in succession, should he play father-mother-father or mother- 
f ather-mother ? 

Leo Moser, a mathematician a t  the University of Alberta, 
is responsible for this amusing question in elementary proba- 
bility theory. Of course you must prove your answer, not just 
guess. 

4. A Pair of Cryptarithms 

IN MOST CRYPTARITHMS a different letter is substituted for 
each digit in a simple arithmetical problem. The two remark- 
able cryptarithms shown in Figure 75 are unorthodox in 
their departure from this practice, but each is easily solved 
by logical reasoning and each has a unique answer. 

E E O  P P P 
0 0 P P 

E O E O  P P P P  
E O O  P P P P  

0 0 0 0 0  P P P P P  

Figure 75 
Two unorthodox cryptarithrns 

In  the multiplication problem a t  the left in the illustration, 
newly devised by Fitch Cheney of the University of Hart- 
ford, each E stands for an even digit, each 0 for an odd digit. 
The fact that  every even digit is represented by E does not 
mean, of course, that  all the even digits are  the same. For 
example, one E may stand for 2, another for 4, and so on. 
Zero is considered an even digit. The reader is asked to re- 
construct the numerical problem. 

In  the multiplication problem a t  the right, each P stands 
for a prime digit (2, 3, 5, or 7 ) .  This charming problem was 
first proposed some twenty-five years ago by Joseph Ellis 
Trevor, a chemist a t  Cornell University. I t  has since become 
a classic of its kind. 
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5. Dissecting a Square 
IF ONE FOURTH of a square is taken from its corner, is i t  pos- 
sible to dissect the remaining area into four congruent (same 
size and shape) parts? Yes, i t  can be done in the manner 
shown a t  the left in Figure 76. Similarly, an equilateral tri- 
angle with one fourth of its area cut from a corner, as in the 
center figure in the illustration, can also be divided into four 
congruent parts. These are typical of a large variety of geo- 
metric puzzles. Given a certain geometric figure, the task is 
to cut i t  into a specified number of identical shapes that  com- 
pletely fill the larger figure. 

Figure 76 
Three dissection puzzles 

Can the square a t  the right in the illustration be dissected 
into five congruent parts? Yes, and the answer is unique. 
The pieces can be any shape, however complex or bizarre, 
provided that  they are identical in shape and size. An asym- 
metric piece may be "turned over"; that  is, i t  is considered 
identical with its mirror image. The problem is annoyingly 
intractable until suddenly the solution strikes like lightning. 

6. Traffic Flow in Floyd's Knob 

ROBERT ABBOTT, author of Abbott's New Card Games (New 
York : Stein and Day, 1963), provided the curious street map 
reproduced in Figure 77, accompanied by the following 
story : 

"Because the town of Floyd's Knob, Indiana, had only 
thirty-seven registered automobiles, the mayor thought i t  
would be safe to appoint his cousin, Henry Stables, who was 
the town cutup, as its traffic commissioner. But he soon re- 
gretted his decision. When the town awoke one morning, i t  
found that  a profusion of signs had been erected establishing 
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numerous one-way streets and confusing restrictions on 
turns. 

"The citizens were all for tearing down these signs until 
the police chief, another cousin of the mayor, made a sur- 
prising discovery. Motorists passing through town became so 
exasperated that  sooner or later they made a prohibited 
turn. The police chief found that  the town was making even 
more money from these violations than from its speed trap 
on an outlying country road. 

"Of course everyone was overjoyed, particularly because 
the next day was Saturday and Moses MacAdam, the coun- 
ty's richest farmer, was due to pass through town on his way 
to the county seat. They expected to extract a large fine from 
Moses, believing i t  to be impossible to drive through town 
without a t  least one traffic violation. But Moses had been 
secretly studying the signs. When Saturday morning came, 
he astonished the entire town by driving from his farm 
through town to the county seat without a single violation! 

"Can you discover the route Moses took? At each intersec- 

Figure 77 
The traffic maze in Floyd's Knob 
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tion you must follow one of the arrows. That is, you may 
turn in a given direction only when there is a curved line in 
that  direction, and you may go straight only when there is a 
straight line to follow. No turns may be made by backing 
the car around a corner. No U-turns are permitted. You may 
leave an  intersection only a t  the head of an  arrow. For in- 
stance, a t  the first intersection after leaving the farm, you 
have only two choices: to go north or to go straight. If you 
go straight, a t  the next intersection you must either go 
straight or turn south. True, there is a curved line to the 
north, but there is no arrow pointing north, so you are for- 
bidden to leave that  intersection in a northerly direction." 

7. Littlewood's Footnotes 

EVERY NOW AND THEN a magazine runs a cover picture that  
contains a picture of the same magazine, on the cover of 
which one can see a still smaller picture of the magazine, and 
so on presumably to infinity. Infinite regresses of this sort 
are  a common source of confusion in logic and semantics. 
Sometimes the endless hierarchy can be avoided, sometimes 
not. The English mathematician J. E. Littlewood, comment- 
ing on this topic in his A Mathematician's Miscellany (Lon- 
don: Methuen, 1953), recalls three footnotes that  appeared 
a t  the end of one of his papers. The paper had been published 
in a French journal. The notes, all in French, read: 

"1. I am greatly indebted to Prof. Riesz for translating 
the present paper. 

"2. I am indebted to Prof. Riesz for translating the pre- 
ceding footnote. 

"3. I a m  indebted to Prof. Riesz for translating the pre- 
ceding footnote." 

Assuming that  Littlewood was completely ignorant of the 
French language, on what reasonable grounds did he avoid 
a n  infinite regress of identical footnotes by stopping after the 
third footnote? 

8. Nine to One Equals 100 

AN OLD NUMERICAL PROBLEM that  keeps reappearing in puz- 
zle books as  though i t  had never been analyzed before is the 
problem of inserting mathematical signs wherever one likes 
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between the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 to make the expres- 
sion equal 100. The digits must remain in the same sequence. 
There are  many hundreds of solutions, the easiest to find 
perhaps being 

1 + 2 + 3 + 4 + 5 + 6 + 7 +  ( 8 x 9 )  = l o o .  
The problem becomes more of a challenge if the niathe- 

matical signs are limited to plus and minus. Here again there 
are many solutions, for example 

"The last solution is singularly simple," writes the English 
puzzlist Henry Ernest Dudeney in the answer to Problem 
No. 94 in his Amusements in Mathematics, "and I do not 
think i t  will ever be beaten." 

In view of the popularity of this problem it  is surprising 
that so little effort seems to have been spent on the problem 
in reverse form. That is, take the digits in descending order, 
9 through 1, and form an expression equal to 100 by insert- 
ing the smallest possible number of plus or minus signs. 

9. The Crossed Cylinders 

ONE OF ARCHIMEDES' greatest achievements was his antici- 
pation of some of the fundamental ideas of calculus. The 
problem illustrated in Figure 78 is a classic example of a 
problem that  most mathematicians today would regard -as 

Figure 78 
Archimedes' problem of the 
crossed cylinders 
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unsolvable without a knowledge of calculus (indeed, i t  is 
found in many calculus textbooks) but that  yielded readily 
to Archimedes' ingenious methods. The two circular cylinders 
intersect a t  right angles. If each cylinder has a radius of 
one unit, what is the volume of the shaded solid figure that 
is common to both cylinders? 

No surviving record shows exactly how Archimedes solved 
this problem. There is, however, a startlingly simple way to 
obtain the answer; indeed, one need know little more than 
the formula for the area of a circle (pi times the square of 
the radius) and the formula for the volume of a sphere 
(four-thirds pi times the cube of the radius). I t  may have 
been the method Archimedes used. In any case, it has become 
a famous illustration of how calculus often can be side- 
stepped by finding a simple approach to a problem. 

A N S W E R S  

If i t  is required that the cards be placed with their edges 
parallel to the edges of the sheet, a maximum of 100 square 
inches can be covered. Figure 79 shows one of many different 
ways in which the cards can be placed. 

Figure 79 
Seven file cards arranged to cover 100 square inches 



178 The Unexpected Hanging 

Stephen Barr was the first to point out that  if the central 
card is tilted as shown in Figure 80 the covered area can 
be increased to 100.059+ square inches. Then Donald Vander- 
pool wrote to say that  if the card is rotated a bit more than 
this (keeping i t  centered on the exposed strip) the covered 
area can be increased even more. The angle a t  which maxi- 
mum coverage is achieved must be obtained by calculus. 

Figure 80 
The file cards arranged to cover a fraction of an inch more 

James A. Block found that  the angle could be varied from 
6" 12' to 6" 13' without altering the covered area expressed 
to five decimal places: 100.06583+ square inches. The prob- 
lem's history has been sketched in Joseph S. Madachy, 
Mathematics on  Vacation (New York : Scribner's, 1966), 
pages 133-35. He gives a calculation by R. Robinson Rowe 
for an angle of 6" 12' 37.8973" that gives a covering of 
100.065834498-t square inches. 

Every two people in a set of six people either mutually 
love or mutually hate each other, and there is no set of three 
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who mutually love one another. The problem is to prove that 
there is a set of three who mutually hate one another. 

The problem is easily solved by a graph technique. Six dots 
represent the six individuals (see Figure 81). All possible 
pairs are  connected by a broken line that  stands for either 
mutual love or mutual hate. Let blue lines symbolize love 
and red lines symbolize hate. 

Consider dot A. Of the five lines radiating from it, a t  least 
three must be of the same color. The argument is the same 
regardless of which color or  which three lines we pick, so 
let us assume three lines are  red (shown black in the illus- 
tration). If the lines forming triangle BCE are all blue, then 
we have a set of three people who mutually love one another. 
We are  told no such set exists; therefore a t  least one side of 
this triangle must be red. No matter which side we pick for 
red, we are  sure to form an  all-red triangle (i.e., three peo- 
ple who mutually hate one another). The same r'esult is ob- 
tained if we choose to make the first three lines blue instead 
of red. In  that  case the sides of triangle BCE must all be 
red;  otherwise a blue side would form an  all-blue triangle. 
In  brief, there must be a t  least one triangle that is either 
all-blue or all-red. The problem rules out an  all-blue triangle, 
so there must be an all-red one. 

Actually, a stronger conclusion is obtainable. If there is 
no all-blue triangle, i t  can be shown (by more complicated 
reasoning) that  there are a t  least two all-red triangles. In  
graph theory, a two-color graph of this sort, with no blue 
triangles, is called a blue-empty chromatic graph. If the num- 
ber of points is six, as in this problem, the minimum number 
of red triangles is two. 

When the number of points in a blue-empty graph is less 
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than six, i t  is easy to draw such graphs with no red trian- 
gles. When the number of points is seven, there must be a t  
least four red triangles. For an eight-point blue-empty graph 
the minimum number of red triangles is eight; for a nine- 
point graph i t  is thirteen. Anyone wishing to go deeper into 
the topic can consult the following papers : 

R. E. Greenwood and A. M. Gleason, "Combinatorial Rela- 
tions and Chromatic Graphs," Canadian Journal of Mathe- 
matics, Vol. 7 (1955), pages 1-7. 

Leopold Sauve, "On Chromatic Graphs," American Mathe- 
matical Monthly, Vol. 68, February 1961, pages 107-11. 

Gary Lorden, "Blue-empty Chromatic Graphs," American 
Mathematical Monthly, Vol. 69, February 1962, pages 114-20. 

J. W. Moon and Leo Moser, "On Chromatic Bipartite 
Graphs," Mathematics Magazine, Vol. 35, September 1962, 
pages 225-27. 

J. W. Moon, "Disjoint Triangles in Chromatic Graphs," 
Mathematics Magazine, Vol. 39, November 1966, pages 
259-61. 

A plays a stronger chess game than B. If your object is to 
win two games in a row, which is better: to play against A, 
then B, then A; or to play B, then A, then B ?  

Let PI be the probability of your defeating A and P, the 
probability of your defeating B. The probability of your not 
winning against A will then be 1 - PI and the probability 
of your not winning against B will be 1 - P2. 

If you play your opponents in the order ABA, there are 
three different ways you can win two games in a row: 

1. You can win all three games. The probability of this oc- 
curring is PI X P2 x P1 = PI2P2. 

2. You can win the first two games only. The probability 
of this is PI x P, x (1 - PI) = PIP2 - PI2P2. 

3. You can win the last two games only. The probability 
is (1 - PI) x P, x Pl = PIP2 - P12P,. 

The three probabilities are now added to obtain PIP2 (2  - 
PI). This is the probability that you will win twice in a row 
if you play in the order ABA. 
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If the order is BAB, a similar calculation will show that 
the probability of winning all three games is PIP2" of win- 
ning the first two games is PIP2 - P1P22, and of winning the 
last two games is PIPz - PlP22. The sum of the three proba- 
bilities is P1P2(2 - P2) .  This is the probability of winning 
two games in a row if you play in the order BAB. 

We know that Pa, which is the probability of your winning 
against B, is greater than PI, the probability of your win- 
ning against A, so i t  is apparent that PIP2 (2 - PI) must 
be greater than PIP2 (2  - P,). In other words, you stand a 
better chance of winning twice in succession if you play 
ABA: first the stronger player, then the weaker, then the 
stronger. 

Fred Galvin, Donald MacIver, Akiva Skidell, Ernest W. 
Stix, Jr., and George P.  Yost were the first of many readers 
who reached the same conclusion by the following informal 
reasoning. To win two games in a row i t  is essential that the 
son win the second game, therefore i t  is to his advantage to 
play the second game against the weaker player. In addition, 
he must win a t  least once against the stronger player, there- 
fore i t  is to his advantage to play the stronger player twice. 
Ergo, ABA. Galvin pointed out that if the problem can be 
solved without knowing the probabilities involved, the an- 
swer will be obtainable from any special case. Consider the 
extreme case when the son is certain to beat his mother. He 
then is sure to win two games in a row if he can beat his 
father once, so obviously he increases his chances by playing 
his father twice. 

Fitch Cheney's cryptarithm has the unique answer 



182 The Unexpected Hanging 

The unique answer to Joseph Ellis Trevor's cryptarithm is 
775 

33 
2325 

2325 
25575. 

Trevor's problem, the more difficult of the two, is perhaps 
best approached by searching first for all three-digit num- 
bers composed of prime digits that yield four prime digits 
when multiplied by a prime. There are only four: 

No three-digit number has more than one multiplier, there- 
fore the multiplier in the problem must consist of two iden- 
tical digits. Thus there are only four possibilities that need 
to be tested. 

A square can be dissected into five congruent parts only 
in the manner shown in Figure 82. The consternation of 
those who find themselves unable to solve this problem is 
equaled only by their feeling of foolishness when shown the 
answer. 

Figure 82 
Solution for Problem 5 
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To drive through Floyd's Knob without a traffic violation, 
take the following directions a t  each successive intersection 
(the letters stand for North, South, East, West) : E-E-S-S- 
E-N-N-N-E-S-W-S-E-S-S-W-W-W-W-N-N-E-S-W - S -E - E - E - 
E-N-E. 

"However little French I know," says J. E. Littlewood (in 
explaining why he was not obliged to write an  infinite re- 
gress of footnotes to an article that  a friend translated), "I 
am capable of copying a French sentence." 

To form an  expression equal to 100, four plus and minus 
signs can be inserted between the digits, taken in reverse or- 
der, as follows : 

There is no other solution with as few as four signs. For 
a complete tabulation of all solutions for both the ascend- 
ing and descending sequence see my Numerology o f  Dr .  
Matr ix  (New York: Simon and Schuster, 1967), pages 64-65. 

Two circular cylinders of unit radius intersect a t  right 
angles. What is the volume common to both cylinders? The 
problem is solved easily, without the use of calculus, by the 
following elegant method : 

Imagine a sphere of unit radius inside the volume com- 
mon to the two cylinders and having as its center the point 
where the axes of the cylinders intersect. Suppose that  the 
cylinders and sphere are sliced in half by a plane through 
the sphere's center and both axes of the cylinders ( a t  l e f t  of 
Figure 83) .  The cross section of the volume common to the 
cylinders will be a square. The cross section of the sphere 
will be a circle that  fills the square. 
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Figure 83 
T w o  cross sections of Archimedes' cylinders and the  interior sphere 

Now suppose that  the cylinders and sphere are sliced by a 
plane that  is parallel to the previous one but that  shaves off 
only a small portion of each cylinder (a t  right of the illustra- 
tion). This will produce parallel tracks on each cylinder, 
which intersect as before to form a square cross section of 
the volume common to both cylinders. Also as before, the 
cross section of the sphere will be a circle inside the square. 
I t  is not hard to see (with a little imagination and pencil 
doodling) that any plane section through the cylinders, par- 
allel to the cylinders' axes, will always have the same result: 
a square cross section of the volume common to the cylinders, 
enclosing a circular cross section of the sphere. 

Think of all these plane sections as being packed together 
like the leaves of a book. Clearly, the volume of the sphere 
will be the sum of all circular cross sections, and the volume 
of the solid common to both cylinders will be the sum of all 
the square cross sections. We conclude, therefore, that  the 
ratio of the volume of the sphere to the volume of the solid 
common to the cylinders is the same as the ratio of the area 
of a circle to the area of a circumscribed square. A brief cal- 
culation shows that  the latter ratio is 7/4. This allows the 
following equation, in which x is the volume we seek: 

4;7r3/3 TT 

- 
X 4 
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The 7's drop out, giving x a value of 16r3/3. The radius in 
this case is 1, so the volume common to both cylinders is 
16/3. As Archimedes pointed out, i t  is exactly 2/3 the vol- 
ume of a cube that  encloses the sphere; that  is, a cube with 
an  edge equal to the diameter of each cylinder. 

A number of readers pointed out that  this solution makes 
use of what is called "Cavalieri's theorem," after Bonaven- 
tura  Cavalieri, a seventeenth-century Italian mathematician. 
"This theorem in its simplest form," wrote Fremont Reiz- 
man, "says that  two solids are equal in volume if they have 
equal altitudes and equal cross sections a t  equal heights 
above the base. But to prove it, Cavalieri had to anticipate 
calculus a bit by building his figures up from a stack of 
laminae and passing to the limit." The principle was known 
to Archimedes. In a lost book called The Method that  was 
not found until 1906 ( i t  is the book in which Archimedes 
gives the answer to the crossed-cylinders problem), he attri- 
butes the principle to Democritus, who used i t  for obtaining 
the formula for the volume of a pyramid or cone. 

Several readers solved the problem by applying Cavalieri's 
theorem in a slightly different way. Granville Perkins, for 
instance, did i t  by circumscribing (around the solid common 
to both cylinders) a cube. Using the two faces parallel to 
both axes as bases, he constructed two pyramids with apices 
a t  the cube's center. By slicing laminae parallel to these 
bases the problem is easily solved. 

For readers who care to tackle the problem of finding the 
volume of the solid common to three orthogonally intersect- 
ing cylinders of unit radius, I give only the solution: 
8 (2 - V2). A calculus solution is given in S. I. Jones, 
Mathematical Nuts (privately printed in Tennessee, 1932), 
pages 83 and 287. Discussions of the two-cylinder case will 
be found in J. H. Butchart and Leo Moser, "No Calculus 
Please," Scripta Mathematica, Vol. 18, September 1952, 
pages 221-36, and Richard M. Sutton, "The 'Steinmetz Prob- 
lem' and School Arithmetic," Mathematics Teacher, Vol. 50, 
October 1957, pages 434-35. 



C H A P T E R  S I X T E E N  

The Eight Queens 
and Other 

Chessboard Diversions 

Pennypacker's of ice  still smelled o f  linoleum, a clean, sad 
scent tha t  seemed t o  l i f t  f r o m  the  checkerboard floor in 
squares o f  alternating intensi ty;  th i s  pattern had given Clyde 
a s  a boy a f u n n y  nervous feeling o f  intersection, and n o w  
he  stood crisscrossed by a double sense o f  himsel f  . . . 

-JOHN UPDIKE, Pigeon Feathers 

THE CRISSCROSSING of a checked pattern may give some 
people a "nervous feeling," but when a recreational mathe- 
matician sees a checkerboard floor his mind leaps happily 
toward puzzle possibilities. It is safe to say that  no other 
geometrical pattern has been so thoroughly exploited for 
recreational purposes. I am not referring now to games such 
as  checkers, chess and go, which use the checked pattern as a 
board, but to an endless variety of puzzles that  derive from 
the metric and topological properties of the pattern itself. 

Consider for a moment a problem that  appeared in my 
column in 1957 and is now well known. If two diagonally 
opposite corner squares of an  8 x 8 checkerboard are re- 
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moved, can the remaining 62 cells be completely covered by 
31 dominoes? Since each domino is assumed to cover two 
adjacent squares, one black and one white, 31 dominoes must 
cover 31 black squares and 31 white squares. But diagonally 
opposite corner squares are the same color, so the mutilated 
board will have 32 squares of one color and 30 of another 
and clearly cannot be covered by 31 dominoes. This proof of 
impossibility is a classic illustration of how the coloring of 
a checkerboard, f a r  from merely making the pattern more 
pleasing aesthetically or more convenient for plotting check- 
e r  and chess moves, provides a powerful tool for analyzing 
many types of checkerboard problems. 

Instead of removing two squares of the same color, sup- 
pose we remove two squares of opposite colors. They may be 
taken from any two spots on the board. Is  i t  always possible 
to cover the remaining 62 squares with 31 dominoes? The 
answer is yes. But is there a simple way to prove i t ?  One 
could, of course, test all possible combinations of missing 
squares, but that would be tedious and inelegant. Dana Scott, 
a mathematician a t  the University of California, has called 
to my attention a beautiful proof discovered by his friend 
Ralph Goniory, a research mathematician. Heavy lines are 
drawn on the board as shown in Figure 84, forming a closed 
path along which the cells lie like beads of alternating colors 
on a necklace. The removal of two squares of opposite colors 
from any two spots along this path will cut the path into two 
open-ended segments (or one segment if the removed squares 
are adjacent on the path). Since each segment must consist 
of an  even number of squares, each segment (and therefore 
the entire board) can be completely covered by dominoes. 

Figure 84 
Gornory's proof of a dornino- 
and-checkerboard theorem 
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Instead of trying to cover a mutilated checkerboard with 
dominoes, suppose we mutilate i t  in such a way that no dom- 
ino can be placed on it. What is the smallest number of 
squares that must be taken away in order to make i t  impossi- 
ble to place a single domino on what remains? It is easy to 
see that 32 squares, all of one color, must be removed. But 
the problem is not so easy to solve if we substitute for the 
domino one of the higher "polyominoes." ( A  polyomino is any 
figure formed by checkerboard squares that  are connected 
along their edges.) Solomon W. Golomb, a mathematician a t  
the University of Southern California, and author of Poly- 
ominoes (New York : Scribner's, 1965), has recently pro- 
posed this type of problem and answered i t  for every type of 
polyomino up through the twelve pentominoes (five-square 
figures). The pentomino shaped like a Greek cross provides a 
pretty problem. Assume that  the 8 x 8 checkerboard is made 
of paper. If sixteen squares are shaded as shown in Figure 
85, i t  obviously is not possible to cut a Greek cross from the 
unshaded squares. But sixteen is not the minimum. What is 
the minimum? 

A fascinating checkerboard-cutting problem, as  yet un- 
solved, is that of determining the number of different ways 
the 8 x 8 board can be cut in half along the solid lines that 
form the cells. The two halves must be the same size and 
shape so that  one can be fitted on top of the other without 
flopping either one over. Henry Ernest Dudeney, the English 
puzzlist, first posed this problem and reported that he found 
i t  "bristling with difficulties." He was unable to make a full 

Figure 85 
Golornb's Greek-cross 
problem 



Figure 86 
Six ways to halve a 4 X 4 board 

tabulation of patterns. It is obvious that a 2 x 2 board can 
be cut in half in only one way. The 3 x 3 cannot be divided 
into identical parts (because i t  contains an  odd number of 
cells), but if the central cell is considered a hole, i t  also can 
be bisected in only one way. 

The 4 x 4 takes a bit of thinking, but i t  is not hard to 
discover that  there are just six solutions (see Figure 86) .  
These can be rotated and reflected in various ways, but pat- 
terns so obtained are not considered "different." Dudeney 
was able to show that  the 5 x 5 (with missing center cell) 
has fifteen solutions and that  the 6 x 6 has 255. There he 
stopped. The 7 x 7 and 8 x 8 problems should lend them- 
selves easily to solution by a modern computer, but I am not 
aware that  anyone has yet harnessed a computer for either 
task. 

A closely related problem, first posed by Howard Gross- 
man, a New York mathematics teacher, is that  of cutting a 
square checkerboard into congruent quarters. As before, the 
four pieces must be the same size and shape and have the 
same "handedness." The coloring of the board is ignored. 
The 2 X 2 obviously can be quartered in only one way; the 
same is true of the 3 x 3 with the center hole. What about 
the 4 x 4 ?  How many fundamentally different ways can i t  
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be quartered, not counting rotations and reflections? Readers 
should have little difficulty in drawing all the patterns. More 
ambitious readers may wish to go on to the 5 x 5 (with 
center hole), which has seven patterns. (The fact that it is 
possible to quarter any even-order board and any odd-order 
board with a center hole rests on the fact that the square of 
any even number is exactly divisible by 4 and the square of 
any odd number has a remainder of 1 when divided by 4.) 
Even the 6 x 6 is easily solved without computer aid, al- 
though the number of patterns rises to thirty-seven. As in 
the previous problem, solutions for the 7 x 7 and 8 X 8 are 
not known, unless somewhere a computer has devoted a few 
minutes during off hours to the contemplation of these prob- 
lems. 

Both the halving and the quartering of square checker- 
boards have their analogues in three dimensions, where the 
analysis is considerably more complex. Even the lowly 2 X 
2 x 2 is tricky. Many people guess that there is but one way 
to halve such a cube (cutting only along planes that divide 
the cubical cells) when in fact there are three. (Can the 
reader visualize them?) I t  can be quartered in two ways. 
As for the 4 x 4 x 4, as far  as I know, no one has the 
slightest notion of how many different ways i t  can be halved 
or quartered. 

When counters of various sorts are added to the board, an 
infinite variety of puzzle possibilities open up. For example, 
given a checkerboard of order n (the order is the number of 
cells on a side), what is the largest number of chess queens 
that can be placed on the board in such a way that no queen 
is attacked by another? Since a queen moves an unlimited 
distance up and down, left and right and diagonally, the task 
is the same as that of placing a maximum number of coun- 
ters so that no two lie in the same row, column or diagonal. 
I t  is easy to see that the maximum cannot exceed the order 
of the board, and i t  has been shown that on any board of 
order n, where n is greater than 3, n queens can be placed to 
meet the problem's conditions. 

Not counting rotations and reflections as being different, 
there is only one way to place the queens on the 4 x 4 board, 
two ways on the 5 X 5, one way on the 6 x 6. (The reader 
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may enjoy finding these patterns. The 6 x 6 problem has 
often been sold as a peg-and-board puzzle.) A 7 x 7 board 
has six solutions, the 8 x 8 has twelve, the 9 x 9 has forty- 
six, and the 10 x 10 has ninety-two. (There is no known 
formula by which the number of solutions on a board of or- 
der n can be determined.) When the order of the board is 
not divisible by 2 or 3, i t  is possible to superimpose n solu- 
tions that completely fill all the cells. Thus on the 5 x 5 one 
can place twenty-five queens-five of each of five colors-in 
such a way that no queen attacks another of the same color. 

The twelve fundamental patterns for the standard 8 x 8 
chessboard are shown in Figure 87. An enormous literature 
has grown up around this problem-usually called "the prob- 
lem of the eight queens9'-since it was first proposed by Max 
Bezzel in the Berlin Schachzeitung, September 1848, and the 
twelve solutions, by Franz Nauck, were published in 1850 
in the Leipzig Illustrierte Zei tung.  I t  is not easy to prove 
that the twelve patterns exhaust all possibilities. Such a 
proof, by way of determinants, was finally obtained. by the 
English mathematician J. W. L. Glaisher and published in 
Philosophical Magazine for December 1874. 

Each of the twelve basic solutions can be rotated and re- 
flected to give seven other patterns, excepting Solution 10, 
which, because of its symmetry, yields only three other pat- 
terns. Thus there are ninety-two solutions altogether. Solu- 
tion 10 is unique in having no queens on its sixteen central 
squares. I t  shares with Solution 1 the lack of queens along 
both main diagonals. Solution 7 is the most interesting of all : 
i t  is the only pattern in which no three queens (considered 
as points a t  the center of their cells) lie on a straight line. 
The reader may enjoy verifying this by finding straight lines 
on all the other patterns that pass through three or four 
queens. (The reference here is not to diagonals of squares on 
the board but to geometrical straight lines of any orienta- 
tion.) Every now and then a puzzlist announces that he has 
found a second pattern that also avoids three-in-a-line, but 
on closer inspection it always turns out that there has been 
an oversight or that his second pattern is merely a rotation 
or reflection of Solution 7. Incidentally, i t  is sometimes main- 
tained that the eight-queen problem has no solution with a 
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queen on a corner cell; a s  the illustration shows, there a re  
actually two such solutions. Note also tha t  in every solution 
there must  be a queen on a border cell t ha t  is the four th  
f rom a corner. 

Other chess pieces can, of course, be substituted for  queens. 

Figure 87 
The twelve solutions to the classic problem of eight queens 
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In  the case of rooks i t  is obvious that, like the queens, a 
maximum of n rooks can be placed on a board of order n; 
more would put a t  least two rooks in one of the rows. A 
method that  applies to a board of any size is simply to line 
the rooks up along a main diagonal. The number of ways this 
can be done is n!  ( that  is, 1 x 2 x 3 . . . n ) ,  but the task of 
eliminating rotation and reflection duplicates is so difficult 
that  i t  is not known how many essentially different solutions 
exist even on as low-order a board as the 8 x 8. 

For bishops the maximum is 2n - 2. To prove this, note 
that  the number of diagonals running in one direction is 
2n - 1. The two diagonals which consist of single squares, 
however, cannot both be occupied because two bishops would 
then be on a main diagonal running the other way. This 
reduces the maximum to  2n - 2. Thus on the standard board 
no more than fourteen bishops can be placed so that  no two 
attack each other. Dudeney has shown that  this can be done 
in thirty-six essentially different ways. The total number of 
ways on a board of order n is Zn, but (as  with the rooks) i t  
is not easy to winnow out the rotation and reflection dupli- 
cates. A method of placing the maximum number of bishops 
on a board of any size is to fill one edge row with n bishops 
and center n - 2 bishops along the opposite edge. 

The maximum for kings is n2/4 on even-order boards, 
( n  + 1) 2/4 on odd-order boards. One pattern: the kings are 
arranged in a square lattice, each separated by one cell from 
all neighbors. The problem of determining the number of 
different ways of placing the maximum number of non- 
attacking kings on an  n x m board is a difficult one. I t  was 
only recently solved, by Karl Fabel and C. E. Kemp. (See 
Eero Bonsdorff, Karl Fabel, and Olavi Riihimaa, Schach und 
Zahl [Diisseldorf : Walter Rau Verlag, 19661, pages 51-54.) 
Including rotations and reflections, there are 281,571 solu- 
tions on the 8 x 8 board. 

The knight, which Dudeney calls the "irresponsible low 
comedian of the chessboard" because of its odd way of hop- 
ping, is perhaps less easy to analyze than the other pieces. 
What is the largest number of knights that can be placed on 
the 8 x 8 board in such a way that no knight attacks an- 
other? And in how many different ways can i t  be done? 
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A D D E N D U M  

The problem of halving and quartering square checker- 
boards caught the fancy of many readers. R. B. Tasker, Sher- 
man Oaks, California, and William E. Patten, South Bos- 
ton, Virginia, working independently and without computers, 
verified Dudeney's figure of 255 different ways of bisecting 
the order-6 board. John McCarthy, a t  the Stanford Computa- 
tion Center, assigned to his students the problem of writing 
a computer program for orders 7 and 8. The results, which 
he sent to me in November 1962, are: 1,897 patterns for 
order-7, and 92,263 for order-8. As far  as  I know, this was 
the first determination of those figures. They were confirmed 
by later computer programs by Bruce Fowler, Pine Brook, 
New Jersey, and Norwood and Ruth Gove, Washington, D.C. 
Joh. Kraaijenhof, in Amsterdam, in 1963 sent the figure 
1,972,653 for the order-9, and in 1966 Robert Maas, a t  the 
University of Santa Clara, reported 213,207,210 for the or- 
der-10. The order-9 result was confirmed in 1968 by Michael 
Cornelison of General Electric, Bethesda, Maryland, using a 
GE 635 GECOS system with a running time of 22 minutes. 

I have not learned the details of the Stanford program. 
Fowler reports that his program is based on the fact that 
any bisecting line must pass through the board's center, and 
that the two halves of the line are symmetrical with respect 
to the center. "The program works somewhat like the mouse 
in a maze," he writes. "It starts a t  the center, moving one 
space a t  a time and making all possible right-hand turns. 
When i t  bumps into its previous path, i t  backs up one space, 
turns left 90 degrees and continues. When i t  reaches the edge 
of the board, i t  scores up one solution, backs up one space, 
turns left, and so on. In this way all possible solutions are 
obtained. The total is printed when it discovers the direct 
route to the edge, in the original starting direction." 

The "backtrack" program just described applies only to 
the even-order boards. Odd-order boards, with center square 
removed, are more complicated. 

On the quartering problem, the thirty-seven patterns for 
the order-6 board are given by Harry Langrnan in Play 
Mathematics (New York : Hafner, 1962), pages 127-28, 
and can be extracted from the pictures of the ninety-five pat- 
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terns (including rotations and reflections) given in L. A. 
Graham, Ingenious Mathematical Problems and Methods 
(New York : Dover Publications, 1959), pages 164-65. 
John I?. Moore, of Lockheed Electronics Corporation, 
Plainfield, New Jersey, was the first to determine (he did not 
use a computer) the 104 quartering patterns for the order-7 
board, and the only reader to obtain the 766 patterns for the 
order-8. The order-7 result was independently obtained, with- 
out computer, by W. H. Grindley, Staffordshire, England, 
and by John Reed, Lexington, Massachusetts, who used a 
computer program written by Charles Peck and himself. 

For readers interested in the eight-queens problem-its 
history, generalization, and curious sidelights-I have listed 
in the bibliography the best references I know. The Ahrens 
work is the fullest. The numbers of total and basic solutions 
for all orders through 13 are given by Ahrens. The number 
of total solutions is known for higher-order boards, but if 
the number of fundamental solutions for order-14 has been 
determined I have not yet learned of it. 

Warren Lushbaugh, Los Angeles, called my attention to 
an  elegantly simple proof that  the twelve order-8 solutions 
cannot be superimposed to fill the sixty-four cells of the 
board. It is given by Thorold Gosset in Messenger of Mathe- 
matics (Vol. 44, July 1914, page 48). Sketch the 8 x 8 
board then color the four middle cells of each edge and the 
four corner cells of the central 6 x 6 board. Inspection of the 
twelve ways the queens can be placed shows that  each pat- 
tern has a t  least three queens on the twenty colored cells. If 
more than six solutions could be superimposed i t  would put 
a t  least twenty-one queens on the twenty colored cells, one 
queen to a cell, which is manifestly impossible. 

An interesting variant of the clueens problem is to give 
each queen the added power of a knight move. Can n non- 
attacking "superqueens" be placed on an  order-n board? It is 
easy to prove that  there are no solutions on boards through 
order-8. Nor is there one on order-9. Hilario Fernandez Long, 
Buenos Aires, examined the ninety-two patterns for the 
queens on the order-10 board and wrote that  there is one 
pattern, and one only, that  permits all ten queens to be super- 
queens and remain nonattacking. Readers may enjoy finding 
this unique pattern for themselves. 
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The problem of the nonattacking rooks on the standard 
chessboard was solved independently by two readers in 1962. 
David F. Smith, Cocoa Beach, Florida, and Donald B. Charn- 
ley, Los Angeles, each working without computers, found 
5,282 basic solutions for the order-8 and 46,066 for the or- 
der-9 board. Charnley reported 456,454 for the order-10 board 
but this has not yet, to my knowledge, been confirmed. For 
readers who are interested, I have cited references on the 
rook problem in the bibliography. The number of funda- 
mental solutions for orders 2 through 7 are, respectively, 1, 
2, 7, 23, 115, 694. 

A N S W E R S  
A minimum of ten squares must be removed from an 8 x 8 

board to make i t  impossible to cut a five-square Greek cross 
from what remains. There are many solutions. The one 
shown in Figure 88 was provided by L. Vosburgh Lyons of 
New York City. 

The 4 x 4 board can be quartered in no more than five 
different ways, shown a t  the top of Figure 89. Half of the 
second pattern can be reflected, but then two of the pieces 
will not have the same handedness as the other two. The 
seven ways of quartering the 5 x 5 (with center hole) are 
shown a t  the bottom of Figure 89. 

A maximum of thirty-two knights can be placed on a stan- 
dard chessboard in such a way that no knight attacks an- 
other. Simply place the knights on all squares of the same 
color. Jay Thompson of New York City writes that a group 
of chess players a t  a Middle Western hotel got into such a 
violent argument over this problem that the night clerk had 
to get a policeman to pull his chess nuts out of the foyer. 

Figure 88 
A solution to the Greek-cross 
problem 



Figure 89 

Quartering the 4 X 4 board 

Quartering the 5 X 5 board 



C H A P T E R  S E V E N T E E N  

A Loop of String 

"JANE ELLIN JOYCE bubbled into our big new drugstore . . . 
She hopped onto a stool a t  the soda counter and elbowed back 
a black evening wrap from a low-cut white dress . . . She was 
holding up her hands in front of her. There was a long loop 
of cord between them." 

So begins Leopard Cat's Cradle, an  offbeat mystery novel 
by Jerome Barry. An anthropologist a t  Columbia University 
has initiated Jane Ellin into the mysteries of the string play 
of primitive cultures. She is practicing for an  unusual night- 
club act in which she tells a n  amusing story, illustrated by a 
dazzling series of string patterns that  she forms rapidly on 
her fingers with a golden cord. 

Just as the charm of origami, the Japanese a r t  of paper 
folding, lies in the incredible variety of things that can be 
done with a single sheet of blank paper, so the charm of 
string play lies in the incredible variety of entertaining and 
even beautiful things that  can be done with one loop of cord. 
The string should be about six feet long and knotted a t  the 
ends. The loop is, of course, a model of a simple closed-space 
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curve. Only the length of the cord and its topological proper- 
ties remain invariant, so that  in a loose sense one can think 
of string play as a topological pastime. 

There are two basic categories of string play: releases and 
catches, and patterns. In stunts of the first category the 
string appears to be linked or entangled with an object but, 
to everyone's surprise, is suddenly pulled free; or, alter- 
natively, the loop unexpectedly catches on something. For 
example, the string is suddenly released from a buttonhole, 
or loops are placed around the neck, an arm, a foot-even the 
nose-and then mysteriously pulled free. In  many releases 
the cord is looped once or more around someone's upright 
finger and then freed by a series of curious manipulations. 
In other releases the string is twisted in a hopeless tangle 
around the fingers of the left hand and a tug pulls it free. 
There are many variations of an old carnival swindle called 
the "garter trick" ( i t  was often performed with.a garter in 
the days when men wore silk stockings), in which the string 
is formed into a pattern on the table; a spectator puts his 
finger in one of the loops and then bets on whether the string 
will or will not catch on his finger when the swindler pulls 
the cord to one side. Of course the operator has subtle ways 
of controlling the outcome. 

An amusing release that  never fails to intrigue all who see 
i t  begins with the string doubled three times to form a small 
eight-strand loop about three inches in diameter. Insert your 
two forefingers into the loop and rotate it by twirling the 
fingers in the manner shown in the drawing numbered 1 in 
Figure 90. After twirling for a few moments, stop a t  the 
position indicated by 2, then touch the tip of each thumb to 
the tip of each forefinger as shown in 3. Lower your right 
hand and place the tips of thumbs and forefingers together 
as shown in 4. Note that the right thumb touches the left 
finger and the left thumb touches the right finger. (Do not 
call attention to this. I t  is the secret of the trick!) Keeping 
thumbs pressed against fingers, raise your right thumb and 
left finger as  shown in 5 .  The loop is now lying on the lower 
thumb and finger. At this point a slight forward toss (keep- 
ing intact the circle formed by fingers and thumbs) will 
throw the loop free of the hands. 



Figure 90 
A loop-release tr ick 

Challenge anyone to do what you just did. He will find i t  
astonishingly difficult. Most people assupe that  thumb 
touches thumb and finger touches finger. On this assumption 
i t  is impossible to free the loop without breaking the circle 
formed by fingers and thumbs-and such a break is not al- 
lowed. Practice until you can do the feat smoothly and rapid- 
ly. You will find that  you can demonstrate i t  over and over 
again without anyone's succeeding in duplicating the moves. 

A completely different type of release is that  of freeing a 
ring from the cord. A spectator's upright thumbs hold the 
string as shown in Figure 91, with the ring riding on both 
strands. The following is the simplest of many techniclues for 
removing the ring: Place your extended left forefinger over 
both strands a t  the point marked A. With your right hand 
pick up the strand nearest you, a t  point B. Draw i t  upward 
to the left and place i t  over the spectator's right thumb (the 
thumb to your left) ,  moving i t  from front to back. Curl your 

Figure 91 
A ring-release tr ick 
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left forefinger to retain a firm grip on both strands. Slide 
the ring to the left as f a r  as you can. Pick up the uppermost 
strand to the right of the ring, draw i t  up and to the left and 
loop i t  (this time from back to front) over his right thumb. 

Pause a t  this point and ask the spectator to touch the tip 
of each thumb to the tip of each forefinger. This, you explain, 
is to make certain that  no loop is slipped off either thumb. 
Grasp the ring with your left hand. Tell him that  on the 
count of three he is to move his hands apart  to take up the 
slack that will form in the cord. When you say "Three," with- 
draw your left forefinger from the string. As he moves his 
hands apart  the ring comes free. The cord remains on his 
thumbs exactly as i t  was a t  the beginning, without even a 
twist in it. (As the ring is being released you can slide i t  
along the cord to the right so that i t  appears to come free 
near his left thumb, where he knows the loop on his thumb 
is secure.) Children are always delighted by this trick, par- 
ticularly because i t  is easily learned and they can show it  to 
friends. 

After mastering this release you may wish to t ry  the more 
sophisticated variation of putting three rings on the cord 
and removing only the center one. Begin as before, putting 
the first loop over the spectator's thumb. Slide the first two 
rings to the left, leaving the third ring near his left thumb. 
Grasp the upper strand as before, to the right of both rings, 
but thread i t  through the first ring before you loop i t  over 
his thumb. Hold the middle ring with your right hand and 
finish as before. Can the reader devise a similar series of 
manipulations that  will put the ring back on the center of the 
cord again? 

Figure 92 shows a ring-and-string release in the form of a 
puzzle. Fasten a pair of scissors to one end of the cord as 
shown. The other end is tied to the back of a chair. The 
problem is to free the scissors without cutting or untying the 
string. The puzzle is too easy to require an answer at the 
close of this chapter, although many readers may find i t  
harder than i t  looks. 

A game involving catches and releases, which the reader 
is unlikely to know because I just invent'ed it, can be played 
with a loop of cord and a coin. The coin is placed flat on a 



table. A player takes the cord by its knot and holds i t  above 
the coin so that the loop hangs straight down and touches 
the coin. He lets i t  drop in a tangle. Then he places the point 
of a pencil a t  any spot on the coin, pushing the point through 
any opening in the tangle provided he does not alter the po- 
sition of the cord in any essential way. With one hand keeping 
the pencil pressed against the coin, he seizes the knot in his 
other hand and pulls the cord to one side. The probability is 
high that i t  will catch on the pencil. He scores 1 if the loop 
goes around the pencil once, and an  additional point for each 
additional loop. If the cord is wrapped three times around 
the pencil he scores 3 points. If the cord pulls completely free 
of the pencil he is docked 5 points. Players take turns and 
the first to score 30 is the winner. 

In the second broad category of string play, various pat- 
terns and figures are formed on the hands. This a r t  is part  of 
the folklore of every primitive culture in which string has an 
important role. For untold generations i t  has been one of 
the chief pastimes of the Eskimos, who play i t  with reindeer 
sinews and thongs of sealskin. Other cultures in which string 
figures have reached an  advanced stage are  those of the 
North American Indians and of native tribes in Australia, 
New Zealand, the Caroline Islands, the Hawaiian Islands, the 
Marshall Islands, the Philippines, New Guinea and the Tor- 
res Strait Islands. Over the centuries these natives-particu- 
larly the Eskimos-have developed the a r t  to a degree of 
intricacy that rivals that of paper folding in the Orient and 
Spain. Thousands of patterns have been invented, some so 
complex that no one has yet figured out (from the drawings 
early anthropologists made of completed patterns) the finger 
manipulations by which they were formed. A native expert 
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can make the patterns with great rapidity. In  most cases he 
uses only his hands, although occasionally he may bring his 
teeth or toes into play. Often he chants or recites a story 
while he works. 

Most string patterns have acquired names that reflect a 
fancied resemblance to an  animal or some other natural ob- 
ject, and many of these "realistic" figures can be animated 
in some way. A zigzag flash of lightning appears suddenly 
between the hands, a sun goes down slowly, a boy climbs a 
tree, a mouth opens and shuts, two head-hunters battle, a 
horse gallops, a snake wriggles from hand to hand, a spear 
is tossed back and forth, a caterpillar is made to crawl along 
the thigh, a fly vanishes when one tries to squash i t  between 
the hands, and so on. Even among the static patterns there 
are  often touches of remarkable realism. A butterfly, for ex- 
ample, has a section of string that coils into a spiral pro- 
boscis. In  the mystery novel mentioned earlier each murder 
victim is found with a string pattern on his or her fingers or 
attached to a piece of cardboard; in each case the pattern 
symbolizes in some way the character of the victim. 

The traditional cat's-cradle game, the only string play 
widely known among children of Great Britain and the Unit- 
ed States, belongs to an  interesting class of patterns that  
demand the cooperation of two players. The string is passed 
back and forth between the players, forming a new pattern 
a t  each transfer. So universal is this pastime that, according 
to David Riesman (in his book Individualism Reconsidered, 
page 216), "our Army advised soldiers and aviators to al- 
ways carry a piece of string with them and when downed in 
a Pacific jungle to s tar t  playing cat's cradle if a suspicious 
native approached; the native would sometimes s tar t  to play 
too." 

The literature on string figures is almost as extensive as 
that  on origami. The earliest references are passing mentions 
of the pastime by a few eighteenth- and nineteenth-century 
writers. Captain William Bligh, in his log of the voyage of 
the Bounty, 1787-1790 (the period of the famous mutiny), 
speaks of seeing natives of Tahiti playing with the cord. 
Charles Lamb recalls string play during his school days. In  
1879 the English anthropologist Edward Burnett Tylor called 
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attention to the importance of string figures as culture 
clues, and in 1888 Franz Boas wrote the first full anthropo- 
logical description of how a native produces a pattern. A 
nomenclature and method of describing the making of string 
figures was published by W. H. R. Rivers and Alfred C. 
Haddon in 1902. Since then a large number of important pa- 
pers on string play have appeared in anthropological jour- 
nals, and many books have been devoted to the subject. There 
was a time (around 1910) when, if you met a man with a 
loop of string in his pocket, i t  was likely he was an  anthro- 
pologist. Unfortunately, string play turned out to be less sig- 
nificant in cultural anthropological work than i t  had been 
thought to be. Today a man with a loop of string is more 
likely to be an  amateur magician. 

Most books on string play have long been out of print, but 
Dover Publications in 1962 reprinted one of the most compre- 
hensive: String Figures and How to Make Them, by Caroline 
Furness Jayne, first published in 1906. This richly illustrated 
compendium of more than four hundred pages contains de- 
tailed instructions for making some one hundred different 
figures and is an excellent introduction to a fascinating avo- 
cation. I t  is a pity that  the a r t  is not more familiar, particu- 
larly among teachers of young children, nurses who work 
with the bedridden and psychiatrists who advise handicraft 
as therapy. 

To whet the reader's appetite I shall explain one of the 
simplest and most widely known of the diamond patterns. 
Mrs. Jayne calls i t  the Osage Diamonds because i t  was first 
shown to her by an Osage Indian from Pawhuska, Oklahoma, 
but i t  is more commonly known in this country as Jacob's 
Ladder. The reader is urged to take a six-foot piece of soft 
cord, knot the ends and see if he can master the figure. With 
a little practice the diamond pattern can be made in less than 
ten seconds. 

The figure starts, as do most string patterns, with the cord 
looped over the thumbs and little fingers as shown in the 
drawing numbered 1 in Figure 93. Put the tip of your right 
forefinger under the string that  crosses your left palm, and 
with the back of this finger draw the strand to the right. Do 
the same thing with your left forefinger, putting i t  between 



Figure 93 
How t o  make 
Jacob's Ladder 
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the strands now attached to the right forefinger. The cord 
should appear as i t  does a t  2. Withdraw your thumbs and 
pull the string taut  ( 3 ) .  

Turn your palms away from you to make i t  easy to put 
the tips of your thumbs under the farthest strand a t  the 
points marked A in 3. With the thumbs, draw this back and 
under all the other strands to the position shown a t  4. Bend 
the thumbs over the strand nearest them and with the backs 
of the thumbs pick up the next strand a t  the points marked 
A in 4. Release the little fingers from their loops. The string 
should appear as i t  does in 5 .  

Bend the little fingers over the strands nearest them and 
with the backs of the fingers pick up the strands a t  the points 
marked A in 5.  Release the thumbs. This brings the cord to 
the position shown a t  6. Bend each thumb over the two 
strands nearest i t  and with the backs of the thumbs pick up 
the next strands a t  the points marked A in 6. Return the 
thumbs. The string pattern should now appear as i t  does a t  7. 

With your right thumb and forefinger pick up the string a t  
point A (7) ,  pull i t  toward you and place the loop over the 
left thumb; then take the loop already on the left thumb, 
holding i t  a t  the point marked B (79, and lift i t  over the 
thumb, thereby releasing it. This exchange of loops is known 
as "Navahoing the loopsM-a move that  occurs in the making 
of many string figures. With your left hand Navaho the loops 
in the same way on the right thumb. (An expert can Navaho 
both thumbs simultaneously without the help of the other 
hand, but a beginner had best do i t  in the manner described.) 
The string now appears as  i t  does a t  8. 

You are ready for the final move. Bend your forefingers, 
placing their tips down into the small triangles marked A 
in 8. Withdraw your little fingers from the string, a t  the 
same time turning your palms away from you, raising the 
forefingers as high as you can. (Allow plenty of slack in the 
string during this final maneuver or the pattern will not open 
fully.) Draw the cord taut. If the maneuver is done properly, 
the diamond pattern will form as shown a t  9. This sudden 
appearance of a pleasing design out of what had appeared to 
be chaos is one of the delightful features of most string 
patterns. 
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Two people who master the figure will find i t  amusing to 
produce i t  cooperatively, the cord then being held by one 
player's left hand and the other player's right hand. I t  is not 
difficult to produce two identical patterns simultaneously in 
this manner, each on a pair of hands shared by two players. 
The ultimate test of dexterity is for two players, rapidly and 
a t  the same time, to share hands and form two different 
patterns, but this calls for great skill and coordination. 

A puzzle greeting is concealed in Figure 94. This is a poem 
called "Suicide," written by Louis Aragon, the French 
writer, during his early association with the surrealist move- 
ment. I take i t  to symbolize life as  i t  appears to the de- 
spondent: all its rich variety drained away, leaving only an  
idiotic ordering of meaningless symbols. In brooding on this 
poem I have discovered that Aragon unintentionally hid 
within i t  a two-word exhortation that, in the light of the nu- 
clear arms race, seems an appropriate message for our time. 
To decode it place the point of a pencil on a certain letter, 
then move from letter to adjoining letter, up or down, left 
or right or diagonally, spelling out the message. ( In  other 
words, move like a chess king.) A letter may be counted 

Figure 94 
Louis Aragon's poem "Suicide" 
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twice to permit such spellings as "stunning" and "no onions." 
In  spite of severe limitations imposed by the sparsity of 
vowels, i t  is possible to obtain fairly long phrases: for ex- 
ample, "No point to hide" and "Put UN on top." The 
two-word phrase I have in mind, however, is remarkably ap- 
propriate when addressed to a world about to cut its own 
throat; moreover, i t  has a marvelous ambiguity. 

A D D E N D U M  

Jerome Barry, who wrote the mystery novel about string 
figures, was working for a Manhattan advertising agency 
when I visited him in 1962. He told me he first became so 
intrigued by string play that he would carry the loop of cord 
with him and form the figures in idle moments. He explained 
to so many people that  i t  all had to do with a mystery novel 
he was writing that he finally had to write one. About 1950 
he used string figures again in a mystery that  he wrote for 
the "Lights Out" television show. The show's leading man, 
he told me, couldn't master the figures; so they were pre- 
pared in advance and coated with glue to give the string a 
permanently rigid shape. The camera would show the actor 
making the first string move, shift to a close-up of Barry's 
hands until the figure was completed, then back to the actor 
with the glued pattern on his fingers. 

A. Richard King, who in 1962 was teaching a fourth-grade 
class in Carcross, Yukon Territory, Canada, sent me the 
following letter : 

DEAR MR. GARDNER : 
Osage Diamonds, the word "charge," and a sense of 

humility are permanent associations in my mind. The 
whole thing began with your article about string 
play. . . . 

I am teacher of a fourth-grade class a t  an Indian 
Residential School here. This string play seemed a 
natural device for capturing interest among the chil- 
dren. I had never observed them in any sort of string 
play. One time I had showed some small ones the Cat's 
Cradle, elicited some mildly pleased responses, but had 
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seen no follow-up activity. (These children come from 
various parts of interior Yukon; have no tribal identi- 
fication; do not speak a language other than English; 
are descended principally from Athapaskan-speaking 
bands of nomadic people who used to be known as 
Kutchin, Han, or Kaska.) 

My own efforts to produce the Osage Diamonds were 
strenuous and frustrating. After having produced what 
must have been every possible incorrect variation, I 
finally arrived a t  the correct series of manipulations 
but was quite awkward with the final flip. I discarded 
the notion of trying to teach i t  to my children for i t  
was obviously too complicated for them to master. 

A month or so later I was droning through a lesson 
one warm afternoon. We were hung up on the word, 
"charge," from the spelling lesson. We had done all 
right with the concept of "attack" and "being respon- 
sible for"; and even "credit" was not difficult. But the 
trouble was distinguishing between "credit" and being 
charged for something and expected to pay for i t  im- 
mediately. 

One of the better girl students, who is more often 
than not in control of whatever concept we are worry- 
ing, was lounging on the base of her spine idly playing 
with a piece of yarn. A flip of her hand and there was 
the Osage Diamond! That instant is indelible in my 
memory. I don't know what I said, but I can still feel 
my mouth hanging slack. Gently, so as not to make 
her feel I was going to be punitive, I probed to see 
where her skill came from. 

My surprise was nothing compared to that  of the 
children when I showed interest in such foolishriess. 
Why everyone in the class knew that! Of course, I lost 
the group for further school work that day. If the 
teacher was crazy enough to allow-and appear to 
like-string tricks, there were plenty to show him. So 
I saw "Broom" and "Teacup" and "Baby on a Swing" 
and all the variations of the diamonds over and over 
for the rest of the day. I doubt that we still have the 
several concepts of "charge" under control. 

They learned the string patterns from other children 
slightly older. Adults can remember doing such things 
when they were young but those to whom I have 
spoken can no longer remember the actual techniques. 
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They say that  they could easily do i t  again "with a 
little practice." No particular significance is attached 
to the string play. I t  is "just something children always 
do." 

The Osage Diamonds as pictured and described in 
your article are one of a series these children call sim- 
ply, "TWOS," "Threes," "Fours," etc. They can go up 
to "Sixes," the number indicating the number of dia- 
monds produced in the completed figure. 

Enclosed is a picture of one of our children doing 
"TWOS" and "Fours" and "Broom." You were quite 
correct in stating that  these can easily be done in 10 
seconds or less. The variation you offered of two people 
doing the diamonds together, using one hand apiece, 
was something new to the children. They quickly mas- 
tered this technique and have enjoyed it. . . . 

Thank you for a most interesting experience. 

A N S W E R S  

The two-word phrase I had in mind, concealed in Aragon's 
poem, is "Chin up." I t  can, of course, be taken in two differ- 
ent ways. 

Five readers (J. R. Bruman, Richard Jenney, Alex Scha- 
pira, Jane Sichak, Robert Smyth) suggested "Stop, idiots!" 
(or "Idiots, stop !) . "Stupid idiots" was proposed by Jack 
Westfall, Herman Arthur, and Richard Jenney. Others in- 
cluded : "Hide idiots" (Ron Edwards), "Join up !" (Marvin 
Aronson), "Hoping not" (David Harper), "Feint not" 
(Richard De Long), and "No hoping" (Harmon Goldstone). 

Judith M. Hobart spelled out the followring telegram from 
U Thant to President Kennedy and Premier Khrushchev: 
HINT TO J. F. K., K.: JOIN TO PUT UN ON TOP. IN HOPING, NO 

POINT; TO HIDING, NO OUT. STUPID IDIOTS, STOP! 

Linus Pauling suggested a two-word phrase in which am- 
biguity is provided by a pun. "My wife and I thought that  
'No hiding' would be the solution," he wrote. "Not only is 
there no way to hide from nuclear war ;  i t  is no longer pos- 
sible for one great nation to give another a hiding." 



A Loop of String 211 

Two readers, both in Toronto, extracted poems from Ara- 
gon's poem. Dennis Burton sent: 

Zut ! 
Chin up John, 
You pout? 
Gab ! 
Yup ! 
Hop not on pont, 
JOHN HIP?  
No, idiot, no dice. 

Nuts ! 
fed up. fed up Id, 
Ide to hide, 
chide bag, 
ion, pion, pin. 

To die? 
no point, 
top too hot. 

Th.e Varsity, the student newspaper a t  the University of 
Toronto, asked its readers on February 8, 1963, to see what 
they could spell in Aragon's poem. On February 15 it printed 
the following poem by Eleonor Anderson, of the university's 
Banting Institute : 

To the Leaders Who 

"put out no opinion." 
Snide idiots ! 
Snide feints, not stopping, 
hiding, 
chopping. 

No point to hide in, 
I chide : "Idiots, stop ! 
Join in stopping, not 
to join in hiding." 

Hoping not to, 1 die. 

Note that the entire poem can be spelled with an unbroken 
series of king moves. 
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Curves of 
Constant Width 

IF AN ENORMOUSLY heavy object has to be moved from one 
spot to another, i t  may not be practical to move i t  on wheels. 
Axles might buckle or snap under the load. Instead the ob- 
ject is placed on a flat platform that in turn rests on cylin- 
drical rollers. As the platform is pushed forward, the rollers 
left behind are picked up and put down again in front. 

An object moved in this manner over a flat, horizontal 
surface obviously does not bob up and down as i t  rolls along. 
The reason is simply that the cylindrical rollers have a cir- 
,ular cross section, and a circle is a closed curve possessing 
what mathematicians call "constant width." If a closed con- 
vex curve is placed between two parallel lines and the lines 
are moved together until they touch the curve, the distance 
between the parallel lines is the curve's "width" in one direc- 
tion. An ellipse clearly does not have the same width in all 
directions. A platform riding on elliptical rollers would wob- 
ble up and down as i t  rolled over them. Because a circle has 
the same width in all directions, i t  can be rotated between 
two parallel lines without altering the distance between the 
lines. 

212 
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Is  the circle the only closed curve of constant width? Most 
people would say yes, thus providing a sterling example of 
how f a r  one's mathematical intuition can go astray. Actually 
there is an  infinity of such curves. Any one of them can be 
the cross section of a roller that  will roll a platform as 
smoothly as a circular cylinder! The failure to recognize 
such curves can have and has had disastrous consequences 
in industry. To give one example, i t  might be thought that  
the cylindrical hull of a half-built submarine could be tested 
for circularity by just measuring maximum widths in all 
directions. As will soon be made clear, such a hull can be 
monstrously lopsided and still pass such a test. I t  is precisely 
for this reason that  the circularity of a submarine hull is 
always tested by applying curved templates. 

The simplest noncircular curve of constant width has been 
named the Reuleaux triangle after Franz Reuleaux (1829- 
1905), an  engineer and mathematician who taught a t  the 
Royal Technical High School in Berlin. The curve itself was 
known to earlier mathematicians, but Reuleaux was the first 
to demonstrate its constant-width properties. It is easy to 
construct. First  draw an equilateral triangle, ABC (see Fig- 
ure 95). With the point of a compass a t  A, draw an  arc, BC. 
In a similar manner draw the other two arcs. It is obvious 
that  the "curved triangle" (as Reuleaux called i t )  must have 
a constant width equal to the side of the interior triangle. 

Figure 95 

Construction of Reuleaux tr iangle Reuleaux tr iangle rotating in square 
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If a curve of constant width is bounded by two pairs of 
parallel lines a t  right angles to each other, the bounding lines 
necessarily form a square. Like the circle or any other curve 
of constant width, the Reuleaux triangle will rotate snugly 
within a square, maintaining contact a t  all times with all 
four sides of the square (see Figure 95 ) .  If the reader cuts 
a Reuleaux triangle out of cardboard and rotates i t  inside a 
square hole of the proper dimensions cut in another piece of 
cardboard, he will see that  this is indeed the case. 

As the Reuleaux triangle turns within a square, each cor- 
ner traces a path that  is almost a square; the only deviation 
is a t  the corners, where there is a slight rounding. The Reu- 
leaux triangle has many mechanical uses, but none is so 
bizarre as the use that  derives from this property. In  1914 
Harry James Watts, an  English engineer then living in Tur- 
tle Creek, Pennsylvania, invented a rotary drill based on the 
Reuleaux triangle and capable of drilling square holes ! Since 
1916 these curious drills have been manufactured by the 
Watts Brothers Tool Works in Wilmerding, Pennsylvania. 
"We have all heard about left-handed monkey wrenches, fur- 
lined bathtubs, cast-iron bananas," reads one of their de- 
scriptive leaflets. "We have all classed these things with the 
ridiculous and refused to believe that  anything like that  
could ever happen, and right then along comes a tool that 
drills square holes." 

The Watts square-hole drill is shown in Figure 96. At right 
is a cross section of the drill as i t  rotates inside the hole 
i t  is boring. A metal guide plate with a square opening is 

Cross section of 
drill in hole 
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first placed over the material to be drilled. As the drill spins 
within the guide plate, the corners of the drill cut the square 
hole through the material. As you can see, the drill is simply 
a Reuleaux triangle made concave in three spots to provide 
for cutting edges and outlets for shavings. Because the ten- 
ter of the drill wobbles as  the drill turns, i t  is necessary to 
allow for this eccentric motion in the chuck that holds the 
drill. A patented "full floating chuck," as the company calls 
it, does the trick. (Readers who would like more information 
on the drill and the chuck can check United States patents 
1,241,175 ; 1,241,176 ; and 1,241,177 ; all dated September 25, 
1917.) 

The Reuleaux triangle is the curve of constant width that 
has the smallest area for a given width (the area is 1/2 
( T  - V 3 )  zo2, where zo is the width). The corners are angles 
of 120 degrees, the sharpest possible on such a curve. These 
corners can be rounded off by extending each side of an 
equilateral triangle a uniform distance a t  each end ( see  Fig- 
ure 9 7 ) .  With the point of a compass a t  A draw arc DZ; then 
widen the compass and draw arc FG. Do the same a t  the 
other corners. The resulting curve has a width, in a11 direc- 
tions, that  is the sum of the same two radii. This of course 
makes i t  a curve of constant width. Other symmetrical curves 

Figure 97 
Symmetrical rounded-corner 
curve of constant width 

of constant width result if you start  with a regular penta- 
gon (or any regular polygon with an odd number of sides) 
and follow similar procedures. 

There are ways to draw unsymmetrical curves of constant 
width. One method is to start  with an irregular star polygon 
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(i t  will necessarily have an odd number of points) such as 
the seven-point star shown in black in Figure 98. All of these 
line segments must be the same length. Place the compass 
point a t  each corner of the star and connect the two opposite 
corners with an arc. Because these arcs all have the same 
radius, the resulting curve (shown in gray) will have con- 
stant width. Its corners can be rounded off by the method 
used Before. Extend the sides of the star a uniform distance 
a t  all points (shown with broken lines) and then join the 
ends of the extended sides by arcs drawn with the compass 
point a t  each corner of the star. The rounded-corner curve, 
which is shown in black, will be another curve of constant 
width. 

Figure 99 demonstrates another method. Draw as many 
straight lines as you please, all mutually intersecting. Each 
arc is drawn with the compass point a t  the intersection of 
the two lines that  bound the arc. Start  with any arc, then 
proceed around the curve, connecting each arc to the pre- 
ceding one. If you do i t  carefully, the curve will close and 
will have constant width. (Proving that the curve must close 
and have constant width is an interesting and not difficult 
exercise.) The preceding curves were made up of arcs of no 
more than two different circles, but curves drawn in this 
way may have arcs of as many different circles as you wish. 

A curve of constant width need not consist of circular 
arcs. In fact, you can draw a highly arbitrary convex curve 
from the top to the bottom of a square and touching its left 
side (arc ABC in  Figure 9 9 ) ,  and this curve will be the left 

Figure 98 
Star-polygon method of 
drawing a curve of constant 
width 



Figure 99 

Crossed-lines method Random curve and tangents 

side of a uniquely determined curve of constant width. To 
find the missing part, rule a large number of lines, each 
parallel to a tangent of arc ABC and separated from the 
tangent by a distance equal to the side of the square. This 
can be done quickly by using both sides of a ruler. The orig- 
inal square must have a side equal to the ruler's width. Place 
one edge of the ruler so that  i t  is tangent to arc ABC a t  one 
of its points, then use the ruler's opposite edge to draw a 
parallel line. Do this a t  many points, from one end of arc 
ABC to the other. The missing part of the curve is the en- 
velope of these lines. In this way you can obtain rough out- 
lines of an endless variety of lopsided curves of constant 
width. 

I t  should be mentioned that  the arc ABC cannot be com- 
pletely arbitrary. Roughly speaking, its curvature must not 
a t  any point be less than the curvature of a circle with a 
radius equal to the side of the square. I t  cannot, for exam- 
ple, include straight-line segments. For a more precise state- 
ment on this, as well as detailed proofs of many elementary 
theorems involving curves of constant width, the reader is 
referred to the excellent chapter on such curves in T h e  En-  
joyment o f  Mathematics, by Hans Rademacher and Otto 
Toeplitz. 

If you have the tools and skills for woodworking, you 
might enjoy making a number of wooden rollers with cross 
sections that  are various curves of the same constant width. 
Most people are nonplused by the sight of a large book roll- 
ing horizontally across such lopsided rollers without bobbing 
up and down. A simpler way to demonstrate such curves is 
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to cut from cardboard two curves of constant width and nail 
them to opposite ends of a wooden rod about six inches long. 
The curves need not be of the same shape, and i t  does not 
matter exactly where you put each nail as long as i t  is fairly 
close to what you guess to be the curve's "center." Hold a 
large, light-weight empty box by its ends, rest i t  horizontally 
on the attached curves and roll the box back and forth. The 
rod wobbles up and down a t  both ends, but the box rides 
as smoothly as it would on circular rollers! 

The properties of curves of constant width have been ex- 
tensively investigated. One startling property, not easy to 
prove, is that the perimeters of all curves with constant 
width n have the same length. Since a circle is such a curve, 
the perimeter of any curve of constant width n must of 
course be ~ n ,  the same as the circumference of a circle with 
diameter n. 

The three-dimensional analogue of a curve of constant 
width is the solid of constant width. A sphere is not the only 
such solid that will rotate within a cube, a t  all times touch- 
ing all six sides of the cube; this property is shared by all 
solids of constant width. The simplest example of a non- 
spherical solid of this type is generated by rotating the Reu- 
leaux triangle around one of its axes of symmetry (see Fig- 
ure 100 l e f t ) .  There is an infinite number of others. The 

Figure 100 
T ~ O  solids of 
constant width 

solids of constant width that have the smallest volumes are 
derived from the regular tetrahedron in somewhat the same 
way the Reuleaux triangle is derived from the equilateral 
triangle. Spherical caps are first placed on each face of the 
tetrahedron, then i t  is necessary to alter three of the edges 
slightly. These altered edges may either form a triangle or 
radiate from one corner. The solid a t  the right of Figure 100 
is an example of a curved tetrahedron of constant width. 

Since all curves of the same constant width have the same 
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perimeter, i t  might be supposed that all solids of the same 
constant width have the same surface area. This is not the 
case. It was proved, however, by Hermann Minkowski (the 
Polish mathematician who made such great contributions 
to relativity theory) that all shadows of solids of constant 
width (when the projecting rays are parallel and the shad- 
ow falls on a plane perpendicular to the rays) are curves 
of the same constant width. All such shadows have equal 
perimenters (I; times the width). 

Michael Goldberg, an engineer with the Bureau of Naval 
Weapons in Washington, has written many papers on curves 
and solids of constant width, and is recognized as being this 
country's leading expert on the subject. He has introduced 
the term "rotor" for any convex figure that can be rotated 
inside a polygon or polyhedron while a t  all times touching 
every side or face. 

The Reuleaux triangle is, as we have seen, the rotor of 
least area in a square. The least-area rotor for the equilater- 
al triangle is shown a t  the left of Figure 101. This lens- 
shaped figure (it is not, of course, a curve of constant width) 
is formed with two 60-degree arcs of a circle having a radi- 
us equal to the triangle's altitude. Note that as i t  rotates 
its corners trace the entire boundary of the triangle, with no 
rounding of corners. Mechanical reasons make i t  difficult to 
rotate a drill based on this figure, but Watts Brothers makes 
other drills, based on rotors for higher-order regular poly- 
gons, that drill sharp-cornered holes in the shape of penta- 
gons, hexagons and even octagons. In three-space, Goldberg 
has shown, there are nonspherical rotors for the regular 
tetrahedron and octahedron, as well as the cube, but none 
for the regular dodecahedron and icosahedron. Almost no 
work has been done on rotors in dimensions higher than 
three. 

Closely related to the theory of rotors is a famous problem 
named the Kakeya needle problem after the Japanese mathe- 

Least-area rotor in equilateral Line rotated in deltoid curve 
triangle 
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matician SBichi Kakeya, who first posed i t  in 1917. The 
problem is as follows: What is the plane figure of least area 
in which a line segment of length 1 can be rotated 360 de- 
grees? The rotation obviously can be made inside a circle 
of unit diameter, but that  is f a r  from the smallest area. 

For many years mathematicians believed the answer was 
the deltoid curve shown a t  the right of Figure 101, which 
has an area exactly half that of a unit circle. (The deltoid is 
the curve traced by a point on the circumference of a circle 
as i t  rolls around the inside of a larger circle, when the diam- 
eter of the small circle is either one third or two thirds that  
of the larger one.) If you break a toothpick to the size of the 
line segment shown, you will find by experiment that  i t  can 
be rotated inside the deltoid as a kind of one-dimensional 
rotor. Note how its end points remain a t  all times on the 
deltoid's perimeter. 

In  1927, ten years after Kakeya popped his question, the 
Russian mathematician Abram Samoilovitch Besicovitch 
(then living in Copenhagen) dropped a bombshell. He proved 
that  the problem had no answer. More accurately, he showed 
that the answer to Kakeya's question is that there is no1 
minimum area. The area can be made as small as one wants. 
Imagine a line segment that stretches from the earth to the 
moon. We can rotate i t  360 degrees within an area as small 
as the area of a postage stamp. If that  is too large, we can re- 
duce i t  to the area of Lincoln's nose on a postage stamp. 

Besicovitch's proof is too complicated to give here (see 
references in bibliography), and besides, his domain of rota- 
tion is not what topologists call simply connected. For readers 
who would like to work on a much easier problem: What is 
the smallest convex area in which a line segment of length 1 
can be rotated 360 degrees? (A  convex figure is one in which 
a straight line, joining any two of its points, lies entirely on 
the figure. Squares and circles are convex ; Greek crosses and 
crescent moons are  not.) 

A D D E N D U M  

Although Watts was the first to acquire patents on the 
process of drilling square holes with Reuleaux-triangle drills, 
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the procedure was apparently known earlier. Derek Beck, in 
London, wrote that he had met a man who recalled having 
used such a drill for boring square holes when he was an 
apprentice machinist in 1902, and that  the practice then 
seemed to be standard. I have not, however, been able to 
learn anything about the history of the technique prior to 
Watts's 1917 patents. 

A N S W E R S  

What is the smallest convex area in which a line segment 
of length 1 can be rotated 360 degrees? The answer: An 
equilateral triangle with an altitude of 1. (The area is one 
third the square root of 3.) 

Any figure in which the line segment can be rotated obvi- 
ously must have a width a t  least equal to 1. Of all convex 
figures with a width of 1, the equilateral triangle of altitude 
1 has the smallest area. (For  a proof of this the reader is 
referred to Convex Figures, by I .  M. Yaglom and V. G. 
Boltyanskii, pages 221-22.) I t  is easy to see that a line seg- 
ment of length 1 can in fact be rotated in such a triangle 
(see Figure 102). 

The deltoid curve was believed to be the smallest simply- 
connected area solving the problem until 1963 when a smaller 
area was discovered independently by Melvin Bloom and I. J. 
Schoenberg. (See H.S.M. Coxeter, Tzuelve Geometric Essccys, 
[Carbondale and Edwardsville : Southern Illinois University 
Press, 19681, page 231.) 

Figure 102 The answer to needle-turning problem 



C H A P T E R  N I N E T E E N  

0 

Rep- Tiles: 
Replicating Figures 

on the Plane 

ONLY THREE REGULAR POLYGONS-the equilateral triangle, 
the square and the regular hexagon--can be used for tiling a 
floor in such a way that  identical shapes are endlessly re- 
peated to cover the plane. But there is an  infinite number of 
irregular polygons that can provide this kind of tiling. For 
example, a triangle of any shape whatever will do the trick. 
So will any four-sided figure. The reader can t ry  the follow- 
ing test. Draw an  irregular quadrilateral ( i t  need not even 
be convex, which is to say that  i t  need not have interior an- 
gles that are all less than 180 degrees) and cut twenty or 
so copies from cardboard. It is a pleasant task to fit them all 
together snugly, like a jigsaw puzzle, to cover a plane. 

There is an unusual and less familiar way to tile a plane. 
Note that  each trapezoid a t  the top of Figure 103 has been 
divided into four smaller trapezoids that  are  exact replicas 
of the original. The four replicas can, of course, be divided 
in the same way into four still smaller replicas, and this can 
be continued to infinity. To use such a figure for tiling we 

222 
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have only to proceed to infinity in the opposite direction: we 
put together four figures to form a larger model, four of 
which will in turn fit together to make a still larger one. The 
British mathematician Augustus De Morgan summed up this 
sort of situation admirably in the following jingle, the first 
four lines of which paraphrase an earlier jingle by Jonathan 
Swift : 

Great fleas have little fleas 
Upon their backs to bite ' em,  

And little fleas have lesser fleas, 
And so ad infinitum. 

The great fleas themselves, in turn,  
Have greater fleas to go on; 

While  these again have greater still, 
And greater still, and so on. 

Until recently not much was known about polygons that 
have this curious property of making larger and smaller 
copies of themselves. In 1962 Solomon W. Golomb, who was 
then on the staff of the Jet Propulsion Laboratory of the 
California Institute of Technology and is now professor of 
electrical engineering a t  the University of Southern Califor- 
nia, turned his attention to these "replicating figuresw-or 
"rep-tiles," as he calls them. The result was three privately 
issued papers that lay the groundwork for a general theory 
of polygon "replication." These papers, from which almost 
all that follows is extracted, contain a wealth of material of 
great interest to the recreational mathematician. 

Figure 103 
Three trapezoids that have a replicating order of 4 

The only known rep-2 polygons 
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In Golomb's terminology a replicating polygon of order k 
is one that can be divided into k replicas congruent to one 
another and similar to the original. Each of the three trape- 
zoids in Figure 103, for example, has a replicating order of 
4, abbreviated as rep-4. Polygons of rep-k exist for any k, 
but they seem to be scarcest when k is a prime and to be 
most abundant when k is a square number. 

Only two rep-2 polygons are known: the isosceles right 
triangle and the parallelogram with sides in the ratio of 1 to 
the square root of 2 (see bottom of Figure 103). Golomb 
found simple proofs that these are the only possible rep-2 
triangles and quadrilaterals, and there are no other convex 
rep-2 polygons. The existence of concave rep-2 polygons ap- 
pears unlikely, but so far their nonexistence has not been 
proved. 

The interior angles of the parallelogram can vary without 
affecting its rep-2 property. In its rectangular form the rep-2 
parallelogram is almost as famous in the history of a r t  as 
the "golden rectangle," discussed in the Second Scientific 
American Book of Mathematical Puzzles and Diversions. 
Many medieval and Renaissance artists (Albrecht Diirer, for 
instance) consciously used it for outlining rectangular pic- 
tures. A trick playing card that is sometimes sold by street- 
corner pitchmen exploits this rectangle to make the ace of 
diamonds seem to diminish in size three times (see Figure 
104). Under cover of a hand movement the card is secretly 
folded in half and turned over to show a card exactly half 
the size of the preceding one. If each of the three smaller 
aces is a rectangle similar to the original, it is easy to show 
that only a 1-by-V2 rectangle can be used for the card. The 
rep-2 rectangle also has less frivolous uses. Printers who 

Figure 104 
A trick diminishing 
card based on 
the rep-2 rectangle 
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wish to standardize the shape of the pages in books of vari- 
ous sizes find that in folio, quarto or octavo form it  produces 
pages that are all similar rectangles. 

The rep-2 rectangle belongs to the family of parallelo- 
grams shown in the top illustration of Figure 105. The fact 
that a parallelogram with sides of 1 and Vk is always rep-k 
proves that  a rep-k polygon exists for any k.  I t  is the only 
known example, Golomb asserts, of a family of figures that 
exhibit all the replicating orders. When k is 7 (or any prime 
greater than 3 that  has the form 4n - I ) ,  a parallelogram 
of this family is the only known example. Rep-3 and rep-5 
triangles exist. Can the reader construct them? 

A great number of rep-4 figures are known. Every triangle 
is rep-4 and can be divided as shown in the second illus- 
tration from the top of Figure 105. Among the quadrilater- 
als, any parallelogram is rep-4, as shown in the same illustra- 
tion. The three trapezoids in the top illustration of Figure 
103 are the only other examples of rep-4 quadrilaterals so 
fa r  discovered. 

Only one rep-4 pentagon is known: the sphinx-shaped fig- 
ure in the third illustration from the top of Figure 105. 
Golonib was the first to discover its rep-4 property, Only the 
outline of the sphinx is given so that the reader can have the 
pleasure of seeing how quickly he can dissect i t  into four 
smaller sphinxes. (The name "sphinx" was given to this fig- 
ure by T. H. O'Beirne, of Glasgow.) 

There are three known varieties of rep-4 hexagons. If any 
rectangle is divided into four quadrants and one quadrant is 
thrown away, the remaining figure is a rep-4 hexagon. The 
hexagon a t  the right a t  the bottom of Figure 105 shows the 
dissection (familiar to puzzlists) when the rectangle is a 
square. The other two examples of rep-4 hexagons (each of 
which can be dissected in more than one way) are shown 
a t  the middle and left in the same illustration. 

No other example of a standard polygon with a rep-4 
property is known. There are, however, "stellated" rep-4 
polygons ( a  stellated polygon consists of two or more poly- 
gons joined a t  single points), two examples of which, pro- 
vided by Golomb, are shown a t  the top of Figure 106. In the 
first example a pair of identical rectangles cak be substi- 
tuted for the squares. In addition, Golomb has found three 



The I -by-v 'k  parallelogram is a rep-k polygon 

Every triangle 
and parallelogram 

is rep-4 

The three known varieties of rep-4 hexagons 

Figure 1 0 5  
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nonpolygonal figures that are rep-4, although none is con- 
structible in a finite number of steps. Each of these figures, 
shown a t  the left in the bottom illustration of Figure 106, is 
formed by adding to an  equilateral triangle an endless 

Two stellated r e p 4  polygons 

Three examples of rep-4 nonpolygons 

Figure 106 
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series of smaller triangles, each one fourth the size of its 
predecessor. In  each case four of these figures will fit to- 
gether to make a larger replica, as shown a t  the right in the 
same illustration. (There is a gap in each replica because the 
original cannot be drawn with an infinitely long series of 
triangles.) 

It is a curious fact that  every known rep-4 polygon of a 
standard type is also rep-9. The rep-4 Nevada-shaped trape- 
zoid of Figure 107 can be dissected into nine replicas in many 
ways, only one of which is shown. (Can the reader dissect 
each of the other rep-4 polygons, not counting the stellated 
and infinite forms, into nine replicas?) The converse is also 
true:  All known standard rep-9 polygons are also rep-4. 

Figure 107 
Every rep-4 polygon is also rep-9 

Three interesting examples of stellated rep-9 polygons, dis- 
covered and named by Golomb, are shown in Figure 108. 
None of these polygons is rep-4. 

Any method of dividing a 4 x 4 checkerboard along grid 
lines into four congruent parts (as  discussed in Chapter 16) 
provides a figure that  is rep-16. I t  is only necessary to put 
four of the squares together to make a replica of one of the 
parts as in Figure 109. In a similar fashion, a 6 x 6 checker- 
board can be quartered in many ways to provide rep-36 fig- 
ures, and an  equilateral triangle can be divided along tri- 
angular grid lines into rep-36 polygons (see Figure 11 0 ) .  
All of these examples illustrate a simple theorem, which Gol- 
omb explains as follows : 

Consider a figure P that  can be divided into two or more 
congruent figures, not necessarily replicas of P. Call the 
smaller figure Q. The number of such figures is the "multi- 
plicity" with which Q divides P. For example, in Figure 110 
the three hexagons divide the triangle with a multiplicity of 



Figure 108 
Stelfated rep-9 polygons: The Fish (a), 
The Bird (b) and The Ampersand (c) 

Figure 109 
A rep-16 octagon 
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Figure 110 
Three rep-36 polygons 

3 and small equilateral triangles will divide each hexagon 
with a multiplicity of 12. The product of these two multi- 
plicities ( 3  x 12) gives a replicating order for both the 
hexagon and the equilateral triangle: 36 of the hexagonal 
figures will form a larger figure of similar shape, and 36 
equilateral triangles will form a larger equilateral triangle. 
In more formal language: If P and Q are two shapes such 
that P divides Q with a multiplicity of s, and Q divides P 
with a multiplicity of t, then P and Q are both replicating 
figures of order s t  (s x 6 ) .  Of course, each figure can have 
lower replicating orders as well. In the example given, the 
equilateral triangle, in addition to being rep-36, is also rep-4, 
rep-9, rep-16 and rep-25. 

When P and Q are similar figures, i t  follows from the 
above theorem that if the figure has a replicating order of k, 
i t  will also be rep-k2, rep-k3, rep-k4 and so on for all powers 
of k. Similarly, if a figure is both rep-s and rep-t, i t  will also 
be rep-st. 

The principle underlying all of these theorems can be ex- 
tended as follows. If P divides Q with a multiplicity of s, and 
Q divides R with a multiplicity of t, and R divides P with a 
multiplicity of u, then P and Q and R are each rep-stu. For 
instance, each of the hexominoes in Figure 111 will divide 

Figure 11 1 
Three rep-144 polygons 
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a 3 x 4 rectangle with a multiplicity of 2. The 3 x 4 rec- 
tangle in turn divides a square with a multiplicity of 12, and 
the square divides any one of the three original shapes with 
a multiplicity of 6. Consequently the replicating order of each 
hexomino is 2 x 12 x 6, or 144. I t  is conjectured that  none 
of the three has a lower replicating order. 

Golomb has noted that every known polygon of rep-4, in- 
cluding the stellated polygons, will divide a parallelogram 
with a multiplicity of 2. In other words, if any known r e p 4  
polygon is replicated, the pair can be fitted together to form 
a parallelogram! I t  is conjectured, but not yet proved, that 
this is true of all rep-4 polygons. 

An obvious extension of Golomb's pioneer work on repli- 
cation theory (of which only the most elementary aspects 
have been detailed here) is into three or even higher dimen- 
sions. A trivial example of a replicating solid figure is the 
cube: i t  obviously is rep-8, rep-27 and so on for any order 
that  is a cubical number. Other trivial examples result from 
giving plane replicating figures a finite thickness, then form- 
ing layers of larger replicas to make a model of the original 
solid. Less trivial examples certainly exist; a study of them 
might lead to significant results. 

In addition to the problems already posed, here are two 
unusual dissection puzzles closely related to what we have 
been considering (see Figure 11 2 ) .  First the easier one : Can 

the reader divide the hexagon (left) into two congruent stel- 
lated polygons? More difficult: Divide the pentagon (right) 
into four congruent stellated polygons. In neither case are the 
polygons similar to the original figure. 
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A D D E N D U M  

The conjecture that  the three polygons shown in Figure 
111 could not be cut into fewer than 144 replicas turned out 
to be true only of the two end ones. Mark A. Mandel, New 
York City, then fourteen years old, wrote to show how the 
middle polygon could be cut into 36 replicas. Readers may 
enjoy searching for the pattern. 

Ralph H. Hinrichs, Phoenixville, Pennsylvania, discovered 
that  if the middle hexagon a t  the bottom of Figure 105 is 
dissected in a slightly different way (the pattern within each 
rectangle is mirror-reflected), the entire figure can undergo 
an  infinite number of affine transformations (the 90-degree 
exterior angle taking any acute or  obtuse value) to provide 
an  infinity of rep-4 hexagons. Only when the angle is 90 
degrees is the figure also rep-9, thus disproving an  early 
guess that  all rep-4 standard polygons are rep-9 and vice 
versa. 

More recent results in the field are given in the last three 
references cited in the bibliography for this chapter. 

A N S W E R S  

The problem of dissecting the sphinx is shown in Figure 
113, top. The next two illustrations show how to construct 
rep-3 and rep-5 triangles. The bottom illustration gives the 
solution to the two dissection problems involving stellated 
polygons. The first of these can be varied in an  infinite num- 
ber of ways; the solution shown here is one of the simplest. 

The second solution is an old-timer. Sam Loyd, in his puz- 
zle column in Woman's Home Companion (October 1905) 
points out that  the figure is similar to the one shown here in 
the lower right corner of Figure 105 in that  one fourth of a 
square is missing from each figure. He writes that  he spent 
a year trying to cut the mitre shape into four congruent 
parts, each simply connected, but was unable to do better 
than the solution reproduced here. It can be found in many 
old puzzle books antedating Loyd's time. 



Figure 113 
Solutions to  
dissection problems 



C H A P T E R  T W E N T Y  

Thirty- Seven 
Catch Questions 

HERE IS A COLLECTION of thirty-seven short problems, pre- 
sented in the hope of "catching" as many readers as possible. 
Every problem conceals some sort of joke. Only a few are 
mathematically significant. The reader is urged, however, 
not to peek a t  the solutions until he has made a t  least a semi- 
serious attempt to answer as many of the questions as pos- 
sible. 

1. Three Navaho women sit side by side on the ground. 
The first woman, who is sitting on a goatskin, has a son who 
weighs 140 pounds. The second woman, who is sitting on a 
deerskin, has a son who weighs 160 pounds. The third wom- 
an, who weighs 300 pounds, is sitting on a hippopotamus 
skin. What famous geometric theorem does this symbolize? 

2. A tired physicist went to bed a t  ten o'clock one night 
after setting his alarm clock for noon the following day. 
When the alarm woke him, how many hours had he slept? 

3. Joe throws an ordinary die, then Moe throws the same 
die. What is the probability that Joe will throw a higher 
number than Moe? 
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Figure 114 
A die is thrown by Moe and Joe 

4. What is the exact opposite of "not in"? 
5. On level ground a 10-foot pole stands a certain distance 

from a 15-foot pole (see Figure 1 1 5 ) .  If lines are drawn 
from the top of each pole to the bottom of the other as 
shown, the lines intersect a t  a point six feet above the 
ground. What is the distance between the poles? 

I 15 ' Figure 1 15 
What is the distance between 
the poles? 

6. "How much will one cost?" 
"Twenty cents," replied the clerk in the hardware store. 
"And how much will twelve cost?" 
"Forty cents." 
"Okay. I'll take nine hundred and twelve." 
"That will be sixty cents." 
What was the customer buying? 
7. A triangle has sides of 13, 18 and 31 inches. What is the 

triangle's area? 
8. What familiar English word is invariably pronounced 

wrong by every mathematician a t  the Institute for Advanced 
Study in Princeton, New Jersey? 

9. John Kennedy was born in 1917. He became president 
in 1960. His age in 1963 was 46 and he had been in office 3 
years. The sum of these four numbers is 3,926. Charles de 
Gaulle was born in 1890. He became president of France in 
1958. His age in 1963 was 73 and he had been in office 5 
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years. The sum of these four numbers also is 3,926. Can you 
explain this remarkable coincidence? 

10. What angle is made by the two dotted lines on the 
cube in Figure 116? 

Figure 1 16 
What angle is made by the 
dotted lines? 

11. Rearrange the letters of NEW DOOR to make one word. 
12. The edge of a reservoir is a perfect circle. A fish starts 

a t  a point on the edge and swims due north for 600 feet, 
which takes him to the edge again. He then swims due east, 
reaching the edge after going 800 feet. What is the reser- 
voir's diameter? 

13. A statistician gave mathematical tests to everyone who 
lived in a village of 6,000 people and a t  the same time meas- 
ured the lengths of their feet. He found a strong correlation 
between mathematical ability and foot size. Explain. 

14. Roy G .  Biv, of Rainbow, Oregon, wants to know what 
familiar continuum is expressed by the following words: 
flushed, New Jersey town, cowardly, na'ive, depressed, dye- 
stuff, shrinker. 

Figure 11 7 
How to measure diameter as 
the fish swims 
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15. Write a simple formula with only the one variable, x, 
such that when any positive integer is substituted for x, the 
formula is sure to give a prime number. 

16. A man wishes to build a house on a large triangular 
plot of ground, then to construct three straight roads, each 
leading from the house to a side of the triangle and each road 
perpendicular to the side. The triangle is equilateral. Where 
should he place his house in order to minimize the sum of the 
lengths of the three roads? 

Figure 118 
A house builder's triangular 
problem 

17. Divide 50 by 1/2 and add 3. What is the result? 
18. In  the following line of letters cross out six letters so 

that the remaining letters, without altering their sequence, 
will spell a familiar English word: 

B S A I N X L E A T N T E A R S  

19. A topologist bought seven doughnuts and ate all but 
three. How many were left? 

20. In going over his books one day a bookkeeper for a 
toy company noticed that the word "balloon" had two sets of 
double letters, one following the other. "I wonder," he said 
to himself, "if there is an English word containing three 
sets of double letters, one right after the other." Such a word 
appears on this page. Can you find i t ?  - 1 

6-b, 
\\ ,/' 

Figure 119  
The bookkeeper and his balloon 
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21. The dotted lines in Figure 120 are bisectors of the 
two base angles of a triangle. They intersect a t  right angles. 
Leo Moser of the University of Alberta asks: If the base of 
the triangle is 10 inches, what is its altitude? 

Figure 120 
What is the altitude of the 
triangle? 

22. How many months have 30 days? 
23. Mrs. Smith wants to stop smoking after she finishes 

her last remaining nine cigarettes. She can make a new 
cigarette by wrapping three butts in a piece of cigarette 
paper. If she uses this technique as  many times as she can, 
how many cigarettes can she smoke before she finally quits? 

Figure 121 
Mrs. Smith smokes her last 
cigarettes 

24. The following limerick was composed by Leigh Mercer 
of London. Can you read i t  correctly? 

25. "Here are three pills," a doctor says to you. "Take one 
every half-hour." You comply. How long will your pills last? 
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Figure 122 
A tennis player moves to the 
next round 

26. One hundred and thirty-seven men have signed up for 
an elimination tennis tournament. All players are to be 
paired for the first round, but because 137 is an odd number 
one player gets a bye, which promotes him to the next round. 
The pairing continues on each round, with a bye to any 
player left over. If the schedule is planned so that a minimum 
number of matches is required to determine the champion, 
how many matches must be played? 

27. Find a word of ten letters that  can be typed by using 
only the top row of letters on a typewriter. 

28. A box contains two United States coins that together 
total 55 cents. One is not a nickel. What are the coins? 

29. A fish weighs 20 pounds plus half its own weight. How 
much does i t  weigh? 

Figure 123 
A fish is weighed \ 

30. The following telegram was recently composed by 
Roger Angell, a writer on the staff of The New Yorker: 

"MARGE, LET DAM DOGS IN. AM ON SATIRE,' VOW I AM CAIN, 
AM ON SPOT, AM A J A P  SNIPER. RED, RAW MURDER ON GI! 
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IGNORE DRUM . . . WARDER REPINS PAJAMA TOPS . . . NO 

MANIAC, MA! IWO VERITAS : NO MAN IS GOD.-MAD TELEGRAM." 
What is so remarkable about this message? 

31. D. G. Prinz, a mathematician with Ferranti Ltd. in 
Manchester, England, discovered the following symmetrical 
equation : 

What is the value of x ?  (Hint:  Each set of "111" can be 
interpreted in three different ways.) 

32. Arrange six glasses in a row as shown in Figure 124. 
The first three glasses are filled with water, the last three are 
empty. By moving one glass only, change the arrangement 
so that the glasses alternate empty with full. 

Figure 124 
Move one glass to  alternate empty and full 

33. A wheel has ten spokes. How many spaces does it have 
between spokes? 

34. "The number of words in this sentence is nine." The 
sentence just quoted is obviously true. The opposite of a true 
statement is usually false. Give a sentence that says the exact 
opposite of the quoted sentence but is nevertheless true. 

35. Two girls were born on the same day of the same 
month in the same year of the same parents, yet they were 
not twins. Explain. 
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36. If someone says to you, "I'll bet you a dollar that if 
you give me five dollars I'll give you a hundred dollars in 
exchange," would that be a good bet to take? 

Figure 125 
How to lose $4 

37. 0. Henry's famous short story, "The Gift of the Magi," 
opens as follows: "One dollar and eighty-seven cents. That 
was all. And sixty cents of i t  was in pennies." Is there any- 
thing mathematically wrong here? 

A N S W E R S  

1. The squaw on the hippopotamus is equal to the sons of 
the squaws on the other two hides. 

2. Two hours. 
3. 5/12. The probability that both will throw the same 

number is 1/6, therefore the probability that one will throw 
higher than the other is 5/6 or 10/12. This is halved to give 
the probability that Joe will get a higher number than Moe. 

4. "In." 
5. Any distance. The height of the intersection is equal to 

the product of the heights of the two poles divided by their 
sum. 

6. House numbers. 
7. Zero. 
8. "Wrong." 
9. Any date added to the number of years since that date 
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will total the current year. Two such totals will be twice the 
current year. 

10. Sixty degrees. Joining the ends of the two lines com- 
pletes an equilateral triangle. 

11. ONE WORD. 
William T. Walsh, of the Brookhaven National Laboratory, 

Upton, Long Island, New York, wrote that before tackling 
my thirty-seven joke problems he had read, in the same issue 
of Scientific American, an article on the psychology of prob- 
lem solving. "Hence," he wrote, "I could not read any of 
the problems you proposed without first examining my atti- 
tude to see what particular psychological 'set' I had as- 
sumed." When he came to the ONE WORD problem he decided 
that since nothing was said about the orientation of each 
letter when they were rearranged, he could turn the w upside 
down to arrive a t  the following unique solution: DOORMEN. 

12. A thousand feet. The fish makes a right-angle turn. A 
right angle, with its vertex on the circumference of a circle, 
intersects the circumference a t  the end points of a diameter. 
The diameter is therefore the hypotenuse of a right triangle 
with sides of 600 and 800 feet. 

13. "Everyone" included babies and children. 
14. The spectrum of visible light: red, orange, yellow, 

green, blue, indigo, violet. Roy G. Biv, a mnemonic acronym 
for the spectrum, is really Stephen Barr of Woodstock, New 
York. 

15. There are many such formulas: 2 + I", 0" + 3, 2 + 
x/x, and so on. 

16. Anywhere. The sum of the three paths is a constant 
equal to the triangle's altitude. 

17. 103. 
18. After crossing out SIX LETTERS, the remaining letters 

spell BANANA. 
A surprising "better" solution, just as legitimate if not 

more so, was discovered by readers a t  Conductron Corpora- 
tion, Ann Arbor, Michigan, and reported to me by Robert E. 
Machol. The six letters SAINXL are removed wherever they 
appear, leaving the word BETTER. 

19. Three. 
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20. Bookkeeper. Olin Jerome Ferguson and Leo Moser 
each called my attention to subbookkeeper (listed in Web- 
ster's New International Dictionary, 2d edition, 1942, page 
2507) which has four doublets in a row. "What a boob the 
bookkeeper will think he is," wrote Peter F. Arvedson, "when 
he finds out there is an English word with five sets of suc- 
cessive double letters that describe him more completely: 
boobbookkeeper." Stephen Barr, when I told him about this, 
added a sixth doublet with subboobbookkeeper. 

21. Infinity. Angles a and b sum to 90 degrees. The two 
base angles of the triangle (2a and 2b) sum to 180 degrees. 
Therefore the top angle of the triangle must be 0 degrees, 
with the sides of the triangle parallel, meeting a t  infinity. 

22. All but February. 
23. Thirteen. Pierre Basset, Ekkehard Kiinzell and Me1 

Stover were three readers who thought that Mrs. Smith's 
procedure involved an inexcusable waste of that final butt. 
I t  would have been better, each said, had she started with a 
set of ten cigarettes. After consuming fourteen cigarettes 
she would be left with two butts. She could find a third butt 
in an ashtray, smoke her fifteenth and last cigarette, then 
replace the butt where she found it. 

24. One thousand two hundred and sixty- 
Four million eight hundred and fifty- 

Three thousand nine hun- 
Dred and seventy-one 

Point two seven five eight four six three. 
25. One hour. 
26. Because 136 players must be eliminated, there must be 

136 matches. 
27. Typewriter. There are many other ten-letter words, 

and a few even longer ones. See "Typewriter Words" by 
Dmitri Borgmann in Language on Vacation (New York: 
Scribner's, 1965), pages 171-73. 

28. A fifty-cent piece and a nickel. The fifty-cent piece is 
not a nickel. 

29. Forty pounds. 
30. The telegram is a palindrome, reading the same back- 

ward and forward. 
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In the fraction, the I11 above the line is in the decimal sys- 
tem, the I11 below is a Roman numeral. The next I11 is also 
Roman and the last I11 is in the binary system. 

Two readers, Frieda Herman and Joel Herskowitz, each 
proposed a different interpretation. A vertical bar on each 
side of a real number indicates the absolute value of that 
number; that is, its value without regard to sign. The equa- 
tion, therefore, can be taken to mean that x equals the abso- 
lute value of 1 divided by the absolute value of 1, which in 
turn equals the absolute value of 1 multiplied by the abso- 
lute value of 1. 

32. Pick up the second glass, pour its contents into the 
fifth glass, replace the second glass. 

33. Ten. 
34. "The number of words in this sentence is not nine." 
35. They were in a set of triplets. 
36. No. He can take your $5 ,  say "I lose,'' and hand you 

his $1. You win the bet but lose $4. 
37. No. At the time 0. Henry wrote this story the United 

States still had three-cent pieces in circulation. (They were 
minted as late as 1889.) Two-cent pieces were discontinued 
in 1873, but remained in circulation for many years after 
that. One two-cent piece or four three-cent pieces would 
explain 0. Henry's statement. 
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Papers on the unexpected hanging paradox continue to proliferate. I 
have greatly lengthened the chapter's bibliography to catch all the ref- 
erences in English that have come to my attention since the first edi- 
tion of this book in 1969. It is amazing that philosophers continue to be 
bemused by this paradox and are still unable to agree on how best to 
resolve it. 

The paradox has many variants. Douglas Hofstadter suggested that 
instead of an unexpected egg in a box there be an unexpected deadly 
snake. Roy Sorensen, in his 1982 paper, offered three versions in 
which a time sequence is not involved: one concerning what are called 
Moorean sentences, another about moves on a 3 x 3 game matrix, 
and a third based on a chain of sacrificial virgins. I used Sorensen's 
game version for a chess paradox in my 1987 reference. His book 
Blindspots (1988) has a history of the paradox, and reprints his 1982 
paper. 

Knot theory is an increasingly hot topic in topology. In 1984 
Vaughan Jones discovered a new and powerful polynomial formula for 
classifying knots that surprised both mathematicians and physicists by 
having signhcant applications in quantum mechanics! Some recent ref- 
erences on this are listed in the bibliography. 

Greg Frederickson, a computer scientist, has revised and expanded 
Harry Lindgren's pioneer book on plane dissections. He updated the 
chart I gave of records, and supplied an improvement (fig. 126) over 
the dissection I gave of the six-pointed star to a regular hexagon. Six 
pieces do the trick, with two pieces that must be turned over. Figure 
127 shows how Frederickson went Lindgren one better with a nine- 
piece dissection of the six-point star to a dodecagon. 

To chapter 5's bibliography I have added three later books on gam- 
bling by John Scarne. He died in 1985, a few years after privately pub- 
l i s h g  an embarrassing book, The Mafia Conspiracy, in which he 

245 
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Figure 126 
Greg Frederickson's improved dissection, in six pieces, of the six-point star to a 
hexagon. 

Figure 127 
Frederickson's improved nine-piece dissection of the six-point star to a 
dodecagon. 

struggled to prove that the notion of an Italian mafia, playing a leading 
role in organized crime, is a total myth invented by the media to dis- 
credit Italians. 

At the time I wrote about the Church of the Fourth Dimension no 
eminent physicist had ever contended that there might actually be 
spaces "out there," higher than our famihar 3-space. (The use of a 
fourth dimension in relativity theory was no more than a way of han- 
h g  time in the theory's equations.) Now, however, particle physi- 
cists are in a euphoric state over a theory of superstrings in which 
fundamental particles are not modeled as geometrical points, but as 
extremely tiny closed loops, of great tensile strength, that vibrate in 
higher spaces. These higher spaces are "compacted"-curled up into 
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tight little structures too small to be visible or even to be detected by 
today's atom smashers. 

Some physicists regard these higher spaces as mere artifices of the 
mathematics, but others believe they are just as real as the three 
spaces we know and love. (On superstrings, see my New Ambidex- 
trous Universe.) It is the first time physicists have seriously enter- 
tained the notion of higher spaces that are physically real. This may 
have stimulated the publication of recent books on the fourth and 
higher dimensions. I particularly recommend Thomas F. Banchoff's 
Beyond the Third Dimension, if for no other reason than for its won- 
drous computer graphics. 

The first problem of chapter 7 was discussed and generalized in 
"The No-Touch Puzzle and Some Generalizations," by D. K. Cahoon, 
in Mathematics Magazine, vol. 45, November 1972, pages 261-65. 
Robert Abbott, whose maze about Floyd's Knob I gave as a problem, 
has written a marvelous book, Mad Mazes (Bob Adams, 1990), that 
contains twenty mazes unlike any you've encountered before. I had 
the pleasure of writing the book's introduction. 

My hexapawn game was marketed in two forms. In 1969 IBM 
adapted it to a board that used a spinner to choose one of four colors, 
and buttons to place on game positions to reward or punish the primi- 
tive "learning machine." Titled "Hexapawn: A Game You Play to 
Lose," it was distributed by IBM to high school science and mathe- 
matics classes, and to the general public. In 1970 Gabriella, a Farm- 
ingdale, New York, firm, produced and sold a similar product they 
called the Gabriella Computer Kit. See Science News (October 26, 
1970) for an advertisement. The game was also described in the first 
chapter of We Build Our Own Computers, a projects handbook by 
A. B. Bolt and others (Cambridge University Press, 1966). 

Computers that learn from experience currently offer the most 
promising ways to simulate the human mind. Based on what are called 
neural networks, they rely heavily on the parallel processing of data. 
The neural network literature is so vast that I made no attempt to cite 
references. Our brain is, of course, an enormously complicated, paral- 
lel-processing learning machine, the operation of which is still only 
dimly understood. 

Computer chess has made rapid progress since I wrote about it in 
chapter 8. Programs now play on the master level, and on occasion 
have defeated grand masters. The best programs do not learn from 
experience, but owe their skill to the fantastic speed with which they 
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explore long sequences of moves. It is only a matter of time before 
chess programs achieve grand master ratings. 

A proof of first player win on the 3 x 3 go field is given in the 1972 
paper by Edward Thorp and William Walden. As far as I know, my 
5 x 5 minichess has not been solved in the sense that it is not known 
whether the first or second player has the win when the game is 
played rationally, or whether the game is a draw. It is possible that 
many chess computer programs would be able to crack it if someone 
only bothered to give them the game as a problem. 

Another curious form of minichess was created by a young woman 
named Chi Chi Hackenberg, whose invention was featured in Eye (No- 
vember 1968), pages 93-94. It uses a field of 4 x 8, or half the stan- 
dard chessboard. 

At the start, all eight white pieces are on the first row, in their usual 
formation. The second row has five white pawns, three pawns missing 
on the king's bishop and knight columns and the queen's knight column. 
The thirteen black pieces are in mirror image formation on the other 
two rows, malung six vacant cells on the board. There are two new 
rules. White is not allowed to move a pawn on its opening move, and 
pawns are permitted to move vertically backward either one step or to 
capture diagonally backward. 

Hackenberg says that she thinks white's best opening is to take the 
rook's pawn with its king's knight, threatening checkmate with KB to 
N2. However, black can mount a counteroffensive by taking the white 
queen's pawn with its queen's bishop's pawn for the first in a series of 
checks that include a capture of white's queen. This seems so disas- 
trous for white that the opening suggested by Hackenberg may not be 
the best after all. Or can white, after the checks subside, mount a 
viable counterattack? As far as I know, this miniversion of chess also 
has not been exhaustively analyzed. 

In the chapter on spirals I incorrectly said that the Latin phrase 
"Eadem mutata resurgo" was not on Jacob Bernoulli's tombstone. 
Klaus Treitz, in Germany, sent me a postcard with a photograph of the 
tomb. Sure enough, the phrase can be seen circling the spiral below 
the epitaph. 

Friends called my attention to two geographical spirals. In ancient 
Greek mythology the River Styx is a spiral that flows seven times 
around Hades. And in L. Frank Baum's fantasy Sky Island (chapter 
13), Pink City has only one street, and it spirals from the city's main 
gate to a palace at the center of town. 
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For a detailed discussion of the problem of communicating left and 
right, of the overthrow of parity, and of other curious left-right as- 
pects of the universe and modern science, see my New Ambidextrous 
Universe. The book also contains a wealth of material relating to topics 
in the chapter on rotations and reflections. 

In recent years the art of lettering words and phrases in such a way 
that they are invariant with respect to rotations andlor mirror reflec- 
tions has been carried to unbelievable heights by Scott Kim, Douglas 
Hofstadter, and others. It seems like sheer magic when you rotate or 
reflect these words and see them either remain the same or change to 
something entirely Merent.  See my June 1981 column in Scientific 
American, and the books by Kim and Hofstadter listed in the bibliogra- 
phy. I have also included a reference to the winners of an Omni maga- 
zine contest for this kind of calligraphy. 

The study of Flatlands took a giant leap forward in 1979 when A. K. 
Dewdney, a Canadian computer scientist, published a monograph on 
the science and technology of planar worlds. I devoted a Scientific 
American column to these surprising investigations, and Dewdney 
wrote an amazing book about them. 

The definitive work on peg solitaire, covering problems, theory, 
history, and variations of the board has been written by John Beasley. 
It was published in 1985 by Oxford University Press in an ongoing 
series of books about recreational mathematics edited by David 
Singrnaster. 

I found an early reference to tumble rings in The English Mechanic 
and World of Science (November 23, 1888: page 251). A short piece 
titled "The Magic Chain" includes a picture of the rings. "A curious 
little thing is to be seen occasionally offered for sale in the streets," 
writes the anonymous author, "and as it is easy to make, and is the 
subject of a very remarkable optical illusion, it may interest our read- 
ers." There must be still earlier references. It would be good to know 
who invented this bizarre linkage. 

Jearl Walker's "Amateur Scientist" department in Scientific Ameri- 
can (May 1985) was devoted to string figures of the sort discussed in 
chapter 17. Incidentally, I came across two pictures of interest. The 
American artist Robert Vickrey produced a painting called "Cat's Cra- 
dle" showing a boy with the string on his hands (a print is sold by the 
New York print firm of Oestreicher's). A drawing of two girls playing 
cat's cradle, by the American artist Winslow Homer, appeared in 
Haeer's Weekly (September 12, 1874). 
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In 1969 England introduced a 50-pence coin with seven slightly 
curved sides that form a circle of constant width, surely the first 
seven-sided coin ever minted. The invariant width allows the coin to 
roll smoothly down coin-operated machmes. 

The most spectacular constructions of what Golomb calls "infin- 
tiles (rep-tiles with infinitely many sides) are in the papers by Jack 
Giles, Jr., cited in the bibliography. Giles calls them "superfigures." 
Many of Golomb's infin-tiles, and those of Giles, are early examples 
of fractals. Golomb tells me that Giles was a parking lot attendant in 
Florida when he sent his papers to Golomb, who in turn submitted 
them to the Journal of Combinatorial Theory. 
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